1
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Benoît S, Nicolas B, Grégoire MP, François B, Abdellah H, Hicham M, Saïd A, Guillaume C. Hot But Not Cold Water Immersion Mitigates the Decline in Rate of Force Development Following Exercise-Induced Muscle Damage. Med Sci Sports Exerc 2024; 56:2362-2371. [PMID: 38967392 DOI: 10.1249/mss.0000000000003513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE In recent years, there has been significant advancement in the guidelines for recovery protocols involving heat or cold water immersion. However, comparison between the effects of hot and cold water immersion on key markers of neuromuscular recovery following exercise-induced muscle damage (EIMD) is lacking. METHODS Thirty physically active males completed an individualized and tailored EIMD protocol immediately followed by one of the following recovery interventions: cold water immersion (11°C, CWI 11 ), hot water immersion (41°C, HWI 41 ), or warm-bath control (36°C, CON 36 ). Gastrointestinal temperature was tracked throughout HWI 41 . Knee extensors' maximal isokinetic strength (peak torque ( Tpeak )) and explosive strength (late-phase rate of force development (RFD 100-200 )) were measured before EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. In addition, pressure pain threshold (PPT) was measured to quantify the recovery from muscle soreness. Surface electromyography signals (sEMG) from the vastus lateralis were captured to extract the rates of electromyography rise (REMGR) and the spectral power in the low-frequency band. RESULTS At post-48 h, Tpeak returned to baseline values following both CWI 11 (-8.3% ± 6.8%, P = 0.079) and HWI 41 (-1.4% ± 4.1%, P = 1). In contrast, RFD 100-200 (-2.3% ± 29.3%, P = 1) and PPT (+5.6% ± 14.6%, P = 1) returned to baseline values at post-48 h only following HWI 41 . Spectral analysis of the sEMG signal revealed that the low-frequency band was significantly increased following CWI 11 (+9.0% ± 0.52%, P = 0.012). REMGR was unchanged regardless of the condition (all P > 0.05). CONCLUSIONS A single session of HWI 41 , rather than CWI 11 , improved the recovery of the late-phase rate of force development following EIMD in physically active males. This suggests that in athletic contexts where a rapid force development is a key performance determinant, hot bath should be preferred over cold bath.
Collapse
Affiliation(s)
- Sautillet Benoît
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, FRANCE
| | - Bourdillon Nicolas
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Millet P Grégoire
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | | | - Moufti Hicham
- Royal Institute of Management training, National Center of Sports Moulay Rachid, Salé, MOROCCO
| | - Ahmaïdi Saïd
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, FRANCE
| | - Costalat Guillaume
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, FRANCE
| |
Collapse
|
3
|
Muñoz Lazcano P, Rojano Ortega D, Fernández López I. Effects of a Guided Neck-Specific Exercise Therapy on Recovery After a Whiplash: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil 2024; 103:971-978. [PMID: 38466196 DOI: 10.1097/phm.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To analyze the effects on pain and disability recovery after a whiplash of a guided neck-specific exercise therapy, compared to a different or an unguided neck-specific exercise therapy. DESIGN A literature search was conducted from inception to May 31, 2023, in three electronic databases: PubMed, ScienceDirect, and Web of Science. Eleven randomized controlled trials were included. Meta-analyses were performed with Review Manager software. The standardized mean difference with a 95% confidence interval was used to measure the effect sizes and only short-term time points were considered. RESULTS Not all studies reported a significant decrease of pain and disability in the neck-specific exercise group compared to controls. However, meta-analyses demonstrated a significantly greater decrease in neck pain (standardized mean difference: -0.25; 95% confidence interval: [-0.38, -0.12]; P = 0.0002) and neck-disability index (standardized mean difference: -0.35; 95% confidence interval: [-0.54, -0.15]; P = 0.0005) in the neck-specific exercise group. CONCLUSIONS In addition to the benefits that a guided neck-specific exercise therapy has on motivation and program adherence, it provides greater benefits in pain and disability than a different or unguided neck-specific exercise therapy. Positive results are observed primarily with intervention periods of more than 6 wks and at least two sessions per week. TO CLAIM CME CREDITS Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME. CME OBJECTIVES Upon completion of this article, the reader should be able to: (1) Determine the impact that whiplash-associated disorders have on a patient's life; (2) Identify and recognize the greater benefits of a supervised exercise therapy on recovery after a whiplash injury; and (3) Differentiate between the different exercise protocols conducted (types of exercises and duration) and incorporate therapy appropriately as part of an effective treatment plan. LEVEL Advanced. ACCREDITATION The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s) ™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Collapse
Affiliation(s)
- Pablo Muñoz Lazcano
- From the Residencia y Centro de Día Montehermoso, Madrid, Spain (PML); Department of Informatics and Sports, Universidad Pablo de Olavide, Sevilla, Spain (DRO); Holystic Centro de Recuperación, Madrid, Spain (IFL); and Faculty of Nursery, Physiotherapy and Podiatry, Universidad Complutense, Madrid, Spain (IFL)
| | | | | |
Collapse
|
4
|
Cheng Y, Li X. Advanced quantitative magnetic resonance imaging of lower extremity muscle microtrauma after marathon: a mini review. Front Sports Act Living 2024; 6:1481731. [PMID: 39534527 PMCID: PMC11554461 DOI: 10.3389/fspor.2024.1481731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This article reviews the existing literature and outlines recent advances in quantitative Magnetic Resonance Imaging (MRI) techniques for the assessment of lower extremity muscle microtrauma following a marathon. Single-modality quantitative MRI techniques include T2 mapping to assess the dynamics of muscle inflammatory edema and variability at the site of injury, Diffusion Tensor Imaging (DTI) to detect subclinical changes in muscle injury, Intravoxel Incoherent Motion (IVIM) imaging to provide simultaneous information on perfusion and diffusion in muscle tissue without the need for intravenous contrast, and Magnetic Resonance Spectroscopy (MRS) to noninvasively detect intramyocellular lipid (IMCL) content in muscle before and after marathon exercise to explain the use of fatty acids as an energy source in skeletal muscle during long-distance running. As well as Chemical Exchange Saturation Transfer (CEST) is particularly suitable for detecting changes in free creatine, pH values and lactate concentrations in muscles before and after exercise, providing a more detailed picture of muscle physiology and chemistry. These metabolic MRI methods enhance the understanding of biochemical alterations occurring in muscles pre- and post-exercise. Multimodal techniques combine different modalities to provide a comprehensive evaluation of muscle structural and functional changes. These advanced techniques aim to better assess microtrauma and guide clinical treatment, though further validation with larger studies is needed to establish their potential over traditional qualitative methods.
Collapse
Affiliation(s)
| | - Xiaokai Li
- School of Sports and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
6
|
Hosseini SH, Farahmand F. Effect of two quadriceps strengthening protocols on morphological characteristics of knee vastus muscles in patients with lateral patellar compression syndrome. J Bodyw Mov Ther 2024; 40:726-732. [PMID: 39593669 DOI: 10.1016/j.jbmt.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION The purpose of this study is to compare the effect of two types of quadriceps strengthening protocols on morphological characteristics of the knee vastus muscles in patients with lateral patellar compression syndrome. METHODS 48 female patients were randomly divided into 3 groups: selective (16), general (17) and control (15). The selective group participated in an isokinetic knee extension training protocol at the last 30° knee extension arc with maximum leg external rotation at high speed with the aim of selectively strengthening the vastus medialis muscle. The general group participated in an exercise protocol aimed at strengthening the entire quadriceps muscle. Both these protocols lasted 8 weeks. The control group did not receive any intervention. The vastus medialis and lateralis muscles cross-sections and fibers angles were measured using an ultrasound device. The data were analyzed using repeated-measures ANOVA and dependent t tests. RESULTS At pre-intervention, there were no differences between groups in muscles cross-sections and fiber angles (P > 0.05), but after interventions, in selective group, the vastus medialis cross-section and fiber angle, as well as vastus medialis to vastus lateralis cross-section ratio, were significantly higher than other groups (P < 0.01). Also, compared to pre-intervention, the vastus medialis cross-section and fiber angle increased only in selective group (P = 0.001), and the vastus lateralis cross-section increased only in general group (P = 0.001). DISCUSSION AND CONCLUSION Use of isokinetic extension exercises targeting selectively strengthening the vastus medialis can improve the activity and involvement of this muscle-which is impaired in chronic patellofemoral joint disorders - by changing its morphology.
Collapse
Affiliation(s)
| | - Farzam Farahmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Djavad Mowafaghian Research Center for Intelligent Neuro-Rehabilitation Technologies, Iran.
| |
Collapse
|
7
|
Sadeghi B, Bahari H, Jozi H, Hasanzadeh MA, Hashemi D, Bideshki MV. Effects of β-hydroxy-β-methylbutyrate (HMB) supplementation on lipid profile in adults: a GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1451282. [PMID: 39385778 PMCID: PMC11462179 DOI: 10.3389/fnut.2024.1451282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aim The regulation of lipid metabolism is crucial for preventing cardiovascular diseases, which are among the leading causes of mortality worldwide. β-hydroxy-β-methylbutyrate (HMB) has garnered attention for its potential role in modulating lipid profiles. However, the magnitude of these effects are unclear due to the heterogeneity of the studies. This study aimed to provide a comprehensive overview of the randomized controlled trials (RCTs) that have examined the effects of HMB on lipid profiles in adults. Methods Databases including PubMed, Web of Science, and Scopus, were searched for relevant studies through January 2024. The study protocol was also registered at Prospero (no. CRD42024528549). Based on a random-effects model, we calculated WMDs and 95% confidence intervals (CIs). The outcomes assessed included total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Sensitivity, subgroup and meta-regression analyses were also conducted. Results Our analysis included a total of 10 RCTs comprising 421 participants. The pooled data revealed no significant effect of HMB supplementation on TC (WMD: -2.26 mg/dL; 95%CI: -6.11 to 1.58; p = 0.25), TG (WMD: -2.83 mg/dL 95% CI: -12.93 to 7.27; p = 0.58), LDL-C (WMD: 0.13 mg/dL; 95%CI: -3.02 to 3.28; mg; p = 0.94), and HDL-C (WMD: -0.78 mg/dL; 95%CI: -2.04 to 0.48; p = 0.22). The quality of evidence was rated as moderate to low for all outcomes. Conclusion The current evidence from RCTs suggests that HMB supplementation does not significantly alter lipid profiles, including TC, TG, LDL-C, and HDL-C. Further research is warranted to confirm these results and explore the potential mechanisms of action of HMB. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=528549, CRD42024528549.
Collapse
Affiliation(s)
- Behrad Sadeghi
- Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, Grugliasco, Torino, Italy
| | - Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hannane Jozi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Hasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Dorna Hashemi
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mohammad Vesal Bideshki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Rayo VU, Cervantes M, Hong MY, Hooshmand S, Jason N, Liu C, North E, Okamoto L, Storm S, Witard OC, Kern M. Almond Consumption Modestly Improves Pain Ratings, Muscle Force Production, and Biochemical Markers of Muscle Damage Following Downhill Running in Mildly Overweight, Middle-Aged Adults: A Randomized, Crossover Trial. Curr Dev Nutr 2024; 8:104432. [PMID: 39257478 PMCID: PMC11381864 DOI: 10.1016/j.cdnut.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Background Almonds promote cardiometabolic health benefits; however, the ergogenic effect of almond supplementation on exercise recovery is less explored. Objectives We evaluated the impacts of raw, shelled, almonds on pain, muscle force production, and biochemical indices of muscle damage and inflammation during recovery from eccentrically biased exercise. Methods Using a randomized, crossover design, 26 healthy adults (37 ± 6 y) ran downhill (-10%) for 30 min at a heart rate corresponding to 65%-70% of maximal oxygen consumption followed by 3-d recovery periods after 8-wk adaptations to either ALMOND (2 oz/d) or isocaloric pretzel (CONTROL) feedings. Volunteers consumed the study food immediately following the run and each day during recovery. Fasted blood samples were collected, and pain and muscle function were tested before the downhill run and over 72 h of recovery. Results Downhill running elicited moderate muscle damage (Time: P < 0.001; η2 = 0.395) with creatine kinase (CK) peaking after 24 h (CONTROL: Δ + 180% from baseline compared with ALMOND: Δ + 171% from baseline). CK was reduced after 72 h in ALMOND (Δ - 50% from peak; P < 0.05) but not CONTROL (Δ - 33% from peak; P > 0.05). Maximal torque at 120°/s of flexion was greater (Trial: P = 0.004; η2 = 0.315) in ALMOND compared with CONTROL at 24 h (Δ + 12% between trials; P < 0.05) and 72 h (Δ + 9% between trials; P < 0.05) timepoints. Pain during maximal contraction was lower (Trial: P < 0.026; η2 = 0.225) in ALMOND compared with CONTROL after 24 h (Δ - 37% between trials; P < 0.05) and 48 h (Δ - 33% between trials; P < 0.05). No differences (P > 0.05) in vertical jump force, C-reactive protein concentrations, myoglobin concentrations, and total antioxidant capacity were observed between trials. Conclusions This study demonstrates that 2.0 oz/d of almonds modestly reduces pain, better maintains muscle strength, and reduces the CK response to eccentric-based exercise. This apparent effect of almond ingestion on exercise recovery has the potential to promote increased exercise adherence, which should be investigated in future studies.This trial was registered at the clinicaltrials.gov as NCT04787718.
Collapse
Affiliation(s)
- Vernon Uganiza Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Maricarmen Cervantes
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Nathaniel Jason
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Elise North
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Lauren Okamoto
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Svitlana Storm
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| |
Collapse
|
9
|
Squires E, Walshe IH, Dodd A, Broadbelt E, Hayman O, McHugh MP, Howatson G. Acute Dosing Strategy with Vistula Tart Cherries for Recovery of Strenuous Exercise-A Feasibility Study. Nutrients 2024; 16:2709. [PMID: 39203845 PMCID: PMC11357489 DOI: 10.3390/nu16162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Tart cherry (TC) consumption has become a popular nutritional strategy for recovery, particularly for the attenuation of markers associated with muscle damage. However, there are relatively few studies that have examined an acute dosing strategy. The aim of this pilot study was to explore the feasibility of using powdered Vistula TC for recovery following a bout of muscle-damaging exercise. Twenty-two recreationally active participants (mean ± SD age, stature, and mass were 23 ± 3 years old, 173 ± 10 cm, and 74 ± 17 kg, respectively) performed 40 (5 sets of 8 repetitions) maximal lengthening contractions of the elbow flexors. The participants were randomised to receive either a spray-dried TC extract or a calorie-matched placebo (12 TC, 10 placebo) for 4 days in total, starting on the day of exercise. Dependent measures of maximal voluntary contraction (MVC), muscle soreness (assessed via visual analogue scales; VAS), pain pressure threshold (PPT), range of motion (ROM), and upper arm limb girth were taken at baseline (pre), 24, 48, and 72 h post damaging exercise. There were significant changes over time among all the variables (MVC, VAS, PPT, ROM, and girth, p ≤ 0.014). There were no significant differences between the conditions for any of the variables (MVC, VAS, PPT, ROM, and girth, p > 0.3). The TC group did not recover at an accelerated rate compared to the placebo. This study provides initial insights into the use of powdered Vistula TC and its effect following strenuous (damaging) exercise bouts. Vistula TC did not improve recovery when taken acutely following a bout of damaging exercise to the elbow flexors.
Collapse
Affiliation(s)
- Emma Squires
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Ian H. Walshe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Alex Dodd
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Edward Broadbelt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Oliver Hayman
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G11 6EW, UK
| | - Malachy P. McHugh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Nicholas Institute of Sports Medicine and Athletic Trauma, New York, NY 10065, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Water Research Group, North West University, Potchefstroom 2531, South Africa
| |
Collapse
|
10
|
Parent C, Mauvieux B, Lespagnol E, Hingrand C, Vauthier JC, Noirez P, Hurdiel R, Martinet Q, Delaunay PL, Besnard S, Heyman J, Gabel V, Baron P, Gamelin FX, Maboudou P, Rabasa-Lhoret R, Jouffroy R, Heyman E. Glycaemic Effects of a 156-km Ultra-trail Race in Athletes: An Observational Field Study. Sports Med 2024; 54:2169-2184. [PMID: 38555307 DOI: 10.1007/s40279-024-02013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Ultra-trail running races pose appreciable physiological challenges, particularly for glucose metabolism. Previous studies that yielded divergent results only measured glycaemia at isolated times. OBJECTIVES We aimed to explore the impact of an ultra-endurance race on continuously measured glycaemia and to understand potential physiological mechanisms, as well as the consequences for performance and behavioural alertness. METHODS Fifty-five athletes (78% men, 43.7 ± 9.6 years) ran a 156-km ultra-trail race (six 26-km laps, total elevation 6000 m). Participants wore a masked continuous glucose monitoring sensor from the day before the race until 10 days post-race. Blood was taken at rest, during refuelling stops after each lap, and after 24-h recovery. Running intensity (% heart rate reserve), performance (lap times), psychological stress, and behavioural alertness were explored. Linear mixed models and logistic regressions were carried out. RESULTS No higher risk of hypo- or hyperglycaemia was observed during the exercise phases of the race (i.e. excluding stops for scientific measurements and refuelling) compared with resting values. Laps comprising a greater proportion of time spent at maximal aerobic intensity were nevertheless associated with more time > 180 mg/dL (P = 0.021). A major risk of hyperglycaemia appeared during the 48-h post-race period compared with pre-race (P < 0.05), with 31.9% of the participants spending time with values > 180 mg/dL during recovery versus 5.5% during resting. Changes in circulating insulin, cortisol, and free fatty acids followed profiles comparable with those usually observed during traditional aerobic exercise. However, creatine phosphokinase, and to a lesser extent lactate dehydrogenase, increased exponentially during the race (P < 0.001) and remained high at 24-h post-race (P < 0.001; respectively 43.6 and 1.8 times higher vs. resting). Glycaemic metrics did not influence physical performance or behavioural alertness. CONCLUSION Ultra-endurance athletes were exposed to hyperglycaemia during the 48-h post-race period, possibly linked to muscle damage and inflammation. Strategies to mitigate muscle damage or subsequent inflammation before or after ultra-trail races could limit recovery hyperglycaemia and hence its related adverse health consequences. TRIAL REGISTRATION NUMBER NCT05538442 2022-09-21 retrospectively registered.
Collapse
Affiliation(s)
- Cassandra Parent
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| | | | - Elodie Lespagnol
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | | | - Jean-Charles Vauthier
- Département de Médecine Générale, Faculté de Médecine - Département du Grand Est de Recherche en Soins Primaires, Université de Lorraine, Nancy, France
- Laboratoire Interpsy (UR 4432), Université de Lorraine, Nancy, France
| | - Philippe Noirez
- Institute for Research in bioMedicine and Epidemiology of Sport (IRMES), Paris, France
- T3S, INSERM UMR-S 1124, University of Paris Cité, Paris, France
- Département des Sciences de l'activité Physique, Université du Québec à Montréal, Montreal, Canada
- PSMS, University of Reims Champagne Ardenne, Reims, France
| | - Rémy Hurdiel
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | | | | | - Stéphane Besnard
- UR 7480 Vertex - Université de Caen, Caen, France
- CHU de Caen, Caen, France
| | - Joris Heyman
- CNRS, UMR 6118, Transferts d'eau et de Matière dans les Milieux Hétérogènes Complexes - Géosciences, Université Rennes, Rennes, France
| | | | - Pauline Baron
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | - François-Xavier Gamelin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France
| | - Patrice Maboudou
- Laboratoire de Biochimie et Biologie Moléculaire, CHU de Lille, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Nutrition, Université de Montréal, Montréal, Québec, Canada
| | - Romain Jouffroy
- Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique - Hôpitaux de Paris, Boulogne Billancourt, France
- Centre de Recherche en Epidémiologie et Santé des Populations - U1018, INSERM - Paris Saclay University, Paris, France
- EA 7329 - Institut de Recherche Médicale et d'Épidémiologie du Sport - Institut National du Sport, de l'Expertise et de la Performance, Paris, France
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000, Lille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
11
|
Pastina JT, Abel MG, Bollinger LM, Best SA. Topical Cannabidiol Application May Not Attenuate Muscle Soreness or Improve Performance: A Randomized, Double-Blinded, Placebo-Controlled Pilot Study. Cannabis Cannabinoid Res 2024. [PMID: 38980809 DOI: 10.1089/can.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose: The purpose of this pilot study was to investigate cannabidiol (CBD) cream's effects on muscle soreness and performance after exercise. Materials and Methods: This double-blinded, placebo-controlled experiment included 15 men and 13 women (n = 28; mean ± standard deviation age: 23.29 ± 2.54 years) untrained in lower-body resistance training. Participants were randomized into control (NG, n = 9), CBD (CG, n = 9), or placebo (PG, n = 10) groups. Participants completed a lower-body fatigue protocol (FP) consisting of unilateral maximal concentric and eccentric isokinetic muscle actions of the quadriceps and hamstrings (5 sets, 10 repetitions, both legs). CG and PG participants applied ∼100 mg CBD or placebo cream, respectively, matched for weight and appearance to the quadriceps on three separate days. NG participants engaged in a sitting rest period matched in duration to cream application processes. Questionnaires, pressure-pain threshold (PPT), peak torque test (PTT), and countermovement jump (CMJ) were assessed. Mixed-model analysis of variance was conducted to assess main effects and interactions (group × muscle × time; group × time). Results: There were no significant interactions or main effects for group for PPT, CMJ, or PTT. There were main effects for time (p < 0.05) for all soreness questions, PPT, CMJ, and PTT. There was one significant interaction (group × time; p = 0.045) for cream/rest effect questions, in which PG participants perceived the effect of cream to be greater than the effect of rest for NG participants. There were main effects for group (p ≤ 0.031) for all soreness questions, in which PG participants perceived enhanced recovery. Conclusions: The present pilot study did not discover any significant impacts of CBD cream use for muscle recovery. For individuals seeking to attenuate muscle soreness and improve performance, the current dose of this topical CBD product may not be an effective treatment.
Collapse
Affiliation(s)
- Joseph T Pastina
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Mark G Abel
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Lance M Bollinger
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| | - Stuart A Best
- Department of Kinesiology & Health Promotion, The University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
13
|
Jo HD, Kim MK. Identification of EIMD Level Differences Between Long- and Short Head of Biceps Brachii Using Echo Intensity and GLCM Texture Features. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:441-449. [PMID: 37698509 DOI: 10.1080/02701367.2023.2250832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Purpose: This study aimed to compare the time-course changes of exercise-induced muscle damage (EIMD) levels in the long head of biceps brachii (LHB) and short head of the biceps brachii (SHB) using echo intensity (EI) and to determine the efficiency of the gray level co-occurrence matrix (GLCM) texture parameters. Methods: The participants performed 30 maximal eccentric contractions of the elbow flexor. Along with muscle damage indicators, including circumference, range of motion, muscle soreness, and maximal voluntary isometric contraction (MVIC), the EI and GLCM texture features of the LHB and SHB was also assessed using B-mode ultrasonography. All measurements were assessed pre- and immediately post-exercise and after 24, 48, 72, and 96 h. Results: The muscle damage indicators indicated significant changes after the eccentric contractions (p < 0.01 for circumference, range of motion, muscle soreness, and MVIC). The EI of LHB significantly increased following the contractions (p < 0.01), but that of SHB did not (p > 0.05). In contrast, for the GLCM texture parameters, there were significant changes in the SHB (p < 0.01 for homogeneity, energy, and entropy). Conclusion: Thus, this study demonstrated that EIMD severity is different between LHB and SHB even within the same muscle. In the GLCM features, the time course of SHB after eccentric contraction revealed different patterns compared with those of LHB. Therefore, even if there are no changes in EI within a target muscle following muscle contractions, new information on muscle quality can be obtained through GLCM analysis.
Collapse
|
14
|
Leszczynski S, Gleadhill S, Bennett H. The effect of individualised post-exercise blood flow restriction on recovery following strenuous resistance exercise: A randomised controlled trial. J Sports Sci 2024; 42:1090-1098. [PMID: 39052677 DOI: 10.1080/02640414.2024.2383073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The purpose was to clarify the effect of individualised post-exercise blood flow restriction (PE-BFR) on measures of recovery following strenuous resistance exercise. Twenty resistance-trained adults were randomised to a PE-BFR or control (CON) group and completed a fatigue protocol of five sets of 10 repetitions of maximal intensity concentric and eccentric seated knee extension exercise. Participants then lied supine with cuffs applied to the upper thigh and intermittently inflated to 80% limb occlusion pressure (PE-BFR) or 20 mmHg (CON) for 30 min (3 × 5 min per leg). Peak torque (PT), time-to-peak torque (TTP), countermovement jump height (CMJ), muscle soreness (DOMS) and perceived recovery (PR) were measured pre-fatigue, immediately post-fatigue and at 1, 24, 48 and 72 h post-fatigue. Using a linear mixed-effect model, PE-BFR was found to have greater recovery of CMJ at 48 h (mean difference [MD]=-2.8, 95% confidence interval [CI] -5.1, 0.5, p = 0.019), lower DOMS at 48 (MD = 3.0, 95% CI 1.2, 4.9, p = 0.001) and 72 h (MD = 1.95, 95% CI -1.2, 1.5, p = 0.038) and higher PR scores at 24 (MD = -1.7, 95% CI -3.4, -0.1, p = 0.038), 48 (MD = -3.1, 95% CI -4.8, -1.5, p < 0.001) and 72 h (MD = -2.2, 95% CI -3.8, -0.5, p = 0.011). These findings suggest that individualised PE-BFR accelerates recovery after strenuous exercise.
Collapse
Affiliation(s)
- Sophie Leszczynski
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Sam Gleadhill
- UniSA Online, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Hunter Bennett
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
de Lima KS, Schuch F, Righi NC, Neto LJR, Nunes GS, Puntel G, Chagas P, da Silva AMV, Signori LU. Vitamin E Does not Favor Recovery After Exercises: Systematic Review and Meta-analysis. Int J Sports Med 2024; 45:485-495. [PMID: 38346687 DOI: 10.1055/a-2221-5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This review aimed to verify the effects of vitamin E supplementation on oxidative stress, inflammatory response, muscle damage, soreness, and strength in healthy adults after exercise. We searched the MEDLINE, EMBASE, SPORTDiscus, Cochrane CENTRAL, and Web of Science from inception to August 2023, with no language restrictions. We included randomized placebo-controlled trials evaluating the supplementation of vitamin E on the abovementioned outcomes after a bout of physical exercise in healthy participants (no restriction for publication year or language). Meta-analyses were conducted to compare vitamin E and placebo supplementations to obtain a 95% confidence interval (95%IC). Twenty studies were included (n=298 participants). The effect of supplementation was assessed between 0 h and 96 h after the exercise. Compared to placebo, vitamin E had no effects on lipid (95%IC= -0.09 to 0.42), protein (-2.44 to 3.11), SOD (-1.05 to 0.23), interleukin-6 (-0.18 to 1.16), creatine kinase (-0.33 to 0.27), muscle soreness (-1.92 to 0.69), and muscle strength (-1.07 to 0.34). Heterogeneity for the analyses on carbonyls, interleukin-6 (1 h and 3 h), and muscle soreness ranged between 70 to 94%. Supplementing with vitamin E should not be recommended to support the recovery process in healthy individuals after exercise, given the lack of efficacy in the analyzed variables following an exercise session.
Collapse
Affiliation(s)
- Katieli Santos de Lima
- Department of Physiotherapy and Rehabilitation, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Felipe Schuch
- Head of the Department of Sports Methods and Techniques, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natiele Camponogara Righi
- Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Léo José Rubin Neto
- Department of Physiotherapy and Rehabilitation, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Silva Nunes
- Department of Physiotherapy and Rehabilitation, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Gustavo Puntel
- Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Patrícia Chagas
- Departament of Public Health, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Luis Ulisses Signori
- Fisioterapia e reabilitação, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
16
|
Li BM, Qiu DY, Ni PS, Wang ZZ, Duan R, Yang L, Liu CY, Chen BY, Li FH. Can pre-exercise photobiomodulation improve muscle endurance and promote recovery from muscle strength and injuries in people with different activity levels? A meta-analysis of randomized controlled trials. Lasers Med Sci 2024; 39:132. [PMID: 38758297 DOI: 10.1007/s10103-024-04079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Photobiomodulation therapy (PBMT) was introduced as an ergogenic aid for sport performance in healthy individuals is still controversial. The main aim of this study is to assess the potential enhancements in muscle endurance and recovery from muscle strength and injuries mediated by PBMT among individuals exhibiting diverse activity levels. Randomized controlled trials (RCT) of PBMT interventions for healthy people (both trained and untrained individuals) exercising were searched (up to January 16, 2024) in four electronic databases: Web of Science, PubMed, Scopus and Embase. Primary outcome measures included muscle endurance, muscle strength and creatine kinase (CK) levels; secondary outcome measure included Lactate dehydrogenase (LDH) levels. Subgroup analyses based on physical activity levels were conducted for each outcome measure. Thirty-four RCTs were included based on the article inclusion and exclusion criteria. Statistical results showed that PBMT significantly improved muscle endurance (standardized mean difference [SMD] = 0.31, 95%CI 0.11, 0.51, p < 0.01), indicating a moderate effect size. It also facilitated the recovery of muscle strength (SMD = 0.24, 95%CI 0.10, 0.39, p < 0.01) and CK (mean difference [MD] = -77.56, 95%CI -112.67, -42.44, p < 0.01), indicating moderate and large effect sizes, respectively. Furthermore, pre-application of PBMT significantly improved muscle endurance, recovery of muscle strength and injuries in physically inactive individuals and athletes (p < 0.05), while there was no significant benefit for physically active individuals. Pre-application of PBMT improves muscle endurance and promotes recovery from muscle strength and injury (includes CK and LDH) in athletes and sedentary populations, indicating moderate to large effect sizes, but is ineffective in physically active populations. This may be due to the fact that physically active people engage in more resistance training, which leads to a decrease in the proportion of red muscle fibres, thus affecting photobiomodulation.
Collapse
Affiliation(s)
- Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Da-Yong Qiu
- School of Physical and Health Education, Nanjing Normal University Taizhou College, Taizhou, China
| | - Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Bao-Yi Chen
- Qixia Sports Hospital Affiliated to Nanjing Normal University, Nanjing, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, No.1 Wenyuan Road Qixia District, Nanjing, 210046, China.
| |
Collapse
|
17
|
Yan L, Chen Z, Zhang X, Han Q, Zhu J, Wang Q, Zhao Z. Themes and trends in marathon performance research: a comprehensive bibliometric analysis from 2009 to 2023. Front Physiol 2024; 15:1388565. [PMID: 38798878 PMCID: PMC11116898 DOI: 10.3389/fphys.2024.1388565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Background: When marathon runners break the 2-h barrier at the finishing line, it attracts global attention. This study is aimed to conduct a bibliometric analysis of publications in the field of marathon running, analyze relevant research contributors, and visualize the historical trends of marathon performance research over the past 15 years. Methods: On 8 December 2023, we extracted high-quality publication data from the Web of Science Core Collection spanning from 1 January 2009 to 30 November 2023. We conducted bibliometric analysis and research history visualization using the R language packages biblioshiny, VOSviewer, and CiteSpace. Results: A total of 1,057 studies were published by 3,947 authors from 1,566 institutions across 63 countries/regions. USA has the highest publication and citation volume, while, the University of Zurich being the most prolific research institution. Keywords analysis revealed several hotspots in marathon research over the past 3 years: (1) physiology of the elite marathon runners, (2) elite marathon training intensity and pacing strategies, (3) nutritional strategies for elite marathon runners, (4) age and sex differences in marathon performance, (5) recovery of inflammatory response and muscle damage. Conclusion: This study presents the first comprehensive bibliometric analysis of marathon performance research over the past 15 years. It unveils the key contributors to marathon performance research, visually represents the historical developments in the field, and highlights the recent topical frontiers. The findings of this study will guide future research by identifying potential hotspots and frontiers.
Collapse
Affiliation(s)
- Liping Yan
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyan Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Jingyi Zhu
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| | - Zhiguang Zhao
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, General Administration of Sport of China, Beijing, China
| |
Collapse
|
18
|
Talebi S, Mohammadi H, Zeraattalab-Motlagh S, Arab A, Keshavarz Mohammadian M, Ghoreishy SM, Abbaspour Tehrani Fard M, Amiri Khosroshahi R, Djafarian K. Nutritional interventions for exercise-induced muscle damage: an umbrella review of systematic reviews and meta-analyses of randomized trials. Nutr Rev 2024; 82:639-653. [PMID: 37460208 DOI: 10.1093/nutrit/nuad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
CONTEXT Several meta-analyses have been conducted on the effect of nutritional interventions on various factors related to muscle damage. However, the strength of the evidence and its clinical significance are unclear. OBJECTIVES This umbrella review aimed to provide an evidence-based overview of nutritional interventions for exercise-induced muscle damage (EIMD). DATA SOURCES PubMed, Scopus, and ISI Web of Science were systematically searched up to May 2022. DATA EXTRACTION Systematic reviews and meta-analyses of randomized controlled trials investigating nutritional interventions' effects on recovery following EIMD were included. The certainty of the evidence was rated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS Fifty-three randomized controlled trial meta-analyses were included, evaluating 24 nutritional interventions on 10 different outcomes. The results revealed a significant effect of hydroxymethylbutyrate (HMB) supplementation and l-carnitine supplementation for reducing postexercise creatine kinase; HMB supplementation for reducing lactate dehydrogenase; branched-chain amino acids and leaf extract supplementation for reducing the delayed onset of muscle soreness; and l-carnitine, curcumin, ginseng, polyphenols, and anthocyanins for reducing muscle soreness, all with moderate certainty of evidence. CONCLUSIONS Supplementation with HMB, l-carnitine, branched-chain amino acids, curcumin, ginseng, leaf extract, polyphenols, and anthocyanins showed favorable effects on some EIMD-related outcomes. PROTOCOL REGISTRATION PROSPERO registration no. CRD42022352565.
Collapse
Affiliation(s)
- Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Zeraattalab-Motlagh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abbaspour Tehrani Fard
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wiecha S, Posadzki P, Prill R, Płaszewski M. Physical Therapies for Delayed Onset Muscle Soreness: A Protocol for an Umbrella and Mapping Systematic Review with Meta-Meta-Analysis. J Clin Med 2024; 13:2006. [PMID: 38610771 PMCID: PMC11012564 DOI: 10.3390/jcm13072006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS), also known as exercise-induced muscle damage (EIMD), is typically caused by strenuous and/or unaccustomed physical exercise. DOMS/EIMD manifests itself in reduced muscle strength and performance levels, increased muscle soreness, swelling, and elevated levels of inflammatory biomarkers. Numerous randomised controlled trials (RCTs) and systematic reviews (SRs) of a wide variety of physiotherapy interventions for reducing the signs and symptoms of DOMS/EIMD have been published. However, these SRs often arrive at contradictory conclusions, impeding decision-making processes. OBJECTIVE We will systematically review the current evidence on clinical outcomes (efficacy, safety) of physiotherapy interventions for the treatment of DOMS/EIMD in healthy adults. We will also assess the quality of the evidence and identify, map, and summarise data from the available SRs. METHOD Umbrella review with evidence map and meta-meta-analyses. MEDLINE, Embase, Cochrane Database of Systematic Reviews, Epistemonikos and PEDro will be searched from January 1998 until February 2024. SRs of RCTs of any treatment used by physiotherapists (e.g., low-level laser therapy, electrical stimulation, heat/cold therapy, ultrasound, magnets, massage, manual therapies) to treat DOMS/EIMD in healthy adults will be eligible. Narrative/non-systematic reviews, studies of adolescents/children and medically compromised individuals, of complementary therapies, dietary, nutritional, or pharmacological interventions, as well as self-administered interventions, or those published before 1998, will be excluded. AMSTAR 2 will be used to evaluate the methodological quality of the included SRs. Corrected covered area, will be computed for assessing overlaps among included SRs, and an evidence map will be prepared to describe the credibility of evidence for interventions analysed in the relevant SRs. DISCUSSION DOMS/EIMD is a complex condition, and there is no consensus regarding the standard of clinical/physiotherapeutic care. By critically evaluating the existing evidence, we aim to inform clinicians about the most promising therapies for DOMS/EIMD. This umbrella review has the potential to identify gaps in the existing evidence base that would inform future research. The protocol has been registered at PROSPERO (CRD42024485501].
Collapse
Affiliation(s)
- Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland
| | - Paweł Posadzki
- Department of Clinical Rehabilitation, University School of Physical Education in Kraków, 31-571 Kraków, Poland
- Kleijnen Systematic Reviews Ltd., York YO19 6FD, UK
| | - Robert Prill
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
- Center of Orthopaedics and Traumatology, University Hospital Brandenburg a.d.H., Brandenburg Medical School Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Maciej Płaszewski
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland
| |
Collapse
|
20
|
Roberts TD, Costa PB, Lynn SK, Coburn JW. Effects of Percussive Massage Treatments on Symptoms Associated with Eccentric Exercise-Induced Muscle Damage. J Sports Sci Med 2024; 23:126-135. [PMID: 38455428 PMCID: PMC10915620 DOI: 10.52082/jssm.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Percussive massage (PM) is an emerging recovery treatment despite the lack of research on its effects post-eccentric exercise (post-EE). This study investigated the effects of PM treatments (immediately, 24, 48, and 72 h post-EE) on the maximal isometric torque (MIT), range of motion (ROM), and an 11-point numerical rating scale (NRS) of soreness of the nondominant arm's biceps brachii from 24-72 h post-EE. Seventeen untrained, college-aged subjects performed 60 eccentric elbow flexion actions with their nondominant arms. Nine received 1 minute of PM, versus eight who rested quietly (control [CON]). In order, NRS, ROM, and MIT (relative to body mass) were collected pre-eccentric exercise (pre-EE) and after treatment (AT) at 24, 48, and 72 h post-EE. NRS was also collected before treatment (BT). Electromyographic (EMG) and mechanomyographic (MMG) amplitudes were collected during the MIT and normalized to pre-EE. There were no interactions for MIT, EMG, or MMG, but there were interactions for ROM and NRS. For ROM, the PM group had higher values than the CON 24-72 h by ~6-8°, a faster return to pre-EE (PM: 48 h, CON: 72 h), and exceeded their pre-EE at 72 h by ~4°. The groups' NRS values did not differ BT 24-72 h; however, the PM group lowered their NRS from BT to AT within every visit by ~1 point per visit, which resulted in them having lower values than the CON from 24-72 h by ~2-3 points. Additionally, the PM group returned their NRS to pre-EE faster than the CON (PM: BT 72 h, CON: never). In conclusion, PM treatments may improve ROM without affecting isometric strength or muscle activation 24-72 h post-EE. Although the PM treatments did not enhance the recovery from delayed onset muscle soreness until 72 h, they consistently provided immediate, temporary relief when used 24-72 h post-EE.
Collapse
Affiliation(s)
- Trevor D Roberts
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Pablo B Costa
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Scott K Lynn
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Jared W Coburn
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| |
Collapse
|
21
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
22
|
Arbiza BCC, da Silva AMV, de Lima KS, Rubin Neto LJ, Nunes GS, Jaenisch RB, Puntel GO, Signori LU. Effect of foam rolling recovery on pain and physical capacity after resistance exercises: A randomized crossover trial. J Bodyw Mov Ther 2024; 37:226-232. [PMID: 38432810 DOI: 10.1016/j.jbmt.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES To compare the effects of passive recovery (PR), active recovery (AR), and recovery through self-massage with the aid of foam rolling (FRR) on pain and physical capacity in healthy volunteers after a resistance exercise (RE) session. METHODS The sample of this randomized crossover trial comprised 37 physically healthy men who underwent three sessions of RE (squat, leg press, and leg extension), involving four sets of 10 repetitions with 80% of 10MR, with an interval of seven days between sessions. PR consisted of sitting for 20min, AR included a cycle ergometer for 20min at 50% maximum heart rate, and FRR involved 10 repetitions per target body area, followed by 1min rest. Variables of physical capacity (strength, power, agility, joint range of motion, flexibility, speed, and fatigue resistance) were assessed 1h after RE, whereas pain was assessed 24h, 48h, and 72h after RE. RESULTS In the dominant lower limb, the percentage of strength decreased (p < 0.001) by 16.3% after RE but improved (p < 0.001) by 5.2% after AR and FRR in relation to PR. Similar results were observed in the non-dominant lower limb. Agility was enhanced (p < 0.001) by 3.6% in AR and 4.3% in FRR compared with the baseline assessment. The recoveries for the other physical variables were similar. Only FRR reduced (p < 0.001) pain at 24h (22.8%), 48h (39.2%), and 72h (59.7%) compared to PR. CONCLUSIONS Self-massage using a foam roll reduced pain and improved agility and muscle strength during recovery after exercise. TRIAL REGISTRATION NUMBER NCT04201977.
Collapse
Affiliation(s)
- Bruno Cesar Correa Arbiza
- Department of Physical Education and Sports, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Antonio Marcos Vargas da Silva
- Department of Physical Education and Sports, Federal University of Santa Maria, Rio Grande do Sul, Brazil; Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Katieli Santos de Lima
- Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Léo José Rubin Neto
- Department of Physical Education and Sports, Federal University of Santa Maria, Rio Grande do Sul, Brazil; Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Guilherme Silva Nunes
- Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo Boemo Jaenisch
- Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Gustavo Orione Puntel
- Department of Physical Education and Sports, Federal University of Santa Maria, Rio Grande do Sul, Brazil; Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Luis Ulisses Signori
- Department of Physical Education and Sports, Federal University of Santa Maria, Rio Grande do Sul, Brazil; Department of Physiotherapy and Rehabilitation, Federal University of Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Cintron HE, Heyburn JJ, Sterner RL, Dankel SJ. Blood Flow Restricted Electrical Stimulations to Prevent or Attenuate Symptoms of Muscle Damage. Res Sports Med 2024; 32:213-224. [PMID: 36314854 DOI: 10.1080/15438627.2022.2132862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to determine if performing electrical stimulations (E-STIM) under blood flow restriction (BFR) would result in a greater protective effect against symptoms of muscle damage. 18 individuals (9 females) completed a damaging bout of exercise followed by a low frequency E-STIM treatment protocol on both arms, one of which was completed under BFR. The treatment protocol was then repeated 24-hours post-exercise. There were main effects of time for muscle thickness (pre: 3.5 cm; 48 h post: 3.8 cm; BF10 = 88.476), discomfort (pre: 0.0 au; 48 h post: 4.2 au; BF10 = 241.996), and isometric strength (pre: 278 N; 48 h post: 232 N; BF10 = 10,289.894) which all changed as a result of the damaging exercise protocol, but there were no differences between conditions [all Bayes Factors (BF10) < 0.28]. The effectiveness of low frequency E-STIM for preventing the onset of exercise-induced muscle damage would not appear to be enhanced if performed under BFR.
Collapse
Affiliation(s)
- Hannah E Cintron
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA
| | - Jessica J Heyburn
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA
| | - Robert L Sterner
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA
| | - Scott J Dankel
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
24
|
Barenie MJ, Escalera A, Carter SJ, Grange HE, Paris HL, Krinsky D, Sogard AS, Schlader ZJ, Fly AD, Mickleborough TD. Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial. J Diet Suppl 2023; 21:344-373. [PMID: 37981793 DOI: 10.1080/19390211.2023.2282470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.
Collapse
Affiliation(s)
- Matthew J Barenie
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
- Center for the Study of Obesity, College of Public Health, University of AR for Medical Sciences, Little Rock, Arkansas, USA
| | - Albaro Escalera
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Hope E Grange
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, California, USA
| | - Danielle Krinsky
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, Ball State University, Muncie, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| |
Collapse
|
25
|
Richardson MC, English B, Chesterton P. The use of sand as an alternative surface for training, injury prevention and rehabilitation in English professional football and barriers to implementation: a cross-sectional survey of medical staff. SCI MED FOOTBALL 2023; 7:413-421. [PMID: 36107139 DOI: 10.1080/24733938.2022.2125566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the use of sand as an alternative surface for training, injury prevention and rehabilitation interventions in English professional football. A Secondary aim was to explore the potential barriers to implementation. MATERIALS AND METHODS All 92 teams from the male English professional football pyramid during the 2021-22 season were eligible to take part. A cross-sectional survey of the medical personnel (one per club) was conducted between June 2021 and December 2021 based on the RE-AIM framework. A total of 58 respondents (63% of all clubs) completed the survey. RESULTS AND CONCLUSIONS Only 18 (31%) of the clubs surveyed used sand-based interventions across the last 3 seasons. Respondents felt sand-based interventions would be effective at improving physiological gains (median 4, interquartile range [IQR] 4-5) and as part of injury prevention and rehabilitation strategies (4, IQR 3-4) but were indifferent in relation to its potential to improve sporting performance (3, IQR 3-4). Barriers to implementation of sand-based interventions within wider football were a lack of facilities, lack of awareness of its potential benefits, lack of high-quality evidence and the surface not being specific to the sport. Medical staff also did not perceive that coaches' positively viewed sand interventions as a training or injury management strategy.
Collapse
Affiliation(s)
- Mark C Richardson
- Allied Health Professions Department, School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Bryan English
- Head of Medicine, Leicester City Football Club Training Ground, Seagrave, Loughborough, UK
| | - Paul Chesterton
- Allied Health Professions Department, School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
26
|
Holodov M, Markus I, Solomon C, Shahar S, Blumenfeld-Katzir T, Gepner Y, Ben-Eliezer N. Probing muscle recovery following downhill running using precise mapping of MRI T 2 relaxation times. Magn Reson Med 2023; 90:1990-2000. [PMID: 37345717 DOI: 10.1002/mrm.29765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Postexercise recovery rate is a vital component of designing personalized training protocols and rehabilitation plans. Tracking exercise-induced muscle damage and recovery requires sensitive tools that can probe the muscles' state and composition noninvasively. METHODS Twenty-four physically active males completed a running protocol consisting of a 60-min downhill run on a treadmill at -10% incline and 65% of maximal heart rate. Quantitative mapping of MRI T2 was performed using the echo-modulation-curve algorithm before exercise, and at two time points: 1 h and 48 h after exercise. RESULTS T2 values increased by 2%-4% following exercise in the primary mover muscles and exhibited further elevation of 1% after 48 h. For the antagonist muscles, T2 values increased only at the 48-h time point (2%-3%). Statistically significant decrease in the SD of T2 values was found following exercise for all tested muscles after 1 h (16%-21%), indicating a short-term decrease in the heterogeneity of the muscle tissue. CONCLUSION MRI T2 relaxation time constitutes a useful quantitative marker for microstructural muscle damage, enabling region-specific identification for short-term and long-term systemic processes, and sensitive assessment of muscle recovery following exercise-induced muscle damage. The variability in T2 changes across different muscle groups can be attributed to their different role during downhill running, with immediate T2 elevation occurring in primary movers, followed by delayed elevation in both primary and antagonist muscle groups, presumably due to secondary damage caused by systemic processes.
Collapse
Affiliation(s)
- Maria Holodov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Shahar
- Center of AI and Data Science, Tel Aviv University, Tel Aviv, Israel
| | | | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, New York, USA
| |
Collapse
|
27
|
Pokora I, Drzazga Z, Wyderka P, Binek M. Determination of the Effects of a Series of Ten Whole-Body Cryostimulation Sessions on Physiological Responses to Exercise and Skin Temperature Behavior following Exercise in Elite Athletes. J Clin Med 2023; 12:6159. [PMID: 37834804 PMCID: PMC10573447 DOI: 10.3390/jcm12196159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigated the effects of a series of 10 whole-body cryostimulation (WBC) sessions (3 min; -110 °C) on physiological and thermal responses to a submaximal exercise test in 17 elite athletes. Participants performed an exercise test twice at similar levels of intensity before and after a series of ten WBC sessions. Before and during the test, each participant's oxygen uptake (VO2), heart rate (HR), internal temperature (Ti), and skin temperature in selected areas of the skin were measured, and the mean arterial pressure (MAP), physiological strain index (PSI), and mean skin temperature (Tsk) were calculated. The results show that during exercise, increases in Ti and the PSI were significantly lower after the WBC sessions, and although there were no significant changes in HR or the MAP, the Tsk was significantly higher. Following exercise, an increase in skin temperature asymmetry over the lower-body muscles was detected. A series of WBC sessions induced a tendency toward a decrease in temperature asymmetry over the thigh muscles. In conclusion, a series of ten WBC sessions does not induce significant modifications in physiological variables but does influence the PSI and Ti during exercise. Moreover, a series of ten WBC sessions influences the distribution of skin temperature and the magnitude of temperature asymmetries in the early phase of recovery.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Piotr Wyderka
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Mariusz Binek
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
28
|
Kons RL, Orssatto LBDR, Sakugawa RL, da Silva Junior JN, Diefenthaeler F, Detanico D. Effects of stretch-shortening cycle fatigue protocol on lower limb asymmetry and muscle soreness in judo athletes. Sports Biomech 2023; 22:1079-1094. [PMID: 32644009 DOI: 10.1080/14763141.2020.1779335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to analyse unilateral countermovement jumps (CMJ) performance and muscle soreness in lower limbs, as well as to compare lower limb asymmetry over 48h after a stretch-shortening cycle (SSC) fatigue protocol. Fourteen judo athletes performed unilateral CMJ on each leg before, and after the 5th and 10th sets over 24h and 48h of an SSC-fatigue protocol. The SSC protocol reduced CMJ performance after the 5th set and 10th sets, especially in the weaker limb (p < 0.05), but returned to the baseline values after 24h. Asymmetry increased for peak force, peak power, and mean power after the 5th set compared to the baseline (p < 0.05) and remained higher for peak force after the 10th set (p = 0.019), returning to the baseline values after 24h (p < 0.05). Soreness increased for the lower body at post, 24h, and 48h compared to the baseline (p < 0.05). In conclusion, a fatiguing SSC protocol can result in increased bilateral asymmetries in judo athletes, but after 24h and 48h of the protocol the bilateral asymmetry returned to the baseline values, with only muscle soreness still elevated.
Collapse
Affiliation(s)
- Rafael Lima Kons
- Biomechanics Laboratory, Centre of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lucas Bet da Rosa Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Raphael Luiz Sakugawa
- Biomechanics Laboratory, Centre of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Fernando Diefenthaeler
- Biomechanics Laboratory, Centre of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniele Detanico
- Biomechanics Laboratory, Centre of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
29
|
Neltner TJ, Sahoo PK, Smith RW, Anders JPV, Arnett JE, Ortega DG, Schmidt RJ, Johnson GO, Natarajan SK, Housh TJ. Effects of High-Intensity, Eccentric-Only Muscle Actions on Serum Biomarkers of Collagen Degradation and Synthesis. J Strength Cond Res 2023; 37:1729-1737. [PMID: 37616533 DOI: 10.1519/jsc.0000000000004457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
ABSTRACT Neltner, TJ, Sahoo, PK, Smith, RW, Anders, JPV, Arnett, JE, Ortega, DG, Schmidt, RJ, Johnson, GO, Natarajan, SK, and Housh, TJ. Effects of high-intensity, eccentric-only muscle actions on serum biomarkers of collagen degradation and synthesis. J Strength Cond Res 37(9): 1729-1737, 2023-The purpose of this study was to examine the effects of high-intensity, eccentric-only muscle actions of the leg extensors on (a) serum biomarkers of collagen degradation (hydroxyproline [HYP] and C-terminal telopeptide of type I collagen [C1M]) and synthesis (pro-c1α1) and (b) the time course of changes in maximal voluntary isometric contraction (MVIC) and ratings of muscle soreness after the eccentric-only exercise bout. Twenty-five recreationally active men (mean ± SD: age = 21.2 ± 2.0 years) completed 5 sets of 10 bilateral, eccentric-only dynamic constant external resistance muscle actions of the leg extensors at a load of 110% of their concentric leg extension 1 repetition maximum. Analysis of variances (p < 0.05) and a priori planned pairwise comparisons using Bonferroni corrected (p < 0.0167) paired t tests were used to examine mean changes in blood biomarkers from baseline to 48 hours postexercise as well as in MVIC and soreness ratings immediately, 24 hours, and 48 hours postexercise. There were increases in HYP (3.41 ± 2.37 to 12.37 ± 8.11 μg·ml-1; p < 0.001) and C1M (2.50 ± 1.05 to 5.64 ± 4.89 μg·L-1; p = 0.003) from preexercise to 48 hours postexercise, but no change in pro-c1α1. Maximal voluntary isometric contraction declined immediately after the exercise bout (450.44 ± 72.80 to 424.48 ± 66.67 N·m; p = 0.002) but recovered 24 hours later, whereas soreness was elevated immediately (6.56 ± 1.58; p < 0.001), 24 hours (3.52 ± 1.53; p < 0.001), and 48 hours (2.60 ± 1.32; p = 0.001) postexercise. The eccentric-only exercise bout induced increases in collagen degradation but had no effect on collagen synthesis. These findings provide information for clinicians to consider when prescribing exercise after an acute injury or surgery.
Collapse
Affiliation(s)
- Tyler J Neltner
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Robert W Smith
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | | | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Dolores G Ortega
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of Nebraska- Lincoln, Lincoln, Nebraska; and
| |
Collapse
|
30
|
Ortega DG, Coburn JW, Galpin AJ, Costa PB. Effects of a Tart Cherry Supplement on Recovery from Exhaustive Exercise. J Funct Morphol Kinesiol 2023; 8:121. [PMID: 37606416 PMCID: PMC10443385 DOI: 10.3390/jfmk8030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The aim of this study was to investigate the effects of a tart cherry supplement on recovery from exercise-induced muscle damage. Seventeen recreationally active women (mean age ± SD = 22.2 ± 3.3 years, height = 162.0 ± 6.0 cm, body mass = 65.1 ± 11.1 kg, BMI = 24.7 ± 3.5 kg·m2) supplemented with 1000 mg of concentrated tart cherry or a placebo for eight consecutive days. An overload protocol of 8 sets of 10 repetitions of maximal effort concentric and eccentric muscle actions of the leg extensors at a velocity of 60°·s-1 was performed on the fourth day of supplementation. Testing sessions consisted of a muscle function test (MFT) to examine pre- and post-testing peak torque, peak power, total work, time-to-peak torque, mean power, muscle activation of the quadriceps, and muscle soreness at baseline and post-testing at 0 h, 24 h, 48 h, and 72 h. A second trial of testing was repeated two weeks later using the opposite supplement to the one assigned for the first trial. No significant interaction for time × condition × velocity (p = 0.916) and no significant main effect for condition (p = 0.557) were demonstrated for peak torque. However, there were main effects for time and velocity for concentric quadriceps peak torque (p < 0.001). For muscle soreness, there was no two-way interaction for time x condition (p > 0.05) and no main effect for condition (p > 0.05), but there was a main effect for time (p < 0.001). In conclusion, a tart cherry supplement did not attenuate losses in isokinetic muscle peak torque, peak power, total work, time-to-peak torque, muscle soreness, or quadriceps muscle activation.
Collapse
Affiliation(s)
| | | | | | - Pablo B. Costa
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| |
Collapse
|
31
|
Chen TC, Huang YC, Chou TY, Hsu ST, Chen MY, Nosaka K. Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise. Eur J Sport Sci 2023; 23:1638-1646. [PMID: 36825876 DOI: 10.1080/17461391.2023.2185163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The present study investigated the effects of a far-infrared radiation (FIR) lamp therapy on changes in muscle damage and proprioception markers after maximal eccentric exercise of the elbow flexors (EF: Study 1) and the knee flexors (KF: Study 2) in comparison to a sham treatment condition. In each study, 24 healthy sedentary women were assigned to a FIR or a sham treatment group (n = 12/group). They performed 72 maximal EF eccentric contractions (Study 1) or 100 maximal KF eccentric contractions (Study 2) with their non-dominant limbs. They received a 30-min FIR (wavelength: 8-14 µm) or sham treatment at 1, 25, 49, 73 and 97 h post-exercise to the exercised muscles. Maximum voluntary isometric contraction (MVC) torque, muscle soreness, plasma creatine kinase activity, and proprioception assessed by position sense, joint reaction angle, and force match were measured before, and 0.5, 24, 48, 72, 96 and 120 h post-exercise. The outcome measures showed significant changes (P < 0.05) at 0.5-hour post-exercise (before treatment) similarly (P > 0.05) between the conditions in both studies. However, changes in all measures at 24-120 h post-exercise were smaller (P < 0.05) for the FIR than sham condition in both studies. For example, MVC torque returned to the baseline by 72 h post-exercise for the FIR condition in both studies, but was still 19 ± 6% (Study 1) or 17 ± 12% (Study 2) lower than the baseline at 120 h post-exercise for the sham condition. These results suggested that the FIR lamp therapy was effective for accelerating recovery from muscle damage.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Yuh-Chuan Huang
- Physical Education Office, Ming Chuan University, Taipei City, Taiwan
| | - Tai-Ying Chou
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan
| | - Sheng-Tsung Hsu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Mei-Yen Chen
- Graduate Institute of Sport, Leisure and Hospitality Management, National Taiwan Normal University, Taipei City, Taiwan
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
32
|
Waldman HS, Bryant AR, Parten AL, Grozier CD, McAllister MJ. Astaxanthin Supplementation Does Not Affect Markers of Muscle Damage or Inflammation After an Exercise-Induced Muscle Damage Protocol in Resistance-Trained Males. J Strength Cond Res 2023; 37:e413-e421. [PMID: 36727984 DOI: 10.1519/jsc.0000000000004408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Waldman, HS, Bryant, AR, Parten, AL, Grozier, CD, and McAllister, MJ. Astaxanthin supplementation does not affect markers of muscle damage or inflammation after an exercise-induced muscle damage protocol in resistance-trained males. J Strength Cond Res 37(7): e413-e421, 2023-It is well documented that exercise-induced muscle damage (EIMD) decreases exercise performance by elevated inflammation and subjective discomfort. Due to its potent antioxidative properties, astaxanthin (AX) may serve as a potential dietary supplement strategy for mitigating delayed-onset muscle soreness (DOMS) and enhancing recovery and performance. This study aimed to investigate the effects of AX on markers of muscle damage, inflammation, DOMS, and anaerobic performance and substrate metabolism. Thirteen resistance-trained men (mean ± SD , age, 23.4 ± 2.1 years) completed a double-blind, counterbalanced, and crossover design with a 1-week washout period between 2, 4-week supplementation periods at 12 mg·d -1 of AX or placebo. After each supplementation period, subjects completed 2 trials, with trial 1 including a graded exercise test (GXT) and a 30-second Wingate and trial 2 including an EIMD protocol followed by the collection of fasting blood samples (pre-post) to measure creatine kinase, advanced oxidative protein products, C-reactive protein, interleukin-6, insulin, and cortisol. Astaxanthin supplementation had no statistical effects on markers of substrate metabolism during the GXT, Wingate variables, or markers of muscle damage, inflammation, or DOMS when compared with placebo (all p > 0.05). However, 4 weeks of AX supplementation did significantly lower oxygen consumption during the final stage of the GXT (12%, p = 0.02), as well as lowered systolic blood pressure (∼7%, p = 0.04), and significantly lowered baseline insulin values (∼24%, p = 0.05) when compared with placebo. Collectively, these data suggest that 4 weeks of AX supplementation at 12 mg·d -1 did not affect markers of muscle damage, inflammation, or DOMS after an EIMD protocol in a resistance-trained male cohort.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Andrea R Bryant
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Alyssa L Parten
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Corey D Grozier
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Matthew J McAllister
- Metabolic & Applied Physiology Laboratory, Department of Health and Human Performance, Texas State University, San Marcos, Texas
| |
Collapse
|
33
|
Šimunič B, Doles M, Kelc R, Švent A. Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency Therapy After Eccentric Exercise-Induced Muscle Damage to Restore Muscle Strength and Contractile Parameters. J Sport Rehabil 2023:1-8. [PMID: 37192748 DOI: 10.1123/jsr.2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 05/18/2023]
Abstract
CONTEXT Exercise-induced muscle damage (EIMD) is prevalent especially in sports and rehabilitation. It causes loss in skeletal muscle function and soreness. As there are no firm preventive strategies, we aimed to evaluate the preventive efficacy of nonthermal 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) therapy after eccentric bouts of EIMD response in knee flexors. DESIGN Twenty-nine healthy males (age: 25.2 [4.6] y) were randomized in control group (CG; n = 15) and experimental group (EG; n = 14) where EG followed 5 daily 448-kHz CRMRF therapies. All assessments were performed at baseline and post EIMD (EIMD + 1, EIMD + 2, EIMD + 5, and EIMD + 9 d). We measured tensiomyography of biceps femoris and semitendinosus to calculate contraction time, the maximal displacement and the radial velocity of contraction, unilateral isometric knee flexors maximal voluntary contraction torque, and rate of torque development in first 100 milliseconds. RESULTS Maximal voluntary contraction torque and rate of torque development in first 100 milliseconds decreased more in CG than in EG and recovered only in EG. Biceps femoris contraction time increased only in CG (without recovery), whereas in semitendinosus contraction time increased in EG (only at EIMD + 1) and in CG (without recovery). In both muscles, tensiomyographic maximal displacement decreased in EG (in EIMD + 1 and EIMD + 2) and in CG (without recovery). Furthermore, in both muscles, radial velocity of contraction decreased in EG (from EIMD + 1 until EIMD + 5) and in CG (without recovery). CONCLUSION The study shows beneficial effect of CRMRF therapy after inducing EIMD in skeletal muscle strength and contractile parameters in knee flexors.
Collapse
Affiliation(s)
- Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper,Slovenia
| | - Monika Doles
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper,Slovenia
| | - Robi Kelc
- Medical Faculty, Institute for Sports Medicine, University of Maribor, Maribor,Slovenia
| | | |
Collapse
|
34
|
Moslemi E, Dehghan P, Khani M, Sarbakhsh P, Sarmadi B. The effects of date seed (Phoenix dactylifera) supplementation on exercise-induced oxidative stress and aerobic and anaerobic performance following high-intensity interval training sessions: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2023; 129:1151-1162. [PMID: 35832028 DOI: 10.1017/s0007114522002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-intensity interval training (HIIT) is an efficient method to improve vascular function, maximal oxygen consumption, and muscle mitochondrial capacity. However, acute HIIT overstresses the oxidative system and causes muscle soreness and damage. The aim of the present study was to investigate the effects of date seeds on exercise-induced oxidative stress and aerobic and anaerobic performance following HIIT sessions. Thirty-six physically active men and women aged 18-35 years were assigned to take 26 g/d of date seed powder (DSP, n 18) or wheat bran powder (placebo, n 18) before and after HIIT workouts for 14 d. Total antioxidant capacity (TAC), oxidative stress index (OSI), total oxidant status (TOS), superoxide dismutase (SOD), glutathione peroxidase (GPx), uric acid, malondialdehyde (MDA), and 8-iso-PGF2α were determined at baseline, at the end of the intervention, and 24-h post-intervention. We used the Cooper and running-based anaerobic sprint test to assess aerobic and anaerobic performance at the study's beginning and end. Independent-samples Student's t tests, ANCOVA and repeated-measures ANOVA were used to compare the quantitative variables. Positive changes were observed in TAC, TOS, OSI, GPx, MDA and visual analogue scale after intervention and at 24-h post-exercise (P < 0·05). Likewise, peak power and fatigue index were significantly improved in DSP in comparison with the placebo group. Levels of SOD, uric acid, 8-iso-PGF2α, VO2 max and average power were not changed after training. Our results showed that date seed supplementation in active participants performing HIIT bouts ameliorated oxidative stress and improved performance parameters.
Collapse
Affiliation(s)
- Elham Moslemi
- Student research committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khani
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Sarmadi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Kimble R, Jones K, Howatson G. The effect of dietary anthocyanins on biochemical, physiological, and subjective exercise recovery: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023; 63:1262-1276. [PMID: 34402657 DOI: 10.1080/10408398.2021.1963208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanins (ACN), the sub-class of (poly)phenols responsible for the red-blue-purple pigmentation of fruit and vegetables, have gained considerable interest in sport and exercise research due to their potential to facilitate exercise recovery. A systematic literature search was performed using PubMed, The Cochrane Library, MEDLINE, SPORTDiscus and CINAHL. Thirty nine studies were included and the standardized mean difference (Hedges g) for creatine kinase (CK), anti-oxidative and inflammatory markers, strength, power and delayed onset muscle soreness (DOMS) indices were pooled in separate meta-analyses; meta-regression was also performed on reported ACN dose. Immediately post-exercise there was an increase in antioxidant capacity (g: 0.56) and reduced C reactive protein (g: -0.24) and tumor necrosis factor α (g: -40); p ≤ 0.02. Strength was improved with ACN at all time points (g: 0.45-0.67). DOMS (g: -0.23) was lower 24 hours post-exercise and power was improved 24 hours (g: 0.62) and 48 hours (g: 0.57) post exercise. The CK was lower 48 hours post-exercise (g: -0.31) and there was a trend for a positive association with ACN dose (p = 0.057). This systematic review provides new data showing ACN-rich foods promote functional and subjective recovery likely due to the antioxidant and anti-inflammatory properties of ACN.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
36
|
Pérez-Castillo ÍM, Rueda R, Bouzamondo H, López-Chicharro J, Mihic N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front Physiol 2023; 14:1167449. [PMID: 37113691 PMCID: PMC10126523 DOI: 10.3389/fphys.2023.1167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.
Collapse
Affiliation(s)
| | | | | | - José López-Chicharro
- Real Madrid, Medical Services, Madrid, Spain
- *Correspondence: José López-Chicharro,
| | - Niko Mihic
- Real Madrid, Medical Services, Madrid, Spain
| |
Collapse
|
37
|
Burt D, Doma K, Connor J. The effects of exercise-induced muscle damage on varying intensities of endurance running performance: A systematic review and meta-analysis. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Curcumin-Added Whey Protein Positively Modulates Skeletal Muscle Inflammation and Oxidative Damage after Exhaustive Exercise. Nutrients 2022; 14:nu14224905. [PMID: 36432591 PMCID: PMC9698604 DOI: 10.3390/nu14224905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Background: Exhaustive exercise can induce muscle damage. The consumption of nutritional compounds with the ability to positively influence the oxidative balance and an exacerbated inflammatory process has been previously studied. However, little is known about the nutritional value of curcumin (CCM) when mixed with whey protein concentrate (WPC). This study was developed to evaluate the effect of CCM-added WPC on inflammatory and oxidative process control and histopathological consequences in muscle tissue submitted to an exhaustive swimming test (ET). (2) Methods: 48 animals were randomly allocated to six groups (n = 8). An ET was performed 4 weeks after the start of the diet and animals were euthanized 24 h post ET. (3) Results: WPC + CCM and CCM groups reduced IL-6 and increased IL-10 expression in muscle tissue. CCM reduced carbonyl protein after ET compared to standard AIN-93M ET and WPC + CCM ET diets. Higher nitric oxide concentrations were observed in animals that consumed WPC + CCM and CCM. Consumption of WPC + CCM or isolated CCM reduced areas of inflammatory infiltrate and fibrotic tissue in the muscle. (4) Conclusions: WPC + CCM and isolated CCM contribute to the reduction in inflammation and oxidative damage caused by the exhaustive swimming test.
Collapse
|
39
|
Effects of Acute Vitamin C plus Vitamin E Supplementation on Exercise-Induced Muscle Damage in Runners: A Double-Blind Randomized Controlled Trial. Nutrients 2022; 14:nu14214635. [PMID: 36364898 PMCID: PMC9659095 DOI: 10.3390/nu14214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Considering the existing controversy over the possible role of acute antioxidant vitamins in reducing exercise-induced muscle damage (EIMD), this doubled-blind, randomized and controlled trial aimed to determine whether supplementation with vitamins C and E could mitigate the EIMD in endurance-trained runners (n = 18). The exercise protocol involved a warm-up followed by 6 to 8 bouts of 1 km running at 75% maximum heart rate (HRmax). Two hours before the exercise protocol, participants took the supplementation with vitamins or placebo, and immediately afterwards, blood lactate, rate of perceived exertion and performance were assessed. At 24 h post-exercise, CK, delayed onset muscle soreness and performance were determined (countermovement jump, squat jump and stiffness test). The elastic index and vertical stiffness were calculated using a stiffness test. Immediately after the exercise protocol, all participants showed improved maximum countermovement jump, which only persisted after 24 h in the vitamin group (p < 0.05). In both groups, squat jump height was significantly greater (p < 0.05) immediately after exercise and returned to baseline values after 24 h. The elastic index increased in the vitamin group (p < 0.05), but not in the placebo group. In both groups, lactate levels increased from pre- to immediately post-exercise (p < 0.05), and CK increased from pre- to 24 h post-exercise (p < 0.05). No significant differences between groups were observed in any of the variables (p > 0.05). Vitamin C and E supplementation does not seem to help with EIMD in endurance-trained individuals.
Collapse
|
40
|
The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients 2022; 14:nu14214532. [PMID: 36364794 PMCID: PMC9653881 DOI: 10.3390/nu14214532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022] Open
Abstract
High-intensity/impact exercise elicits a transient increase in inflammatory biomarkers. Consuming nutrient-dense wholefoods, like milk, following exercise may modulate post-exercise inflammation and aid recovery. We examined the effect of post-exercise skim milk consumption (versus an isoenergetic, isovolumetric carbohydrate [CHO] drink) on acute exercise-induced inflammation in untrained females. Using a randomized crossover design, 13 healthy females (age = 20 ± 2.3 y; BMI = 21.0 ± 1.1 kg/m2) completed two bouts of combined resistance/plyometric exercise followed by either skim milk (MILK) or CHO at 5-min and 1 h post-exercise. Serum interleukin [IL]-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) concentrations were measured at pre-exercise, 15-min, 75-min, 24 h, and 48 h post-exercise. IL-6 increased 15-min post-exercise vs. all other timepoints (time effect, p = 0.017). Between 24 and 48 h, IL-10 decreased and increased in the MILK and CHO conditions, respectively (interaction, p = 0.018). There were no significant effects for IL-1β or TNF-α. Relative concentrations of IL-1β (p = 0.049) and IL-10 (p = 0.028) at 48 h post-exercise were lower in MILK vs. CHO. Milk post-exercise did not influence the absolute concentration of pro-inflammatory cytokines; however, there were divergent responses for the anti-inflammatory cytokine, IL-10, and milk reduced the relative inflammatory response at 48 h (vs. CHO) for IL-1β and IL-10. This demonstrates the potential for milk to modulate inflammation post-exercise in this sample.
Collapse
|
41
|
Branched-Chain Amino Acids Supplementation Does Not Accelerate Recovery after a Change of Direction Sprinting Exercise Protocol. Nutrients 2022; 14:nu14204331. [PMID: 36297014 PMCID: PMC9609908 DOI: 10.3390/nu14204331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
BCAAs supplementation has been widely used for post-exercise recovery. However, no evidence is currently available to answer the question of whether BCAAs supplementation can attenuate muscle damage and ameliorate recovery after a bout of change of direction (COD) sprinting, which is an exercise motion frequently used during team sport actions. This study aimed to assess the effect of BCAAs supplementation on muscle damage markers, subjective muscle soreness, neuromuscular performance, and the vascular health of collegiate basketball players during a 72 h recovery period after a standardized COD protocol. Participants orally received either BCAAs (0.17 g/kg BCAAs + 0.17 g/kg glucose) or placebo (0.34 g/kg glucose) supplementation before and immediately after a COD exercise protocol in a randomized, crossover, double-blind, and placebo-controlled manner. Creatine kinase increased immediately after exercise and peaked at 24 h, muscle soreness remained elevated until 72 h, whilst arterial stiffness decreased after exercise for both supplemented conditions. A negligibly lower level of interleukin-6 was found in the BCAAs supplemented condition. In conclusion, the results of this study do not support the benefits of BCAAs supplementation on mitigating muscle damage and soreness, neuromuscular performance, and arterial stiffness after COD for basketball players.
Collapse
|
42
|
Xu F, Zeng J, Liu X, Lai J, Xu J. Exercise-Induced Muscle Damage and Protein Intake: A Bibliometric and Visual Analysis. Nutrients 2022; 14:nu14204288. [PMID: 36296973 PMCID: PMC9610071 DOI: 10.3390/nu14204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Numerous studies have covered exercise-induced muscle damage (EIMD) topics, ranging from nutritional strategies to recovery methods, but few attempts have adequately explored and analyzed large volumes of scientific output. The purpose of this study was to assess the scientific output and research activity regarding EIMD and protein intake by conducting a bibliometric and visual analysis. Relevant publications from 1975-2022 were retrieved from the Web of Science Core Collection database. Quantitative and qualitative variables were collected, including the number of publications and citations, H-indexes, journals of citation reports, co-authorship, co-citation, and the co-occurrence of keywords. There were 351 total publications, with the number of annual publications steadily increasing. The United States has the highest total number of publications (26.21% of total publications, centrality 0.44). Institutional cooperation is mostly geographically limited, with few transnational cooperation links. EIMD and protein intake research is concentrated in high-quality journals in the disciplines of Sport Science, Physiology, Nutrition, and Biochemistry & Molecular Biology. The top ten journals in the number of publications are mostly high-quality printed journals, and the top ten journals in centrality have an average impact factor of 13.845. The findings of the co-citation clusters and major keyword co-occurrence reveal that the most discussed research topics are "exercise mode", "nutritional strategies", "beneficial outcomes", and "proposed mechanisms". Finally, we identified the following research frontiers and research directions: developing a comprehensive understanding of new exercise or training models, nutritional strategies, and recovery techniques to alleviate EIMD symptoms and accelerate recovery; applying the concept of hormesis in EIMD to induce muscle hypertrophy; and investigating the underlying mechanisms of muscle fiber and membrane damage.
Collapse
Affiliation(s)
- Fei Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| | - Jinshu Zeng
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Liu
- Division of Library and Information Services, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaming Lai
- San Diego Jewish Academy, San Diego, CA 92130, USA
| | - Jing Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| |
Collapse
|
43
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
44
|
Qu C, Wu Z, Xu M, Lorenzo S, Dong Y, Wang Z, Qin F, Zhao J. Cryotherapy on Subjective Sleep Quality, Muscle, and Inflammatory Response in Chinese Middle- and Long-Distance Runners After Muscle Damage. J Strength Cond Res 2022; 36:2883-2890. [DOI: 10.1519/jsc.0000000000003946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. Front Physiol 2022; 13:866792. [PMID: 36045751 PMCID: PMC9420936 DOI: 10.3389/fphys.2022.866792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related chronic diseases are among the most common causes of mortality and account for a majority of global disease burden. Preventative lifestyle behaviors, such as regular exercise, play a critical role in attenuating chronic disease burden. However, the exact mechanism behind exercise as a form of preventative medicine remains poorly defined. Interestingly, many of the physiological responses to exercise are comparable to aging. This paper explores an overarching hypothesis that exercise protects against aging/age-related chronic disease because the physiological stress of exercise mimics aging. Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and triggers a substantial inflammatory response in a manner that mimics aging/age-related chronic disease. Data indicate that select acute exercise responses may be similar in magnitude to changes seen with +10-50 years of aging. The initial insult of the age-mimicking effects of exercise induces beneficial adaptations that serve to attenuate disruption to successive "aging" stimuli (i.e., exercise). Ultimately, these exercise-induced adaptations reduce the subsequent physiological stress incurred from aging and protect against age-related chronic disease. To further examine this hypothesis, future work should more intricately describe the physiological signature of different types/intensities of acute exercise in order to better predict the subsequent adaptation and chronic disease prevention with exercise training in healthy and at-risk populations.
Collapse
Affiliation(s)
- Wesley K. Lefferts
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
46
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
47
|
Moslemi E, Dehghan P, Khani M. The effect of date seed (Phoenix dactylifera) supplementation on inflammation, oxidative stress biomarkers, and performance in active people: A blinded randomized controlled trial protocol. Contemp Clin Trials Commun 2022; 28:100951. [PMID: 35769196 PMCID: PMC9234073 DOI: 10.1016/j.conctc.2022.100951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction High-intensity interval training (HIIT) is an efficient training method to improve vascular function, maximal oxygen consumption, and muscle mitochondrial capacity while maximizing muscular damage. Recently, functional foods have been considered a practical approach to avoiding HIIT damage and improving sports performance. Thus, the present study will evaluate the effectiveness of date seed powder as a functional food on the nutritional, oxidative stress, anti/inflammatory status, mental health, and performance of active people. Methods This study is a double-blind, randomized, placebo-controlled trial, which will be conducted among recreational runners at Tabriz stadiums, Iran. Thirty-six recreational runners will be randomly selected into two groups to consume 26 g/d date seed powder or placebo for 14 days. Both groups will do HIIT workouts. Body composition, food intake, total antioxidant capacity (TAC), oxidative stress index (OSI), total oxidant status (TOS), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), 8-iso-prostaglandin F2α (8-iso-PGF2α), uric acid, protein carbonyl (PC), catalase (CAT), glutathione (GSH), nitric oxide (NO), high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), IL-6/IL-10, creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin (MYO), brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), irisin, cortisol, muscle pain, aerobic and anaerobic performance will be evaluated at the beginning, end of the intervention and 24 h later. Ethics and dissemination This study was approved by the Medical Ethics Committee of TBZMED (No.IR.TBZMED.REC.1399.1011). This research's findings will be published in a peer-reviewed journal and presented at international conferences. Trial registration Iranian Registry of Clinical Trials website (www.IRCT.ir/, IRCT20150205020965N9). Date seed powder may have the potential to improve exercise performance in healthy and active subjects performing HIIT bouts. The date seed is known as an excellent functional food due to its being high in polyphenols, and total dietary fiber. The consumption of date seed powder would improve oxidative stress, inflammation, mental health and performance. The results of this trial can be used to provide evidence-based recommendations for recreational runners, and nutritionists.
Collapse
Affiliation(s)
- Elham Moslemi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author. Nutrition Research Center, Tabriz University of Medical Sciences, Iran.
| | - Mostafa Khani
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
48
|
Selmi O, Ouergui I, Muscella A, My G, Marsigliante S, Nobari H, Suzuki K, Bouassida A. Monitoring Psychometric States of Recovery to Improve Performance in Soccer Players: A Brief Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159385. [PMID: 35954741 PMCID: PMC9367927 DOI: 10.3390/ijerph19159385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022]
Abstract
In order to maximize adaptations and to avoid nonfunctional overreaching syndrome or noncontact injury, coaches in high-performance sports must regularly monitor recovery before and after competitions/important training sessions and maintain well-being status. Therefore, quantifying and evaluating psychometric states of recovery during the season in sports teams such as soccer is important. Over the last years, there has been substantial growth in research related to psychometric states of recovery in soccer. The increase in research on this topic is coincident with the increase in popularity obtained by subjective monitoring of the pre-fatigue state of the players before each training sessions or match with a strong emphasis on the effects of well-being or recovery state. Among the subjective methods for players’ control, the Hooper index (HI) assesses the quality of sleep during the previous night, overall stress, fatigue, and delayed-onset muscle soreness. Additionally, the total quality of recovery (TQR) scale measures recovery status. The HI and TQR recorded before each training session or match were affected by the variability of training load (TL) and influenced the physical and technical performances, and the affective aspects of soccer players. Researchers have recommended wellness monitoring soccer players’ psychometric state of recovery before each training session or match in order to detect early signs of fatigue and optimize high-level training performance. This method allows for better detecting signs of individual fatigue and allows coaches to adapt and readjust the TL, and avoid physical and technical gaps in order to improve the performance of soccer players.
Collapse
Affiliation(s)
- Okba Selmi
- High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba 7100, Tunisia; (I.O.); (A.B.)
- High Institute of Sports and Physical Education, Ksar Said, University of Manouba, Tunis 2010, Tunisia
- Correspondence: (O.S.); (K.S.); Tel.: +216-93809606 (O.S.)
| | - Ibrahim Ouergui
- High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba 7100, Tunisia; (I.O.); (A.B.)
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.); (G.M.); (S.M.)
| | - Giulia My
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.); (G.M.); (S.M.)
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy; (A.M.); (G.M.); (S.M.)
| | - Hadi Nobari
- Faculty of Physiology, School of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; or
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
- Department of Motor Performance, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Institute of Sports Nutrition, Waseda University, Tokyo 359-1192, Japan
- Correspondence: (O.S.); (K.S.); Tel.: +216-93809606 (O.S.)
| | - Anissa Bouassida
- High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba 7100, Tunisia; (I.O.); (A.B.)
| |
Collapse
|
49
|
Deely C, Tallent J, Bennett R, Woodhead A, Goodall S, Thomas K, Howatson G. Etiology and Recovery of Neuromuscular Function Following Academy Soccer Training. Front Physiol 2022; 13:911009. [PMID: 35770192 PMCID: PMC9235147 DOI: 10.3389/fphys.2022.911009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
Aim: To profile the etiology and recovery time-course of neuromuscular function in response to a mixed-content, standard training week in professional academy soccer players. We concurrently examined physical performance, cognitive function, and perceptual measures of mood and wellness states to identify a range of simple tests applied practitioners could use in the field as surrogate measures of neuromuscular function. Methods: Sixteen professional academy soccer players completed a range of neuromuscular, physical, perceptual, mood, and cognitive function tests at baseline and after a strenuous training day (pitch and gym), with retest at 24, 48, and 72 h, and further pitch and gym sessions after 48 h post-baseline. Maximal voluntary contraction force (MVC) and twitch responses to electrical stimulation (femoral nerve) during isometric knee-extensor contractions and at rest were measured to assess central nervous system (voluntary activation, VA) and muscle contractile (potentiated twitch force, Qtw,pot) function. Results: Strenuous training elicited decrements in MVC force post-session (−11%, p = 0.001) that remained unresolved at 72 h (−6%, p = 0.03). Voluntary activation (motor nerve stimulation) was reduced immediately post-training only (−4%, p = 0.03). No change in muscle contractile function (Qtw,pot) was observed post-training, though was reduced at 24 h (−13%, p = 0.01), and had not fully recovered 72 h after (−9%, p = 0.03). Perceptions of wellness were impaired post-training, and recovered by 24 h (sleepiness, energy) and 48 h (fatigue, muscle soreness, readiness to train). Countermovement jump performance declined at 24 h, while RSI (Reactive Strength Index) decrements persisted at 48 h. No changes were evident in adductor squeeze, mood, or cognitive function. Conclusion: Elite youth soccer training elicits substantial decrements in neuromuscular function, which are still present 72 h post-strenuous exercise. Though central processes contribute to post-exercise neuromuscular alterations, the magnitude and prolonged presence of impairments in contractile function indicates it is the restitution of muscular function (peripheral mechanisms) that explains recovery from strenuous training in academy soccer players.
Collapse
Affiliation(s)
- Ciaran Deely
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Queen Park Rangers Football Club, Crane Lodge Road, London, United Kingdom
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, United Kingdom
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Ross Bennett
- Queen Park Rangers Football Club, Crane Lodge Road, London, United Kingdom
| | - Alex Woodhead
- Centre for Applied Performance Sciences, Faculty of Sport, Allied Health and Performance Sciences, St. Mary’s University, Twickenham, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Water Research Group, Faculty of Natural and Agricultural Sciences, North West University, Potchefstroom, South Africa
- *Correspondence: Glyn Howatson,
| |
Collapse
|
50
|
Oliveira J, Casanova N, Gomes JS, Pezarat-Correia P, Freitas S, Vaz JR. Changes in torque complexity and maximal torque after a fatiguing exercise protocol. Sports Biomech 2022:1-13. [PMID: 35485846 DOI: 10.1080/14763141.2022.2067588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Torque outputs exhibit non-random fluctuations in their temporal structure, i.e., complexity. Fatigue has been shown to alter this structure. The torque outputs typically become more regular, resulting in decreased adaptability. Importantly, torque complexity was shown a different recovery pattern after fatigue compared to maximal torque. However, it remains to be understood if these uncoupled patterns of recovery are muscle dependent. In addition, it also remains to be investigated if changes in maximal torque and complexity are correlated. This study investigated (i) the effects of a fatiguing protocol on the complexity and maximal torque from plantar flexors and (ii) the relationship between changes in these two outputs. Ten participants visited the laboratory, and measures were taken at baseline, immediately after, 1 h after and 24 h after the fatiguing protocol. Maximum voluntary contraction, isometric contractions at 30% of maximum and pain pressure threshold were collected. Both legs were assessed, but only one was given the fatiguing protocol. Two-way ANOVAs and correlations were conducted. The fatiguing protocol decreased torque complexity (~35%) and maximal torque (~20%), and they exhibited uncoupled patterns of recovery. Moreover, the correlation analysis showed no correlation between changes in these parameters. These findings support that these parameters are independent of each other.
Collapse
Affiliation(s)
- João Oliveira
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Nuno Casanova
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - João S Gomes
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Sandro Freitas
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - João R Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| |
Collapse
|