1
|
Hendrickson OD, Byzova NA, Panferov VG, Zvereva EA, Xing S, Zherdev AV, Liu J, Lei H, Dzantiev BB. Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label. BIOSENSORS 2024; 14:598. [PMID: 39727863 DOI: 10.3390/bios14120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such "chemical enhancement" allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1-114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Shen Xing
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
2
|
Hegde V, Bhat RM, Budagumpi S, Adimule V, Keri RS. Quinoline hybrid derivatives as effective structural motifs in the treatment of tuberculosis: Emphasis on structure-activity relationships. Tuberculosis (Edinb) 2024; 149:102573. [PMID: 39504873 DOI: 10.1016/j.tube.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Mycobacterium tuberculosis (MTB/Mtb) is the causative agent of tuberculosis (TB), a highly infectious serious airborne illness. TB usually affects the lungs, in 25 % of patients (children or immune impaired adults), mycobacteria can enter the blood stream and infect other bodily areas such the meninges, pleura, lymphatic system, genitourinary system, bones, and joints. Currently, the most challenging aspect of treating this illness is the ineffectiveness of the most potent first-line anti-TB medications, isoniazid, rifampin, pyrazinamide, and ethambutol, which can result in multidrug-resistant TB (MDR-TB), extensively drug-resistant TB (XDR-TB), and in rare instances, completely drug-resistant TB (TDR-TB). As a result, finding new pharmaceutical compounds to treat these diseases is a significant challenge for the scientific community. A number of bio-active molecules have been investigated in this quest, including quinoline, which is considered a promising candidate for the development of TB drugs. It is known that quinoline are low in toxicity and have a wide range of pharmacological properties. Researchers have investigated quinoline scaffolds as anti-TB drugs based on their biological spectrum. The objective of this review is to examine the recent development of quinoline and its structural characteristics crucial to its antitubercular (anti-TB) activity. A molecular analog of the TB treatment can be designed and identified with this information. As a result, future generation quinoline-based anti-TB agents with greater potency and safety can also be explored.
Collapse
Affiliation(s)
- Venkatraman Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Raveendra Madhukar Bhat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India; Aurigene Pharmaceutical Services, KIADB Industrial area, Electronics City Phase-2, Hosur Road, Bangalore, Karnataka, 560100, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, 590009, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
3
|
Keri RS, Budagumpi S, Adimule V. Quinoline Synthesis: Nanocatalyzed Green Protocols-An Overview. ACS OMEGA 2024; 9:42630-42667. [PMID: 39464456 PMCID: PMC11500387 DOI: 10.1021/acsomega.4c07011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Heterocyclic compounds are of great interest in our daily lives. They are widely distributed in nature and are synthesized in laboratories. Heterocycles play an important role in the metabolism of all living cells, including vitamins and coenzyme precursors like thiamine and riboflavin. Furthermore, heterocyclic systems are essential building blocks for creating innovative materials with intriguing electrical, mechanical, and biological properties. Also, more than 85% of all biologically active chemical entities comprise a heterocycle. As a result, heterocycle synthesis piqued researchers' curiosity, and in recent decades, chemists have concentrated more on nitrogen-containing cyclic nuclei in structures. Quinoline and its derivatives exhibit several biological functions, including antimicrobial, anticancer, antimalarial, anti-inflammatory, antihypertensive, and antiasthmatic effects. In addition, over a hundred quinoline-based drugs are available to treat a variety of disorders. Because of its biological importance, researchers developed one-pot synthetic methods employing effective acid/base catalysts (Lewis acids, Brønsted acids, and ionic liquids), reagents, and transition-metal-based catalysts. These methods have some downsides, including longer reaction times, harsher reaction conditions, creation of byproducts, costly catalysts, use of hazardous solvents, an unacceptable economic yield, and catalyst recovery. Researchers' focus has switched to creating environmentally friendly and effective methods for the synthesis of quinoline derivatives as a result of these methodologic shortcomings. Because of its special qualities, the use of nanocatalysts or nanocomposites offers an option for the effective synthesis of quinolines. This review focuses on the published research articles on nanocatalysts to synthesize substituted quinoline derivatives. This review covers all contributions until May 2024, focusing on quinoline ring building and mechanistic issues. With the aid of this review, we anticipate that synthetic chemists will be able to develop more effective methods of synthesizing quinolines.
Collapse
Affiliation(s)
- Rangappa S. Keri
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Srinivasa Budagumpi
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Vinayak Adimule
- Angadi
Institute of Technology and Management (AITM), Savagaon Road, Belagavi, Karnataka 5800321, India
| |
Collapse
|
4
|
Carrera-Aubesart A, Li J, Contreras E, Bello-Madruga R, Torrent M, Andreu D. From In Vitro Promise to In Vivo Reality: An Instructive Account of Infection Model Evaluation of Antimicrobial Peptides. Int J Mol Sci 2024; 25:9773. [PMID: 39337261 PMCID: PMC11431785 DOI: 10.3390/ijms25189773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics in the face of ever-increasing resistance. However, many AMPs fail to progress into clinics due to unexpected difficulties found in preclinical in vivo phases. Our research has focused on crotalicidin (Ctn), an AMP from snake venom, and a fragment thereof, Ctn[15-34], with improved in vitro antimicrobial and anticancer activities and remarkable serum stability. As the retroenantio versions of both AMPs maintained favorable profiles, in this work, we evaluate the in vivo efficacy of both the native-sequence AMPs and their retroenantio counterparts in a murine infection model with Acinetobacter baumannii. A significant reduction in bacterial levels is found in the mice treated with Ctn[15-34]. However, contrary to expectations, the retroenantio analogs either exhibit toxicity or lack efficacy when administered to mice. Our findings underscore the critical importance of in vivo infection model evaluation to fully calibrate the therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Estefanía Contreras
- Integrated Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Bello-Madruga
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Kokot M, Minovski N. Dynamic Profiling and Binding Affinity Prediction of NBTI Antibacterials against DNA Gyrase Enzyme by Multidimensional Machine Learning and Molecular Dynamics Simulations. ACS OMEGA 2024; 9:18278-18295. [PMID: 38680300 PMCID: PMC11044241 DOI: 10.1021/acsomega.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for de novo design/optimization of new NBTIs. Utilizing in vitro NBTI experimental data, we constructed two comprehensive multidimensional DNA gyrase surrogate models for Staphylococcus aureus (q2 = 0.791) and Escherichia coli (q2 = 0.806). Both models accurately predicted the IC50s of 26 NBTIs from our recent studies. To investigate the NBTI's dynamic profile and binding to both targets, 10 selected NBTIs underwent molecular dynamics (MD) simulations. The analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method employing an in-house derived set of fitting parameters (α = 0.16, β = 0.029, γ = 0.0, and intercept = -1.72), which are successfully applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free energies of NBTIs against S. aureus and E. coli DNA gyrase. We are confident that this integrated modeling approach could be valuable in the de novo design and optimization of efficient NBTIs for combating resistant bacterial pathogens.
Collapse
Affiliation(s)
- Maja Kokot
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- The
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
6
|
Rusu A, Moga IM, Uncu L, Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023; 15:2554. [PMID: 38004534 PMCID: PMC10675556 DOI: 10.3390/pharmaceutics15112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Five-membered heterocycles are essential structural components in various antibacterial drugs; the physicochemical properties of a five-membered heterocycle can play a crucial role in determining the biological activity of an antibacterial drug. These properties can affect the drug's activity spectrum, potency, and pharmacokinetic and toxicological properties. Using scientific databases, we identified and discussed the antibacterials used in therapy, containing five-membered heterocycles in their molecular structure. The identified five-membered heterocycles used in antibacterial design contain one to four heteroatoms (nitrogen, oxygen, and sulfur). Antibacterials containing five-membered heterocycles were discussed, highlighting the biological properties imprinted by the targeted heterocycle. In some antibacterials, heterocycles with five atoms are pharmacophores responsible for their specific antibacterial activity. As pharmacophores, these heterocycles help design new medicinal molecules, improving their potency and selectivity and comprehending the structure-activity relationship of antibiotics. Unfortunately, particular heterocycles can also affect the drug's potential toxicity. The review extensively presents the most successful five-atom heterocycles used to design antibacterial essential medicines. Understanding and optimizing the intrinsic characteristics of a five-membered heterocycle can help the development of antibacterial drugs with improved activity, pharmacokinetic profile, and safety.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| | - Ioana-Maria Moga
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 8 Bd. Stefan Cel Mare si Sfant 165, MD-2004 Chisinau, Moldova;
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-M.M.); (G.H.)
| |
Collapse
|
7
|
Rotstein C, Lynch JP, Zhanel GG. Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) in Canada: treatment update and the role of new IV antimicrobials. Expert Rev Anti Infect Ther 2023:1-13. [PMID: 37811572 DOI: 10.1080/14787210.2023.2268287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) continue to be common infections causing significant morbidity and mortality worldwide. The timely initiation of empiric antimicrobial therapy is essential. In this paper, we provide a focused expert opinion on the current and potential empiric antimicrobial treatment options in HABP and VABP in Canada influenced by antimicrobial resistance impacting the use of older agents as well as available new intravenous (IV) antimicrobials. AREAS COVERED The authors discuss treatment options for HABP and VABP in Canada. In addition, we focus on the potential role of new IV antimicrobials recently introduced to Canada. A literature search of HABP and VABP treatments was performed via PubMed (up to March 2023), using the following key words: monotherapy, combination therapy, aminoglycosides, carbapenems, cephalosporins, fluoroquinolones, penicillins as well as amoxicillin/clavulanate, ceftobiprole, ceftolozane/tazobactam, dalbavancin, and fosfomycin. EXPERT OPINION Empiric antimicrobial treatment for HABP and VABP in Canada continues to focus on both the severity of illness and the presence/absence of patient risk factors for antimicrobial resistance. The role of new IV antimicrobials in the empiric treatment for HABP and VABP depends on their antimicrobial activity and published data on efficacy and safety and influenced by Health Canada-approved indications.
Collapse
Affiliation(s)
- Coleman Rotstein
- Division of Infectious Diseases, University of Toronto, and University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Moir J, Hyman M, Wang J, Flores A, Skondra D. The Association of Antibiotic Use and the Odds of a New-Onset ICD Code Diagnosis of Age-Related Macular Degeneration: A Large National Case-Control Study. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37682568 PMCID: PMC10500369 DOI: 10.1167/iovs.64.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose The widespread use of antibiotics has many well-documented impacts on the human microbiome, which may be associated with the development of various inflammatory diseases. Despite age-related macular degeneration (AMD) featuring an inflammatory pathogenesis, the relationship between antibiotics and AMD has remained unexplored. We conducted the first study to determine the association between antibiotic exposure and a new-onset International Classification of Diseases (ICD) diagnosis of AMD. Methods We performed a case-control analysis of patients aged 55 and older with new-onset AMD between 2008 and 2017 from a nationwide commercial health insurance claims database. Exposure to antibiotics in the two years before the index date was determined for cases and controls matched one-to-one by age, year, region, anemia, hypertension, and a comorbidity index. Conditional multivariable logistic regression, adjusted for AMD risk factors, was performed to calculate odd ratios (OR) and 95% confidence intervals (CI). Results Among the antibiotic classes, exposure to aminoglycosides (OR = 1.24; 95% CI, 1.22-1.26) and fluoroquinolones (OR = 1.13; 95% CI, 1.12-1.14) was associated with the greatest odds of a new-onset ICD code diagnosis of AMD. Broad-spectrum antibiotics were associated with nearly three times greater odds of a new-onset ICD code diagnosis of AMD (OR = 1.15; 95% CI, 1.13-1.16) compared to narrow-spectrum antibiotics (OR = 1.05; 95% CI, 1.03-1.07). We also identified a frequency- and duration-dependent association, with a greater cumulative number of antibiotic prescriptions or day supply of antibiotics conferring increased odds of a new-onset ICD code diagnosis of AMD. Conclusions Greater cumulative exposure to antibiotics, particularly fluoroquinolones, aminoglycosides, and those with broader-spectrum coverage, may be associated with the development of AMD, a finding that requires further investigation using prospective studies.
Collapse
Affiliation(s)
- John Moir
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States
| | - Max Hyman
- The Center for Health and the Social Sciences, University of Chicago, Chicago, Illinois, United States
| | - Jessie Wang
- Department of Ophthalmology and Visual Science, University of Chicago Medicine, Chicago, Illinois, United States
| | - Andrea Flores
- The Center for Health and the Social Sciences, University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago Medicine, Chicago, Illinois, United States
| |
Collapse
|
9
|
Kim EY, Kumar SD, Bang JK, Ajish C, Yang S, Ganbaatar B, Kim J, Lee CW, Cho SJ, Shin SY. Evaluation of deoxythymidine-based cationic amphiphiles as antimicrobial, antibiofilm, and anti-inflammatory agents. Int J Antimicrob Agents 2023; 62:106909. [PMID: 37419291 DOI: 10.1016/j.ijantimicag.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES We recently designed a series of cationic deoxythymidine-based amphiphiles that mimic the cationic amphipathic structure of antimicrobial peptides (AMPs). Among these amphiphiles, ADG-2e and ADL-3e displayed the highest selectivity against bacterial cells. In this study, ADG-2e and ADL-3e were evaluated for their potential as novel classes of antimicrobial, antibiofilm, and anti-inflammatory agents. METHODS Minimum inhibitory concentrations of ADG-2e and ADL-3e against bacteria were determined using the broth microdilution method. Proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K was determined by radial diffusion and HPLC analysis. Biofilm activity was investigated using the broth microdilution and confocal microscopy. The antimicrobial mechanism was investigated by membrane depolarization, cell membrane integrity analysis, scanning electron microscopy (SEM), genomic DNA influence and genomic DNA binding assay. Synergistic activity was evaluated using checkerboard method. Anti-inflammatory activity was investigated using ELISA and RT-PCR. RESULTS ADG-2e and ADL-3e showed good resistance to physiological salts and human serum, and a low incidence of drug resistance. Moreover, they exhibit proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K. ADG-2e and ADL-3e were found to kill bacteria by an intracellular target mechanism and bacterial cell membrane-disrupting mechanism, respectively. Furthermore, ADG-2e and ADL-3e showed effective synergistic effects when combined with several conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Importantly, ADG-2e and ADL-3e not only suppressed MDRPA biofilm formation but also effectively eradicated mature MDRPA biofilms. Furthermore, ADG-2e and ADL-3e drastically decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) gene expression and protein secretion in lipopolysaccharide (LPS)-stimulated macrophages, implying potent anti-inflammatory activity in LPS-induced inflammation. CONCLUSION Our findings suggest that ADG-2e and ADL-3e could be further developed as novel antimicrobial, antibiofilm, and anti-inflammatory agents to combat bacterial infections.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - S Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, Republic of Korea
| | - Chelladurai Ajish
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | | | - Jeongeun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
10
|
Kokot M, Novak D, Zdovc I, Anderluh M, Hrast M, Minovski N. Exploring Alternative Pathways to Target Bacterial Type II Topoisomerases Using NBTI Antibacterials: Beyond Halogen-Bonding Interactions. Antibiotics (Basel) 2023; 12:antibiotics12050930. [PMID: 37237833 DOI: 10.3390/antibiotics12050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of antibacterial agents that target bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Our recently disclosed crystal structure of an NBTI ligand in complex with DNA gyrase and DNA revealed that the halogen atom in the para position of the phenyl right hand side (RHS) moiety is able to establish strong symmetrical bifurcated halogen bonds with the enzyme; these are responsible for the excellent enzyme inhibitory potency and antibacterial activity of these NBTIs. To further assess the possibility of any alternative interactions (e.g., hydrogen-bonding and/or hydrophobic interactions), we introduced various non-halogen groups at the p-position of the phenyl RHS moiety. Considering the hydrophobic nature of amino acid residues delineating the NBTI's binding pocket in bacterial topoisomerases, we demonstrated that designed NBTIs cannot establish any hydrogen-bonding interactions with the enzyme; hydrophobic interactions are feasible in all respects, while halogen-bonding interactions are apparently the most preferred.
Collapse
Affiliation(s)
- Maja Kokot
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Doroteja Novak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Carral N, Lukas JC, Estradé O, Jauregizar N, Morillas H, Suárez E. Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones. Antibiotics (Basel) 2023; 12:antibiotics12050838. [PMID: 37237741 DOI: 10.3390/antibiotics12050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The consequences of non-adherence to treatment (NAT) on antimicrobial efficacy may depend on drug forgiveness-a property that should account for pharmacokinetics (PK) and pharmacodynamics (PD) as well as interindividual variability. In this simulation study, relative forgiveness (RF) in NAT, defined as the probability of a successful PK/PD target (PTA) attained under perfect adherence compared to imperfect adherence, was evaluated for amoxicillin (AMOX) (oral 1000 mg/8 h) and two respiratory fluoroquinolones-levofloxacin (LFX) (oral 750 mg/24 h) and moxifloxacin (MOX) (oral 400 mg/24 h)-in virtual outpatients with community-acquired pneumonia for S. pneumoniae. Several NAT scenarios (delay in dose intake and a missed dose) were considered. PK characteristics of virtual patients, including variability in creatinine clearance (70-131 mL/min) and S. pneumoniae susceptibility variability associated with geographical location, were simulated in NAT. In this regard, in regions of low MIC delays from 1 h to 7 h or omission of dose ingestion would not have negative consequences on the efficacy of AMOX because of its good RF associated with the AMOX PK and PD properties; RF of LFX 750 mg or MOX 400 mg/24 h regimen vs. AMOX 1000 mg/8 h is one. However, in regions of elevated MIC for S. pneumoniae AMOX loses its RF, LFX and MOX vs. AMOX, showing higher RF (>1) depending on the CLCR of patients. These results illustrate the importance of considering the RF of antimicrobial drugs in NAT and provide a framework for further studying its implications for clinical success rates.
Collapse
Affiliation(s)
- Nerea Carral
- Department of Pharmacology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - John C Lukas
- Drug Modeling & Consulting, Dynakin SL, 48160 Derio, Spain
| | - Oskar Estradé
- Department of Pharmacology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Elena Suárez
- Department of Pharmacology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
12
|
Kumar R, Pathania V, Kumar S, Kumar M, Nandanwar H, Maurya SK. Synthesis of Novel Ciprofloxacin-Avibactam Conjugates for the Development of Second-Generation Non-β-Lactam-β-Lactamase Inhibitors. Bioorg Med Chem Lett 2023; 88:129308. [PMID: 37127102 DOI: 10.1016/j.bmcl.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
To overcome the antibiotic resistance challenge, we synthesized a novel class of conjugates based on ciprofloxacin and avibactam, covalently linked by diverse amino acids. In vitro studies of these conjugates have shown improved antibacterial efficacy of avibactam when used alone against some ESKAPE pathogens, i.e., S. aureus, E. coli, and A. baumannii. Further, ceftazidime was screened in combination with all conjugates and found to be less synergistically effective than avibactam-ceftazidime co-dosing against K. pneumoniae and E. coli bacterial strains. Subsequently, the top-ranked active conjugates were investigated against the commercially available β-lactamase-II (Penicillinase from Bacillus cereus) through in vitro studies. These studies elucidated two conjugates i.e, 9 (IC50 = 1.69 ± 0.35 nM) and 24b (IC50 = 57.37 ± 5.39 nM), which have higher inhibition profile than avibactam (IC50 = 141.08 ± 12.20 nM). These outcomes allude to avibactam integration with ciprofloxacin is a novel and fruitful approach to discovering clinically valuable next-generation non-β-lactam-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Pathania
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Shashi Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226 007, India
| |
Collapse
|
13
|
Hernandez-Morfa M, Reinoso-Vizcaíno NM, Olivero NB, Zappia VE, Cortes PR, Jaime A, Echenique J. Host Cell Oxidative Stress Promotes Intracellular Fluoroquinolone Persisters of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0436422. [PMID: 36445159 PMCID: PMC9769771 DOI: 10.1128/spectrum.04364-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial persisters represent a small subpopulation that tolerates high antibiotic concentrations without acquiring heritable resistance, and it may be generated by environmental factors. Here, we report the first antibiotic persistence mechanism in Streptococcus pneumoniae, which is induced by oxidative stress conditions and allows the pneumococcus to survive in the presence of fluoroquinolones. We demonstrated that fluoroquinolone persistence is prompted by both the impact of growth arrest and the oxidative stress response induced by H2O2 in bacterial cells. This process protected pneumococci against the deleterious effects of high ROS levels induced by fluoroquinolones. Importantly, S. pneumoniae develops persistence during infection, and is dependent on the oxidative stress status of the host cells, indicating that its transient intracellular life contributes to this mechanism. Furthermore, our findings suggest persistence may influence the outcome of antibiotic therapy and be part of a multistep mechanism in the evolution of fluoroquinolone resistance. IMPORTANCE In S. pneumoniae, different mechanisms that counteract antibiotic effects have been described, such as vancomycin tolerance, heteroresistance to penicillin and fluoroquinolone resistance, which critically affect the therapeutic efficacy. Antibiotic persistence is a type of antibiotic tolerance that allows a bacterial subpopulation to survive lethal antimicrobial concentrations. In this work, we used a host-cell infection model to reveal fluoroquinolone persistence in S. pneumoniae. This mechanism is induced by oxidative stress that the pneumococcus must overcome to survive in host cells. Many fluoroquinolones, such as levofloxacin and moxifloxacin, have a broad spectrum of activity against bacterial pathogens of community-acquired pneumonia, and they are used to treat pneumococcal diseases. However, the emergence of fluoroquinolone-resistant strains complicates antibiotic treatment of invasive infections. Consequently, antibiotic persistence in S. pneumoniae is clinically relevant due to prolonged exposure to fluoroquinolones likely favors the acquisition of mutations that generate antibiotic resistance in persisters. In addition, this work contributes to the knowledge of antibiotic persistence mechanisms in bacteria.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás M. Reinoso-Vizcaíno
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Jaime
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
14
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
15
|
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022; 11:1513. [PMID: 36558847 PMCID: PMC9784349 DOI: 10.3390/pathogens11121513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but with little success). Oral diseases have long been established as clinical risk factors for developing respiratory diseases. The establishment of a very similar microbiome in the mouth and the lung confirms the oral-lung connection. The aspiration of pathogenic microbes from the oral cavity has been implicated in several respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD). This review focuses on current and future pharmacotherapeutic approaches for COPD exacerbation including antimicrobials, mucoregulators, the use of bronchodilators and anti-inflammatory drugs, modifying epigenetic marks, and modulating dysbiosis of the microbiome.
Collapse
Affiliation(s)
- Yehudis Rosenwasser
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Irene Berger
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Zvi G. Loewy
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
16
|
Malpani SN, Deshmukh P. Deviated Nasal Septum a Risk Factor for the Occurrence of Chronic Rhinosinusitis. Cureus 2022; 14:e30261. [PMID: 36381736 PMCID: PMC9650940 DOI: 10.7759/cureus.30261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this review article is to determine whether a deviated nasal septum (DNS) is a potential risk factor for the occurrence of chronic rhinosinusitis (CRS). Nasal septal deformities include spur, deviated nasal septum, thickening, and dislocation. Deformities of the nose tip and columella are examples of external deformities, together with the deviated part of either cartilage or both the bony and cartilage part of the dorsum of the nose. Various symptoms of chronic rhinosinusitis include nasal obstruction, nasal or post-nasal drainage, facial pain and pressure, and smell disturbances. For a long time, the deviation of the nasal septum is related to the pathogenesis, progression, and severity of chronic rhinosinusitis. Mechanisms involving mechanical and aerodynamics theory may be used to explain this relationship. Etiology in the occurrence of CRS are allergy, asthma, tooth Infection, immunodeficiency, mucociliary disorders, anatomical irregularities like DNS, concha bullosa, septum spurring, or an expanded cystic middle turbinate or prominent agger nasi cells that compromise the osteomeatal complex. The computed tomography (CT) scan imaging of the nasal cavity and paranasal sinuses has dramatically improved especially since the use of coronary CT scans. These scans make it simple to find even minute changes and abnormalities in bony structures and mucosal pathologies. An increase in the angle of DNS is significantly linked to specific disease patterns in the osteomeatal complex. This review shows that not all subtypes of DNS always result in the development of CRS. Only extremely severe DNS appears to contribute to the etiology of CRS.
Collapse
|
17
|
Asghar AA, Akhlaq M, Jalil A, Azad AK, Asghar J, Adeel M, Albadrani GM, Al-Doaiss AA, Kamel M, Altyar AE, Abdel-Daim MM. Formulation of ciprofloxacin-loaded oral self-emulsifying drug delivery system to improve the pharmacokinetics and antibacterial activity. Front Pharmacol 2022; 13:967106. [PMID: 36267282 PMCID: PMC9577179 DOI: 10.3389/fphar.2022.967106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to increase the aqueous solubility of ciprofloxacin (CPN) to improve oral bioavailability. This was carried out by formulating a stable formulation of the Self-Emulsifying Drug Delivery System (SEDDS) using various ratios of lipid/oil, surfactant, and co-surfactant. A pseudo-ternary phase diagram was designed to find an area of emulsification. Eight formulations (F1-CPN–F8-CPN) containing oleic acid oil, silicone oil, olive oil, castor oil, sunflower oil, myglol oil, polysorbate-80, polysorbate-20, PEO-200, PEO-400, PEO-600, and PG were formulated. The resultant SEDDS were subjected to thermodynamic study, size, and surface charge studies to improve preparation. Improved composition of SEDDS F5-CPN containing 40% oil, 60% polysorbate-80, and propylene glycol (Smix ratio 6: 1) were thermodynamically stable emulsions having droplet size 202.6 nm, charge surface -13.9 mV, and 0.226 polydispersity index (PDI). Fourier transform infra-red (FT-IR) studies revealed that the optimized formulation and drug showed no interactions. Scanning electron microscope tests showed the droplets have an even surface and spherical shape. It was observed that within 5 h, the concentration of released CPN from optimized formulations F5-CPN was 93%. F5-CPN also showed a higher antibacterial action against S. aurous than free CPN. It shows that F5-CPN is a better formulation with a good release and high antibacterial activity.
Collapse
Affiliation(s)
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakaria University, Multan, Punjab, Pakistan
| | - Abul Kalam Azad
- Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
- *Correspondence: Abul Kalam Azad, ; Mohamed M. Abdel-Daim,
| | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amin A. Al-Doaiss
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- *Correspondence: Abul Kalam Azad, ; Mohamed M. Abdel-Daim,
| |
Collapse
|
18
|
Bayramoğlu D, Güllü M. An Efficient Synthetic Method for the Synthesis of Novel Pyrimido[1,2-a]pyrimidine-3-carboxylates: Comparison of Microwave and Conventional Heating. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1915806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Duygu Bayramoğlu
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Mustafa Güllü
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Viaggi B, Cangialosi A, Langer M, Olivieri C, Gori A, Corona A, Finazzi S, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel) 2022; 11:antibiotics11091193. [PMID: 36139972 PMCID: PMC9495066 DOI: 10.3390/antibiotics11091193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
In patients that are admitted to intensive care units (ICUs), the clinical outcome of severe infections depends on several factors, as well as the early administration of chemotherapies and comorbidities. Antimicrobials may be used in off-label regimens to maximize the probability of therapeutic concentrations within infected tissues and to prevent the selection of resistant clones. Interestingly, the literature clearly shows that the rate of tissue penetration is variable among antibacterial drugs, and the correlation between plasma and tissue concentrations may be inconstant. The present review harvests data about tissue penetration of antibacterial drugs in ICU patients, limiting the search to those drugs that mainly act as protein synthesis inhibitors and disrupting DNA structure and function. As expected, fluoroquinolones, macrolides, linezolid, and tigecycline have an excellent diffusion into epithelial lining fluid. That high penetration is fundamental for the therapy of ventilator and healthcare-associated pneumonia. Some drugs also display a high penetration rate within cerebrospinal fluid, while other agents diffuse into the skin and soft tissues. Further studies are needed to improve our knowledge about drug tissue penetration, especially in the presence of factors that may affect drug pharmacokinetics.
Collapse
Affiliation(s)
- Bruno Viaggi
- Department of Anesthesiology, Neuro-Intensive Care Unit, Careggi University Hospital, 50139 Florence, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alice Cangialosi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Carlo Olivieri
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
20
|
Mohebi N. Developing new derivatives of 3‐X‐4‐hydroxy‐2(1
H
)‐quinolone as quinoline‐based chemosensors (QBCs) for detecting fluoride: theoretical study on nucleophilicity and hydrogen‐bonding
via
various analyses. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nazanin Mohebi
- Department of Chemistry Tarbiat Modares University Tehran Iran
| |
Collapse
|
21
|
Kokot M, Weiss M, Zdovc I, Anderluh M, Hrast M, Minovski N. Diminishing hERG inhibitory activity of aminopiperidine-naphthyridine linked NBTI antibacterials by structural and physicochemical optimizations. Bioorg Chem 2022; 128:106087. [PMID: 35970069 DOI: 10.1016/j.bioorg.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities. Substitution of the linker's tertiary amine with polar groups outcome in diminished hERG inhibition. Compound 17 expresses nanomolar enzyme inhibitory potency and antibacterial activity against both Gram-positive and Gram-negative bacteria as well as reduced hERG inhibition relative to our previously published NBTI analogs. Here, we point to some important NBTI's structural features that influence their hERG inhibitory activity.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Cai M, Wang Z, Gu H, Dong H, Zhang X, Cui N, Zhou L, Chen G, Zou G. Occurrence and temporal variation of antibiotics and antibiotic resistance genes in hospital inpatient department wastewater: Impacts of daily schedule of inpatients and wastewater treatment process. CHEMOSPHERE 2022; 292:133405. [PMID: 34958787 DOI: 10.1016/j.chemosphere.2021.133405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The temporal variation of antibiotics and ARGs as well as the impact of daily schedule of inpatients on their regular occurrence in hospital wastewater (HWW) were previously obscure. In this study, the wastewater of the inpatient department pre- and posttreatment (hydraulic retention time = 8 h) was collected intraday and intraweek. The absolute concentrations of antibiotics/metabolites and ARGs in HWW were analyzed to investigate the temporal variations of their occurrence levels. Fluoroquinolones were the predominant drugs used in the inpatient department (681.30-881.66 ng/mL in the effluent) and the main contaminant in the outlet of the disinfection pond (538.29-671.47 ng/mL). Diurnal variations peaked at 19:00 for most antibiotics and ARGs, while the maximum of them occurred on weekends. Aminoglycoside resistance genes (AMRGs, 21.6-23000 copies/mL) and β-lactam resistance genes (BLGRs, 1.24-8500 copies/mL) were the dominant ARGs before and after treatment processing, respectively (p < 0.05). The significant removal rates (>50%) of most antibiotics and ARGs, as well as the integrase gene intI1 and 16S rRNA gene, were found to be subjected solely to the chloride disinfection process, suggesting the necessity of the self-contained wastewater treatment process. Meanwhile, the statistically significant correlation among antibiotics, ARGs, intI1, and 16S rRNA (p < 0.05) demonstrated that the risk of selective pressure, horizontal transfer and vertical propagation of ARGs in the effluent of the hospital was warranted. Principal component analysis (PCA) showed that the daily schedule of inpatients and wastewater treatment processes could markedly induce fluctuations in antibiotic and ARG levels in HWW, indicating that they should be considered an impact factor for environmental monitoring. This study demonstrated for the first time the temporal variations in the abundance and dissemination of antibiotics and ARGs in a semiclosed zone and provided new insight into the development of assessments of the associated ecological risk and human health.
Collapse
Affiliation(s)
- Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210024, PR China.
| | - Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Hui Dong
- Agro-food Standards and Testing Technology Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China
| | - Xu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, 201403, PR China; Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
23
|
Liu L, Liu M, Zhang Y, Sun W, Li J, Feng Y, Geng Y, Cheng G, Gong Y, Guo Y, Wu L, Wang C, Liu Y. Improving Solubility and Avoiding Hygroscopicity of Gatifloxacin by Forming Pharmaceutical Salt of Gatifloxacin‐2,3‐Dihydroxybenzoic Acid Based on Charge‐Assisted Hydrogen Bonds. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Moqi Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yunan Zhang
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Weitong Sun
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Jinjing Li
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yanru Feng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yiding Geng
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | | | - Yixia Gong
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yingxue Guo
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Lili Wu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Chaoxing Wang
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| | - Yingli Liu
- College of Pharmacy Jiamusi University Jiamusi 154007 China
| |
Collapse
|
24
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|
25
|
Suaifan GARY, Mohammed AAM, Alkhawaja BA. Fluoroquinolones' Biological Activities against Laboratory Microbes and Cancer Cell Lines. Molecules 2022; 27:1658. [PMID: 35268759 PMCID: PMC8911966 DOI: 10.3390/molecules27051658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Development of novel derivatives to rein in and fight bacteria have never been more demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoroquinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research as positive controls. Given that these fluoroquinolones possess variable activities according to their generation, it is necessary to include parent compounds and market available antibiotics of the same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the in vitro biological activity of fluoroquinolones based on experimental results published in the last years. This work permits researchers to compare and analyze potential fluoroquinolones as positive control agents and to evaluate changes occurring in their activities. More importantly, the selection of fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs must be correlated to the laboratory pathogen inquest for reliable results.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Aya A. M. Mohammed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Bayan A. Alkhawaja
- Department of Pharmacy, Faculty of Pharmacy and Medical Sciences, The University of Petra, Amman 11196, Jordan;
| |
Collapse
|
26
|
Population Pharmacokinetics of Moxifloxacin in Children. Paediatr Drugs 2022; 24:163-173. [PMID: 35284983 PMCID: PMC9768852 DOI: 10.1007/s40272-022-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND/OBJECTIVE Moxifloxacin is a fluoroquinolone that is commonly used in adults, but not children. Certain clinical situations compel pediatric clinicians to use moxifloxacin, despite its potential for toxicity and limited pharmacokinetics (PK) data. Our objective was to further characterize the pharmacokinetics of moxifloxacin in children. METHODS We performed an opportunistic, open-label population PK study of moxifloxacin in children < 18 years of age who received moxifloxacin as part of standard care. A set of structural PK models and residual error models were explored using nonlinear mixed-effects modeling. Covariates with known biological relationships were investigated for their influence on PK parameters. RESULTS We obtained 43 moxifloxacin concentrations from 14 participants who received moxifloxacin intravenously (n = 8) or orally (n = 6). The dose of moxifloxacin was 10 mg/kg daily in participants ≤ 40 kg and 400 mg daily in participants > 40 kg. The population mean clearance and mean volume of distribution were 18.2 L/h and 167 L, respectively. The oral absorption was described by a first-order process. The estimated extent of oral bioavailability was highly variable (range 20-91%). Total body weight was identified as a covariate on clearance and volume of distribution, and substantially reduced the random unexplained inter-individual variability for both parameters. No participants experienced suspected serious adverse reactions related to moxifloxacin. CONCLUSION These data add to the existing literature to support use of moxifloxacin in children in certain situations; however, further prospective studies on the safety and efficacy of moxifloxacin are needed.
Collapse
|
27
|
Shin HJ, Yang S, Lim Y. Antibiotic susceptibility of Staphylococcus aureus with different degrees of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractStaphylococcus aureus is one of the most common pathogens in biofilm-associated chronic infections. S. aureus living within biofilms evades the host immune response and is more resistant to antibiotics than planktonic bacteria. In this study, we generated S. aureus with low and high levels of biofilm formation using the rbf (regulator of biofilm formation) gene and performed a BioTimer assay to determine the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of various types of antibiotics. We showed that biofilm formation by S. aureus had a greater effect on MBC than MIC, probably due to the different growth modes between planktonic and biofilm bacteria. Importantly, we found that the MBC for biofilm S. aureus was much higher than that for planktonic cells, but there was little difference in MBC between low and high levels of biofilm formation. These results suggest that once the biofilm is formed, the bactericidal activity of antibiotics is significantly reduced, regardless of the degree of S. aureus biofilm formation. We propose that S. aureus strains with varying degrees of biofilm formation may be useful for evaluating the anti-biofilm activity of antimicrobial agents and understanding antibiotic resistance mechanisms by biofilm development.
Collapse
|
28
|
Alhadrami HA, Orfali R, Hamed AA, Ghoneim MM, Hassan HM, Hassane ASI, Rateb ME, Sayed AM, Gamaleldin NM. Flavonoid-Coated Gold Nanoparticles as Efficient Antibiotics against Gram-Negative Bacteria-Evidence from In Silico-Supported In Vitro Studies. Antibiotics (Basel) 2021; 10:968. [PMID: 34439019 PMCID: PMC8389009 DOI: 10.3390/antibiotics10080968] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Flavonoids are a class of bioactive plant-derived natural products that exhibit a broad range of biological activities, including antibacterial ones. Their inhibitory activity toward Gram-positive bacterial was found to be superior to that against Gram-negative ones. In the present study, a number of flavonoid-coated gold nanoparticles (GNPs) were designed to enhance the antibacterial effects of chrysin, kaempferol, and quercetin against a number of Gram-negative bacteria. The prepared GNPs were able to conjugate to these three flavonoids with conjugation efficiency ranging from 41% to 80%. Additionally, they were able to exert an enhanced antibacterial activity in comparison with the free flavonoids and the unconjugated GNPs. Quercetin-coated GNPs were the most active nano-conjugates and were able to penetrate the cell wall of E. coli. A number of in silico experiments were carried out to explain the conjugation efficiency and the antibacterial mechanisms of these flavonoids as follows: (i) these flavonoids can efficiently bind to the glutathione linker on the surface of GNPs via H-bonding; (ii) these flavonoids, particularly quercetin, were able to increase the bacterial membrane rigidity, and hence decrease its functionality; (iii) these flavonoids can inhibit E. coli's DNA gyrase (Gyr-B) with IC50 values ranging from 0.9 to 3.9 µM. In conclusion, these bioactive flavonoid-based GNPs are considered to be very promising antibiotic candidates for further development and evaluation.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Ahmed A. Hamed
- National Research Centre, Microbial Chemistry Department, 33 El-Buhouth Street, Dokki, Giza P.O. Box 12622, Egypt;
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Ahmed S. I. Hassane
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.S.I.H.); (M.E.R.)
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2NZ, UK
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (A.S.I.H.); (M.E.R.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|
29
|
Huruba M, Farcas A, Leucuta DC, Bucsa C, Sipos M, Mogosan C. A VigiBase descriptive study of fluoroquinolone induced disabling and potentially permanent musculoskeletal and connective tissue disorders. Sci Rep 2021; 11:14375. [PMID: 34257376 PMCID: PMC8277836 DOI: 10.1038/s41598-021-93763-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Recent drug safety concerns described fluoroquinolone (FQ)-induced serious musculoskeletal reactions. The objective of this study was to characterize reports with FQ-associated disabling musculoskeletal disorders, from VigiBase. The analysis included all FQ-induced musculoskeletal and connective tissue disorders adverse drug reaction (ADR) reports (up to July-2019), (disabling/incapacitating, or recovered/resolved with sequelae or fatal). We described aspects like reporter, suspected FQs, ADRs, associated corticosteroid therapy. We also looked into the disproportionality data in terms of proportional reporting ratio (PRR) and information component (IC) values. A total of 5355 reports with 13,563 ADRs and 5558 FQs were reported. The majority of reports were for patients aged 18-64 (62.67%), and the female gender prevailed (61.76%). Consumers reported almost half (45.99%), with a peak in reporting rates in 2017. Top reported ADRs were arthralgia (16.34%), tendonitis (11.04%), pain in extremity (9.98%), tendon pain (7.63%), and myalgia (7.17%). Top suspected FQs were levofloxacin (50.04%), ciprofloxacin (38.41%), moxifloxacin (5.16%), ofloxacin (3.17%) and norfloxacin (1.01%). For these, FQs-ADR association was supported by the disproportionality analysis. Corticosteroids were associated with about 7% of tendon related reports. The results augment the existing data on FQs safety concerns, specifically their potential effect on the musculoskeletal system.
Collapse
Affiliation(s)
- Madalina Huruba
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Farcas
- Drug Information Research Center, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur Street no 6A, Cluj-Napoca, Romania.
| | - Daniel Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Bucsa
- Drug Information Research Center, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur Street no 6A, Cluj-Napoca, Romania
| | - Mariana Sipos
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Drug Information Research Center, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur Street no 6A, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Niu H, Yee R, Cui P, Zhang S, Tian L, Shi W, Sullivan D, Zhu B, Zhang W, Zhang Y. Identification and Ranking of Clinical Compounds with Activity Against Log-phase Growing Uropathogenic Escherichia coli. Curr Drug Discov Technol 2021; 17:191-196. [PMID: 30088449 DOI: 10.2174/1570163815666180808115501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) is a major cause of Urinary Tract Infections (UTIs). Due to increasing antibiotic-resistance among UPEC bacteria, new treatment options for UTIs are urgently needed. OBJECTIVE To identify new agents targeting growing bacteria that may be used for the treatment of antibiotic-resistant UTIs. METHODS We screened a clinical compound library consisting of 1,524 compounds using a high throughput 96-well plate assay and ranked the activities of the selected agents according to their MICs against the UPEC strain UTI89. RESULTS We identified 33 antibiotics which were active against log-phase clinical UPEC strain UTI89. Among the selected antibiotics, there were 12 fluoroquinolone antibiotics (tosufloxacin, levofloxacin, sparfloxacin, clinafloxacin, pazufloxacin, gatifloxacin, enrofloxacin, lomefloxacin, norfloxacin, fleroxacin, flumequine, ciprofloxacin), 15 beta-lactam or cephalosporin antibiotics (cefmenoxime, cefotaxime, ceftizoxime, cefotiam, cefdinir, cefoperazone, cefpiramide, cefamandole, cefixime, ceftibuten, cefmetazole, cephalosporin C, aztreonam, piperacillintazobactam, mezlocillin), 3 tetracycline antibiotics (meclocycline, doxycycline, tetracycline), 2 membrane-acting agents (colistin and clofoctol), and 1 protein synthesis inhibitor (amikacin). Among them, the top 7 hits were colistin, tosufloxacin, levofloxacin, sparfloxacin, clinafloxacin, cefmenoxime and pazufloxacin, where clinafloxacin and pazufloxacin were the newly identified agents active against UPEC strain UTI89. We validated the key results obtained with UTI89 on two other UTI strains CFT073 and KTE181 and found that they all had comparable MICs for fluoroquinolones while CFT073 and KTE181 were more susceptible to cephalosporin antibiotics and tetracycline antibiotics but were less susceptible to colistin than UTI89. CONCLUSION Our findings provide possible effective drug candidates for the more effective treatment of antibiotic-resistant UTIs.
Collapse
Affiliation(s)
- Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Lili Tian
- Beijing Research Institute for Tuberculosis Control, Beijing, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenhong Zhang
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
31
|
Thiebault T, Alliot F, Berthe T, Blanchoud H, Petit F, Guigon E. Record of trace organic contaminants in a river sediment core: From historical wastewater management to historical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145694. [PMID: 33940762 DOI: 10.1016/j.scitotenv.2021.145694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Some trace organic contaminants (TrOCs) can be considered as ubiquitous contaminants since the 1950s, and the study of their historical distribution within river sediments allows us to better understand the temporal variation of the chemical quality of sediments, and make assumptions about the most insightful forcings impacting these distributions. In this study, the occurrence of 41 TrOCs of various classes (i.e. pharmaceutical products and pesticides) was studied in a sedimentary core sampled in a disused dock along the Seine River, France. This core covers a 60 year-long period between 1944 and 2003, and 23 TrOCs were detected at least once. Their concentrations mainly ranged between 1 and 10 ng g-1 within the core, except for tetracycline that exhibited higher concentrations (~hundreds of ng·g-1). The dating of the core, based on previous studies, enabled the characterization of the changes since 1945, potentially impacted by (i) the sewer connectivity, (ii) the upgrading of wastewater treatment technologies, (iii) historical modifications in the use of each TrOC, and (iv) the sedimentary composition. In every case the deepest occurrence of each TrOC in the core matched its market authorization date, indicating the potential of TrOC to be used as chronomarkers. This study also reveals that the recent upgrading of wastewater treatment technologies within the watershed decreased the concentrations of each TrOC, despite an increase in TrOC diversity in the most recent years.
Collapse
Affiliation(s)
- Thomas Thiebault
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France.
| | - Fabrice Alliot
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Thierry Berthe
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Hélène Blanchoud
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| | - Fabienne Petit
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821 Mont-Saint-Aignan, France
| | - Elodie Guigon
- METIS, Sorbonne Université, EPHE, Université PSL, CNRS, IPSL, 75005 Paris, France
| |
Collapse
|
32
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics. Microorganisms 2021; 9:microorganisms9061158. [PMID: 34071153 PMCID: PMC8228629 DOI: 10.3390/microorganisms9061158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
- Correspondence: ; Tel.: +27-(0)18-299-1818
| |
Collapse
|
33
|
Ahmadi A, Moradi S. In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARS-CoV-2 infection. Sci Rep 2021; 11:10271. [PMID: 33986351 PMCID: PMC8119475 DOI: 10.1038/s41598-021-89605-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has currently become the biggest challenge in the world. There is still no specific medicine for COVID-19, which leaves a critical gap for the identification of new drug candidates for the disease. Recent studies have reported that the small-molecule enoxacin exerts an antiviral activity by enhancing the RNAi pathway. The aim of this study is to analyze if enoxacin can exert anti-SARS-CoV-2 effects. We exploit multiple computational tools and databases to examine (i) whether the RNAi mechanism, as the target pathway of enoxacin, could act on the SARS-CoV-2 genome, and (ii) microRNAs induced by enoxacin might directly silence viral components as well as the host cell proteins mediating the viral entry and replication. We find that the RNA genome of SARS-CoV-2 might be a suitable substrate for DICER activity. We also highlight several enoxacin-enhanced microRNAs which could target SARS-CoV-2 components, pro-inflammatory cytokines, host cell components facilitating viral replication, and transcription factors enriched in lung stem cells, thereby promoting their differentiation and lung regeneration. Finally, our analyses identify several enoxacin-targeted regulatory modules that were critically associated with exacerbation of the SARS-CoV-2 infection. Overall, our analysis suggests that enoxacin could be a promising candidate for COVID-19 treatment through enhancing the RNAi pathway.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169,, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
34
|
Walden DM, Khotimchenko M, Hou H, Chakravarty K, Varshney J. Effects of Magnesium, Calcium, and Aluminum Chelation on Fluoroquinolone Absorption Rate and Bioavailability: A Computational Study. Pharmaceutics 2021; 13:594. [PMID: 33919271 PMCID: PMC8143323 DOI: 10.3390/pharmaceutics13050594] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Fluoroquinolones (FQs) are a widespread class of broad-spectrum antibiotics prescribed as a first line of defense, and, in some cases, as the only treatment against bacterial infection. However, when administered orally, reduced absorption and bioavailability can occur due to chelation in the gastrointestinal tract (GIT) with multivalent metal cations acquired from diet, coadministered compounds (sucralfate, didanosine), or drug formulation. Predicting the extent to which this interaction reduces in vivo antibiotic absorption and systemic exposure remains desirable yet challenging. In this study, we focus on quinolone interactions with magnesium, calcium and aluminum as found in dietary supplements, antacids (Maalox) orally administered therapies (sucralfate, didanosine). The effect of FQ-metal complexation on absorption rate was investigated through a combined molecular and pharmacokinetic (PK) modeling study. Quantum mechanical calculations elucidated FQ-metal binding energies, which were leveraged to predict the magnitude of reduced bioavailability via a quantitative structure-property relationship (QSPR). This work will help inform clinical FQ formulation design, alert to possible dietary effects, and shed light on drug-drug interactions resulting from coadministration at an earlier stage in the drug development pipeline.
Collapse
Affiliation(s)
| | | | | | | | - Jyotika Varshney
- VeriSIM Life, San Francisco, CA 94104, USA; (D.M.W.); (M.K.); (H.H.); (K.C.)
| |
Collapse
|
35
|
Kim JO, Yoo IY, Yu JK, Kwon JA, Kim SY, Park YJ. Predominance and clonal spread of CTX-M-15 in cefotaxime-resistant Klebsiella pneumoniae in Korea and their association with plasmid-mediated quinolone resistance determinants. J Infect Chemother 2021; 27:1186-1192. [PMID: 33814350 DOI: 10.1016/j.jiac.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION β-lactams and fluoroquinolones are extensively used worldwide in the treatment of infections caused by Enterobacterales. In this study, we investigated the prevalence of extended-spectrum β-lactamases (ESBL), their correlation with plasmid-mediated quinolone resistance determinants (PMQR) and clonal distribution among the cefotaxime-resistant K. pneumoniae isolates. METHODS In Korea, a total of 429 K. pneumoniae collected in 2015 were studied. Antimicrobial susceptibility test for cefotaxime, ciprofloxacin and levofloxacin was performed by broth microdilution method. By PCR and/or sequencing, mutations in gyrA and parC genes, PMQR genes and ESBL were identified. Multilocus-sequence-type (MLST) was determined for isolates harboring CTX-M-15. RESULTS Among the 149 K. pneumoniae showing cefotaxime MICs of >1 μg/ml, 142 (95.3%) isolates were ESBL-producers and CTX-M-15 was predominant (99 isolates). Among the 142 ESBL-producers, mutations in gyrA and parC were found in 112 (78.9%) and 93 isolates (65.5%), respectively. PMQR genes were detected in 141 isolates and the non-susceptibility rate to ciprofloxacin and levofloxacin was 95.1% (135/142) and 82.4% (117/142), respectively. The most frequently found PMQR combination was qnrB-aac(6')-Ib-cr-oqxAB, (58/142, 40.8%). By MLST, four major STs/CC: ST48, ST392, ST307 and CC15 accounted for 67% of the CTX-M-15 producers and the prevalence of qnrB was significantly higher in these four major STs/CC than other groups (P = 0.004). Of note, we found the additive effect of PMQR genes; the more PMQR genes, the higher ciprofloxacin MICs. CONCLUSIONS CTX-M-15 was predominant among the cefotaxime-resistant K. pneumoniae and co-harboring CTX-M-15 and PMQR genes, especially qnrB, seems to contribute the spread of high risk clones.
Collapse
Affiliation(s)
- Jung Ok Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jin Kyung Yu
- Department of Infectious Disease Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gwacheon, Republic of Korea
| | - Joo An Kwon
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soo Young Kim
- Department of Laboratory Mediicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
36
|
In-vitro cytotoxicity, synergistic antibacterial activity and interaction studies of imidazolium-based ionic liquids with levofloxacin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Liang D, Ma J, Wei B. Oral absorption and drug interaction kinetics of moxifloxacin in an animal model of weightlessness. Sci Rep 2021; 11:2605. [PMID: 33510326 PMCID: PMC7843972 DOI: 10.1038/s41598-021-82044-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
To investigate the effect of simulated weightlessness on the pharmacokinetics of orally administered moxifloxacin and the antacid Maalox or the antidiarrheal Pepto-Bismol using a tail-suspended (TS) rat model of microgravity. Fasted control and TS, jugular-vein-cannulated, male Sprague-Dawley rats received either a single 5 mg/kg intravenous dose or a single 10 mg/kg oral dose of moxifloxacin alone or with a 0.625 mL/kg oral dose of Maalox or a 1.43 mL/kg oral dose of Pepto-Bismol. Plasma concentrations of moxifloxacin were measured by HPLC. Pharmacokinetic data were analyzed using WinNonlin. Simulated weightlessness had no effect on moxifloxacin disposition after intravenous administration but significantly decreased the extent of moxifloxacin oral absorption. The coadministration of moxifloxacin with Maalox to either control or TS rats caused significant reductions in the rate and extent of moxifloxacin absorption. In contrast, the coadministration of moxifloxacin with Pepto-Bismol to TS rats had no significant effect on either the rate or the extent of moxifloxacin absorption. These interactions showed dose staggering when oral administrations of Pepto-Bismol and moxifloxacin were separated by 60 min in control rats but not in TS rats. Dose staggering was more apparent after the coadministration of Maalox and moxifloxacin in TS rats.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA.
| | - Jing Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA
| | - Bo Wei
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| |
Collapse
|
38
|
Karuppasamy M, Vachan B, Sridharan V. Copper catalysis for the synthesis of quinolines and isoquinolines. COPPER IN N-HETEROCYCLIC CHEMISTRY 2021:249-288. [DOI: 10.1016/b978-0-12-821263-9.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
39
|
Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2020; 81:233-256. [PMID: 33247830 DOI: 10.1007/s40265-020-01443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lefamulin is a novel oral and intravenous (IV) pleuromutilin developed as a twice-daily treatment for community-acquired bacterial pneumonia (CABP). It is a semi-synthetic pleuromutilin with a chemical structure that contains a tricyclic core of five-, six-, and eight-membered rings and a 2-(4-amino-2-hydroxycyclohexyl)sulfanylacetate side chain extending from C14 of the tricyclic core. Lefamulin inhibits bacterial protein synthesis by binding to the 50S bacterial ribosomal subunit in the peptidyl transferase center (PTC). The pleuromutilin tricyclic core binds to a pocket close to the A site, while the C14 side chain extends to the P site causing a tightening of the rotational movement in the binding pocket referred to as an induced-fit mechanism. Lefamulin displays broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria as well as against atypical bacteria that commonly cause CABP. Pleuromutilin antibiotics exhibit low rates of resistance development and lack cross-resistance to other antimicrobial classes due to their unique mechanism of action. However, pleuromutilin activity is affected by mutations in 23S rRNA, 50S ribosomal subunit proteins rplC and rplD, ATP-binding cassette (ABC)-F transporter proteins such as vga(A), and the methyltransferase cfr. The pharmacokinetic properties of lefamulin include: volume of distribution (Vd) ranging from 82.9 to 202.8 L, total clearance (CLT) of 19.5 to 21.4 L/h, and terminal elimination half-life (t1/2) of 6.9-13.2 h; protein binding of lefamulin is high and non-linear. The oral bioavailability of lefamulin has been estimated as 24% in fasted subjects and 19% in fed subjects. A single oral dose of lefamulin 600 mg administered in fasted patients achieved a maximum plasma concentration (Cmax) of 1.2-1.5 mg/L with a time of maximum concentration (Tmax) ranging from 0.8 to 1.8 h, and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 8.5-8.8 mg h/L. The pharmacodynamic parameter predictive of lefamulin efficacy is the free plasma area under the concentration-time curve divided by the minimum inhibitory concentration (fAUC24h/MIC). Lefamulin efficacy has been demonstrated using various animal models including neutropenic murine thigh infection, pneumonia, lung infection, and bacteremia. Lefamulin clinical safety and efficacy was investigated through a Phase II clinical trial of acute bacterial skin and skin structure infection (ABSSSI), as well as two Phase III clinical trials of CABP. The Phase III trials, LEAP 1 and LEAP 2 established non-inferiority of lefamulin to moxifloxacin in both oral and IV formulations in the treatment of CABP. The United States Food and Drug Administration (FDA), European Medicines Agency (EMA), and Health Canada have each approved lefamulin for the treatment of CABP. A Phase II clinical trial has been completed for the treatment of ABSSSI, while the pediatric program is in Phase I. The most common adverse effects of lefamulin include mild-to-moderate gastrointestinal-related events such as nausea and diarrhea. Lefamulin represents a safe and effective option for treating CABP in cases of antimicrobial resistance to first-line therapies, clinical failure, or intolerance/adverse effects to currently used agents. Clinical experience and ongoing clinical investigation will allow clinicians and antimicrobial stewardship programs to optimally use lefamulin in the treatment of CABP.
Collapse
|
40
|
Charoo NA, Abdallah DB, Parveen T, Abrahamsson B, Cristofoletti R, Groot DW, Langguth P, Parr A, Polli JE, Mehta M, Shah VP, Tajiri T, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Moxifloxacin Hydrochloride. J Pharm Sci 2020; 109:2654-2675. [DOI: 10.1016/j.xphs.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023]
|
41
|
Assar S, Nosratabadi R, Khorramdel Azad H, Masoumi J, Mohamadi M, Hassanshahi G. A Review of Immunomodulatory Effects of Fluoroquinolones. Immunol Invest 2020; 50:1007-1026. [PMID: 32746743 DOI: 10.1080/08820139.2020.1797778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Past researches indicate that some types of antibiotics, apart from their antimicrobial effects, have some other important effects which indirectly are exerted by modulating and regulating the immune system's mediators. Among the compounds with antimicrobial effects, fluoroquinolones (FQs) are known as synthetic antibiotics, which exhibit the property of decomposing of DNA and prevent bacterial growth by inactivating the enzymes involved in DNA twisting, including topoisomerase II (DNA gyrase) and IV. Interestingly, immune responses are indirectly modulated by FQs through suppressing pro-inflammatory cytokines, such as interleukin 1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF-α), and super-inducing IL-2, which tend to increase both the growth and activity of T and B lymphocytes. In addition, they affect the development of immune responses by influencing of expression of other cytokines and mediators. This study aims to review past research on the immunomodulatory effects of FQs on the expression of cytokines, especially IL-2 and to discuss controversial investigations.
Collapse
Affiliation(s)
- Shokrollah Assar
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Khorramdel Azad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahshad Mohamadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
42
|
Sun LN, Sun GX, Yang YQ, Shen Y, Huang FR, Xie LJ, Cheng J, Zhang HW, Zhang XH, Liu Y, Wang YQ. Effects of ABCB1, UGT1A1, and UGT1A9 Genetic Polymorphisms on the Pharmacokinetics of Sitafloxacin Granules in Healthy Subjects. Clin Pharmacol Drug Dev 2020; 10:57-67. [PMID: 32687695 PMCID: PMC7818398 DOI: 10.1002/cpdd.848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Sitafloxacin, a new fluoroquinolone, has strong antibacterial activity. We evaluated the effects of sitafloxacin granules in single‐dose and multidose cohorts and the effects of ABCB1, UGT1A1, and UGT1A9 genetic polymorphisms on the pharmacokinetics (PK) of sitafloxacin in healthy subjects. The single‐dose study included 3 fasted cohorts receiving 50, 100, and 200 mg of sitafloxacin granules and 1 cohort receiving 50 mg of sitafloxacin granules with a high‐fat meal. The multidose study included 1 cohort receiving 100 mg of sitafloxacin granules once daily for 5 days. PK parameters were calculated using noncompartmental parameters based on concentration‐time data. The genotypes for ABCB1, UGT1A1, and UGT1A9 single‐nucleotide polymorphisms were determined using Sanger sequencing. Subsequently, the association between sitafloxacin PK parameters and target single‐nucleotide polymorphisms was analyzed. Sitafloxacin granules were well tolerated up to 200 and 100 mg in the single‐dose and multidose studies, respectively. Sitafloxacin AUC and Cmax increased linearly within the detection range, and a steady state was reached within 3 days after the administration of multiple oral doses. Our findings showed that Cmax was lower in the ABCB1 (rs1045642) mutation group, whereas t1/2 was longer in the UGT1A1 (rs2741049) and UGT1A9 (rs3832043) mutation groups. In conclusion, sitafloxacin granules were safe at single doses and multiple doses up to 200 and 100 mg/day, respectively, with a linear plasma PK profile. However, ABCB1 (rs1045642), UGT1A1 (rs2741049), and UGT1A9 (rs3832043) genetic polymorphisms are likely to influence the Cmax or t1/2 and thereby merit further clinical evaluation.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Xian Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yu-Qing Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Jun Xie
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Wen Zhang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| | - Yun Liu
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, Jiangsu Shengze Hospital, Suzhou, China
| |
Collapse
|
43
|
Doña I, Pérez-Sánchez N, Salas M, Barrionuevo E, Ruiz-San Francisco A, Hernández Fernández de Rojas D, Martí-Garrido J, Andreu-Ros I, López-Salgueiro R, Moreno E, Torres MJ. Clinical Characterization and Diagnostic Approaches for Patients Reporting Hypersensitivity Reactions to Quinolones. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2707-2714.e2. [PMID: 32376487 DOI: 10.1016/j.jaip.2020.04.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Quinolones are the second most frequent cause of hypersensitivity reactions (HSRs) to antibiotics. A marked increase in the number of patients with HSRs to quinolones has been detected. OBJECTIVE To describe the clinical characteristics of patients with HSRs to quinolones and present methods for their diagnosis. METHODS Patients attending the allergy unit due to reactions suggestive of HSRs to quinolones were prospectively evaluated between 2005 and 2018. Diagnosis was achieved using clinical history, skin tests (STs), basophil activation tests (BATs), and drug provocation tests (DPTs) if ST and BAT results were negative. RESULTS We included 128 subjects confirmed as having HSRs to quinolones and 42 found to be tolerant. Anaphylaxis was the most frequent entity in immediate HSRs and was most commonly induced by moxifloxacin. Patients were evaluated a median of 150 days (interquartile range, 60-365 days) after the reaction. Of patients who underwent ST and BAT, 40.7% and 70%, respectively, were positive. DPT with a quinolone was performed in 48 cases, giving results depending on the culprit drug: when moxifloxacin was involved, 62.5% of patients gave a positive DPT result to ciprofloxacin, whereas none reacted to levofloxacin. The risk of HSR was 96 times higher in subjects who reported moxifloxacin-induced anaphylaxis and 18 times higher in those reporting immediate reactions compared with clinical entities induced by quinolones other than moxifloxacin and nonimmediate reactions. CONCLUSIONS The diagnosis of HSR to quinolones is complex. The use of clinical history is essential as a first step. BAT shows higher sensitivity than STs. DPTs can be useful for finding safe alternative quinolones.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga, Hospital Civil, Málaga, Spain.
| | - Natalia Pérez-Sánchez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga, Hospital Civil, Málaga, Spain
| | - María Salas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga, Hospital Civil, Málaga, Spain
| | - Esther Barrionuevo
- Asthma and Immunoallergic Diseases Research Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; Allergy Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Dolores Hernández Fernández de Rojas
- Unidad Mixta de Investigación IIS La Fe-UniversitatPolitècnica deValència, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, Valencia, Spain; Department of Allergy, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Jaume Martí-Garrido
- Department of Allergy, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Inmaculada Andreu-Ros
- Unidad Mixta de Investigación IIS La Fe-UniversitatPolitècnica deValència, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, Valencia, Spain
| | - Ramón López-Salgueiro
- Unidad Mixta de Investigación IIS La Fe-UniversitatPolitècnica deValència, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, Valencia, Spain
| | - Esther Moreno
- Allergy Service, University Hospital of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, Málaga, Spain; Allergy Unit, Hospital Regional Universitario de Málaga, Hospital Civil, Málaga, Spain; Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain; Departamento de Medicina, Universidad de Málaga, Facultad de Medicina, Málaga, Spain
| |
Collapse
|
44
|
Xie P, Chen C, Zhang C, Su G, Ren N, Ho SH. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. WATER RESEARCH 2020; 172:115475. [PMID: 31972413 DOI: 10.1016/j.watres.2020.115475] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceutical and Personal Care Products (PPCPs) removal coupling with bioenergy production by microalgae has attracted growing attention. However, the biological interactions between PPCPs and microalgae are unclear during microalgal biosorption and biodegradation of PPCPs. In this study, an optimal ciprofloxacin (CIP) and sulfadiazine (SDZ) removal efficiency were achieved 100% and 54.53% with carbohydrate productivity of >1000 mg L-1 d-1 by Chlamydomonas sp. Tai-03, respectively. The elimination routes indicated that CIP removal was mainly achieved by biodegradation (65.05%) whereas SDZ was mainly removed by photolysis (35.60%). The visualization evidence of microscopic imaging Raman spectrometer supported the favorable biosorption of CIP due to its positive charge (+10.20 mV). Meanwhile, the tendency for gradual reduction of CIP in extracellular polymeric substances (EPS) indicated that suspended microalgal cell facilitated CIP uptake and biodegradation. Furthermore, photolysis and biodegradation pathways were thoroughly analyzed to demonstrate that intermediates were less toxic and had no adverse effect on the subsequent ethanol conversion. This study provides valuable information for the development of a novel microalgal PPCPs removal. These findings reveal the possible biological mechanisms of biosorption and biodegradation of PPCPs in microalgae, which could further enhance the feasibility of microalgal applications for simultaneous PPCPs remediation and alternative energy production.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
45
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal "NH 3" Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org Lett 2020; 22:1575-1579. [PMID: 32013447 DOI: 10.1021/acs.orglett.0c00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient one-pot synthesis of 4-(1H)-quinolones through an orthogonal engagement of diverse o-haloaryl ynones with ammonia in the presence of Cu(I), involving tandem Michael addition and ArCsp2-N coupling, is presented. The substrate scope of this convenient protocol, wherein ammonium carbonate acts as both an in situ ammonia source and a base toward diverse 2-substituted 4-(1H)-quinolones, has been mapped and its efficacy validated through concise total synthesis of bioactive natural products pseudanes (IV, VII, VIII, and XII), graveoline, graveolinine, and waltherione F.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India.,School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Goverdhan Mehta
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
46
|
Adsorptive Removal of Antibiotic Ciprofloxacin from Aqueous Solution Using Protein-Modified Nanosilica. Polymers (Basel) 2020; 12:polym12010057. [PMID: 31906267 PMCID: PMC7023575 DOI: 10.3390/polym12010057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The present study aims to investigate adsorptive removal of molecular ciprofloxacin using protein-modified nanosilica (ProMNS). Protein was successfully extracted from Moringa seeds while nanosilica was synthesized from rice husk. Fourier-transform infrared (FTIR), ultraviolet visible (UV-Vis) and high-performance liquid chromatography (HPLC) were used to evaluate the characterization of protein. Adsorption of protein onto nanosilica at different pH and ionic strength was thoroughly studied to modify nanosilica surface. The removal efficiency of antibiotic ciprofloxacin (CFX) increased from 56.84% to 89.86% after surface modification with protein. Effective conditions for CFX removal using ProMNS were systematically optimized and found to be pH 7.0, adsorption time 90 min, adsorbent dosage 10 mg/mL, and ionic strength 1 mM KCl. A two-step model was successfully used to fit the adsorption isotherms of CFX onto ProMNS at different ionic strength while a pseudo-second-order model could fit adsorption kinetic of CFX onto ProMNS very well. Maximum adsorption capacity was very high that reached to 85 mg/g. Adsorption of CFX onto ProMNS decreased with increasing KCl concentration, suggesting that adsorption of CFX onto ProMNS is mainly controlled by electrostatic attraction between positively charged ProMNS surface and anionic species of CFX. Adsorption mechanisms of CFX onto ProMNS were discussed in detail based on adsorption isotherms, the change in surface charge by zeta potentail and the change in functional groups by FT-IR. The removal of CFX after three regenerations was greater than 73% while CFX removal from an actual hospital wastewater using ProMNS reached to 70%. Our results suggest that ProMNS is a new and eco-friendly adsorbent to remove antibiotics from aqueous solutions.
Collapse
|
47
|
Bahuguna A, Dabbas D, Singh P. Cascade of levofloxacin. JOURNAL OF MARINE MEDICAL SOCIETY 2020. [DOI: 10.4103/jmms.jmms_72_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Carino D, Zafar MA, Singh M, Ziganshin BA, Elefteriades JA. Fluoroquinolones and Aortic Diseases: Is There a Connection. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2019; 7:35-41. [PMID: 31529426 PMCID: PMC6748841 DOI: 10.1055/s-0039-1693468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluoroquinolones (FQs) are one of the most commonly prescribed classes of antibiotics. Their high tissue distribution and broad-spectrum antibacterial coverage make their use very attractive in numerous infectious diseases. Although generally well tolerated, FQs have been associated with different adverse effects including dysglycemia and arrhythmias. FQs have been also associated with a series of adverse effects related to collagen degradation, such as Achilles tendon rupture and retinal detachment. Recently, an association between consumption of FQs and increased risk of aortic aneurysm and dissection has been proposed. This article reviews the pathogenesis of thoracic aortic diseases, the molecular mechanism of FQ-associated collagen toxicity, and the possible contribution of FQs to aortic diseases.
Collapse
Affiliation(s)
- Davide Carino
- Department of Surgery, Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Mohammad A Zafar
- Department of Surgery, Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Mrinal Singh
- Department of Surgery, Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Department of Surgery, Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Department of Surgery, Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
49
|
A visible-light-irradiated electron donor-acceptor complex-promoted radical reaction system for the C H perfluoroalkylation of quinolin-4-ols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Lyu Y, Chen T, Shang L, Yang Y, Li Z, Zhu J, Shan A. Design of Trp-Rich Dodecapeptides with Broad-Spectrum Antimicrobial Potency and Membrane-Disruptive Mechanism. J Med Chem 2019; 62:6941-6957. [PMID: 31276398 DOI: 10.1021/acs.jmedchem.9b00288] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has recently been great concern regarding antibiotics due to potential drug resistance and the impact of antibiotics on the environment. Antimicrobial peptides are believed to have potential as novel antimicrobial agents to address the problems of antibiotics. Herein, we report a set of Trp-rich dodecapeptides derived from PMAP-36 that are based on the peptide folding principle and the amino acid characteristics. An effective peptide design template, (WXYX)3, where X represents Arg or Lys and Y represents hydrophobic or neutral amino acid, was summarized with the distribution of Trp at H-bond formation sites along the α-helical structure. The template peptide 6 (3W-2), with low amphipathicity, displayed strong antimicrobial activity against laboratory strains and clinical isolates while showing no cytotoxicity. Furthermore, 6 was able to suppress the emergence of antimicrobial resistance. Membrane permeabilization assays and microscope observations revealed the potent membrane-disruptive mechanism of 6. Overall, this study diminishes the randomness in peptide design and provides a strategy for generating effective antibiotic alternatives to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yinfeng Lyu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Tingting Chen
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Lu Shang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Yang Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Zhongyu Li
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Jiang Zhu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , Heilongjiang 150030 , P. R. China
| |
Collapse
|