1
|
Fernie JC, Silveira LJ, Jacobsen R, Rausch CM. Cardiopulmonary exercise testing in children and adolescents at moderate altitude: New normative values. Int J Cardiol 2025; 422:132977. [PMID: 39800225 DOI: 10.1016/j.ijcard.2025.132977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Cardiopulmonary exercise tests (CPETs) measure cardiovascular exercise response. Altitude alters exercise parameters, so standard normative datasets (Cooper, Bruce, Burstein) may not accurately predict exercise parameters for data collected at moderate altitude. This study aimed to: 1) establish modern normative exercise values for children/adolescents at moderate altitude and 2) compare these values against the Cooper, Burstein and Bruce models. METHODS Maximal CPETs in children/adolescents aged 6 to 18 years were evaluated retrospectively (n = 1154, mean age 13.92 ± 2.70 years, 49.7 % female). Separate analysis and modeling were completed for the cycle ergometer (n = 907) and treadmill (n = 247). Polynomial regression models were developed for each exercise variable. A validation cohort of tests on the treadmill and cycle ergometer (n = 100, 50 cycle ergometer, 50 treadmill, mean age 14.44 ± 2.57 years, 47.0 % female) were evaluated with our polynomial models. RESULTS On the cycle ergometer, the Burstein dataset had improved root mean square error (RMSE, 7.4) compared to the Cooper dataset (RMSE 9.6) for peak oxygen consumption (VO2 peak), while our model demonstrated even better RMSE (5.5). Our model had improved RMSE compared to the Burstein equations for all parameters (except resting systolic blood pressure) indicating an improved model. CONCLUSIONS We present new normative data and predictive equations based on a relatively large population of healthy children/adolescents tested at moderate altitude that outperforms sea-level-based models. Among other variables (age, gender, BMI, ethnicity), altitude must be considered when reporting exercise data so that normal CPET values at moderate altitude are not misinterpreted as pathological CPET findings.
Collapse
Affiliation(s)
- Julie C Fernie
- Children's Hospital Colorado Heart Institute, Aurora, CO, USA
| | | | - Roni Jacobsen
- Children's Hospital Colorado Heart Institute, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Rausch
- Children's Hospital Colorado Heart Institute, Aurora, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
2
|
Aljaloud KS. Short-Term Intermittent Normobaric Hypoxia Combined with Light Exercise Improves Acclimatization of Cardiorespiratory Function in Inactive Adults. Open Access J Sports Med 2024; 15:229-237. [PMID: 39717075 PMCID: PMC11663988 DOI: 10.2147/oajsm.s492820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Background Un-acclimatized individuals may experience acute altitude illness. Thus, the current study investigated the impact of short-term intermittent normobaric hypoxia (NH) combined with light exercise on the acclimatization of cardiorespiratory function to altitude in inactive adults. Methods This quasi-experimental study recruited 10 inactive university students (age: 26.3 ± 2.53 years). All participants were instructed to perform light exercise while exposed to intermittent NH (15%) (2 h/d) for 2 weeks continuously. The heart rate (HR), relative oxygen consumption (VO2 mL/kg/min), minute ventilation (VE), VO2/HR, and respiratory frequency (RF) were measured. Results Results illustrated a significant improvement in participants' cardiorespiratory functions by 10 days after exposure to NH, as compared to day 1 of exposure, based on their HR, RF, and VE responses at rest and HR, RF, VE, VO2, VO2/kg, and VO2/HR during light exercise. Resting-state values had returned to the pre-NH exposure levels after 10 days of intermittent NH exposure. Furthermore, values measured during light exercise were significantly decreased on days 10 and 14 as compared to day 1 of NH exposure. Conclusion This study concluded that as few as 10 days of exposure to intermittent NH (pO2 = 15%) combined with light exercise may improve the acclimation to NH of 15% pO2 in inactive adults.
Collapse
Affiliation(s)
- Khalid S Aljaloud
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Oberholzer L, Aamaas NS, Hallén J. Changes in cycling economy and fractional utilization of V̇O 2peak during a 40-min maximal effort exercise test with acute hypobaric hypoxia corresponding to 2800 m of altitude. Scand J Med Sci Sports 2024; 34:e14511. [PMID: 37828810 DOI: 10.1111/sms.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Peak oxygen uptake (V̇O2peak ) declines by ~7% per 1000 m of increasing altitude, whereas exercise performance seems reduced to a lesser extent. For example, 800-10 000 m track and field performances are decreased by 0.4%-2.4% above 1000 m as compared to below and some studies show similar drops in cycling performance. A greater decline in V̇O2peak than in endurance performance with altitude suggests a higher fractional utilization of V̇O2peak (%V̇O2peak ). Therefore, we hypothesized that the %V̇O2peak is higher with acute hypoxic exposure than near sea level. METHODS Sixteen lowlanders (8 women, age: 31 ± 7 years [mean ± SD], body mass: 68 ± 8 kg, V̇O2peak : 60 ± 8 mL min-1 kg-1 ) underwent cycling testing in a hypobaric hypoxic chamber on 6 test days, three conducted at 300 m and three at 2800 m of acute altitude. At both altitudes, V̇O2peak was determined, and during a 40-min all out maximal effort time trial (TT), mean power output (MPO) and mean V̇O2 (%V̇O2peak ) were assessed. RESULTS V̇O2peak decreased by 11.2 ± 3.0% (p < 0.001), while MPO during the TT declined by 10.7 ± 3.1% (p < 0.001) at 2800 m as compared to 300 m. During the TT, %V̇O2peak was higher at altitude, corresponding to 75.9 ± 4.5% at 300 m and 78.8 ± 4.2% at 2800 m (p = 0.011), and cycling economy (mL O2 kJ-1 ) was poorer (+3.4 ± 2.7%, p < 0.001). CONCLUSION The %V̇O2peak was higher during a cycling TT at 2800 m of altitude than near sea level, while cycling economy was poorer. This resulted in a similar reduction in performance and V̇O2peak . Future studies should address the physiological mechanisms underlying the elevated %V̇O2peak .
Collapse
Affiliation(s)
- Laura Oberholzer
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
4
|
Carr AJ, McKay AKA, Burke LM, Smith ES, Urwin CS, Convit L, Jardine WT, Kelly MK, Saunders B. Use of Buffers in Specific Contexts: Highly Trained Female Athletes, Extreme Environments and Combined Buffering Agents-A Narrative Review. Sports Med 2023; 53:25-48. [PMID: 37878211 PMCID: PMC10721675 DOI: 10.1007/s40279-023-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 10/26/2023]
Abstract
This narrative review evaluated the evidence for buffering agents (sodium bicarbonate, sodium citrate and beta-alanine), with specific consideration of three discrete scenarios: female athletes, extreme environments and combined buffering agents. Studies were screened according to exclusion and inclusion criteria and were analysed on three levels: (1) moderating variables (supplement dose and timing, and exercise test duration and intensity), (2) design factors (e.g., use of crossover or matched group study design, familiarisation trials) and (3) athlete-specific factors (recruitment of highly trained participants, buffering capacity and reported performance improvements). Only 19% of the included studies for the three buffering agents reported a performance benefit, and only 10% recruited highly trained athletes. This low transferability of research findings to athletes' real-world practices may be due to factors including the small number of sodium citrate studies in females (n = 2), no studies controlling for the menstrual cycle (MC) or menstrual status using methods described in recently established frameworks, and the limited number of beta-alanine studies using performance tests replicating real-world performance efforts (n = 3). We recommend further research into buffering agents in highly trained female athletes that control or account for the MC, studies that replicate the demands of athletes' heat and altitude camps, and investigations of highly trained athletes' use of combined buffering agents. In a practical context, we recommend developing evidence-based buffering protocols for individual athletes which feature co-supplementation with other evidence-based products, reduce the likelihood of side-effects, and optimise key moderating factors: supplement dose and timing, and exercise duration and intensity.
Collapse
Affiliation(s)
- Amelia J Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ella S Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Charles S Urwin
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Lilia Convit
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - William T Jardine
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Monica K Kelly
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de São Paulo, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Bonato G, Goodman S, Tjh L. Physiological and performance effects of live high train low altitude training for elite endurance athletes: A narrative review. Curr Res Physiol 2023; 6:100113. [PMID: 38107789 PMCID: PMC10724230 DOI: 10.1016/j.crphys.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Altitude training has become an important training application for athletes due its potential for altering physiology and enhancing performance. This practice is commonly used by athletes, with a popular choice being the live high - train low approach. This model recommends that athletes live at high altitude (1250-3000 m), but train at low altitude or sea-level (0-1200 m). Exposure to altitude often leads to hypoxic stress and in turn stimulates changes in total haemoglobin mass, erythropoietin, and soluble transferrin receptors, which alter further underlying physiology. Through enhanced physiology, improved exercise performance may arise through enhancement of the oxygen transport system which is important for endurance events. Previous investigations into the effects of altitude training on exercise performance have been completed in a range of contexts, including running, cycling, swimming, and triathlon. Often following a LHTL altitude intervention, athletes realise improvements in maximal oxygen consumption capacity, time trial performance and peak power outputs. Although heterogeneity exists among LHTL methodologies, i.e., exposure durations and altitude ranges, we synthesised this data into kilometre hours, and found that the most common hypoxic doses used in LHTL interventions ranged from ∼578-687 km h. As this narrative review demonstrates, there are potential advantages to using altitude training to enhance physiology and improve performance for endurance athletes.
Collapse
Affiliation(s)
- G. Bonato
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- College of Arts, Society and Education, James Cook University, Townsville, 4811, Australia
| | - S.P.J Goodman
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
| | - Lathlean Tjh
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- The Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5000, Australia
| |
Collapse
|
6
|
Solberg A, Reikvam H. Iron Status and Physical Performance in Athletes. Life (Basel) 2023; 13:2007. [PMID: 37895389 PMCID: PMC10608302 DOI: 10.3390/life13102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Iron is an important mineral in the body, essential for muscle function and oxygen transport. Adequate levels of iron in the blood are necessary for athletes, as iron-deficiency anemia can reduce physical performance. Several studies have investigated iron status and supplementation in iron-deficient athletes, and determined how physical strain can change iron balance and markers related to iron status. The question of how to influence and optimize iron status, as well as other markers that can affect iron metabolism, has been less thoroughly investigated. Therefore, the aim of this review is to take a closer look at the importance of iron values, iron markers, and factors that can change iron metabolism for physical performance and the extent to which physical performance can be influenced in a positive or negative way. A systematic search of the PubMed database was performed, with the use of « iron» or «iron deficiency» or «hemoglobin» AND «athletes» AND «athletic performance» as a strategy of the search. After the search, 11 articles were included in the review after the application of inclusion and exclusion criteria. Major findings include that iron supplementation had the best effect in athletes with the lowest iron status, and effects on physical performance were mostly achieved in those who were originally in a deficit. Iron supplementation could be beneficial for optimal erythropoietic response during altitude training, even in athletes with normal iron stores at baseline, but should be performed with caution. Alteration of the hepcidin response can affect the use of existing iron stores for erythropoiesis. Energy intake, and the amount of carbohydrates available, may have an impact on the post-exercise hepcidin response. Optimal vitamin D and B12 levels can possibly contribute to improved iron status and, hence, the avoidance of anemia.
Collapse
Affiliation(s)
- Andrea Solberg
- Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
| | - Håkon Reikvam
- Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
- Clinic for Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
7
|
Li D, Xia W, Cui X, Zhao M, Huang K, Wang X, Shen J, Chen H, Zhu L. The putatively high-altitude adaptation of macaque monkeys: Evidence from the fecal metabolome and gut microbiome. Evol Appl 2023; 16:1708-1720. [PMID: 38020871 PMCID: PMC10660799 DOI: 10.1111/eva.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Animals living in high-altitude environments, such as the Tibetan Plateau, must face harsh environmental conditions (e.g., hypoxia, cold, and strong UV radiation). These animals' physiological adaptations (e.g., increased red cell production and turnover rate) might also be associated with the gut microbial response. Bilirubin is a component of red blood cell turnover or destruction and is excreted into the intestine and reduced to urobilinoids and/or urobilinogen by gut bacteria. Here, we found that the feces of macaques living in high-altitude regions look significantly browner (with a high concentration of stercobilin, a component from urobilinoids) than those living in low-altitude regions. We also found that gut microbes involved in urobilinogen reduction (e.g., beta-glucuronidase) were enriched in the high-altitude mammal population compared to the low-altitude population. Moreover, the spatial-temporal change in gut microbial function was more profound in the low-altitude macaques than in the high-altitude population, which might be attributed to profound changes in food resources in the low-altitude regions. Therefore, we conclude that a high-altitude environment's stress influences living animals and their symbiotic microbiota.
Collapse
Affiliation(s)
- Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Mei Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Kai Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | | | - Hua Chen
- Mingke BiotechnologyHangzhouChina
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
8
|
Feng X, Zhao L, Chen Y, Wang Z, Lu H, Wang C. Optimal type and dose of hypoxic training for improving maximal aerobic capacity in athletes: a systematic review and Bayesian model-based network meta-analysis. Front Physiol 2023; 14:1223037. [PMID: 37745240 PMCID: PMC10513096 DOI: 10.3389/fphys.2023.1223037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: This study aimed to compare and rank the effect of hypoxic practices on maximum oxygen consumption (VO2max) in athletes and determine the hypoxic dose-response correlation using network meta-analysis. Methods: The Web of Science, PubMed, EMBASE, and EBSCO databases were systematically search for randomized controlled trials on the effect of hypoxc interventions on the VO2max of athletes published from inception until 21 February 2023. Studies that used live-high train-high (LHTH), live-high train-low (LHTL), live-high, train-high/low (HHL), intermittent hypoxic training (IHT), and intermittent hypoxic exposure (IHE) interventions were primarily included. LHTL was further defined according to the type of hypoxic environment (natural and simulated) and the altitude of the training site (low altitude and sea level). A meta-analysis was conducted to determine the standardized mean difference between the effects of various hypoxic interventions on VO2max and dose-response correlation. Furthermore, the hypoxic dosage of the different interventions were coordinated using the "kilometer hour" model. Results: From 2,072 originally identified titles, 59 studies were finally included in this study. After data pooling, LHTL, LHTH, and IHT outperformed normoxic training in improving the VO2max of athletes. According to the P-scores, LHTL combined with low altitude training was the most effective intervention for improving VO2max (natural: 0.92 and simulated: 0.86) and was better than LHTL combined with sea level training (0.56). A reasonable hypoxic dose range for LHTH (470-1,130 kmh) and HL (500-1,415 kmh) was reported with an inverted U-shaped curve relationship. Conclusion: Different types of hypoxic training compared with normoxic training serve as significant approaches for improving aerobic capacity in athletes. Regardless of the type of hypoxic training and the residential condition, LHTL with low altitude training was the most effective intervention. The characteristics of the dose-effect correlation of LHTH and LHTL may be associated with the negative effects of chronic hypoxia.
Collapse
Affiliation(s)
- Xinmiao Feng
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Linlin Zhao
- Sports Coaching College, Beijing Sports University, Beijing, China
| | | | - Zihao Wang
- Capital Institute of Physical Education and Sports, Beijing, Beijing, China
| | - Hongyuan Lu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Chuangang Wang
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
9
|
Sharma P, Mohanty S, Ahmad Y. A study of survival strategies for improving acclimatization of lowlanders at high-altitude. Heliyon 2023; 9:e14929. [PMID: 37025911 PMCID: PMC10070159 DOI: 10.1016/j.heliyon.2023.e14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human Acclimatization and therapeutic approaches are the core components for conquering the physiological variations at high altitude (≥2500 m) exposure. The declined atmospheric pressure and reduced partial pressure of oxygen at high altitudes tend to decrease the temperature by several folds. Hypobaric hypoxia is a major threat to humanity at high altitudes, and its potential effects include altitude mountain sickness. On severity, it may lead to the development of conditions like high-altitude cerebral edema (HACE) or high-altitude pulmonary edema (HAPE) and cause unexpected physiological changes in the healthy population of travelers, athletes, soldiers, and low landers while sojourning at high altitude. Previous investigations have been done on long-drawn-out acclimatization strategies such as the staging method to prevent the damage caused by high-altitude hypobaric Hypoxia. Inherent Limitations of this strategy hamper the daily lifestyle and time consuming for people. It is not suitable for the rapid mobilization of people at high altitudes. There is a need to recalibrate acclimatization strategies for improving health protection and adapting to the environmental variations at high altitudes. This narrative review details the geographical changes and physiological changes at high altitudes and presents a framework of acclimatization, pre-acclimatization, and pharmacological aspects of high-altitude survival to enhance the government efficacy and capacity for the strategic planning of acclimatization, use of therapeutics, and safe de-induction from high altitude for minimizing the life loss. It's simply too ambitious for the importance of the present review to reduce life loss, and it can be proved as the most essential aspect of the preparatory phase of high-altitude acclimatization in plateau regions without hampering the daily lifestyle. The application of pre-acclimatization techniques can be a boon for people serving at high altitudes, and it can be a short bridge for the rapid translocation of people at high altitudes by minimizing the acclimatization time.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| |
Collapse
|
10
|
Swinnen W, Laughlin E, Hoogkamer W. Everesting: cycling the elevation of the tallest mountain on Earth. Eur J Appl Physiol 2022; 122:2565-2574. [PMID: 36064982 PMCID: PMC9444120 DOI: 10.1007/s00421-022-05032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Purpose With few cycling races on the calendar in 2020 due to COVID-19, Everesting became a popular challenge: you select one hill and cycle up and down it until you reach the accumulated elevation of Mt. Everest (8,848 m or 29,029ft). With an almost infinite number of different hills across the world, the question arises what the optimal hill for Everesting would be. Here, we address the biomechanics and energetics of up- and downhill cycling to determine the characteristics of this optimal hill. Methods During uphill cycling, the mechanical power output equals the power necessary to overcome air resistance, rolling resistance, and work against gravity, and for a fast Everesting time, one should maximize this latter term. To determine the optimal section length (i.e., number of repetitions), we applied the critical power concept and assumed that the U-turn associated with an additional repetition comes with a 6 s time penalty. Results To use most mechanical power to overcoming gravity, slopes of at least 12% are most suitable, especially since gross efficiency seems only minimally diminished on steeper slopes. Next, we found 24 repetitions to be optimal, yet this number slightly depends on the assumptions made. Finally, we discuss other factors (fueling, altitude, fatigue) not incorporated in the model but also affecting Everesting performances. Conclusion For a fast Everesting time, our model suggests to select a hill climb which preferably starts at (or close to) sea level, with a slope of 12–20% and length of 2–3 km.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Science, KU Leuven, Tervuursevest 101, Mailbox 1501, 3001, Louvain, Belgium.
| | - Emily Laughlin
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, USA
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, USA
| |
Collapse
|
11
|
Jolicoeur Desroches A, Goulet EDB. Is a sub 7-h Ironman TM possible? Front Sports Act Living 2022; 4:866599. [PMID: 36091871 PMCID: PMC9453846 DOI: 10.3389/fspor.2022.866599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Eric D. B. Goulet
- Faculty of physical activity sciences, University of Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Draper S, Singer T, Dulaney C, McDaniel J. Single Leg Cycling Offsets Reduced Muscle Oxygenation in Hypoxic Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159139. [PMID: 35897502 PMCID: PMC9331301 DOI: 10.3390/ijerph19159139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
The intensity of large muscle mass exercise declines at altitude due to reduced oxygen delivery to active muscles. The purpose of this investigation was to determine if the greater limb blood flow during single-leg cycling prevents the reduction in tissue oxygenation observed during traditional double-leg cycling in hypoxic conditions. Ten healthy individuals performed bouts of double and single-leg cycling (4, four-minute stages at 50−80% of their peak oxygen consumption) in hypoxic (15% inspired O2) and normoxic conditions. Heart rate, mean arterial pressure, femoral blood flow, lactate, oxygenated hemoglobin, total hemoglobin, and tissue saturation index in the vastus lateralis were recorded during cycling tests. Femoral blood flow (2846 ± 912 mL/min) and oxygenated hemoglobin (−2.98 ± 3.56 au) during single-leg cycling in hypoxia were greater than double-leg cycling in hypoxia (2429 ± 835 mL/min and −6.78 ± 3.22 au respectively, p ≤ 0.01). In addition, tissue saturation index was also reduced in the double-leg hypoxic condition (60.2 ± 3.1%) compared to double-leg normoxic (66.0 ± 2.4%, p = 0.008) and single-leg hypoxic (63.3 ± 3.2, p < 0.001) conditions. These data indicate that while at altitude, use of reduced muscle mass exercise can help offset the reduction in tissue oxygenation observed during larger muscle mass activities allowing athletes to exercise at greater limb/muscle specific intensities.
Collapse
Affiliation(s)
- Shane Draper
- Department of Exercise Science and Outdoor Recreation, Utah Valley University, Orem, UT 84058, USA;
| | - Tyler Singer
- Department of Exercise Science, Fairmont State University, Fairmont, WV 26554, USA;
| | - Cody Dulaney
- Department of Fitness and Wellness Leadership, State University of New York Plattsburgh, Plattsburgh, NY 12901, USA;
| | - John McDaniel
- Department of Exercise Science, Kent State University, Kent, OH 44242, USA
- Advanced Platform Technology Center, VA Northeast Ohio Healthcare System, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
13
|
Mateo-March M, Muriel X, Valenzuela PL, Gandia-Soriano A, Zabala M, Barranco-Gil D, Pallarés JG, Lucia A. Altitude and Endurance Performance in Altitude Natives versus Lowlanders: Insights from Professional Cycling. Med Sci Sports Exerc 2022; 54:1218-1224. [PMID: 35142712 DOI: 10.1249/mss.0000000000002890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Acute altitude exposure influences exercise performance, although most research, especially regarding altitude natives, comes from laboratory data in nonathletes. PURPOSE We analyzed the influence of altitude on real-world cycling performance in top-level professional cyclists attending to whether they were altitude natives or not. METHODS Thirty-three male cyclists (29 ± 5 yr) were studied and were classified as lowlanders (n = 19) or altitude natives (n = 14) attending to the altitude of their place of birth (431 ± 380 and 2583 ± 334 meters above sea level (m a.s.l.), respectively). Both groups included top 3 finishers (including winners) in the general classification of Grand Tours and major races. Using data from both training and competitions during years 2013-2020 (8 ± 5 seasons per cyclist), we registered participants' mean maximal power (MMP) for efforts lasting 5 s, 30 s, 5 min, and 10 min, respectively, at altitudes ranging from 0-500 to >2000 m a.s.l. RESULTS A significant altitude-MMP interaction effect (two-factor repeated-measures ANOVA) was found in lowlanders (P < 0.001) but not in altitude natives (P = 0.150). In lowlanders, individual performance decreased in a dose-response manner with increasing altitudes compared with sea (or near-sea) level (0-500 m a.s.l.), whereas this trend was much less evident in natives. A significant altitude-MMP-group effect was found (P < 0.001), with nonsignificant (and overall trivial-to-small differences) between lowlanders and altitude natives for any effort duration at altitudes ≤1500 m a.s.l. but with significant differences at higher altitudes (≥1501 m a.s.l.). CONCLUSIONS Acute altitude exposure influences real-world performance differently in low landers and altitude natives, which might confer a competitive advantage to the latter, particularly in races including efforts at >1500 m a.s.l.
Collapse
Affiliation(s)
| | - Xabier Muriel
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | - Pedro L Valenzuela
- Instituto de Investigación Hospital 12 de Octubre (imas12), Grupo de Investigación en Actividad Física y Salud (PaHerg), Madrid, SPAIN
| | - Alexis Gandia-Soriano
- Biophysics and Medical Physics Group (GIFIME), Department of Physiology, University of Valencia, Valencia, SPAIN
| | - Mikel Zabala
- Department of Physical Education & Sport, Faculty of Sport Sciences, University of Granada, Granada, SPAIN
| | | | - Jesús G Pallarés
- Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, SPAIN
| | | |
Collapse
|
14
|
Benavente C, Feriche B, Olcina G, Schoenfeld BJ, Camacho-Cardenosa A, Almeida F, Martínez-Guardado I, Timon R, Padial P. Inter-set rest configuration effect on acute physiological and performance-related responses to a resistance training session in terrestrial vs simulated hypoxia. PeerJ 2022; 10:e13469. [PMID: 35607454 PMCID: PMC9123884 DOI: 10.7717/peerj.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023] Open
Abstract
Background Metabolic stress is considered a key factor in the activation of hypertrophy mechanisms which seems to be potentiated under hypoxic conditions.This study aimed to analyze the combined effect of the type of acute hypoxia (terrestrial vs simulated) and of the inter-set rest configuration (60 vs 120 s) during a hypertrophic resistance training (RT) session on physiological, perceptual and muscle performance markers. Methods Sixteen active men were randomized into two groups based on the type of hypoxia (hypobaric hypoxia, HH: 2,320 m asl; vs normobaric hypoxia, NH: FiO2 of 15.9%). Each participant completed in a randomly counterbalanced order the same RT session in four separated occasions: two under normoxia and two under the corresponding hypoxia condition at each prescribed inter-set rest period. Volume-load (load × set × repetition) was calculated for each training session. Muscle oxygenation (SmO2) of the vastus lateralis was quantified during the back squat exercise. Heart rate (HR) was monitored during training and over the ensuing 30-min post-exercise period. Maximal blood lactate concentration (maxLac) and rating of perceived exertion (RPE) were determined after the exercise and at the end of the recovery period. Results Volume-load achieved was similar in all environmental conditions and inter-set rest period length did not appreciably affect it. Shorter inter-set rest periods displayed moderate increases in maxLac, HR and RPE responses in all conditions. Compared to HH, NH showed a moderate reduction in the inter-set rest-HR (ES > 0.80), maxLac (ES > 1.01) and SmO2 (ES > 0.79) at both rest intervals. Conclusions Results suggest that the reduction in inter-set rest intervals from 120 s to 60 s provide a more potent perceptual, cardiovascular and metabolic stimulus in all environmental conditions, which could maximize hypertrophic adaptations in longer periods of training. The abrupt exposure to a reduced FiO2 at NH seems to reduce the inter-set recovery capacity during a traditional hypertrophy RT session, at least during a single acute exposition. These results cannot be extrapolated to longer training periods.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, United States of America
| | | | - Filipa Almeida
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Ismael Martínez-Guardado
- Faculty of Education, BRABE Group, Department of Psychology. Faculty of Life and Nature Sciences, University of Nebrija, Madrid, Spain
| | - Rafael Timon
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Jaberzadeh S, Zoghi M. Transcranial Direct Current Stimulation Enhances Exercise Performance: A Mini Review of the Underlying Mechanisms. FRONTIERS IN NEUROERGONOMICS 2022; 3:841911. [PMID: 38235480 PMCID: PMC10790841 DOI: 10.3389/fnrgo.2022.841911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2024]
Abstract
Exercise performance (EP) is affected by a combination of factors including physical, physiological, and psychological factors. This includes factors such as peripheral, central, and mental fatigue, external peripheral factors such as pain and temperature, and psychological factors such as motivation and self-confidence. During the last century, numerous studies from different fields of research were carried out to improve EP by modifying these factors. During the last two decades, the focus of research has been mainly moved toward the brain as a dynamic ever-changing organ and the ways changes in this organ may lead to improvements in physical performance. Development of centrally-acting performance modifiers such as level of motivation or sleep deprivation and the emergence of novel non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are the key motives behind this move. This article includes three sections. Section Introduction provides an overview of the mechanisms behind the reduction of EP. The main focus of the Effects of tDCS on EP section is to provide a brief description of the effects of tDCS on maximal and submaximal types of exercise and finally, the section Mechanisms Behind the Effects of tDCS on EP provides description of the mechanisms behind the effects of tDCS on EP.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Non-invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, School of Health, Federation University Australia, Churchill, VIC, Australia
| |
Collapse
|
16
|
Płoszczyca K, Chalimoniuk M, Przybylska I, Czuba M. Effects of Short-Term Phosphate Loading on Aerobic Capacity under Acute Hypoxia in Cyclists: A Randomized, Placebo-Controlled, Crossover Study. Nutrients 2022; 14:236. [PMID: 35057416 PMCID: PMC8778537 DOI: 10.3390/nu14020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg-1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3-5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Iwona Przybylska
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| |
Collapse
|
17
|
Impact of a Cold Environment on the Performance of Professional Cyclists: A Pilot Study. Life (Basel) 2021; 11:life11121326. [PMID: 34947857 PMCID: PMC8704244 DOI: 10.3390/life11121326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
The practice of physical activity in a variable climate during the same competition is becoming more and more common due to climate change and increasingly frequent climate disturbances. The main aim of this pilot study was to understand the impact of cold ambient temperature on performance factors during a professional cycling race. Six professional athletes (age = 27 ± 2.7 years; height = 180.86 ± 5.81 cm; weight = 74.09 ± 9.11 kg; % fat mass = 8.01 ± 2.47%; maximum aerobic power (MAP) = 473 ± 26.28 W, undertook ~20 h training each week at the time of the study) participated in the Tour de la Provence under cold environmental conditions (the ambient temperature was 15.6 ± 1.4 °C with a relative humidity of 41 ± 8.5% and the normalized ambient temperature (Tawc) was 7.77 ± 2.04 °C). Body core temperature (Tco) was measured with an ingestible capsule. Heart rate (HR), power, speed, cadence and the elevation gradient were read from the cyclists’ onboard performance monitors. The interaction (multivariate analysis of variance) of the Tawc and the elevation gradient has a significant impact (F(1.5) = 32.2; p < 0.001) on the variables (cadence, power, velocity, core temperature, heart rate) and on each individual. Thus, this pilot study shows that in cold environmental conditions, the athlete’s performance was limited by weather parameters (ambient temperature associated with air velocity) and race characteristics. The interaction of Tawc and elevation gradient significantly influences thermal (Tco), physiological (HR) and performance (power, speed and cadence) factors. Therefore, it is advisable to develop warm-up, hydration and clothing strategies for competitive cycling under cold ambient conditions and to acclimatize to the cold by training in the same conditions to those that may be encountered in competition.
Collapse
|
18
|
Malgoyre A, Prola A, Meunier A, Chapot R, Serrurier B, Koulmann N, Bigard X, Sanchez H. Endurance Is Improved in Female Rats After Living High-Training High Despite Alterations in Skeletal Muscle. Front Sports Act Living 2021; 3:663857. [PMID: 34124658 PMCID: PMC8193088 DOI: 10.3389/fspor.2021.663857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Altitude camps are used during the preparation of endurance athletes to improve performance based on the stimulation of erythropoiesis by living at high altitude. In addition to such whole-body adaptations, studies have suggested that high-altitude training increases mitochondrial mass, but this has been challenged by later studies. Here, we hypothesized that living and training at high altitude (LHTH) improves mitochondrial efficiency and/or substrate utilization. Female rats were exposed and trained in hypoxia (simulated 3,200 m) for 5 weeks (LHTH) and compared to sedentary rats living in hypoxia (LH) or normoxia (LL) or those that trained in normoxia (LLTL). Maximal aerobic velocity (MAV) improved with training, independently of hypoxia, whereas the time to exhaustion, performed at 65% of MAV, increased both with training (P = 0.009) and hypoxia (P = 0.015), with an additive effect of the two conditions. The distance run was 7.98 ± 0.57 km in LHTH vs. 6.94 ± 0.51 in LLTL (+15%, ns). The hematocrit increased >20% with hypoxia (P < 0.001). The increases in mitochondrial mass and maximal oxidative capacity with endurance training were blunted by combination with hypoxia (−30% for citrate synthase, P < 0.01, and −23% for Vmax glut−succ, P < 0.001 between LHTH and LLTL). A similar reduction between the LHTH and LLTL groups was found for maximal respiration with pyruvate (−29%, P < 0.001), for acceptor-control ratio (−36%, hypoxia effect, P < 0.001), and for creatine kinase efficiency (−48%, P < 0.01). 3-hydroxyl acyl coenzyme A dehydrogenase was not altered by hypoxia, whereas maximal respiration with Palmitoyl-CoA specifically decreased. Overall, our results show that mitochondrial adaptations are not involved in the improvement of submaximal aerobic performance after LHTH, suggesting that the benefits of altitude camps in females relies essentially on other factors, such as the transitory elevation of hematocrit, and should be planned a few weeks before competition and not several months.
Collapse
Affiliation(s)
- Alexandra Malgoyre
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adelie Meunier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Rachel Chapot
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Bernard Serrurier
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Laboratoire de Biologie de l'Exercice pour la Performance et la Santé, Université Evry, Université Paris Saclay, Evry, France.,Ecole du Val de Grâce, Paris, France
| | - Xavier Bigard
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Ecole du Val de Grâce, Paris, France
| | - Hervé Sanchez
- Département des Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
19
|
Rojas-Valverde D, Córdoba-Blanco JM, González-Salazar L. Cyclists or avatars: is virtual cycling filling a short-term void during COVID-19 lockdown? MANAGING SPORT AND LEISURE 2021. [DOI: 10.1080/23750472.2021.1879665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional, Heredia, Costa Rica
- Grupo Avances en Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte, Universidad de Extremadura, Cáceres, Spain
| | - Juan M. Córdoba-Blanco
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional, Heredia, Costa Rica
| | - Luis González-Salazar
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
20
|
Brocherie F, Fischer S, De Larochelambert Q, Meric H, Riera F. Influence of environmental factors on Olympic cross-country mountain bike performance. Temperature (Austin) 2020; 7:149-156. [PMID: 33015242 DOI: 10.1080/23328940.2020.1761577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Olympic distance cross-country cycling (XCO) is a discipline subject to wide performance variability due to uncontrollable environmental factors such as altitude, ambient temperature and/or humidity. This study therefore aimed to investigate the impact of environmental factors on XCO performance in under-23 and elite female and male categories.Individual data were collected from Continental Cup, World Cup, World Championship, and Olympics Games for U23 and elite female and male categories from 2009 to 2018. Factors included were race time (range: 55-157 min), average speed (range: 7.6-32.2 km/h), distance (range: 15.2-48.4 km), altitude (range: 50-2680 m), ambient temperature (range 7-41°C), relative and absolute humidity (range: 8-97% and 2.4-25.3 g/m3, respectively), and categories.The analysis represents 10,966 individual data which indicate a continuous progression of the performance for all categories. Principal component analysis reveals that the slowest XCO performance was resulting from high ambient temperature and absolute humidity. Regressions revealed that only altitude (P < 0.0001) have a direct linear negative effect on XCO average speed. A significant negative interaction effect of altitude with absolute humidity (P < 0.0001) on XCO average speed was also found. In addition, the higher the absolute humidity, the higher is the impact of ambient temperature (P < 0.0001) on XCO average speed.While XCO performance progressed over time regardless of the categories, results also indicate that altitude, ambient temperature, and absolute humidity negatively impact XCO performance. Abbreviations LOESS: local estimated scatterplot smoothing; PCA: Principal component analysis; UCI: Union Cycliste Internationale; U23: under-23; VO2max: maximal oxygen uptake; XCO: cross-country cycling.
Collapse
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
| | - Simon Fischer
- Laboratory European Performance Health Altitude (LEPSA; EA 4604), University of Perpignan via Domitia, Font Romeu, France
| | - Quentin De Larochelambert
- Institut De Recherche bioMédicale Et d'Epidémiologie Du Sport (IRMES), French Institute of Sport (INSEP), Paris, France
| | - Henri Meric
- Laboratory European Performance Health Altitude (LEPSA; EA 4604), University of Perpignan via Domitia, Font Romeu, France
| | - Florence Riera
- Laboratory European Performance Health Altitude (LEPSA; EA 4604), University of Perpignan via Domitia, Font Romeu, France
| |
Collapse
|
21
|
Serum Autofluorescence and Biochemical Markers in Athlete's Response to Strength Effort in Normobaric Hypoxia: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5201351. [PMID: 31886223 PMCID: PMC6925827 DOI: 10.1155/2019/5201351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023]
Abstract
The human organism has the ability to adapt to hypoxia conditions. Training in hypoxia is used in sport to improve the efficiency of athletes; however, type of training affects the direction and scope of this process. Therefore, in this study, the usefulness of serum fluorescence spectroscopy to study the assessment of athlete's response to strength effort in hypoxia is considered in comparison with biochemical assay. Six resistance-trained male subjects took part in a research experiment. They performed barbell squats in simulated normobaric hypoxic conditions with deficiency of oxygen 11.3%, 13% 14.3% compared to 21% in normoxic conditions. Fluorescence intensity of tyrosine revealed high sensitivity on strength effort whereas tryptophan was more dependent on high altitude. Changes in emission in the visible region are associated with altering cell metabolism dependent on high altitude as well as strength training and endurance training. Significant changes in serum fluorescence intensity with relatively weak modifications in biochemical assay at 3000 m above sea level (ASL) were observed. Training at 5000 m ASL caused changes in fluorescence parameters towards the normobaric specific values, and pronounced decreases of lactate level and kinase creatine activity were observed. Such modifications of fluorescence and biochemical assay indicate increased adaptation of the organism to effort in oxygen-deficient conditions at 5000 m ASL, unlike 3000 m ASL. Fluorescence spectroscopy study of serum accompanied by biochemical assay can contribute to the understanding of metabolic regulation and the physiological response to hypoxia. The results of serum autofluorescence during various concepts of altitude training may be a useful method to analyze individual response to acute and chronic hypoxia. An endogenous tryptophan could be exploited as intrinsic biomarker in autofluorescence studies. However, these issues require further research.
Collapse
|
22
|
Feriche B, Schoenfeld BJ, Bonitch-Gongora J, de la Fuente B, Almeida F, Argüelles J, Benavente C, Padial P. Altitude-induced effects on muscular metabolic stress and hypertrophy-related factors after a resistance training session. Eur J Sport Sci 2019; 20:1083-1092. [PMID: 31699003 DOI: 10.1080/17461391.2019.1691270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examined the acute effects of exposure to moderate altitude on factors associated with muscular adaptations following whole-body hypertrophy-oriented resistance training (R T) sessions. Thirteen resistance-trained males completed both counterbalanced standard hypertrophic R T sessions (3 sets × 10RM, 2 min rest) at moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Participants rested 72 h between training sessions. Before and after the exercise session, blood samples were obtained for determination of metabolites and ions (lactate, inorganic phosphate, liquid carbon dioxide and calcium) and hormones (testosterone and growth hormone). Session-related performance and perception of effort (s-RPE) were also monitored. Results showed no meaningful differences in performance or s-RPE (8.5 ± 1.4 vs 8.6 ± 0.8 respectively for N and H; p = 0.603). All blood variables displayed statistically significant changes throughout the recovery period compared to basal levels (p < 0.05), except for the testosterone. However, no altitude effect was observed in maximal blood lactate, calcium or anabolic hormones (p > 0.05). The reduction observed in the liquid carbon dioxide concentration in H (21.11 ± 1.46 vs 16.19 ± 1.61 mmol·l-1) seems compatible with an increase in buffering capacity. Compared to N, inorganic phosphate displayed lower recovery values after the R T in H (2.89 ± 0.64 vs 2.23 ± 0.60 mg dl-1; p = 0.007). The results of this study do not support an accentuated effect of acute moderate terrestrial hypoxia on metabolic and hormonal factors linked to muscle growth during hypertrophic resistance training.
Collapse
Affiliation(s)
- Belen Feriche
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, New York, NY, USA
| | - Juan Bonitch-Gongora
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Blanca de la Fuente
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Filipa Almeida
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Javier Argüelles
- High performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Cristina Benavente
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Paulino Padial
- Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Iron considerations for the athlete: a narrative review. Eur J Appl Physiol 2019; 119:1463-1478. [PMID: 31055680 DOI: 10.1007/s00421-019-04157-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Iron plays a significant role in the body, and is specifically important to athletes, since it is a dominant feature in processes such as oxygen transport and energy metabolism. Despite its importance, athlete populations, especially females and endurance athletes, are commonly diagnosed with iron deficiency, suggesting an association between sport performance and iron regulation. Although iron deficiency is most common in female athletes (~ 15-35% athlete cohorts deficient), approximately 5-11% of male athlete cohorts also present with this issue. Furthermore, interest has grown in the mechanisms that influence iron absorption in athletes over the last decade, with the link between iron regulation and exercise becoming a research focus. Specifically, exercise-induced increases in the master iron regulatory hormone, hepcidin, has been highlighted as a contributing factor towards altered iron metabolism in athletes. To date, a plethora of research has been conducted, including investigation into the impact that sex hormones, diet (e.g. macronutrient manipulation), training and environmental stress (e.g. hypoxia due to altitude training) have on an athlete's iron status, with numerous recommendations proposed for consideration. This review summarises the current state of research with respect to the aforementioned factors, drawing conclusions and recommendations for future work.
Collapse
|
24
|
Training to Compete at Altitude:Natural Altitude or Simulated Live High:Train Low? Int J Sports Physiol Perform 2019; 14:509-517. [PMID: 30300037 DOI: 10.1123/ijspp.2018-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To compare the effects of natural altitude training (NAT) and simulated (SIM) live high:train low altitude training on road-race walking performance (min), as well as treadmill threshold walking speed (km·h-1) at 4 mmol·L-1 and maximal oxygen consumption, at 1380 m. METHODS Twenty-two elite-level male (n = 15) and female (n = 7) race walkers completed 14 d of NAT at 1380 m (n = 7), SIM live high:train low at 3000:600 m (n = 7), or control conditions (600-m altitude; CON, n = 8). All preintervention and postintervention testing procedures were conducted at 1380 m and consisted of an incremental treadmill test, completed prior to a 5 × 2-km road-race walking performance test. Differences between groups were analyzed via mixed-model analysis of variance and magnitude-based inferences, with a substantial change detected with >75% likelihood of exceeding the smallest worthwhile change. RESULTS The improvement in total performance time for the 5 × 2-km test in NAT was not substantially different from SIM but was substantially greater (85% likely) than CON. The improvement in percentage decrement in the 5 × 2-km performance test in NAT was greater than in both SIM (93% likely) and CON (93% likely). The increase in maximal oxygen consumption was substantially greater (91% likely) in NAT than in SIM. Improvement in threshold walking speed was substantially greater than CON for both SIM (91% likely) and NAT (90% likely). CONCLUSIONS Both NAT and SIM may allow athletes to achieve reasonable acclimation prior to competition at low altitude.
Collapse
|
25
|
Almeida F, Bonitch-Góngora J, Padial P, de la Fuente B, Morales-Artacho AJ, Feriche B. Effect of acute exposure to moderate altitude on kinematic variables of the ippon-seoi-nage and its relationship with the countermovement jump in elite judokas. PLoS One 2018; 13:e0206297. [PMID: 30356263 PMCID: PMC6200267 DOI: 10.1371/journal.pone.0206297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
This study aimed to assess the effect of acute exposure to moderate altitude on kinematic variables of the ippon-seoi-nage and on the mechanical outputs of the countermovement jump (CMJ). Thirteen elite male judokas from the Spanish Judo Training Centre in Valencia (age: 21.54 ± 2.15 years) participated in the study. All of them performed an incremental CMJ test and an ippon-seoi-nage technique test before (N) and after the ascent to a moderate altitude of 2320 m above the sea level (H). A linear velocity transducer was attached to the bar to assess the mechanical outputs of each loaded CMJ at different percentages of their own body weight (25, 50, 75 and 100%). A wearable sensor was used to assess the kinematic variables (times, accelerations and angular velocities) transferred to a dummy during the technique test. The kinematic variables showed great individual reliability (CV = 8.46% in N; CV = 8.37% in H), which contrasted with low reliability observed when the whole group was considered. The smallest important CV ratio (>1.15) showed that H caused changes in the reliability of the kinematic variables, with some variables becoming more reliable and others losing the reliability they had in N. H also caused small increments in peak velocity across all loads tested in the CMJ (+3.67%; P<0.05). In contrast, no changes in the kinematic variables were verified. In addition, there was no association between leg extension capability and the acceleration (r = -0.16 ± 0.19 in N; r = -0.24 ± 0.19 in H) or angular velocity (r = -0.19 ± 0.24 in N; r = -0.30 ± 0.26 in H) of the ippon-seoi-nage, nor was acute exposure to H found to affect this association (P>0.05). Differences between individual and within-groups CV confirm the individual adaptations that each judoka makes during this technique. Additionally, the CV ratio shows a change in the space-time pattern of the technique in H. Therefore, it would be necessary to include an adaptation period to adapt the technique after the ascent in altitude. Further studies are needed to confirm the relationship and transference from the velocity gains in CMJ during altitude training.
Collapse
Affiliation(s)
- Filipa Almeida
- Department of Physical Education and Sport, University of Granada, Granada Spain
| | - Juan Bonitch-Góngora
- Department of Physical Education and Sport, University of Granada, Granada Spain
| | - Paulino Padial
- Department of Physical Education and Sport, University of Granada, Granada Spain
| | - Blanca de la Fuente
- High Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | | | - Belén Feriche
- Department of Physical Education and Sport, University of Granada, Granada Spain
- * E-mail:
| |
Collapse
|
26
|
García-Ramos A, Štirn I, Padial P, Argüelles-Cienfuegos J, De la Fuente B, Strojnik V, Feriche B. The Maximal Mechanical Capabilities of Leg Muscles to Generate Velocity and Power Improve at Altitude. J Strength Cond Res 2018; 32:475-481. [PMID: 27537408 DOI: 10.1519/jsc.0000000000001592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
García-Ramos, A, Štirn, I, Padial, P, Argüelles-Cienfuegos, J, De la Fuente, B, Strojnik, V, and Feriche, B. The maximal mechanical capabilities of leg extensors muscles to generate velocity and power improve at altitude. J Strength Cond Res 32(2): 475-481, 2018-This study aimed (a) to analyze the effect of an acute exposure to terrestrial altitude on the force-velocity relationship parameters (maximum force [F0], maximum velocity [V0], and maximum power [P0]) during a loaded squat jump (SJ), and (b) to compare unloaded SJ and countermovement jump (CMJ) performance between sea level and altitude conditions. Seventeen international swimmers were tested at sea level (295 m asl) and 7 days later at terrestrial altitude (2,320 m asl) during their first 24 hours of altitude exposure. The maximum values of force and velocity were recorded during a loaded SJ (25-100% of body weight) to determine F0, V0, and P0 parameters. Inconsequential differences between environmental conditions were found for F0 (p = 0.993, 0.02%). However, V0 (p = 0.038, 7.6%) and P0 (p = 0.004, 6.8%) were higher at altitude. Peak values of force (SJ: p = 0.420, 1.19%; CMJ: p = 0.010, 3.6%), power (SJ: p = 0.028, 3.5%; CMJ: p = 0.005, 3.82%), and take-off velocity (SJ: p = 0.071, 1.6%; CMJ: p = 0.009, 1.9%) recorded during the SJ and CMJ were also higher at altitude. These results highlight the potential effect of an acute exposure to terrestrial altitude on enhancing vertical jump performance. The increase in maximal power of the leg muscles at altitude is caused by an improvement in the theoretical maximal velocity at which lower limbs can extend with no significant changes in the theoretical maximal force.
Collapse
Affiliation(s)
- Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Igor Štirn
- Department of Kinesiology, Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | | | - Blanca De la Fuente
- High Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Vojko Strojnik
- Department of Kinesiology, Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Płoszczyca K, Langfort J, Czuba M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front Physiol 2018; 9:375. [PMID: 29695978 PMCID: PMC5904371 DOI: 10.3389/fphys.2018.00375] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 02/02/2023] Open
Abstract
Background: One of the goals of altitude training is to increase blood oxygen-carrying capacity in order to improve sea-level endurance performance in athletes. The elevated erythropoietin (EPO) production in hypoxia is a key factor in the achievement of enhanced hematological variables. The level of the EPO increase and acceleration of erythropoiesis depend on the duration of exposure and degree of hypoxia. Furthermore, many other factors may affect the hematological response to altitude training. Aim: The purpose of this narrative review was to: (1) analyze the kinetics of EPO and hematological variables during and after altitude training; (2) summarize the current state of knowledge about the possible causes of individual or cohort differences in EPO and hematological response to altitude training; (3) formulate practical guidelines for athletes to improve the efficiency of altitude training. Methods: A narrative review was performed following an electronic search of the databases PubMed/MEDLINE and SPORTDiscus via EBSCO for all English-language articles published between 1997 and 2017. Results: Complete unification of results from studies on EPO kinetics was difficult due to different time and frequency of blood sampling by different researchers during and after altitude training, but the data presented in the reviewed literature allowed us to detect certain trends. The results of the reviewed studies were divergent and indicated either increase or no change of hematological variables following altitude training. Factors that may affect the hematological response to altitude training include hypoxic dose, training content, training background of athletes, and/or individual variability of EPO production. Conclusions: Despite the potential benefits arising from altitude training, its effectiveness in improving hematological variables is still debatable. Further research and better understanding of factors influencing the response to altitude, as well as factors affecting the suitable measurement and interpretation of study results, are needed.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Sports Training, Academy of Physical Education of Katowice, Katowice, Poland
| | - Józef Langfort
- Department of Sports Training, Academy of Physical Education of Katowice, Katowice, Poland
| | - Miłosz Czuba
- Department of Physiology, Institute of Sport, Warsaw, Poland
| |
Collapse
|
28
|
Bejder J, Nordsborg NB. Specificity of “Live High-Train Low” Altitude Training on Exercise Performance. Exerc Sport Sci Rev 2018; 46:129-136. [DOI: 10.1249/jes.0000000000000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Feriche B, García-Ramos A, Morales-Artacho AJ, Padial P. Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development. SPORTS MEDICINE-OPEN 2017; 3:12. [PMID: 28315193 PMCID: PMC5357242 DOI: 10.1186/s40798-017-0078-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain.
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Antonio J Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| |
Collapse
|
30
|
García-Ramos A, Padial P, De la Fuente B, Argüelles-Cienfuegos J, Bonitch-Góngora J, Feriche B. The Effect of Acute and Chronic Exposure to Hypobaric Hypoxia on Loaded Squat Jump Performance. J Hum Kinet 2017; 56:149-158. [PMID: 28469753 PMCID: PMC5384062 DOI: 10.1515/hukin-2017-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study aimed (1) to compare loaded squat jump performance after an acute and chronic exposure to a moderate natural altitude between normoxia and hypobaric hypoxia conditions, and (2) to analyze the effect of an altitude training camp on loaded jump squat development. Sixteen male swimmers (17.1 ± 0.8 years) took part in a 17-day training camp at a natural moderate altitude. They were randomly tested in counterbalanced order on days 1 and 3 in normoxia and hypoxia (pretest) and on days 15 and 17 again in normoxia and hypoxia (posttest). The peak velocity reached with loads equivalent to 25%, 50%, 75% and 100% of swimmers' pretest body weight in the loaded squat jump exercise was the dependent variable analyzed. An overall increase in peak velocity during the test performed in hypoxia of 6.5% in pretest (p < 0.001, ES = 0.98) and 4.5% in posttest (p < 0.001, ES = 0.81) was observed. An overall increment in peak velocity of 4.0% considering the data for normoxia tests (p < 0.001, ES = 0.61) and 2.1% considering the data for hypoxia tests (p = 0.008, ES = 0.36) was achieved after the altitude training camp. These results highlight the beneficial effects of hypobaric hypoxia on jump performance after short and longer term exposure to a natural moderate altitude. The increase in loaded squat jump performance following the 17-day training camp suggests that altitude training could constitute a favorable stimulus in explosive strength.
Collapse
Affiliation(s)
- Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| | | | | | - Juan Bonitch-Góngora
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain
| |
Collapse
|
31
|
Rodríguez FA, Iglesias X, Feriche B, Calderón-Soto C, Chaverri D, Wachsmuth NB, Schmidt W, Levine BD. Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project). Med Sci Sports Exerc 2016; 47:1965-78. [PMID: 25628173 DOI: 10.1249/mss.0000000000000626] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This controlled, nonrandomized, parallel-groups trial investigated the effects on performance, V˙O2 and hemoglobin mass (tHbmass) of four preparatory in-season training interventions: living and training at moderate altitude for 3 and 4 wk (Hi-Hi3, Hi-Hi), living high and training high and low (Hi-HiLo, 4 wk), and living and training at sea level (SL) (Lo-Lo, 4 wk). METHODS From 61 elite swimmers, 54 met all inclusion criteria and completed time trials over 50- and 400-m crawl (TT50, TT400), and 100 (sprinters) or 200 m (nonsprinters) at best stroke (TT100/TT200). Maximal oxygen uptake (V˙O2max) and HR were measured with an incremental 4 × 200 m test. Training load was estimated using cumulative training impulse method and session RPE. Initial measures (PRE) were repeated immediately (POST) and once weekly on return to SL (PostW1 to PostW4). tHbmass was measured in duplicate at PRE and once weekly during the camp with CO rebreathing. Effects were analyzed using mixed linear modeling. RESULTS TT100 or TT200 was worse or unchanged immediately at POST, but improved by approximately 3.5% regardless of living or training at SL or altitude after at least 1 wk of SL recovery. Hi-HiLo achieved greater improvement 2 (5.3%) and 4 wk (6.3%) after the camp. Hi-HiLo also improved more in TT400 and TT50 2 (4.2% and 5.2%, respectively) and 4 wk (4.7% and 5.5%) from return. This performance improvement was not linked linearly to changes in V˙O2max or tHbmass. CONCLUSIONS A well-implemented 3- or 4-wk training camp may impair performance immediately but clearly improves performance even in elite swimmers after a period of SL recovery. Hi-HiLo for 4 wk improves performance in swimming above and beyond altitude and SL controls through complex mechanisms involving altitude living and SL training effects.
Collapse
Affiliation(s)
- Ferran A Rodríguez
- 1INEFC-Barcelona Sport Sciences Research Group, National Institute of Physical Education of Catalonia, University of Barcelona, Barcelona, SPAIN; 2Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, SPAIN; 3Altitude Training Center of Sierra Nevada, Consejo Superior de Deportes, Granada, SPAIN; 4Department of Sports Medicine and Physiology, University of Bayreuth, Bayreuth, GERMANY; and 5Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, and University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
We address adaptive vs. maladaptive responses to hypoxemia in healthy humans and hypoxic-tolerant species during wakefulness, sleep, and exercise. Types of hypoxemia discussed include short-term and life-long residence at high altitudes, the intermittent hypoxemia attending sleep apnea, or training regimens prescribed for endurance athletes. We propose that hypoxia presents an insult to O2 transport, which is poorly tolerated in most humans because of the physiological cost.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
33
|
Feriche B, García-Ramos A, Calderón-Soto C, Drobnic F, Bonitch- Góngora JG, Galilea PA, Riera J, Padial P. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia. PLoS One 2014; 9:e114072. [PMID: 25474104 PMCID: PMC4256399 DOI: 10.1371/journal.pone.0114072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022] Open
Abstract
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | | | - Franchek Drobnic
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | | | - Pedro A. Galilea
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | - Joan Riera
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|
34
|
Erken HA, Erken G, Colak R, Genç O. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity. High Alt Med Biol 2014; 14:360-6. [PMID: 24377343 DOI: 10.1089/ham.2012.1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA.
Collapse
Affiliation(s)
- Haydar Ali Erken
- 1 Department of Physiology, Faculty of Medicine, Balikesir University , Balikesir, Turkey
| | | | | | | |
Collapse
|
35
|
Jaspers RT, Testerink J, Della Gaspera B, Chanoine C, Bagowski CP, van der Laarse WJ. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia. Biol Open 2014; 3:718-27. [PMID: 25063194 PMCID: PMC4133725 DOI: 10.1242/bio.20149167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022] Open
Abstract
Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio) adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/90%N2 saturated water). We analyzed cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, capillarization, myonuclear density, myoglobin (Mb) concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001). Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001). In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit) of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.
Collapse
Affiliation(s)
- Richard T Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Janwillem Testerink
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands Department of Integrative Zoology, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | | | | | | | - Willem J van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
36
|
Billaut F, Aughey RJ. Update in the understanding of altitude-induced limitations to performance in team-sport athletes. Br J Sports Med 2014; 47 Suppl 1:i22-5. [PMID: 24282202 PMCID: PMC3903141 DOI: 10.1136/bjsports-2013-092834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The internationalism of field-based team sports (TS) such as football and rugby requires teams to compete in tournaments held at low to moderate altitude (∼1200–2500 m). In TS, acceleration, speed and aerobic endurance are physical characteristics associated with ball possession and, ultimately, scoring. While these qualities are affected by the development of neuromuscular fatigue at sea level, arterial hypoxaemia induced by exposure to altitude may further hinder the capacity to perform consecutive accelerations (CAC) or sprint endurance and thereby change the outcome of a match. The higher the altitude, the more severe the hypoxaemia, and thus, the larger the expected decline in aerobic endurance, CAC and match running performance. Therefore, it is critical for athletes and coaches to understand how arterial hypoxaemia affects aerobic endurance and CAC and the magnitude of decline they may face at altitude for optimal preparation and increased chances of success. This mini review summarises the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches at natural altitude, and analyses the latest findings about the consequences of arterial hypoxaemia on the relationship between peripheral perturbations, neural adjustments and performance during repeated sprints or CAC. Finally, we briefly discuss how altitude training can potentially help athletes prepare for competition at altitude.
Collapse
Affiliation(s)
- François Billaut
- Institut national du sport du Québec, , Montréal, Québec, Canada
| | | |
Collapse
|
37
|
Bonne TC, Lundby C, Jørgensen S, Johansen L, Mrgan M, Bech SR, Sander M, Papoti M, Nordsborg NB. “Live High–Train High” increases hemoglobin mass in Olympic swimmers. Eur J Appl Physiol 2014; 114:1439-49. [DOI: 10.1007/s00421-014-2863-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
38
|
Castronovo AM, Conforto S, Schmid M, Bibbo D, D'Alessio T. How to assess performance in cycling: the multivariate nature of influencing factors and related indicators. Front Physiol 2013; 4:116. [PMID: 23734130 PMCID: PMC3659296 DOI: 10.3389/fphys.2013.00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 05/03/2013] [Indexed: 12/03/2022] Open
Abstract
Finding an optimum for the cycling performance is not a trivial matter, since the literature shows the presence of many controversial aspects. In order to quantify different levels of performance, several indexes have been defined and used in many studies, reflecting variations in physiological and biomechanical factors. In particular, indexes such as Gross Efficiency (GE), Net Efficiency (NE) and Delta Efficiency (DE) have been referred to changes in metabolic efficiency (EffMet), while the Indexes of Effectiveness (IE), defined over the complete crank revolution or over part of it, have been referred to variations in mechanical effectiveness (EffMech). All these indicators quantify the variations of different factors [i.e., muscle fibers type distribution, pedaling cadence, setup of the bicycle frame, muscular fatigue (MFat), environmental variables, ergogenic aids, psychological traits (PsychTr)], which, moreover, show high mutual correlation. In the attempt of assessing cycling performance, most studies in the literature keep all these factors separated. This may bring to misleading results, leaving unanswered the question of how to improve cycling performance. This work provides an overview on the studies involving indexes and factors usually related to performance monitoring and assessment in cycling. In particular, in order to clarify all those aspects, the mutual interactions among these factors are highlighted, in view of a global performance assessment. Moreover, a proposal is presented advocating for a model-based approach that considers all factors mentioned in the survey, including the mutual interaction effects, for the definition of an objective function E representing the overall effectiveness of a training program in terms of both EffMet and EffMech.
Collapse
Affiliation(s)
- A Margherita Castronovo
- Laboratory of Biomedical Engineering - Biolab3, Department of Engineering, University Roma TRE Volterra, Rome, Italy
| | | | | | | | | |
Collapse
|
39
|
Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med 2013; 42:751-67. [PMID: 22845561 DOI: 10.1007/bf03262293] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.
Collapse
Affiliation(s)
- François Billaut
- School of Sport and Exercise Science, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
40
|
Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m. Int J Sports Physiol Perform 2012; 8:366-72. [PMID: 23118056 DOI: 10.1123/ijspp.8.4.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify the changes of hemoglobin mass (Hbmass) and maximum oxygen consumption (VO2max) after 22 days training at 1300-1800 m combined with nightly exposure to 3000-m simulated altitude. We hypothesized that with simulated 3000-m altitude, an adequate beneficial dose could be as little as 10 h/24 h. METHODS Fourteen male collegiate runners were equally divided into 2 groups: altitude (ALT) and control (CON). Both groups spent 22 days at 1300-1800 m. ALT spent 10 h/night for 21 nights in simulated altitude (3000 m), and CON stayed at 1300 m. VO2max and Hbmass were measured twice before and once after the intervention. Blood was collected for assessment of percent reticulocytes (%retics), serum erythropoietin (EPO), ferritin, and soluble transferrin receptor (sTfR) concentrations. RESULTS Compared with CON there was an almost certain increase in absolute VO2max (8.6%, 90% confidence interval 4.8-12.6%) and a likely increase in absolute Hbmass (3.5%; 0.9-6.2%) at postintervention. The %retics were at least very likely higher in ALT than in CON throughout the 21 nights, and sTfR was also very likely higher in the ALT group until day 17. EPO of ALT was likely higher than that of CON on days 1 and 5 at altitude, whereas serum ferritin was likely lower in ALT than CON for most of the intervention. CONCLUSIONS Together the combination of the natural and simulated altitude was a sufficient total dose of hypoxia to increase both Hbmass and VO2max.
Collapse
|
41
|
Abuse of medicines for performance enhancement in sport: why is this a problem for the pharmaceutical industry? Bioanalysis 2012; 4:1681-90. [PMID: 22831483 DOI: 10.4155/bio.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The misuse of medicines for performance enhancement in sport (doping) is not approved by regulatory agencies, and is illegal in many countries. In addition to the 'traditional' doping agents such as steroids, β-blockers and blood transfusions, the list of agents and techniques used in doping is increasing and now includes newer medicines such as erythropoiesis-stimulating agents and growth hormones. Innovative new medicines are of particular interest as would-be dopers may believe them to be undetectable by current methods. Close collaboration between the biopharmaceutical industry and anti-doping agencies such as the World Anti-Doping Agency is critical to a successful anti-doping strategy. Industry is ideally placed to identify the doping potential of new medicines at early stages and to support early development of detection assays. A strong, united front between the biopharmaceutical industry and anti-doping agencies is essential to counter the misuse of medicines for performance enhancement, as well as to promote fair play and clean sport.
Collapse
|
42
|
Myers KA. Holiday reading: Cigarette smoking: an underused tool in high-performance endurance training. CMAJ 2010; 182:E867-9. [PMID: 21149532 DOI: 10.1503/cmaj.100042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The review paper is a staple of medical literature and, when well executed by an expert in the field, can provide a summary of literature that generates useful recommendations and new conceptualizations of a topic. However, if research results are selectively chosen, a review has the potential to create a convincing argument for a faulty hypothesis. Improper correlation or extrapolation of data can result in dangerously flawed conclusions. The following paper seeks to illustrate this point, using existing research to argue the hypothesis that cigarette smoking enhances endurance performance and should be incorporated into high-level training programs.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
43
|
de Paula P, Niebauer J. Effects of high altitude training on exercise capacity: fact or myth. Sleep Breath 2010; 16:233-9. [DOI: 10.1007/s11325-010-0445-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
|
44
|
Bassovitch O. ‘Combining Hypoxic Methods for Peak Performance’: a Biomedical Engineering Perspective. Sports Med 2010; 40:519-21; author reply 521-3. [DOI: 10.2165/11535150-000000000-00000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Edwards LM, Murray AJ, Tyler DJ, Kemp GJ, Holloway CJ, Robbins PA, Neubauer S, Levett D, Montgomery HE, Grocott MP, Clarke K. The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition. PLoS One 2010; 5:e10681. [PMID: 20502713 PMCID: PMC2873292 DOI: 10.1371/journal.pone.0010681] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/23/2010] [Indexed: 01/28/2023] Open
Abstract
Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using 31P magnetic resonance spectroscopy and imaging, we investigated skeletal muscle energetics and morphology after exposure to hypobaric hypoxia in seven altitude-naïve subjects (trekkers) and seven experienced climbers. The trekkers ascended to 5300 m while the climbers ascended above 7950 m. Before the study, climbers had better mitochondrial function (evidenced by shorter phosphocreatine recovery halftime) than trekkers: 16±1 vs. 22±2 s (mean ± SE, p<0.01). Climbers had higher resting [Pi] than trekkers before the expedition and resting [Pi] was raised across both groups on their return (PRE: 2.6±0.2 vs. POST: 3.0±0.2 mM, p<0.05). There was significant muscle atrophy post-CXE (PRE: 4.7±0.2 vs. POST: 4.5±0.2 cm2, p<0.05), yet exercising metabolites were unchanged. These results suggest that, in response to high altitude hypoxia, skeletal muscle function is maintained in humans, despite significant atrophy.
Collapse
Affiliation(s)
- Lindsay M Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med 2010; 40:1-25. [PMID: 20020784 DOI: 10.2165/11317920-000000000-00000] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
Collapse
Affiliation(s)
- Gregoire P Millet
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Philo U. Saunders
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | - David B. Pyne
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- University of Canberra, Canberra, Australia
- Australian National University, Canberra, Australia
| | - Christopher J. Gore
- Department of Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| |
Collapse
|
48
|
Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol 2009; 106:399-406. [PMID: 19294411 DOI: 10.1007/s00421-009-1027-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the time course of changes in haemoglobin mass (Hb(mass)) in well-trained cyclists in response to live high:train low (LHTL). Twelve well-trained male cyclists participated in a 3-week LHTL protocol comprising 3,000 m simulated altitude for ~14 h/day. Prior to LHTL duplicate baseline measurements were made of Hb(mass), maximal oxygen consumption (VO(2max)) and serum erythropoietin (sEPO). Hb(mass) was measured weekly during LHTL and twice in the week thereafter. There was a 3.3% increase in Hb(mass) and no change in VO(2max) after LHTL. The mean Hb(mass) increased at a rate of ~1% per week and this was maintained in the week after cessation of LHTL. The sEPO concentration peaked after two nights of LHTL but there was only a trivial correlation (r = 0.04, P = 0.89) between the increase in sEPO and the increase in Hb(mass). Athletes seeking to gain erythropoietic benefits from moderate altitude need to spend >12 h/day in hypoxia.
Collapse
|
49
|
Nadarajan VS, Ooi CH, Sthaneshwar P, Thompson MW. The utility of immature reticulocyte fraction as an indicator of erythropoietic response to altitude training in elite cyclists. Int J Lab Hematol 2009; 32:82-7. [PMID: 19170774 DOI: 10.1111/j.1751-553x.2008.01132.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Altitude training is sometimes employed by elite endurance athletes to improve their sea level performance. This improvement results from the increased red cell mass consequent upon the boost in erythropoietin (EPO) level that occurs as a response to the relatively hypoxic environment at high altitudes. We measured serum EPO levels together with various red cell and reticulocyte parameters including immature reticulocyte fraction (IRF) in eight national track-endurance cyclists, resident at sea-level, prior to and upon return from an altitude of approximately 1905 m. Reticulocytes and soluble transferrin receptor (sTfR) were significantly increased with reduction in ferritin levels immediately on return from high altitude indicating increased erythropoietic activity. IRF in particular showed a significant peak immediately on return but decline to sub-baseline levels by day 9, and recovery to baseline by day 16. Our results indicate that IRF is a sensitive marker of erythropoietic status in athletes undergoing altitude training and subsequent loss of EPO stimuli on return to sea level.
Collapse
Affiliation(s)
- V S Nadarajan
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
50
|
CHEN KT, CHEN YY, WU HJ, CHANG CK, LEE WT, LU YY, LIU CC, YANG RS, LIN JC. Decreased anaerobic performance and hormone adaptation after expedition to Peak Lenin. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|