1
|
Jamir L, P H. Employing Machine Learning Models to Predict Potential α-Glucosidase Inhibitory Plant Secondary Metabolites Targeting Type-2 Diabetes and Their In Vitro Validation. J Chem Inf Model 2024; 64:9150-9162. [PMID: 39352297 DOI: 10.1021/acs.jcim.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The need for new antidiabetic drugs is evident, considering the ongoing global burden of type-2 diabetes mellitus despite notable progress in drug discovery from laboratory research to clinical application. This study aimed to build machine learning (ML) models to predict potential α-glucosidase inhibitors based on the data set comprising over 537 reported plant secondary metabolite (PSM) α-glucosidase inhibitors. We assessed 35 ML models by using seven different fingerprints. The Random forest with the RDKit fingerprint was the best-performing model, with an accuracy (ACC) of 83.74% and an area under the ROC curve (AUC) of 0.803. The resulting robust ML model encompasses all reported α-glucosidase inhibitory PSMs. The model was employed to predict potential α-glucosidase inhibitors from an in-house 5810 PSM database. The model identified 965 PSMs with a prediction activity ≥0.90 for α-glucosidase inhibition. Twenty-four predicted PSMs were subjected to in vitro assay, and 13 were found to inhibit α-glucosidase with IC50 ranging from 0.63 to 7 mg/mL. Among them, seven compounds recorded IC50 values less than the standard drug acarbose and were investigated further to have optimal drug-likeness and medicinal chemistry characteristics. The ML model and in vitro experiments have identified nervonic acid as a promising α-glucosidase inhibitor. This compound should be further investigated for its potential integration into the diabetes treatment system.
Collapse
Affiliation(s)
- Lemnaro Jamir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Wang Y, Yin R, Jia L, Tian Y, Meng X. Bile acids: Can the position of hydroxyl substitution influence antidiabetic potency? VIETNAM JOURNAL OF CHEMISTRY 2024. [DOI: 10.1002/vjch.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractNumerous analogous compounds exist in natural products, exhibiting subtle structural variations that nonetheless result in distinct biological activities. Hyodeoxycholic acid (HDCA), ursodeoxycholic acid (UDCA), and deoxycholic acid (DCA) are analogues belonging to the steroids, and related studies have demonstrated that all three possess antidiabetic effects in reducing hyperglycemia. Diabetes mellitus is a metabolic disease with high morbidity and mortality in recent years. A thorough exploration of the mechanisms underlying compounds with potential antidiabetic properties serves as an essential prerequisite for subsequent research endeavors. However, the mechanism of action regarding them has not been fully verified, and the present study identified one of the antidiabetic mechanisms of action of bile acid analogs at the protein and molecular levels. The results suggested that structural differences due to differences in the position of the hydroxyl substituent alter the antidiabetic capacity. The application of machine learning methods for pharmacokinetic prediction contributes to a better understanding of the nature and in vivo behavior of bile acid analogs. This study endeavors to establish a basic reference and experimental foundation to contribute to the ongoing exploration of the potential role of bile acid compounds in antidiabetic mechanisms.
Collapse
Affiliation(s)
- Yinan Wang
- School of Pharmacy Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Rui Yin
- School of Pharmacy Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Liwei Jia
- School of Pharmacy Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Yuan Tian
- School of Pharmacy Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Xin Meng
- School of Pharmacy Heilongjiang University of Chinese Medicine Harbin P. R. China
| |
Collapse
|
3
|
Olomola TO, Nkoana JK, More GK, Gildenhuys S, Mphahlele MJ. Enzyme (α-Glucosidase, α-Amylase, PTP1B & VEGFR-2) Inhibition and Cytotoxicity of Fluorinated Benzenesulfonic Ester Derivatives of the 5-Substituted 2-Hydroxy-3-nitroacetophenones. Int J Mol Sci 2024; 25:11862. [PMID: 39595931 PMCID: PMC11594133 DOI: 10.3390/ijms252211862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The prevalence of small multi-target drugs containing a fluorinated aromatic moiety among approved drugs in the market is due to the unique properties of this halogen atom. With the aim to develop potent antidiabetic agents, a series of phenylsulfonic esters based on the conjugation of the 5-substituted 2-hydroxy-3-nitroacetophenones 1a-d with phenylsulfonyl chloride derivatives substituted with a fluorine atom or fluorine-containing (-CF3 or -OCF3) group were prepared. Their structures were characterized using a combination of spectroscopic techniques complemented with a single-crystal X-ray diffraction (XRD) analysis on a representative example. The compounds were, in turn, assayed for inhibitory effect against α-glucosidase, α-amylase, protein tyrosine phosphatase 1 B (PTP1B) and the vascular endothelial growth factor receptor-2 (VEGFR-2) all of which are associated with the pathogenesis and progression of type 2 diabetes mellitus (T2DM). The antigrowth effect of selected compounds was evaluated on the human breast (MCF-7) and lung (A549) cancer cell lines. The compounds were also evaluated for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The results of an in vitro enzymatic study were augmented by molecular docking (in silico) analysis. Their ADME (absorption, distribution, metabolism and excretion) properties have been evaluated on the most active compounds against α-glucosidase and/or α-amylase to predict their drug likeness.
Collapse
Affiliation(s)
- Temitope O. Olomola
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa; (T.O.O.); (J.K.N.)
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa; (T.O.O.); (J.K.N.)
| | - Garland K. More
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa; (T.O.O.); (J.K.N.)
| |
Collapse
|
4
|
Al-Humaidi JY, Albedair LA, Maliwal D, Zaki MEA, Al-Hussain SA, Pissurlenkar R, Mukhrish YE, Abolibda TZ, Gomha SM. Synthesis and Molecular Docking of Curcumin-Derived Pyrazole-Thiazole Hybrids as Potent α-Glucosidase Inhibitors. Chem Biodivers 2024:e202401766. [PMID: 39440719 DOI: 10.1002/cbdv.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
α-Glucosidase inhibitors are critical for diabetes management, with pyrazoles and thiazoles emerging as effective options. This research highlights curcumin-based pyrazole-thiazole hybrids as potential inhibitors, synthesizing derivatives and evaluating their inhibitory capabilities. The study involved the synthesis of novel compounds using hydrazonoyl halides, confirmed through elemental and spectral analyses. The synthesized derivatives exhibited significant α-glucosidase inhibition, with IC50 values ranging from 3.37±0.25 to 16.35±0.37 μM. Among them, compound 7e demonstrated the strongest inhibition at 3.37±0.25 μM, outperforming the standard drug acarbose (IC50=5.36±0.31 μM). In silico assessments and molecular docking using AutoDock Vina revealed strong interactions, particularly with compounds 7b, 7e, 7f, and 7g, indicating their potential as stable and effective inhibitors. The results suggest that the synthesized pyrazole-thiazole hybrids hold promise as novel therapeutic agents for diabetes, warranting further exploration of their substituent effects for optimized inhibitor design.
Collapse
Affiliation(s)
- Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Lamia A Albedair
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Raghuvir Pissurlenkar
- Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, 403001, India
| | - Yousef E Mukhrish
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Tariq Z Abolibda
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
5
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
6
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
7
|
Ramadaini T, Sumiwi SA, Febrina E. The Anti-Diabetic Effects of Medicinal Plants Belonging to the Liliaceae Family: Potential Alpha Glucosidase Inhibitors. Drug Des Devel Ther 2024; 18:3595-3616. [PMID: 39156483 PMCID: PMC11330250 DOI: 10.2147/dddt.s464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder that has an enormous impact on people's quality of life and health. Although there is no doubt about the effectiveness of oral hypoglycemic agents combined with lifestyle management in controlling diabetes, no individual has ever been reported to have been completely cured of the disease. Globally, many medicinal plants have been used for the management of diabetes in various traditional systems of medicine. A deep look in the literature has revealed that the Liliaceae family have been poorly investigated for their antidiabetic activity and phytochemical studies. In this review, we summarize medicinal plants of Liliaceae utilized in the management of type II diabetes mellitus (T2DM) by inhibition of α-glucosidase enzyme and phytochemical content. Methods The literature search was conducted using databases including PubMed, ScienceDirect, and Google Scholar to find the significant published articles about Liliaceae plants utilized in the prevention and treatment of antidiabetics. Data were filtered to the publication period from 2013 to 2023, free full text and only English articles were included. The keywords were Liliaceae OR Alliaceae OR Amaryllidaceae AND Antidiabetic OR α-glucosidase. Results Six medicinal plants such as Allium ascalonicum, Allium cepa, Allium sativum, Aloe ferox, Anemarrhena asphodeloides, and Eremurus himalaicus are summarized. Phytochemical and α-glucosidase enzymes inhibition by in vitro, in vivo, and human studies are reported. Conclusion Plants of Liliaceae are potential as medicine herbs to regulating PPHG and prevent the progression of T2DM and its complication. In silico study, clinical application, and toxicity evaluation are needed to be investigated in the future.
Collapse
Affiliation(s)
- Tiara Ramadaini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
8
|
Halim SA, Lodhi HW, Waqas M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Targeting α-amylase enzyme through multi-fold structure-based virtual screening and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:5617-5630. [PMID: 37378513 DOI: 10.1080/07391102.2023.2227721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
α-Amylase play important role in hydrolyses of α-bonds of large α-linked polysaccharides; thus, it is a potential drug target in diabetes mellites (DM) and its inhibition is one of the therapeutic strategies in DM. With the aim to discover novel and safer therapeutic molecules to combat diabetes, a huge dataset of ∼0.69 billion compounds from ZINC20 database were screened against α-amylase using multi-fold structure-based virtual screening protocol. Based on receptor-based pharmacophore model, docking results, pharmacokinetic profile, molecular interactions with α-amylase, several compounds were retrieved as lead candidates to be further scrutinized in the in vitro assay and in vivo animal testing. Among the selected hits, CP26 exhibited the highest binding free energy in MMGB-SA analysis, followed by CP7 and CP9, which is higher than the binding free energy of acarbose. While CP20 and CP21 showed comparative binding free energy to acarbose. All the selected ligands showed acceptable binding energy range, therefore, several molecules with enhanced efficacy can be designed by derivatizing these molecules. The in-silico results indicates that the selected molecules could serve as potential selective α-amylase inhibitors and can be used for the treatment of diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
9
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
10
|
Xu P, Xiang H, Wen W, Quan S, Qiu H, Chu C, Tong S. Application of two-dimensional reversed phase countercurrent chromatography × high-performance liquid chromatography to bioactivity-guided screening and isolation of α-glucosidase inhibitors from Rheum palmatum L. J Chromatogr A 2024; 1717:464667. [PMID: 38301331 DOI: 10.1016/j.chroma.2024.464667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
In the present work, comprehensive two-dimensional reversed-phase countercurrent chromatography × reversed-phase liquid chromatography combined (2D RPCCC × RPLC) with 2D microfraction bioactive evaluation was employed to screen and isolate α-glucosidase inhibitors from Rheum palmatum L. Countercurrent chromatography was employed to improve 2D analysis and preparative separation. A selected biphasic solvent system composed of petroleum ether/ethyl acetate/methanol/water with gradient elution mode was used for the first dimension RPCCC separation (1D RPCCC). Solid-phase extraction was applied to eliminate interfering polar compounds before the second dimension analysis (2D RPLC). 76 components were shown in 2D contour plot in UV 280 nm. 11 Candidates were separated by a scaled-up CCC and identified by 1H NMR and 13C NMR, including anthraquinones, flavonoids, stilbenes, phenols, and glucoside derivatives. In addition, it was found that two components, resveratrol-4'-O-(6″-galloyl)glucoside (36) and lyciumaside (43) were identified as natural α-glucosidase inhibitors in Rheum palmatum L. for the first time.
Collapse
Affiliation(s)
- Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Sihua Quan
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China.
| |
Collapse
|
11
|
Si Y, Zhu J, Xu X, Xu Y, Lee J, Park YD. Diphenolic boldine, an aporphine alkaloid: inhibitory effect evaluation on α-glucosidase by molecular dynamics integrating enzyme kinetics. J Biomol Struct Dyn 2024:1-13. [PMID: 38189319 DOI: 10.1080/07391102.2024.2301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
- Key Labortary of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, P.R. China
| | - Jiabo Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Xia Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Yueyuan Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
12
|
Patel P, Shah D, Bambharoliya T, Patel V, Patel M, Patel D, Bhavsar V, Padhiyar S, Patel B, Mahavar A, Patel R, Patel A. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus. Med Chem 2024; 20:503-536. [PMID: 38275074 DOI: 10.2174/0115734064264591231031065639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 01/27/2024]
Abstract
One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.
Collapse
Affiliation(s)
- Prexa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | - Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | - Dharti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| | | | | | | | - Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, Gujarat, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Science, Saurashtra University, Rajkot, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
| |
Collapse
|
13
|
Prasch H, Wolfsgruber A, Thonhofer M, Culum A, Mandl C, Weber P, Zündel M, Nasseri SA, Gonzalez Santana A, Tegl G, Nidetzky B, Gruber K, Stütz AE, Withers SG, Wrodnigg TM. Ligand-Directed Chemistry on Glycoside Hydrolases - A Proof of Concept Study. Chembiochem 2023; 24:e202300480. [PMID: 37715738 DOI: 10.1002/cbic.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023]
Abstract
Selective covalent labelling of enzymes using small molecule probes has advanced the scopes of protein profiling. The covalent bond formation to a specific target is the key step of activity-based protein profiling (ABPP), a method which has become an indispensable tool for measuring enzyme activity in complex matrices. With respect to carbohydrate processing enzymes, strategies for ABPP so far involve labelling the active site of the enzyme, which results in permanent loss of activity. Here, we report in a proof of concept study the use of ligand-directed chemistry (LDC) for labelling glycoside hydrolases near - but not in - the active site. During the labelling process, the competitive inhibitor is cleaved from the probe, departs the active site and the enzyme maintains its catalytic activity. To this end, we designed a building block synthetic concept for small molecule probes containing iminosugar-based reversible inhibitors for labelling of two model β-glucosidases. The results indicate that the LDC approach can be adaptable for covalent proximity labelling of glycoside hydrolases.
Collapse
Affiliation(s)
- Herwig Prasch
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Andreas Wolfsgruber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Martin Thonhofer
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - André Culum
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Christoph Mandl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Patrick Weber
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Melanie Zündel
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Seyed A Nasseri
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Andres Gonzalez Santana
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Gregor Tegl
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Bernd Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, 8010, Graz, Austria
| | - Karl Gruber
- University of Graz, Institute of Molecular Bioscience, Humboldtstraße 50/III, 8010, Graz, Austria
| | - Arnold E Stütz
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| | - Stephen G Withers
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
14
|
Domínguez-Perles R, García-Viguera C, Medina S. New anti-α-Glucosidase and Antioxidant Ingredients from Winery Byproducts: Contribution of Alkyl Gallates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14615-14625. [PMID: 37766493 PMCID: PMC10571075 DOI: 10.1021/acs.jafc.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Wine-making activity entails the production of solid and semisolid byproducts (grape stems and pomace and wine lees) that negatively impact the environment and industrial sustainability. Their features as sources of bioactive compounds support valorization procedures for functional and healthy ingredients. This work uncovers the quantitative alkyl gallates (gallic acid esters, C1-C12) profile of fresh (freeze-dried) materials and the effect of oven-drying on their stability by UHPLC-ESI-QqQ-MS/MS. The functionality was established concerning DPPH• scavenging and antihyperglycemic power. Wine lees exerted the highest high-free concentration of galloyl derivatives, ethyl gallate being the most abundant ester (3472.62 ng/g dw, on average). About the impact of the stabilization process, although as a general trend, the thermal treatment reduced the concentration, the reduction dimensions depended on the compound/matrix, remaining in valuable concentrations. Concerning radical scavenging, ze-dried stems and pomace displayed the highest capacity (24.11 and 18.46 mg TE/g dw, respectively), being correlated with propyl gallate (r2 = 0.690), butyl gallate (r2 = 0.686), and octyl gallate (r2 = 0.514). These two matrices exerted α-glucosidase inhibitory activity (1.58 and 1.46 units/L) equivalent to that of acarbose (a recognized α-glucosidase inhibitor). The newly described bioactive phytochemicals in winery residues (galloyl esters) and their correlation with functional traits allow for envisioning valorization alternatives.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| |
Collapse
|
15
|
Popkova D, Otstavnykh N, Sintsova O, Baldaev S, Kalina R, Gladkikh I, Isaeva M, Leychenko E. Bioprospecting of Sea Anemones (Cnidaria, Anthozoa, Actiniaria) for β-Defensin-like α-Amylase Inhibitors. Biomedicines 2023; 11:2682. [PMID: 37893056 PMCID: PMC10604346 DOI: 10.3390/biomedicines11102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is one of the most serious diseases of our century. The drugs used are limited or have serious side effects. The search for new sources of compounds for effective treatment is relevant. Magnificamide, a peptide inhibitor of mammalian α-amylases, isolated from the venom of sea anemone Heteractis magnifica, can be used for the control of postprandial hyperglycemia in diabetes mellitus. Using the RACE approach, seven isoforms of magnificamide were detected in H. magnifica tentacles. The exon-intron structure of magnificamide genes was first established, and intron retention in the mature peptide-encoding region was revealed. Additionally, an α-amylase inhibitory domain was discovered in the mucins of some sea anemones. According to phylogenetics, sea anemones diverge into two groups depending on the presence of β-defensin-like α-amylase inhibitors and/or mucin-inhibitory domains. It is assumed that the intron retention phenomenon leads to additional diversity in the isoforms of inhibitors and allows for its neofunctionalization in sea anemone tentacles. Bioprospecting of sea anemones of the order Actiniaria for β-defensin-like α-amylase inhibitors revealed a diversity of inhibitory sequences that represents a starting point for the design of effective glucose-lowering drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia; (D.P.); (N.O.); (O.S.); (S.B.); (R.K.); (I.G.); (M.I.)
| |
Collapse
|
16
|
Rashid RSM, Temurlu S, Abourajab A, Karsili P, Dinleyici M, Al-Khateeb B, Icil H. Drug Repurposing of FDA Compounds against α-Glucosidase for the Treatment of Type 2 Diabetes: Insights from Molecular Docking and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2023; 16:ph16040555. [PMID: 37111312 PMCID: PMC10145898 DOI: 10.3390/ph16040555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes mellitus is a chronic health problem that can be controlled by slowing one's carbohydrate metabolism by inhibiting α-glucosidase, an enzyme responsible for carbohydrate degradation. Currently, drugs for type 2 diabetes have limitations in terms of safety, efficiency, and potency, while cases are rapidly increasing. For this reason, the study planned and moved towards drug repurposing by utilizing food and drug administration (FDA)-approved drugs against α-glucosidase, and investigated the molecular mechanisms. The target protein was refined and optimized by introducing missing residues, and minimized to remove clashes to find the potential inhibitor against α-glucosidase. The most active compounds were selected after the docking study to generate a pharmacophore query for the virtual screening of FDA-approved drug molecules based on shape similarity. The analysis was performed using Autodock Vina (ADV)-based on binding affinities (-8.8 kcal/mol and -8.6 kcal/mol) and root-mean-square-deviation (RMSD) values (0.4 Å and 0.6 Å). Two of the most potent lead compounds were selected for a molecular dynamics (MD) simulation to determine the stability and specific interactions between receptor and ligand. The docking score, RMSD values, pharmacophore studies, and MD simulations revealed that two compounds, namely Trabectedin (ZINC000150338708) and Demeclocycline (ZINC000100036924), are potential inhibitors for α-glucosidase compared to standard inhibitors. These predictions showed that the FDA-approved molecules Trabectedin and Demeclocycline are potential suitable candidates for repurposing against type 2 diabetes. The in vitro studies showed that trabectedin was significantly effective with an IC50 of 1.263 ± 0.7 μM. Further investigation in the laboratory is needed to justify the safety of the drug to be used in vivo.
Collapse
Affiliation(s)
- Rebwar Saeed M Rashid
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
- Department of Chemistry, Faculty of Education, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Selin Temurlu
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Arwa Abourajab
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Pelin Karsili
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Meltem Dinleyici
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Basma Al-Khateeb
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Huriye Icil
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| |
Collapse
|
17
|
Scheen AJ. Clinical pharmacology of antidiabetic drugs: What can be expected of their use? Presse Med 2023; 52:104158. [PMID: 36565754 DOI: 10.1016/j.lpm.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The pharmacotherapy of type 2 diabetes mellitus (T2DM) has markedly evolved in the last two decades. Classical antidiabetic agents (sulphonylureas, metformin, insulin) are now in competition with new glucose-lowering medications. Alpha-glucosidase inhibitors and thiazolidinediones (glitazones) were not able to replace older agents, because of insufficient efficacy and/or poor tolerability/safety. In contrast, incretin-based therapies, both dipeptidyl peptidase-4 inhibitors (DPP-4is or gliptins, oral agents) and glucagon-like peptide-1 receptor agonists (GLP-1RAs, subcutaneous injections) are a major breakthrough in the management of T2DM. Because they are not associated with hypoglycaemia and weight gain, DPP-4is tend to replace sulphonylureas as add-on to metformin while GLP-1RAs tend to replace basal insulin therapy after failure of oral therapies. Furthermore, placebo-controlled cardiovascular outcome trials demonstrated neutrality for DPP-4is, but cardiovascular protection for GLP-1RAs in patients with T2DM at high cardiovascular risk. More recently sodium-glucose cotransporter 2 inhibitors (SGLT2is or gliflozins, oral agents) also showed cardiovascular protection, especially a reduction in hospitalization for heart failure, as well as a renal protection in patients with and without T2DM, at high cardiovascular risk, with established heart failure and/or with chronic kidney disease. Thus, GLP-1RAs and SGLT2is are now considered as preferred drugs in T2DM patients with or at high risk of atherosclerotic cardiovascular disease whereas SGLT2is are more specifically recommended in patients with or at risk of heart failure and renal (albuminuric) disease. The management of T2DM is moving from a glucocentric approach to a broader strategy focusing on all risk factors, including overweight/obesity, and to an organ-disease targeted personalized approach.
Collapse
Affiliation(s)
- André J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium.
| |
Collapse
|
18
|
Naznin M, Badrul Alam M, Alam R, Islam S, Rakhmat S, Lee SH, Kim S. Metabolite profiling of Nymphaea rubra (Burm. f.) flower extracts using cyclic ion mobility–mass spectrometry and their associated biological activities. Food Chem 2023; 404:134544. [DOI: 10.1016/j.foodchem.2022.134544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
19
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1,3,4-thiadiazole-5,6-diphenyl-1,2,4-triazine hybrids: Potential leads in the search of new antidiabetic drugs. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Shearer J, Wolfe G, Khaliq M, Kaufman B, Sampath A, Warfield KL, Ramstedt U, Treston A. Reproductive and developmental toxicology studies of iminosugar UV-4. Reprod Toxicol 2022; 114:9-21. [DOI: 10.1016/j.reprotox.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
21
|
Kania-Dobrowolska M, Baraniak J. Dandelion (Taraxacum officinale L.) as a Source of Biologically Active Compounds Supporting the Therapy of Co-Existing Diseases in Metabolic Syndrome. Foods 2022; 11:foods11182858. [PMID: 36140985 PMCID: PMC9498421 DOI: 10.3390/foods11182858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, many people are struggling with obesity, type 2 diabetes, and atherosclerosis, which are called the scourge of the 21st century. These illnesses coexist in metabolic syndrome, which is not a separate disease entity because it includes several clinical conditions such as central (abdominal) obesity, elevated blood pressure, and disorders of carbohydrate and fat metabolism. Lifestyle is considered to have an impact on the development of metabolic syndrome. An unbalanced diet, the lack of sufficient physical activity, and genetic factors result in the development of type 2 diabetes and atherosclerosis, which significantly increase the risk of cardiovascular complications. The treatment of metabolic syndrome is aimed primarily at reducing the risk of the development of coexisting diseases, and the appropriate diet is the key factor in the treatment. Plant raw materials containing compounds that regulate lipid and carbohydrate metabolism in the human body are investigated. Dandelion (Taraxacum officinale F.H. Wigg.) is a plant, the consumption of which affects the regulation of lipid and sugar metabolism. The growth of this plant is widely spread in Eurasia, both Americas, Africa, New Zealand, and Australia. The use and potential of this plant that is easily accessible in the world in contributing to the treatment of type 2 diabetes and atherosclerosis have been proved by many studies.
Collapse
|
22
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
23
|
Wang H, Tang S, Zhang G, Pan Y, Jiao W, Shao H. Synthesis of N-Substituted Iminosugar C-Glycosides and Evaluation as Promising α-Glucosidase Inhibitors. Molecules 2022; 27:molecules27175517. [PMID: 36080282 PMCID: PMC9458058 DOI: 10.3390/molecules27175517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of N-substituted iminosugar C-glycosides were synthesized and tested for α-glucosidase inhibition. The results suggested that 6e is a promising and potent α-glucosidase inhibitor. Enzymatic kinetic assays indicated that compound 6e may be classified as an uncompetitive inhibitor. The study of structure-activity relationships of those iminosugars provided a starting point for the discovery of new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Haibo Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, China
| | - Senling Tang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (W.J.); (H.S.)
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (W.J.); (H.S.)
| |
Collapse
|
24
|
Callahan M, Treston AM, Lin G, Smith M, Kaufman B, Khaliq M, Evans DeWald L, Spurgers K, Warfield KL, Lowe P, Duchars M, Sampath A, Ramstedt U. Randomized single oral dose phase 1 study of safety, tolerability, and pharmacokinetics of Iminosugar UV-4 Hydrochloride (UV-4B) in healthy subjects. PLoS Negl Trop Dis 2022; 16:e0010636. [PMID: 35939501 PMCID: PMC9387934 DOI: 10.1371/journal.pntd.0010636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/18/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background
UV-4 (N-(9’-methoxynonyl)-1-deoxynojirimycin, also called MON-DNJ) is an iminosugar small-molecule oral drug candidate with in vitro antiviral activity against diverse viruses including dengue, influenza, and filoviruses and demonstrated in vivo efficacy against both dengue and influenza viruses. The antiviral mechanism of action of UV-4 is through inhibition of the host endoplasmic reticulum-resident α-glucosidase 1 and α-glucosidase 2 enzymes. This inhibition prevents proper glycan processing and folding of virus glycoproteins, thereby impacting virus assembly, secretion, and the fitness of nascent virions.
Methodology/Principal findings
Here we report a first-in-human, single ascending dose Phase 1a study to evaluate the safety, tolerability, and pharmacokinetics of UV-4 hydrochloride (UV-4B) in healthy subjects (ClinicalTrials.gov Identifier NCT02061358). Sixty-four subjects received single oral doses of UV-4 as the hydrochloride salt equivalent to 3, 10, 30, 90, 180, 360, 720, or 1000 mg of UV-4 (6 subjects per cohort), or placebo (2 subjects per cohort). Single doses of UV-4 hydrochloride were well tolerated with no serious adverse events or dose-dependent increases in adverse events observed. Clinical laboratory results, vital signs, and physical examination data did not reveal any safety signals. Dose-limiting toxicity was not observed; the maximum tolerated dose of UV-4 hydrochloride in humans has not yet been determined (>1000 mg). UV-4 was rapidly absorbed and distributed after dosing with the oral solution formulation used in this study. Median time to reach maximum plasma concentration ranged from 0.5–1 hour and appeared to be independent of dose. Exposure increased approximately in proportion with dose over the 333-fold dose range. UV-4 was quantifiable in pooled urine over the entire collection interval for all doses.
Conclusions/Significance
UV-4 is a host-targeted broad-spectrum antiviral drug candidate. At doses in humans up to 1000 mg there were no serious adverse events reported and no subjects were withdrawn from the study due to treatment-emergent adverse events. These data suggest that therapeutically relevant drug levels of UV-4 can be safely administered to humans and support further clinical development of UV-4 hydrochloride or other candidate antivirals in the iminosugar class.
Trial registration
ClinicalTrials.gov NCT02061358 https://clinicaltrials.gov/ct2/show/NCT02061358.
Collapse
Affiliation(s)
- Michael Callahan
- Division of Infectious Diseases, Massachusetts General Hospital, Massachusetts, United States of America
| | - Anthony M. Treston
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Grace Lin
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Marla Smith
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Brian Kaufman
- AbViro, Bethesda, Maryland, United States of America
| | - Mansoora Khaliq
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Lisa Evans DeWald
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Kevin Spurgers
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Kelly L. Warfield
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Preeya Lowe
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Matthew Duchars
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Aruna Sampath
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
25
|
Dhameja M, Kumar H, Kurella S, Uma A, Gupta P. Flavone-1,2,3-triazole derivatives as potential α-glucosidase inhibitors: Synthesis, enzyme inhibition, kinetic analysis and molecular docking study. Bioorg Chem 2022; 127:106028. [PMID: 35868105 DOI: 10.1016/j.bioorg.2022.106028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
α-Glucosidase inhibitors are considered prime therapeutics in the management of type-2 diabetes and are preferred due to their localized action ushered by limited side effects. In this regard, nineteen new flavone-1,2,3-triazole derivatives have been designed and synthesized via utilizing an efficient click reaction protocol, and screened for the inhibition of the α-glucosidase enzyme. The reaction conditions were mild, good yielding and required easy work up. All the synthesized flavone-triazole derivatives were found more active against the yeast α-glucosidase with IC50 values ranging from 24.37 ± 0.55-168.44 ± 0.77 μ M as compared to standard inhibitor acarbose (IC50 = 844.81 ± 0.53 μM). The derivatives with 2,5‑dichloro 9k (IC50 = 24.37 ± 0.55 μM) and 4‑chloro 9d (IC50 = 24.77 ± 0.30 μM) substituent bearing an amide linkage were the most active. In the kinetic study of most active derivatives 9k and 9d, they were found to be mixed and uncompetitive inhibitors, respectively. In molecular docking studies, blind docking of the most active compounds was accomplished to find the interactions between the compounds and α-glucosidase that further confirms the mixed or uncompetitive nature of the inhibitors.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
26
|
Prasetyo WE, Kusumaningsih T, Wibowo FR. Gaining deeper insights into 2,5-disubstituted furan derivatives as potent α-glucosidase inhibitors and discovery of putative targets associated with diabetes diseases using an integrative computational approach. Struct Chem 2022. [DOI: 10.1007/s11224-022-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Iraji A, Shareghi-Brojeni D, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: a new class of α-glucosidase inhibitors. Sci Rep 2022; 12:8647. [PMID: 35606520 PMCID: PMC9125976 DOI: 10.1038/s41598-022-11771-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractIn this work, a novel series of cyanoacetohydrazide linked to 1,2,3-triazoles (9a–n) were designed and synthesized to be evaluated for their anti-α-glucosidase activity, focusing on the fact that α-glucosidase inhibitors have played a significant role in the management of type 2 diabetes mellitus. All synthesized compounds except 9a exhibited excellent inhibitory potential, with IC50 values ranging from 1.00 ± 0.01 to 271.17 ± 0.30 μM when compared to the standard drug acarbose (IC50 = 754.1 ± 0.5 μM). The kinetic binding study indicated that the most active derivatives 9b (IC50 = 1.50 ± 0.01 μM) and 9e (IC50 = 1.00 ± 0.01 μM) behaved as the uncompetitive inhibitors of α-glucosidase with Ki = 0.43 and 0.24 μM, respectively. Moreover, fluorescence measurements were conducted to show conformational changes of the enzyme after binding of the most potent inhibitor (9e). Calculation of standard enthalpy (ΔHm°) and entropy (ΔSm°) values confirmed the construction of hydrophobic interactions between 9e and the enzyme. Also, docking studies indicated desired interactions with important residues of the enzyme which rationalized the in vitro results.
Collapse
|
28
|
A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8621665. [PMID: 35586686 PMCID: PMC9110154 DOI: 10.1155/2022/8621665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023]
Abstract
The field of peptides and proteins has opened up new doors for plant-based medication development because of analytical breakthroughs. Enzymatic breakdown of plant-specific proteins yields bioactive peptides. These plant-based proteins and peptides, in addition to their in vitro and vivo outcomes for diabetes treatment, are discussed in this study. The secondary metabolites of vegetation can interfere with the extraction, separation, characterization, and commercialization of plant proteins through the pharmaceutical industry. Glucose-lowering diabetic peptides are a hot commodity. For a wide range of illnesses, bioactive peptides from flora can offer up new avenues for the development of cost-effective therapy options.
Collapse
|
29
|
Shearer J, Wolfe G, Sampath A, Warfield KL, Kaufman B, Ramstedt U, Treston A. Investigational New Drug Enabling Nonclinical Safety Pharmacology Assessment of the Iminosugar UV-4, a Broad-Spectrum Host-Targeted Antiviral Agent. Int J Toxicol 2022; 41:201-211. [PMID: 35227115 PMCID: PMC9156554 DOI: 10.1177/10915818211072842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
UV-4 (N-(9-methoxynonyl)-1-deoxynojirimycin) is a broad-spectrum antiviral drug candidate with demonstrated activity in vitro and in vivo against multiple, diverse viruses. Nonclinical safety pharmacology studies were conducted to support the filing of an Investigational New Drug (IND) application. Preliminary in vitro pharmacology testing evaluating potential for binding to "off-target" receptors and enzymes indicated no significant liability for advanced development of UV-4. The safety pharmacology of UV-4 was evaluated in the in vitro human ether-à-go-go-related gene (hERG) assay, in a central nervous system (CNS) study in the mouse (modified Irwin test), in a respiratory safety study in conscious mice using whole body plethysmography, and in a cardiovascular safety study in conscious, radiotelemetry-instrumented beagle dogs. There were no observed adverse treatment-related effects following administration of UV-4 as the hydrochloride salt in the hERG potassium channel assay, on respiratory function, in the CNS study, or in the cardiovascular assessment. Treatment-related cardiovascular effect of decreased arterial pulse pressure after 50 or 200 mg of UV-4/kg was the only change outside the normal range, and all hemodynamic parameters returned to control levels by the end of the telemetry recording period. These nonclinical safety pharmacology assessments support the evaluation of this host-targeted broad-spectrum antiviral drug candidate in clinical studies.
Collapse
Affiliation(s)
- Jeffry Shearer
- Emergent BioSolutions Inc, Gaithersburg, Maryland, 20879, USA (previously Unither Virology LLC, Silver Spring, MD, 20910 USA)
| | - Gary Wolfe
- Gary Wolfe Toxicology, LLC, Herndon, Virginia, 20170, USA
| | - Aruna Sampath
- Emergent BioSolutions Inc, Gaithersburg, Maryland, 20879, USA (previously Unither Virology LLC, Silver Spring, MD, 20910 USA)
| | - Kelly L. Warfield
- Emergent BioSolutions Inc, Gaithersburg, Maryland, 20879, USA (previously Unither Virology LLC, Silver Spring, MD, 20910 USA)
| | - Brian Kaufman
- Emergent BioSolutions Inc, Gaithersburg, Maryland, 20879, USA (previously Unither Virology LLC, Silver Spring, MD, 20910 USA)
| | - Urban Ramstedt
- Emergent BioSolutions Inc, Gaithersburg, Maryland, 20879, USA (previously Unither Virology LLC, Silver Spring, MD, 20910 USA)
| | | |
Collapse
|
30
|
Ibrahim A, Sakr HM, Ayyad RR, Khalifa MM. Design, Synthesis, In‐Vivo Anti‐Diabetic Activity, In‐Vitro α‐Glucosidase Inhibitory Activity and Molecular Docking Studies of Some Quinazolinone Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Albaraa Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Helmy M. Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Rezk R. Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department Faculty of Pharmacy (Boys) Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
31
|
Wang Z, Zhang Y, Yan H. In situ net fishing of α-glucosidase inhibitors from evening primrose ( Oenothera biennis) defatted seeds by combination of LC-MS/MS, molecular networking, affinity-based ultrafiltration, and molecular docking. Food Funct 2022; 13:2545-2558. [PMID: 35165681 DOI: 10.1039/d1fo03975j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defatted seeds of evening primrose (DSEP), the by-product of evening primrose oil manufacture, exhibit potential α-glucosidase inhibitory activity; however, presently they are routinely discarded as waste. In this study, an in situ net fishing strategy was proposed for rapid recognition of α-glucosidase inhibitors from DSEP. Firstly, the DSEP extraction method was optimized employing a response surface methodology for the recovery of α-glucosidase inhibitors, just like "finding a good fishery before net fishing". Then, molecular networks of DSEP were generated by GNPS-based molecular networking after LC-MS/MS analysis, just like "casting tight nets in the fishery". Subsequently, affinity-based ultrafiltration was carried out for fishing the "hit" together with its structural analogues according to the molecular networks, just like "hauling the specific net fishing". Finally, molecular docking analysis was performed to rapidly verify α-glucosidase inhibitory activities of the potential bioactive components and predict their inhibition mechanisms. In the results, DSEP displayed significant inhibitory effects against yeast and rat intestinal α-glucosidase, and the results of an oral starch tolerance test suggested that DSEP showed postprandial blood-glucose-lowering activity. Moreover, 1-galloyl-glucose, gallic acid, methyl gallate, 1,6-digalloyl-β-D-glucose, and 1,3,6-trigalloylglucose were rapidly identified as potential α-glucosidase inhibitors present in DSEP.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, China.
| | - Yuxian Zhang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, China.
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, 071002, China.
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
32
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
33
|
Lianza M, Poli F, Nascimento AMD, Soares da Silva A, da Fonseca TS, Toledo MV, Simas RC, Chaves AR, Leitão GG, Leitão SG. In vitro α-glucosidase inhibition by Brazilian medicinal plant extracts characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. J Enzyme Inhib Med Chem 2022; 37:554-562. [PMID: 35152818 PMCID: PMC8933013 DOI: 10.1080/14756366.2021.2022658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aiming at finding natural sources of antidiabetics agents, 15 extracts from Brazilian medicinal plants of the Atlantic Forest and Amazon region were tested against α-glucosidase enzyme. Plants were selected based on the taxonomic relationships with genera including several species with antidiabetic activity. In this screening, the extracts obtained from the flowers of Hyptis monticola and the leaves of Lantana trifolia and Lippia origanoides resulted endowed with promising anti-α-glucosidase activity. The extracts from H. monticola and from L. origanoides collected in two different areas, were characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. Bioassay-guided fractionation led to the identification of several enzyme inhibiting compounds, among them the mechanism of action of naringenin and pinocembrin was investigated. The two L. origanoides extracts showed differences in bioactivity and in the phytochemical profiles. The fractionation of the extract from H. monticola led to a partial loss of the inhibitory effect.
Collapse
Affiliation(s)
- Mariacaterina Lianza
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Alan Menezes do Nascimento
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Soares da Silva
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Silva da Fonseca
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Toledo
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosineide Costa Simas
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Andréa Rodrigues Chaves
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Design, synthesis, biological evaluations and in silico studies of sulfonate ester derivatives of 2-(2-benzylidenehydrazono)thiazolidin-4-one as potential α-glucosidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Liu Z, Li M, Qian D, Liu Z, Shu Q. Phytochemical profiles and the hypoglycemic effects of tree peony seed coats. Food Funct 2021; 12:11777-11789. [PMID: 34739020 DOI: 10.1039/d1fo02341a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As emerging woody oil crops, the tree peony seeds recently have been attracting great attention for their metabolites and bioactivities. In this research, the phytochemical profiles of the seed coats of tree peonies from different production regions were investigated systematically. Twelve phytochemicals were separated and prepared, mainly belonging to stilbenes. A great variation in stilbene content was detected in the three Paeonia plants, and Paeonia ostii seed coats (POSC) had significantly higher contents of the stilbene compounds than other species. There were nineteen significant correlations between ecogeographical factors and the predominant compounds. A clear discrimination among the species was observed in their HPLC fingerprint and chemometric analysis. Furthermore, POSC extracts could significantly reduce the starch mediated PBG (postprandial blood glucose) levels in normal/diabetic mice. Meanwhile, in vitro enzyme tests revealed that the predominant compounds, suffruticosol B and ampelopsin D, could effectively and competitively inhibit α-glucosidase, indicating that POSC could be a natural source of hypoglycemics in the food and drug fields.
Collapse
Affiliation(s)
- Zenggen Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China.
| | - Mingzhu Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China.
| | - Dawen Qian
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining 810001, China.
| | - Zheng'an Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China.
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, CAS, Beijing 100093, China.
| |
Collapse
|
36
|
Omeprazole inhibits α-glucosidase activity and the formation of nonenzymatic glycation products: Activity and mechanism. J Biosci Bioeng 2021; 133:110-118. [PMID: 34802943 DOI: 10.1016/j.jbiosc.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
In this study, the inhibitory effect and mechanism of omeprazole on α-glucosidase and nonenzymatic glycation were investigated in vitro by using multi-spectroscopic methods and molecular docking. Enzyme kinetic results showed that omeprazole inhibited α-glucosidase in a reversible and noncompetitive manner (IC50= 0.595 ± 0.003 mM). The results from fluorescence quenching and thermomechanical analyses signified that omeprazole reduced the fluorescence intensity of α-glucosidase by forming an omeprazole-α-glucosidase complex primarily driven by hydrogen bonds. Molecular docking further confirmed that hydrogen bonds and hydrophobic forces were the major driving forces for omeprazole binding to α-glucosidase. The nonenzymatic glycation assays revealed that omeprazole had a moderate inhibition against the formation of fructosamine, dicarbonyl compounds, and advanced glycation end products (AGEs). This study provides a new inhibitor of both α-glucosidase and nonenzymatic glycation and provides a practicable candidate for treating diabetes and its complications.
Collapse
|
37
|
Rice Compounds with Impact on Diabetes Control. Foods 2021; 10:foods10091992. [PMID: 34574099 PMCID: PMC8467539 DOI: 10.3390/foods10091992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023] Open
Abstract
Rice is one of the most cultivated and consumed cereals worldwide. It is composed of starch, which is an important source of diet energy, hypoallergenic proteins, and other bioactive compounds with known nutritional functionalities. Noteworthy is that the rice bran (outer layer of rice grains), a side-stream product of the rice milling process, has a higher content of bioactive compounds than white rice (polished rice grains). Bran functional ingredients such as γ-oryzanol, phytic acid, ferulic acid, γ-aminobutyric acid, tocopherols, and tocotrienols (vitamin E) have been linked to several health benefits. In this study, we reviewed the effects of rice glycemic index, macronutrients, and bioactive compounds on the pathological mechanisms associated with diabetes, identifying the rice compounds potentially exerting protective activities towards disease control. The effects of starch, proteins, and bran bioactive compounds for diabetic control were reviewed and provide important insights about the nutritional quality of rice-based foods.
Collapse
|
38
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
40
|
Wang X, He Q, Chen Q, Xue B, Wang J, Wang T, Liu H, Chen X. Network pharmacology combined with metabolomics to study the mechanism of Shenyan Kangfu Tablets in the treatment of diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113817. [PMID: 33444720 DOI: 10.1016/j.jep.2021.113817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenyan Kangfu Tablets (SYKFT) is a traditional prescription evolved from Shenqi Pills. It has been included in the Synopsis of the Golden Chamber for more than 2000 years. SYKFT was listed as a national Chinese medicine protected class by the China Food and Drug Administration. Diabetic nephropathy (DN) is one of the serious microvascular diseases caused by diabetes and is also one of the important factors leading to the death of patients. The pathogenesis of DN is diverse and complex, and there is no particularly effective drug treatment. There is clinical evidence that SYKFT has a good therapeutic effect on DN with no obvious adverse effects, but the mechanism of treatment is not clear. AIM OF THE STUDY In this study, network pharmacology was combined with metabolomics technology to explore the mechanism of SYKFT in the treatment of DN. MATERIALS AND METHODS First, the research team conducted a qualitative study of the chemical components contained in SYKFT, and carried out network pharmacology to search for potential targets based on the characterized chemical components. Second, we analysed the metabolic profile of db/db mouse urine based on UHPLC-QTOF-MS technology, and biomarkers were identified by multivariate statistical analysis. Then, we performed further pathway enrichment analysis. Finally, the results of metabolomics and network pharmacology were conjointly analysed. RESULTS Seventy-five chemical components of SYKFT were identified. According to the TCMSP database, the corresponding targets of the qualitatively identified components were searched, and a total of 36 potentially active components and 160 targets related to DN were obtained. A total of 38 biomarkers were found in metabolomics based on UHPLC-QTOF-MS technology. Biosynthesis of unsaturated fatty acids and starch and sucrose metabolism are the most related pathways, the former of which has been rarely reported concerning DN. Finally, the results of the joint analysis show that two targets, hexokinase 2 (HK2) and maltase glucoamylase (MGAM), are the overlapping targets. It means they are not only the related targets of pathways involved in potential biomarkers in metabolomics but also the intersection targets of diseases and drugs identified by network pharmacology. CONCLUSIONS The study reveals that the potential mechanism of SYKFT is most related to insulin resistance (IR) in the treatment of DN. It also proves that network pharmacology combined with metabolomics to find the mechanisms by which herbs treat complex diseases is a feasible tool.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaoyu He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Beibei Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Wang
- Tianjin Tongrentang Group Co., Ltd, Tianjin, 300385, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
41
|
Anti-insulin resistance effect of constituents from Senna siamea on zebrafish model, its molecular docking, and structure-activity relationships. J Nat Med 2021; 75:520-531. [PMID: 33620670 DOI: 10.1007/s11418-021-01490-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/20/2021] [Indexed: 01/24/2023]
Abstract
Senna siamea has been used as an antidiabetic drug since antiquity. With regard to traditional Thai medicine, the use of S. siamea was described for diabetes therapy. To understand the molecular mechanism regarding insulin resistance. Pure compounds were isolated from wood extract. We studied their biological activities on insulin-resistance using an in vivo zebrafish model. We also performed an in silico study; molecular docking, and in vitro study by taking advantage of the enzyme inhibitory activities of α-glucosidase, PTP1B, and DPP-IV. Based on the preliminary investigation that ethyl acetate and ethanol extracts have potent effects against insulin resistance on zebrafish larvae, five compounds were isolated from two fractions following: resveratrol, piceatannol, dihydropiceatannol, chrysophanol, and emodin. All of the isolated compounds had anti-insulin resistance effects on zebrafish larvae. Resveratrol, piceatannol, and dihydropiceatannol also demonstrated inhibitory effects against α-glucosidase. Chrysophanol and emodin inhibited PTP1B activity, while resveratrol showed a DPP-IV inhibition effect via the molecular docking. The results of enzyme assay were similar. In conclusions, S. siamea components demonstrated effects against insulin resistance. The chemical structure displayed identical biological activity to that of the compounds. Therefore, S. siamea wood extract and their components are potential therapeutic options in the treatment of diabetes.
Collapse
|
42
|
Mecheri A, Amrani A, Benabderrahmane W, Bensouici C, Boubekri N, Benaissa O, Zama D, Benayache F, Benayache S. In Vitro Pharmacological Screening of Antioxidant, Photoprotective, Cholinesterase, and α-Glucosidase Inhibitory Activities of Algerian Crataegus oxyacantha Fruits and Leaves Extracts. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02334-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Moghimi S, Salarinejad S, Toolabi M, Firoozpour L, Esmaeil Sadat Ebrahimi S, Safari F, Madani-Qamsari F, Mojtabavi S, Faramarzi MA, Karima S, Pakrad R, Foroumadi A. Synthesis, in-vitro evaluation, molecular docking, and kinetic studies of pyridazine-triazole hybrid system as novel α-glucosidase inhibitors. Bioorg Chem 2021; 109:104670. [PMID: 33588241 DOI: 10.1016/j.bioorg.2021.104670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
In this study, we reported the discovery of pyridazine based 1,2,3-triazole derivatives as inhibitors of α-glucosidase. All target compounds exhibited significant inhibitory activities against yeast and rat α-glucosidase enzymes compared to positive control, acarbose. The most potent compound 6j, ethyl 3-(2-(1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)ethyl)-5,6-diphenylpyridazine-4-carboxylate exhibited IC50 values of 58, and 73 µM. Docking studies indicated the responsibility of hydrophobic and hydrogen bonding interactions in the ligand-enzyme complex stability. The in-vitro safety against the normal cell line was observed by toxicity evaluation of the selected compounds.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Madani-Qamsari
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Roya Pakrad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Grover A, Sharma K, Gautam S, Gautam S, Gulati M, Singh SK. Diabetes and Its Complications: Therapies Available, Anticipated and Aspired. Curr Diabetes Rev 2021; 17:397-420. [PMID: 33143627 DOI: 10.2174/1573399816666201103144231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
Worldwide, diabetes ranks among the ten leading causes of mortality. Prevalence of diabetes is growing rapidly in low and middle income countries. It is a progressive disease leading to serious co-morbidities, which results in increased cost of treatment and over-all health system of the country. Pathophysiological alterations in Type 2 Diabetes (T2D) progressed from a simple disturbance in the functioning of the pancreas to triumvirate to ominous octet to egregious eleven to dirty dozen model. Due to complex interplay of multiple hormones in T2D, there may be multifaceted approach in its management. The 'long-term secondary complications' in uncontrolled diabetes may affect almost every organ of the body, and finally may lead to multi-organ dysfunction. Available therapies are inconsistent in maintaining long term glycemic control and their long term use may be associated with adverse effects. There is need for newer drugs, not only for glycemic control but also for prevention or mitigation of secondary microvascular and macrovascular complications. Increased knowledge of the pathophysiology of diabetes has contributed to the development of novel treatments. Several new agents like Glucagon Like Peptide - 1 (GLP-1) agonists, Dipeptidyl Peptidase IV (DPP-4) inhibitors, amylin analogues, Sodium-Glucose transport -2 (SGLT- 2) inhibitors and dual Peroxisome Proliferator-Activated Receptor (PPAR) agonists are available or will be available soon, thus extending the range of therapy for T2D, thereby preventing its long term complications. The article discusses the pathophysiology of diabetes along with its comorbidities, with a focus on existing and novel upcoming antidiabetic drugs which are under investigation. It also dives deep to deliberate upon the novel therapies that are in various stages of development. Adding new options with new mechanisms of action to the treatment armamentarium of diabetes may eventually help improve outcomes and reduce its economic burden.
Collapse
Affiliation(s)
- Anu Grover
- Ipca Laboratories, Mumbai - 400063, India
| | - Komal Sharma
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Udaipur, India
| | - Suresh Gautam
- Department of Biochemistry, Pacific Institute of Medical Sciences, Udaipur, India
| | - Srishti Gautam
- Ravinder Nath Tagore Medical College and Maharana Bhupal Govt. Hospital, Udaipur, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| |
Collapse
|
45
|
Bhateja PK, Kajal A, Singh R. Amelioration of Diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using Acacia tortilis polysaccharide in Streptozotocin-Nicotinamide induced diabetes in rats. J Ayurveda Integr Med 2020; 11:405-413. [PMID: 33153880 PMCID: PMC7772488 DOI: 10.1016/j.jaim.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 05/20/2019] [Accepted: 06/25/2019] [Indexed: 11/20/2022] Open
Abstract
Background Polysaccharides decrease the glucose level by inhibiting α-glucosidase enzyme which further increases the level of GLP-1 (Glucagon-like peptide 1) to increase the insulin level as per earlier reports. Objective Similar hypothesis was designed in present study to investigate the α-glucosidase enzyme inhibition and involvement of GLP-1 in antidiabetic mechanism of Acacia tortilis polysaccharides (AEATP) in diabetic rats. Isolated polysaccharides were analyzed for their chemical nature by using HPLC and FTIR method. Materials and Methods Male albino wistar rats were divided into control, diabetic, diabetic + voglibose, diabetic + glimepiride, diabetic+250, 500, 1000 mg/kg of AEATP, diabetic + glimepiride + voglibose, diabetic + glimepiride+ 250, 500 and 1000 mg/kg AEATP, diabetic + GLP-1 antagonist+250, 500 and 1000 mg/kg AEATP. Plasma glucose, insulin and active GLP-1 levels were measured 15 min after OGTT. Fasting blood glucose, Plasma triglycerides, glycated hemoglobin (HbA1c), Fasting insulin, pancreatic insulin content, ileum and colon GLP-1 content were assessed at 5th week. Association of alpha-glucosidase was also assessed with GLP-1 and insulin. Results AEATP significantly attenuated hyperglycemia by increasing insulin level in plasma and pancreas and increased active GLP-1 as well as insulin level in diabetic rats after OGTT. GLP-1 content was significantly increased in ileum and colon by inhibiting alpha-glucosidase. Involvement of GLP-1 in antihyperglycemic effect of AEATP was confirmed by using GLP-1 antagonist. Moreover, AEATP significantly improved dyslipidemia in diabetic rats. HPLC analysis of A. tortilis polysaccharide comprised four specific monosaccharides (Rhamnose, Glucuronic acid, glucose and galactose) and FTIR spectrum shown band at 3430.6 cm-1 (O–H stretching), 2940.3 cm−1 (C–H linkage), 1630.4 cm−1 (carbonyl stretching), 1410 cm−1 (uronic acid) and 1030.5 cm−1 (glycosidic linkage). Conclusion It can be concluded that antidiabetic effect of AEATP is through the modulation of GLP-1 level in plasma and intestinal tissue via alpha glucosidase inhibition.
Collapse
Affiliation(s)
- Pradeep Kumar Bhateja
- Department of Pharmacology, Bhojia Dental College and Hospitals, Bhud, Baddi, Himachal Pradesh, 173205, India
| | - Anu Kajal
- Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Randhir Singh
- Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India.
| |
Collapse
|
46
|
|
47
|
Yoshida A, Kimura T, Tsunekawa K, Araki O, Ushiki K, Ishigaki H, Shoho Y, Suda I, Hiramoto S, Murakami M. Glucomannan Inhibits Rice Gruel-Induced Increases in Plasma Glucose and Insulin Levels. ANNALS OF NUTRITION AND METABOLISM 2020; 76:259-267. [PMID: 32659777 DOI: 10.1159/000508674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/08/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Given the association between diabetes suppression and inhibition of diet-induced elevation in glucose and insulin, we investigated the effects of adding glucomannan to rice gruel on pre- and postprandial glucose and insulin concentrations. METHODS A total of 25 Japanese subjects without a history of diabetes or gastrointestinal disease (all males; aged 37-60 years; body mass index 20.4-31.6) participated in this study. Subjects received a 75-g oral glucose tolerance test (75gOGTT) and rice gruel containing 0, 0.4, or 0.8% of glucomannan. Blood samples were then obtained at preload and at 30, 60, and 120 min after receiving 75 g of glucose or rice gruel with or without glucomannan. RESULTS After the 75gOGTT, 8 subjects had normal glucose tolerance (NGT), whereas 17 showed a borderline pattern. Moreover, our data showed that greater amounts of glucomannan promoted lesser 30-min postload plasma glucose and insulin levels, with differences being larger in the borderline group than in the NGT group. CONCLUSIONS Glucomannan dose-dependently inhibited the rice gruel-induced increase in 30-min postprandial plasma glucose and insulin levels. Furthermore, greater inhibitory effects on glucose and insulin elevation were observed in the borderline group than in the NGT group.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Gunma University Center for Food Science and Wellness, Maebashi, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan, .,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan, .,Gunma University Center for Food Science and Wellness, Maebashi, Japan,
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan.,Gunma University Center for Food Science and Wellness, Maebashi, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan
| | - Kazumi Ushiki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan
| | - Hirotaka Ishigaki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshifumi Shoho
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Itsumi Suda
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Clinical Laboratory Center, Gunma University Hospital, Maebashi, Japan.,Gunma University Center for Food Science and Wellness, Maebashi, Japan
| |
Collapse
|
48
|
Chu XY, Yang SZ, Zhu MQ, Zhang DY, Shi XC, Xia B, Yuan Y, Liu M, Wu JW. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3976-3985. [PMID: 32178518 DOI: 10.1021/acs.jafc.0c00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
49
|
Sintsova OV, Leychenko EV, Gladkikh IN, Kalinovskii AP, Monastyrnaya MM, Kozlovskaya EP. Magnificamide Is a New Effective Mammalian α-Amylase Inhibitor. DOKL BIOCHEM BIOPHYS 2020; 489:385-387. [PMID: 32130606 DOI: 10.1134/s1607672919060097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 11/23/2022]
Abstract
Recombinant analogue of the sea anemone Heteractismagnifica peptide was obtained, and the kinetic parameters of its interaction with mammalian α-amylases were determined. Magnificamide inhibits α-amylases significantly stronger than the medical drug acarbose (PrecoseTM or GlucobayTM). Magnificamide is assumed to find application as a drug for prevention and treatment of metabolic disorders and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- O V Sintsova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia.
| | - E V Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - I N Gladkikh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - A P Kalinovskii
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia.,School of Natural Sciences, Far Eastern Federal University, 690091, Vladivostok, Russia
| | - M M Monastyrnaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - E P Kozlovskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia
| |
Collapse
|
50
|
Irmisch S, Jancsik S, Yuen MMS, Madilao LL, Bohlmann J. Biosynthesis of the anti-diabetic metabolite montbretin A: glucosylation of the central intermediate mini-MbA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:879-891. [PMID: 31400245 PMCID: PMC6899944 DOI: 10.1111/tpj.14493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 05/16/2023]
Abstract
Type 2 diabetes (T2D) affects over 320 million people worldwide. Healthy lifestyles, improved drugs and effective nutraceuticals are different components of a response against the growing T2D epidemic. The specialized metabolite montbretin A (MbA) is being developed for treatment of T2D and obesity due to its unique pharmacological activity as a highly effective and selective inhibitor of the human pancreatic α-amylase. MbA is an acylated flavonol glycoside found in small amounts in montbretia (Crocosmia × crocosmiiflora) corms. MbA cannot be obtained in sufficient quantities for drug development from its natural source or by chemical synthesis. To overcome these limitations through metabolic engineering, we are investigating the genes and enzymes of MbA biosynthesis. We previously reported the first three steps of MbA biosynthesis from myricetin to myricetin 3-O-(6'-O-caffeoyl)-glucosyl rhamnoside (mini-MbA). Here, we describe the sequence of reactions from mini-MbA to MbA, and the discovery and characterization of the gene and enzyme responsible for the glucosylation of mini-MbA. The UDP-dependent glucosyltransferase CcUGT3 (UGT703E1) catalyzes the 1,2-glucosylation of mini-MbA to produce myricetin 3-O-(glucosyl-6'-O-caffeoyl)-glucosyl rhamnoside. Co-expression of CcUGT3 with genes for myricetin and mini-MbA biosynthesis in Nicotiana benthamiana validated its biological function and expanded the set of genes available for metabolic engineering of MbA.
Collapse
Affiliation(s)
- Sandra Irmisch
- Michael Smith LaboratoriesUniversity of British Columbia2185 East MallVancouverBCV6T 1Z4Canada
| | - Sharon Jancsik
- Michael Smith LaboratoriesUniversity of British Columbia2185 East MallVancouverBCV6T 1Z4Canada
| | - Macaire M. S. Yuen
- Michael Smith LaboratoriesUniversity of British Columbia2185 East MallVancouverBCV6T 1Z4Canada
| | - Lufiani L. Madilao
- Michael Smith LaboratoriesUniversity of British Columbia2185 East MallVancouverBCV6T 1Z4Canada
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British Columbia2185 East MallVancouverBCV6T 1Z4Canada
| |
Collapse
|