1
|
Gorrie D, Bravo M, Fan L. The Yin and Yang of the Natural Product Triptolide and Its Interactions with XPB, an Essential Protein for Gene Expression and DNA Repair. Genes (Basel) 2024; 15:1287. [PMID: 39457411 PMCID: PMC11507457 DOI: 10.3390/genes15101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Triptolide, a bioactive diterpene tri-epoxide extracted from Tripterygium wilfordii Hook F (TWHF), exhibits notable pharmacological activities, including anti-inflammatory, immunosuppressive, antifertility, and anticancer effects. Despite its promising therapeutic potential, clinical applications of triptolide are significantly limited by its poor water solubility and substantial toxicity, particularly hepatotoxicity, nephrotoxicity, and cardiotoxicity. These toxic effects are difficult to separate from many of its desired therapeutic effects, the Yin and Yang of triptolide applications. Triptolide's therapeutic and toxic effects are linked to its inhibitory interactions with XPB, a DNA helicase essential for transcription by RNA polymerase II (RNAPII) and nucleotide excision repair (NER). By irreversibly binding to XPB, triptolide inhibits its ATPase activity, leading to global repression of transcription and impaired NER, which underlies its cytotoxic and antitumor properties. Recent developments, including triptolide prodrugs such as Minnelide and derivatives like glutriptolides, aim to enhance its pharmacokinetic properties and reduce toxicity. This review critically examines triptolide's chemical structure, therapeutic applications, toxicological profile, and molecular interactions with XPB and other protein targets to inform future strategies that maximize therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
| | | | - Li Fan
- Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521, USA; (D.G.); (M.B.)
| |
Collapse
|
2
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
3
|
Aboelez MO, Ezelarab HAA, Alotaibi G, Abouzed DEE. Inflammatory setting, therapeutic strategies targeting some pro-inflammatory cytokines and pathways in mitigating ischemia/reperfusion-induced hepatic injury: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6299-6315. [PMID: 38643452 DOI: 10.1007/s00210-024-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Ischemia/reperfusion injury (IRI) is a key determining agent in the pathophysiology of clinical organ dysfunction. It is characterized by an aseptic local inflammatory reaction due to a decrease in blood supply, hence deprivation of dependent oxygen and nutrients. In instances of liver transplantation, this injury may have irreversible implications, resulting in eventual organ rejection. The deterioration associated with IRI is affected by the hepatic health status and various factors such as alterations in metabolism, oxidative stress, and pro-inflammatory cytokines. The primary cause of inflammation is the initial immune response of pro-inflammatory cytokines, while Kupffer cells (KFCs) and neutrophil-produced chemokines also play a significant role. Upon reperfusion, the activation of inflammatory responses can elicit further cellular damage and organ dysfunction. This review discusses the interplay between chemokines, pro-inflammatory cytokines, and other inflammatory mediators that contribute to the damage to hepatocytes and liver failure in rats following IR. Furthermore, it delves into the impact of anti-inflammatory therapies in safeguarding against liver failure and hepatocellular damage in rats following IR. This review investigates the correlation between cytokine factors and liver dysfunction via examining databases, such as PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minya, 61519, Egypt.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, 11961, Al-Dawadmi, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
4
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Copsel SN, Garrido VT, Barreras H, Bader CS, Pfeiffer B, Mateo-Victoriano B, Wolf D, Gallardo M, Paczesny S, Komanduri KV, Benjamin CL, Villarino AV, Saluja AK, Levy RB. Minnelide suppresses GVHD and enhances survival while maintaining GVT responses. JCI Insight 2024; 9:e165936. [PMID: 38602775 PMCID: PMC11141936 DOI: 10.1172/jci.insight.165936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.
Collapse
Affiliation(s)
| | | | | | | | - Brent Pfeiffer
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Krishna V. Komanduri
- Department of Microbiology and Immunology
- Sylvester Comprehensive Cancer Center
- Department of Medicine, and
| | - Cara L. Benjamin
- Sylvester Comprehensive Cancer Center
- Department of Medicine, and
| | | | - Ashok K. Saluja
- Department of Surgery, and
- Sylvester Comprehensive Cancer Center
| | - Robert B. Levy
- Department of Microbiology and Immunology
- Sylvester Comprehensive Cancer Center
- Department of Ophthalmology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Liang H, Che W, Peng F, Chen H, Xie X, Wu B. Triptolide inhibits esophageal squamous cell carcinoma progression by regulating the circNOX4/miR-153-3p/SATB1 signaling pathway. Thorac Cancer 2024; 15:538-549. [PMID: 38268309 PMCID: PMC10912528 DOI: 10.1111/1759-7714.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To explore the role and mechanism of triptolide in regulating esophageal squamous cell carcinoma (ESCC) progression by mediating the circular RNA (circRNA)-related pathway. METHODS The expression levels of circNOX4, miR-153-3p and special AT-rich sequence binding protein-1 (SATB1) were measured by qRT-PCR. Cell proliferation was confirmed by cell counting kit-8 assay and colony formation assay. Flow cytometry was employed to measure cell apoptosis and cell cycle process. Moreover, cell migration and invasion were detected using transwell assay. The protein levels of epithelial-mesenchymal transformation markers and SATB1 were determined by western blot analysis. Furthermore, dual-luciferase reporter assay and RIP assay were performed to confirm the interaction between miR-153-3p and circNOX4 or SATB1. Xenograft tumor models were built to verify the effects of triptolide and circNOX4 on ESCC tumor growth. RESULTS CircNOX4 was highly expressed in ESCC tissues and cells, and its expression could be reduced by triptolide. Triptolide could inhibit ESCC proliferation, cell cycle process, migration, invasion, EMT process, and promote apoptosis, while these effects were reversed by circNOX4 overexpression. MiR-153-3p could be sponged by circNOX4, and the promotion effect of circNOX4 on the progression of triptolide-treated ESCC cells was abolished by miR-153-3p overexpression. SATB1 was a target of miR-153-3p. Also, SATB1 knockdown reversed the enhancing effect of miR-153-3p inhibitor on the progression of triptolide-treated ESCC cells. Triptolide reduced ESCC tumor growth by regulating the circNOX4/miR-153-3p/SATB1 axis. CONCLUSION Triptolide could hinder ESCC progression, which was mainly achieved by regulating the circNOX4/miR-153-3p/SATB1 axis.
Collapse
Affiliation(s)
- Hanping Liang
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| | - Weibi Che
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| | - Fengyuan Peng
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| | - Huilong Chen
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| | - Xihao Xie
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| | - Bomeng Wu
- Department of thoracic surgeryGaozhou people's HospitalGaozhouChina
| |
Collapse
|
7
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Jiang P, Yao C, Guo DA. Traditional Chinese medicine for the treatment of immune-related nephropathy: A review. Acta Pharm Sin B 2024; 14:38-66. [PMID: 38239236 PMCID: PMC10793104 DOI: 10.1016/j.apsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
Immune-related nephropathy (IRN) refers to immune-response-mediated glomerulonephritis and is the main cause of end-stage renal failure. The pathogenesis of IRN is not fully understood; therefore, treatment is challenging. Traditional Chinese medicines (TCMs) have potent clinical effects in the treatment of the IRN conditions immunoglobulin A nephropathy, lupus nephropathy, and diabetic nephropathy. The underlying mechanisms mainly include its inhibition of inflammation; improvements to renal interstitial fibrosis, oxidative stress, autophagy, apoptosis; and regulation of immunity. In this review, we summarize the clinical symptoms of the three IRN subtypes and the use of TCM prescriptions, herbs, and bioactive compounds in treating IRN, as well as the potential mechanisms, intending to provide a reference for the future study of TCM as IRN treatments.
Collapse
Affiliation(s)
- Pu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
10
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
11
|
Zheng X, Xing Y, Sun K, Jin H, Zhao W, Yu F. Combination Therapy with Resveratrol and Celastrol Using Folic Acid-Functionalized Exosomes Enhances the Therapeutic Efficacy of Sepsis. Adv Healthc Mater 2023; 12:e2301325. [PMID: 37530416 DOI: 10.1002/adhm.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/30/2023] [Indexed: 08/03/2023]
Abstract
Overactivated macrophages are a prominent feature of many inflammatory and autoimmune diseases, including sepsis. Attention and regulation of macrophages activity is of great significance for sepsis treatment. Herein, this study shows that folic acid-functionalized exosomes accumulate in the lung of septic mice and specifically target inflammatory macrophages. Therefore, FA-functionalized exosomes co-loaded with resveratrol (an anti-inflammatory polyphenol) and celastrol (an immunosuppressive pentacyclic triterpenoid; FA-Exo/R+C), which exhibit powerful anti-inflammatory and immunosuppressive activities against LPS-stimulated macrophages in vitro by regulating NF-κB and ERK1/2 signaling pathways, are designed. Encouraged by these positive data, the efficacy of FA-Exo/R+C is systematically investigated in an LPS-induced mouse sepsis model. FA-Exo/R+C shows striking therapeutic benefits in terms of attenuated cytokine storm, reduced acute lung injury, and increased survival of septic mice by inhibiting the inflammation and proliferation of proinflammatory M1 macrophages. Importantly, multiple administrations of FA-Exo/R+C significantly enhance and prolong the protective effect, and resist rechallenge to LPS. Collectively, the strategy of co-delivering drugs combination through functionalized exosomes offers a new avenue for sepsis treatment.
Collapse
Affiliation(s)
- Xue Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Yujie Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Ke Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin, 300350, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| |
Collapse
|
12
|
Ye X, Chen L. Protective role of autophagy in triptolide-induced apoptosis of TM3 Leydig cells. J Transl Int Med 2023; 11:265-274. [PMID: 37662886 PMCID: PMC10474888 DOI: 10.2478/jtim-2021-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Triptolide (TP) is known to impair testicular development and spermatogenesis in mammals, but the mechanism of the side effects still needs to be investigated. The aim of the research is to confirm whether TP can cause autophagy in TM3 Leydig cells and the potential molecular pathway in vitro. Methods TM3 Leydig cells are used to investigate the molecular pathway through Western blot, detection of apoptosis, transmission electron microscopy for autophagosomes and so on. Results The data show that TP treatment resulted in the decreasing of the viability of TM3 cells due to the increased apoptosis. Treated with TP, the formation of autophagosomes, the decrease in P62, and the increase in the conversion of LC3-I to LC3-II suggested the induction of autophagy. The induction of autophagy has accompanied the activation of the mTOR/P70S6K signal pathway. The viability of the TM3 cells was further inhibited when they were co-treated with autophagy inhibitor, chloroquine (CQ). Conclusion All these data suggest that autophagy plays a very important role in antagonizing TM3 cell apoptosis during the TP exposure.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
13
|
Wang K, Zhu K, Zhu Z, Shao F, Qian R, Wang C, Dong H, Li Y, Gao Z, Zhao J. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnology 2023; 21:227. [PMID: 37461079 DOI: 10.1186/s12951-023-01980-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Myocardial infarction (MI) resulting from coronary artery occlusion is the leading global cause of cardiovascular disability and mortality. Anti-inflammatory treatment plays an important role in MI treatment. Triptolide (TPL), as a Chinese medicine monomer, has a variety of biological functions, including anti-inflammatory, anti-tumor, and immunoregulation. However, it has been proved that TPL is poorly water soluble, and has clear hepatotoxicity and nephrotoxicity, which seriously limits its clinical application. Herein, we designed a long-acting hydrogel platform (TPL@PLGA@F127) for MI treatment by intramyocardial injection. First, we found that the inflammatory response and immune regulation might be the main mechanisms of TPL against MI by network pharmacology. Subsequently, we prepared the hydrogel platform (TPL@PLGA@F127) and tested its effects and toxicity on normal organs in the early stage of MI (3 days after MI-operation). The results showed that TPL@PLGA@F127 could not only promote "repair" macrophages polarization (to M2 macrophage) by day 3 after MI, but also has a long-lasting anti-inflammatory effect in the later stage of MI (28 days after MI-operation). Additionally, we proved that TPL@PLGA@F127 could attenuate the toxicity of TPL by releasing it more slowly and stably. Finally, we observed the long-term effects of TPL@PLGA@F127 on MI and found that it could improve cardiac function, depress the myocardial fibrosis and protect the cardiomyocytes. In summary, this study indicated that TPL@PLGA@F127 could not only enhance the therapeutic effects of TPL on MI, but also attenuate the hepatotoxicity and nephrotoxicity, which established a strong foundation for the clinical application of TPL for MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Zhu
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
14
|
Rao Q, Ma G, Li M, Wu H, Zhang Y, Zhang C, Ma Z, Huang L. Targeted delivery of triptolide by dendritic cell-derived exosomes for colitis and rheumatoid arthritis therapy in murine models. Br J Pharmacol 2023; 180:330-346. [PMID: 36156794 DOI: 10.1111/bph.15958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/02/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Triptolide (TP) elicits a beneficial effect in the treatment of autoimmune diseases, such as ulcerative colitis (UC) and rheumatoid arthritis (RA). However, its multiorgan toxicity needs to be resolved. Dendritic cells (DCs) are the primary target of TP, which induces immunosuppression, and DC-derived exosomes (DEX) can selectively enter DCs in vivo. Here, we encapsulated TP with DEX (DEXTP) to generate TP-targeted delivery to reduce toxicity. EXPERIMENTAL APPROACH The effect of DEXTP was evaluated in murine colitis and RA models. Toxicity was examined by haematoxylin and eosin staining and serum biochemical marker detection. Affinity of DEXs for DCs was tracked by fluorescent labelling. The immune environment was evaluated and mimicked in vitro for further analysis of the mechanism. KEY RESULTS DEXTP effectively carried TP to DCs in vivo, and alleviated local inflammation and damage in colitis and RA mice with no obvious toxicity. Additionally, DEXTP reshaped the immune milieu by decreasing CD4+ T-cell levels and increasing regulatory T-cell levels in vivo. Furthermore, consistent T-cell differentiation was observed in vitro, and DC activation was inhibited by alterations in surface factors and secrete cytokines, and by induction of apoptosis or other form of death. CONCLUSIONS AND IMPLICATIONS Encapsulating TP with DEX is a new method that both reduces the toxicity of TP and induces immunosuppression in UC and RA mice. The underlying immune mechanism involves DEXTP targeting DCs in vivo, to inhibit DC activation and induce DC apoptosis, which further induces T-cell immunosuppression.
Collapse
Affiliation(s)
- Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangchao Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yixi Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congen Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luqi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhang PN, Tang JY, Yang KZ, Zheng QY, Dong ZC, Geng YL, Liu YN, Liu WJ. Integrated Network Pharmacology Analysis and Experimental Validation to Investigate the Molecular Mechanism of Triptolide in the Treatment of Membranous Nephropathy. Drug Des Devel Ther 2022; 16:4061-4076. [PMID: 36448035 PMCID: PMC9701458 DOI: 10.2147/dddt.s386031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Triptolide, a major active ingredient isolated from Tripterygium wilfordii Hook f., is effective in the treatment of membranous nephropathy (MN); however, its pharmacological mechanism of action has not yet been clarified. We applied an approach that integrated network pharmacology and experimental validation to systemically reveal the molecular mechanism of triptolide in the treatment of MN. METHODS First, potential targets of triptolide and the MN-related targets were collected from publicly available database. Then, based on a protein-protein interaction network as well as GO and KEGG pathway enrichment analyses, we constructed target-pathway networks to unravel therapeutic targets and pathways. Moreover, molecular docking was applied to validate the interactions between the triptolide and hub targets. Finally, we induced passive Heymann nephritis (PHN) rat models and validated the possible molecular mechanisms of triptolide against MN. RESULTS The network pharmacology results showed that 118 intersected targets were identified for triptolide against MN, including mTOR, STAT3, CASP3, EGFR and AKT1. Based on enrichment analysis, signaling pathways such as PI3K/AKT, MAKP, Ras and Rap1 were involved in triptolide treatment of MN. Furthermore, molecular docking confirmed that triptolide could bind with high affinity to the PIK3R1, AKT1 and mTOR, respectively. Then, in vivo experiments indicated that triptolide can reduce 24 h urine protein (P < 0.01) and protect against renal damage in PHN. Serum albumin level was significantly increased and total cholesterol, triglycerides, and low-density lipoprotein levels were decreased by triptolide (P < 0.05). Compared with PHN group, triptolide treatment regulated the PI3K/AKT/mTOR pathway according to Western blot analyses. CONCLUSION Triptolide could exert antiproteinuric and renoprotective effects in PHN. The therapeutic mechanism of triptolide may be associated with the regulation of PI3K/AKT/mTOR signaling pathway. This study demonstrates the pharmacological mechanism of triptolide in the treatment of MN and provides scientific evidence for basic and clinical research.
Collapse
Affiliation(s)
- Ping Na Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jing Yi Tang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ke Zhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qi Yan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhao Cheng Dong
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yun Ling Geng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu Ning Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Triptolide exposure induces oxidative stress and decrease oocyte quality in mice. Toxicon 2022; 221:106964. [DOI: 10.1016/j.toxicon.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
18
|
Lu L, Peng J, Wan P, Peng H, Lu J, Xiong G. Mechanism of Tripterygium wilfordii Hook.F.- Trichosanthes kirilowii Maxim decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking. Front Pharmacol 2022; 13:940773. [PMID: 36386135 PMCID: PMC9650488 DOI: 10.3389/fphar.2022.940773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease. The effective treatment of DKD would rely on the incorporation of a multi-disciplinary. Studies have shown that Tripterygium wilfordii Hook.F. and Trichosanthes kirilowii Maxim have remarkable curative effects in treating DKD, but their combination mechanism has not been fully elucidated. Methods: We explored the mechanism of Tripterygium wilfordii Hook.F.-Trichosanthes kirilowii Maxim decoction (Leigongteng-Tianhuafen Decoction,LTD) in the treatment of DKD by network pharmacology and molecular docking. The main active components and action targets of LTD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of DKD were obtained from GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. Then, an herb-component-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein-protein interaction (PPI) network was constructed to identify hub targets of DKD. The gene ontology (GO) function enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed by RStudio. Finally, molecular docking was performed by AutoDock Vina and PyMOL software to explore the interaction between compounds and targets. Furthermore, the DKD model of human renal tubular cells (HK-2) induced by high glucose (HG) was selected, and the predicted results were verified by western blot analysis and immunofluorescence. Results: A total of 31 active components of LTD were screened out, and 196 targets were identified based on the TCMSP database. A total of 3,481 DKD related targets were obtained based on GeneCards, DisGeNET, and OMIM databases. GO function enrichment analysis included 2,143, 50, and 167 GO terms for biological processes (BPs), cellular composition (CCs), and molecular functions (MFs), respectively. The top 10 enrichment items of BP annotations included response to lipopolysaccharide, response to molecule of bacterial origin, response to extracellular stimulus, etc. CC was mainly enriched in membrane raft, membrane microdomain, plasma membrane raft, etc. The MF of LTD analysis on DKD was predominately involved in nuclear receptor activity, ligand-activated transcription factor activity, RNA polymerase II-specific DNA-binding transcription factor binding, etc. The involvement signaling pathway of LTD in the treatment of DKD included AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, insulin resistance, TNF signaling pathway, etc. Molecular docking results showed that kaempferol, triptolide, nobiletin, and schottenol had a strong binding ability to PTGS2 and RELA. Furthermore, the in vitro experiments confirmed that LTD effectively decreased the expression of PTGS2, NF-κB, JNK, and AKT in the HG-induced DKD model. Conclusion: The findings of this study revealed that the therapeutic efficacy of LTD on DKD might be achieved by decreasing the expression of PTGS2, NF-κB, JNK, and AKT, which might improve insulin resistance, inflammation, and oxidative stress. These findings can provide ideas and supply potential therapeutic targets for DKD.
Collapse
Affiliation(s)
- Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Peijun Wan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hongcheng Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Jiandong Lu, ; Guoliang Xiong,
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Jiandong Lu, ; Guoliang Xiong,
| |
Collapse
|
19
|
Zhang Y, Zhang F, Gao Y, Wang M, Gao Y, Li H, Sun J, Wen C, Xie Z. Triptolide in the treatment of systemic lupus erythematosus - regulatory effects on miR-146a in B cell TLR7 signaling pathway in mice. Front Pharmacol 2022; 13:952775. [PMID: 36210830 PMCID: PMC9539794 DOI: 10.3389/fphar.2022.952775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To clarify the mechanism of triptolide (TP) in alleviating the conditions underlying SLE. Methods: Eight-week-old MRL/lpr mice were randomly divided into a model group (n = 5), low-dose TP (TP-L) group (n = 5), and high-dose TP (TP-H) group (n = 5). Mice in these groups were gavaged with normal saline, low-dose TP solution, and high-dose TP solution for 8 weeks, respectively. The expression levels of anti-dsDNA, IgG, IgM, IgA, C3, C4, and CREA, BUN, ALT, AST, ALB, and ALP indexes in the serum of mice were detected. The proportion of CD19+CD138+B220− cells in the spleen and the pathological changes of kidney tissue in the mice were also evaluated. The possible signaling pathways and microRNA (miRNA) targets of TP in the treatment of SLE were analyzed using network pharmacology. The expressions of TLR7 mRNA and miR-146a in Raji cells (a B lymphocyte line) were detected using qPCR before and after intervention with a miR-146a inhibitor. The protein expression levels of TLR7, MyD88, p-IRAK1, and p-NF-κBp65 were detected using western blot analysis. Results: TP could significantly decrease the levels of ds-DNA and IgG, alleviate pathological injury in renal tissue, and upregulate miR-146a expression in the B cells of MRL/lpr mice without obvious liver and kidney toxicity. Network pharmacology analysis showed that TP could mainly regulate the Toll-like receptor signaling pathway, and NF-κB signaling pathway, among others. miRNA target prediction suggested that TP could regulate miRNAs such as miR-146a. In vitro cell experiments further confirmed that TP could significantly upregulate miR-146a expression and downregulate the expression of TLR7 mRNA and protein levels TLR7, MyD88, p-IRAK1, and p-NF-κBp65. After intervention with a miR-146a inhibitor, TP had no obvious inhibitory effects on TLR7, MyD88, p-IRAK1, and p-NF-κBp65 expression. Conclusion: TP may exert therapeutic effects on SLE by regulating miR-146a expression, inhibiting the TLR7/NF-κB signaling pathway, and affecting B cell activation.
Collapse
Affiliation(s)
- Yi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - FengQi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - YiNi Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - MeiJiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - HaiChang Li
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ChengPing Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| | - ZhiJun Xie
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| |
Collapse
|
20
|
Li C, Zhang C, Zhu C, Zhang J, Xia Q, Liu K, Zhang Y. Inflammation aggravated the hepatotoxicity of triptolide by oxidative stress, lipid metabolism disorder, autophagy, and apoptosis in zebrafish. Front Pharmacol 2022; 13:949312. [PMID: 36110530 PMCID: PMC9468416 DOI: 10.3389/fphar.2022.949312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Triptolide is a major compound isolated from the Tripterygium wilfordii Hook that is mainly used for the treatment of autoimmune disorders and inflammatory diseases. Though triptolide-induced hepatotoxicity has been widely reported, the hepatic effects when the patients are in an inflammatory state are not clear. In this study, we used low-dose Lipopolysaccharides (LPS) to disrupt the inflammation homeostasis in the liver of zebrafish and explored the hepatotoxicity of triptolide under an inflammatory state. Compared with the Triptolide group, LPS-Triptolide cotreatment exacerbate the liver injury with a remarkable decrease of liver size and liver-specific fluorescence intensity, accompanied by significant elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Liver cell damages were further demonstrated by histological staining and scanning electron microscopy observation. Lipid metabolism was severely impaired as indicated by delayed yolk sac absorption, accumulated triglycerides in the liver, and dysregulation of the related genes, such as ppar-α, cpt-1, mgst, srebf1/2, and fasn. Oxidative stress could be involved in the molecular mechanism as the Nrf2/keap1 antioxidant pathways were down-regulated when the zebrafish in an inflammatory state. Moreover, the expression of autophagy-related genes such as beclin, atg5, map1lc3b, and atg3 was also dysregulated. Finally, apoptosis was significantly induced in responses to LPS-Triptolide co-treatment. We speculate that triptolide could exacerbate the immune response and impair lipid metabolism, resulting in enhanced sensitivity of the zebrafish liver to triptolide-induced toxic effects through disruption of the antioxidant system and induction of apoptosis.
Collapse
Affiliation(s)
- Chenqinyao Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Changqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- *Correspondence: Yun Zhang,
| |
Collapse
|
21
|
Comprehensive Evaluation of the Quality of Tripterygium Glycosides Tablets Based on Multi-Component Quantification Combined with an In Vitro Biological Assay. Molecules 2022; 27:molecules27165102. [PMID: 36014337 PMCID: PMC9416487 DOI: 10.3390/molecules27165102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Tripterygium glycosides tablets (TGTs) are widely used in clinical practice to treat rheumatoid arthritis and other autoimmune diseases, with significant beneficial effects but also high toxicity, necessitating rigorous quality evaluation and control. In current study, a rapid resolution liquid chromatography tandem electrospray ionization triple quadrupole mass spectrometry (RRLC–ESI–MS/MS) method was developed and validated for the quantitative analysis of 14 components of ten batches of TGTs produced by different manufacturers, including four diterpenoids, three triterpenoids, and seven sesquiterpene alkaloids. Meanwhile, the NO inhibition effects of these TGTs were evaluated in LPS-induced RAW264.7 cells for their downstream anti-inflammatory activities, as well as their cytotoxicity. The results indicate that the TGTs from different manufacturers showed poor quality consistency, as evidenced by large variations in chemical profiles and biological effects, which may increase the risks associated with clinical use. To improve the quality status of TGTs, it is crucial to identify indicator components whose characterization can accurately reflect the efficacy and toxicity of TGTs from which they were derived. Our study reveals that triptolide, triptoquinone B, celastrol, and demethylzelaysteral considerably contributed to the anti-inflammatory activity and/or cytotoxicity of TGTs, implying that they should be further investigated as candidate indicator components for TGT quality control.
Collapse
|
22
|
Cheng C, Li G, Zheng G, Yu C. Design and synthesis of cinnamic acid triptolide ester derivatives as potent antitumor agents and their biological evaluation. Bioorg Med Chem Lett 2022; 67:128760. [PMID: 35476958 DOI: 10.1016/j.bmcl.2022.128760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
A series of novel cinnamic acid triptolide ester derivatives were synthesized, and their growth inhibitory properties against human hepatoma HepG2 cells were assessed as the measure of cytotoxicity with triptolide as the positive control. One of the phenolic hydroxyl phosphorylated products, CL20 was found to possess the best cytotoxicity and surpassed the parent natural triptolide, suggesting that compound CL20 is a promising antitumor lead compound and deserves further research of pharmacological activity. In addition, the structure-activity relationship for these compounds was also investigated.
Collapse
Affiliation(s)
- Chenglong Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gudong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guojun Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
23
|
Design, synthesis of novel triptolide-glucose conjugates targeting glucose Transporter-1 and their selective antitumor effect. Eur J Med Chem 2022; 238:114463. [PMID: 35617856 DOI: 10.1016/j.ejmech.2022.114463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Six positional isomers of triptolide-glucose conjugates (TG1α, TG1β, TG2, TG3, TG4 and TG6) were designed and synthesized. These conjugates exhibited better water solubility, and had selective cytotoxicity between tumor cells with high expression of glucose transport-1 (Glut-1) and non-tumor cells with low expression of Glut-1, in which TG2 formed by triptolide (TPL) and d-glucose C2-OH had the strongest cytotoxicity to tumor cells and lowest toxicity in non-tumor cells, therefore the highest relative therapeutic index, which was 5.7 times that of triptolide and consequent the most powerful selective antitumor activity in vitro. The cytotoxicity of TG2 was highly correlated with Glut-1 function. As a prodrug of triptolide, TG2 could promote RNA Pol II degradation and induce apoptosis as TPL does. TG2 had a stronger dose-dependent antitumor effect in vivo than TPL and no adverse reaction occurred when its tumor inhibition was higher than 90%, which was associated with its selective distribution in tumor tissues. TG2 could be used as a promising drug candidate for the treatment of solid tumors with high expression of Glut-1, which is worthy of further study.
Collapse
|
24
|
He Q, Dong H, Gong M, Guo Y, Xia Q, Gong J, Lu F. New Therapeutic Horizon of Graves' Hyperthyroidism: Treatment Regimens Based on Immunology and Ingredients From Traditional Chinese Medicine. Front Pharmacol 2022; 13:862831. [PMID: 35462920 PMCID: PMC9020194 DOI: 10.3389/fphar.2022.862831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Graves’ disease is an autoimmune disease characterized by goiter and hyperthyroidism, and 25% patients develop GO. Traditional treatment options, such as antithyroid drugs, radioiodine or thyroidectomy, have remained largely unchanged over the past 70 years. For many patients, there is a high rate of recurrence after antithyroid drugs and lifelong hypothyroidism after ablation and thyroidectomy. The symptoms and quality of life of some patients have not been effectively improved. The clinical demand for new therapeutic regimens, coupled with a deeper understanding of the pathophysiology and immunobiology of Graves’ disease, has led to the emergence of several new therapeutic ideas, including biologics, small molecule peptides, immunomodulators and teprotumumab, a specific antibody targeting IGF-1R. Besides, the elements of TCM have attracted more and more interests in modern medicine, because some effective components have been successfully used in the treatment of autoimmune diseases. Based on the pathophysiology and efficacy of clinical management and treatment in Graves’ hyperthyroidism, here we review the new strategies under investigation and summarize the effective components of traditional Chinese medicine used for Graves’ hyperthyroidism, and explore their mechanisms. These therapies have opened a new window for the treatment of Graves’ disease, but the exact mechanism and the research direction still need to be further explored.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Xiao L, Xiao W, Zhan F. Targets of Tripterygium glycosides in systemic lupus erythematosus treatment: A network-pharmacology study. Lupus 2022; 31:319-329. [PMID: 35067081 DOI: 10.1177/09612033221076725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to explore the underlying mechanism of Tripterygium glycosides (TGs) in treating systemic lupus erythematosus (SLE) through network-pharmacology approach. METHODS The protein targets of TGs' three active ingredients (triptolide, tripterine, and wilforlide) and SLE were identified by database search. Then, the intersection of the two groups was studied. The drug-target network between the active ingredients of TGs and the overlapping genes was constructed, visualized, and analyzed with Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed to analyze these genes. Finally, we validated our predictions of the potential targets through docking study. RESULTS A total of 55 overlapping genes were discovered. Results suggested that the TGs' mechanism in SLE treatment was associated with heat shock protein family A member 5, heat shock protein family A member 8, eukaryotic translation elongation factor 1 alpha 1, and so forth with their related 4042 gene network, which regulated ribosome, spliceosome, viral carcinogenesis, Epstein-Barr virus infection signaling, and so forth. Molecular-docking analysis proved that hydrogen bonding was the main form of interaction. CONCLUSIONS Our research provided the protein targets affected by TGs in SLE treatment. The key targets (CASP3, MAPK1, HIF1A, and so forth) involving 4042 proteins became the multitarget mechanism of TGs in SLE treatment.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Wei Xiao
- Department of Respiratory, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| | - Feng Zhan
- Department of Rheumatology, 26496Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, China
| |
Collapse
|
26
|
Ren L, Wan R, Chen Z, Huo L, Zhu M, Yang Y, Chen Q, Zhang X, Wang X. Triptolide Alleviates Podocyte Epithelial-Mesenchymal Transition via Kindlin-2 and EMT-Related TGF-β/Smad Signaling Pathway in Diabetic Kidney Disease. Appl Biochem Biotechnol 2022; 194:1000-1012. [PMID: 34596829 DOI: 10.1007/s12010-021-03661-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Diabetes-induced chronic kidney diseases are widespread and decrease the quality of life for millions of affected individuals in China. To date, no therapies effectively alleviate these conditions. Triptolide, a traditionally used Chinese medicine, has shown promise in treating renal diseases. Here, the study aimed to decipher the exact mechanism by which it functions. It was hypothesized that triptolide might prevent the epithelial-mesenchymal transition (EMT) of podocytes by activating the kindlin-2 and TGF-β/Smad pathways. Triptolide or telmisartan was intragastrically administered to 9-week-old db/db and dm/dm mice with diabetic nephropathy (DN) for 12 weeks. In addition, biochemical parameters and body weight were detected. WT-1, nephrin, podocin, E-cadherin, and α-SMA were determined by immunohistochemistry in the renal tissues of treated mice. Protein and mRNA expression of podocyte EMT markers, kindlin-2 and TGF-β/Smad, were analyzed to elucidate the underlying mechanism. It was observed that triptolide treatment relieved structural injuries and functional variations in diabetic mice. It also increased the protein and mRNA levels of nephrin, podocin, and E-cadherin and decreased the expression of α-SMA in diabetic mice. The protein and mRNA expressions of TGF-β1, p-SMAD3, and kindlin-2 decreased in diabetic kidneys following triptolide treatment. The findings demonstrated that triptolide might protect podocytes during DN by inhibiting podocyte EMT through inactivation of kindlin-2, combined with the downregulation of P-SMAD3 in the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Lingyan Ren
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Renrui Wan
- Department of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Zheng Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Lixia Huo
- Department of Central Laboratory, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Ming Zhu
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yong Yang
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Qi Chen
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Xiaolan Zhang
- Department of Pathology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Xiaoyi Wang
- Department of Nephrology, the First Affiliated Hospital of Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, Zhejiang, 313000, People's Republic of China.
| |
Collapse
|
27
|
Adessi TG, Ana Y, Stempin CC, García MC, Bisogno FR, Nicotra VE, García ME. Psilostachyins as trypanocidal compounds: Bioguided fractionation of Ambrosia tenuifolia chemically modified extract. PHYTOCHEMISTRY 2022; 194:113014. [PMID: 34798411 DOI: 10.1016/j.phytochem.2021.113014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This work focusses on the chemical diversification of an Ambrosia tenuifolia extract and its bioguided fractionation, aiming to unveil the chemical entity responsible for the trypanocidal activity. Besides, a revision of the phytochemical study of this species, based on previous reports of the antiparasitic psilostachyins A and C as main compounds, was conducted. To improve the biological properties of a plant extract through a simple chemical reaction, the oxidative diversification of the dichloromethane extract of this plant species was carried out. A bioguided fractionation of a chemically modified extract was performed by evaluating the inhibitory activity against Trypanosoma cruzi trypomastigotes. This experiment led to the isolation of one of the most active compounds. In general terms, epoxidized metabolites were obtained as a result of the oxidation of the major metabolite of the species. The trypanocidal activity of some tested metabolites overperformed the reference drug, benznidazole, displaying no cytotoxicity at trypanocidal concentrations. Key structure-activity relationships were obtained for designing previously undescribed antiparasitic sesquiterpene lactones.
Collapse
Affiliation(s)
- Tonino G Adessi
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Yamile Ana
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Cinthia C Stempin
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Mónica C García
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, (UNITEFA-CONICET), Córdoba, Argentina
| | - Fabricio R Bisogno
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Córdoba, Argentina
| | - Viviana E Nicotra
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Manuela E García
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, X5000HUA, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
28
|
Radiosensitizing Effect of Celastrol by Inhibiting G2/M Phase Arrest Induced by the c-myc Gene of Human SW1353 Chondrosarcoma Cells: Network and Experimental Analyses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1948657. [PMID: 35141331 PMCID: PMC8820907 DOI: 10.1155/2022/1948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022]
Abstract
Objective Studies have unveiled that the components of Tripterygium wilfordii Hook F (TWHF) such as celastrol could attenuate apoptosis and proliferation of various tumor cells. This study is focused on the radiosensitization effect and apoptotic pathways of celastrol via the inhibition of the c-myc gene and the influence of which combined with radiotherapy on the proliferation, apoptosis, invasion, and metastasis of chondrosarcoma cells. Methods A variety of bioinformatic tools were applied to explore the expression level and prognosis of the c-myc gene in different tumor cells and chondrosarcoma cells. We used pharmacology network to analyze the components, pathways, targets, molecular functions of TWHF and explore the relevant effective components over the MYC gene. Clone formation assay, CCK-8 assay, flow cytometry, and transwell migration assay were applied to detect the effects of celastrol on the expression of c-myc gene, cell apoptosis, and cell cycle. Radiation therapy was used to observe the radiosensitization effect of celastrol on chondrosarcoma. Results This study shows that the c-myc gene is overexpressed in various tumor cells and bone tumor cells to varying degrees. Celastrol can significantly inhibit the expression of the c-myc gene, induce G2/M phase arrest through regulation of G2/M phase-related proteins, and promote SW1353 cell apoptosis through the mitochondrial signaling pathway. In addition, we also found that the use of triptorubin to inhibit c-myc gene expression in combination with radiotherapy can increase the osteosarcoma cells' apoptosis rate through the mitochondrial signaling pathway significantly. Conclusions Our study validated the radiosensitization effect of celastrol through knocking down the expression of the c-myc gene to induce G2/M phase arrest and provides a new idea for the treatment of refractory or recurrent chondrosarcoma that is not sensitive to radiotherapy.
Collapse
|
29
|
Xi L, Lin Z, Qiu F, Chen S, Li P, Chen X, Wang Z, Zheng Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm Sin B 2022; 12:339-352. [PMID: 35127390 PMCID: PMC8808595 DOI: 10.1016/j.apsb.2021.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Psoriasis is an autoimmune skin disease in which dendritic cells (DCs) trigger the progression of psoriasis by complex interactions with keratinocytes and other immune cells. In the present study, we aimed to load celastrol, an anti-inflammatory ingredient isolated from Chinese herbs, on mannosylated liposomes to enhance DC uptake as well as to induce DC tolerance in an imiquimod-induced psoriasis-like mouse model. Mannose was grafted onto liposomes to target mannose receptors on DCs. The results demonstrated that compared with unmodified liposomes, DCs preferred to take up more fluorescence-labeled mannosylated liposomes. After loading celastrol into mannose-modified liposomes, they effectively inhibited the expression of maturation markers, including CD80, CD86 and MHC-II, on DCs both in vitro and in vivo. Additionally, after intradermal injection with a microneedle, celastrol-loaded mannose-modified liposomes (CEL-MAN-LPs) achieved a superior therapeutic effect compared with free drug and celastrol-loaded unmodified liposomes in the psoriasis mouse model in terms of the psoriasis area and severity index, histology evaluation, spleen weight, and expression of inflammatory cytokines. In conclusion, our results clearly revealed that CEL-MAN-LPs was an effective formulation for psoriasis treatment and suggested that this treatment has the potential to be applied to other inflammatory diseases triggered by activated DCs.
Collapse
|
30
|
Lu J, Wu W, Zhang M, Wang P, Niu M, Yang X. Wells Syndrome Successfully Treated with Tripterygium Glycosides. Clin Cosmet Investig Dermatol 2021; 14:1029-1031. [PMID: 34466011 PMCID: PMC8402950 DOI: 10.2147/ccid.s328578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
Wells syndrome (WS), also known as eosinophilic cellulitis, is a rare inflammatory dermatosis of unknown etiology that typically presents with pruritic cellulitis-like plaques. The first line treatment options for WS are topical or systemic corticosteroids, however, the development of side effects of systemic corticosteroids usually led to a switch to the second line therapy. Here, we reported a rare case of facial Wells syndrome misdiagnosed with bacterial cellulitis. A 26-year-old female presented with a one-week history of erythematous, edematous and blushing plaques partially covered by bullae. A skin biopsy revealed diffuse infiltration of eosinophils in the entire dermis and “flame figures” compatible with WS. Initially, the patient was successfully treated with methylprednisolone. However, three month later, the disease relapsed. Because of weight gain and centripetal obesity, the patient refused to oral administration of methylprednisolone. Traditional Chinese Medicine tripterygium glycosides (TG) 60mg/day was prescribed and the lesions completely resolved after 4 weeks without any recurrence. Our case suggests that tripterygium glycosides may be a safe and effective treatment option for Wells syndrome.
Collapse
Affiliation(s)
- Jiejie Lu
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| | - Weiwei Wu
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| | - Ming Zhang
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| | - Ping Wang
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| | - Mu Niu
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| | - Xianxu Yang
- Department of Dermatology, The Fifth People's Hospital of Hainan Province, Branch of National Clinical Research Center for Skin and Immune Disease, Haikou, Hainan, People's Republic of China
| |
Collapse
|
31
|
Qiu H, Zhang X, Yu H, Gao R, Shi J, Shen T. Identification of potential targets of triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics. Bioengineered 2021; 12:4304-4319. [PMID: 34348580 PMCID: PMC8806726 DOI: 10.1080/21655979.2021.1945522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify potential pharmacological targets of triptolide regulating the tumor microenvironment (TME) of stomach adenocarcinoma (STAD) patients. A total of 343 STAD cases from The Cancer Genome Atlas (TCGA) were assigned into high- or low-score groups applying Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE). Hub genes were identified from differentially expressed genes (DEGs) shared by stromal- and immune-related components in the TME of STAD patients using R software. Cox regression analysis was used to identify genes significantly correlated with STAD patient survival. Triptolide target genes were predicted from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Top 30 genes filtered by Cytohubba from 734 DEGs were screened as hub genes. Forty-two genes were found to be at high risk for STAD prognosis. Thirty-four targets of triptolide were predicted using the TCMSP database. Importantly, C-X-C chemokine receptor type 4 (CXCR4) was identified as a potential target of triptolide associated with the TME in STAD. Analysis of survival highlighted the association between CXCR4 upregulation with STAD progression and poor prognosis. Gene Set Enrichment Analysis (GSEA) confirmed that genes in the CXCR4- upregulated group had significant enrichment in immune-linked pathways. Additionally, triptolide targets were found to be significantly enriched in CXCR4-related chemokine and cancer-related p53 signaling pathways. Molecular docking demonstrated a high affinity between triptolide and CXCR4. In conclusion, CXCR4 may be a therapeutic target of triptolide in the treatment of STAD patients by modulating the TME.
Collapse
Affiliation(s)
- Hairong Qiu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianglong Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Guo B, Qiao F, Liao Y, Song L, He J. Triptolide laden reduced graphene oxide transdermal hydrogel to manage knee arthritis: in vitro and in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1288-1300. [PMID: 33797338 DOI: 10.1080/09205063.2021.1912976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Triptolide (extract of herb Tripterygium wilfordii) is widely used in rheumatoid arthritis due to its potent immunosuppressant effect. The marketed oral (tablet dosage forms) and parenteral injections have short duration of action (half-life = 38 min) and not limited to multiorgan toxicity, which restrict the use of triptolide in clinical practice. In this study, a triptolide-loaded Pluronic® F68-reduced graphene oxide transdermal (non-invasive) hydrogel was developed to achieve sustained release of triptolide. Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic® F68-reduced graphene oxide. Transmission electron microscopy showed flat wrinkled-nanosheets. The developed hydrogel showed desirable viscosity (11,261-11,365 cps), adhesiveness (0.25 mJ), hardness (6.5 g), and cohesiveness (1.85) for transdermal application. The ex vivo release study demonstrated the ability of the Pluronic® F68-reduced graphene oxide hydrogel to prolong release up to 14 h (63.64-96.78%), owing to the strong π-π interactions between the graphene oxide and the triptolide. The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the relative bioavailability (3.3-fold) with Pluronic® F68-reduced graphene oxide hydrogel in comparison to the control hydrogel without reduced graphene oxide. The anti-rheumatoid efficacy model suggest the potential application of Pluronic® F68-reduced graphene oxide hydrogel to treat knee rheumatoid arthritis (70-75% resolution) to substitute tablets and parenteral injections.
Collapse
Affiliation(s)
- Binghua Guo
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Feng Qiao
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Yonghua Liao
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| | - Lianjin Song
- Department of Traditional Chinese Medicine, High-Tech Hospital, Xi'an, Shaanxi, China
| | - Jinlong He
- Department of Orthopedics combined TCM with Western Medicine, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
34
|
Ye X, Zhao H, Liu J, Lu B, Shao J, Wang J. Efficacy and safety of tripterygium glycosides for active moderate to severe Graves' ophthalmopathy: a randomised, observer-masked, single-centre trial. Eur J Endocrinol 2021; 184:277-287. [PMID: 33539318 PMCID: PMC7849376 DOI: 10.1530/eje-20-0857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Tripterygium glycosides (TG) has been used to treat a spectrum of inflammatory and autoimmune diseases. Our preliminary studies have shown that TG is effective in the treatment of active Graves' ophthalmopathy (GO). OBJECTIVE We aimed to compare the efficacy and tolerability of TG with intravenous methylprednisolone (iv.MP) in patients with active moderate-to-severe GO. METHODS This study was an observer-masked, single-centre, block-randomised trial. Patients with active moderate-to-severe GO were randomly assigned to receive iv.MP (500 mg once per week for 6 weeks followed by 250 mg per week for 6 weeks) or with TG (20 mg tablet three times per day for 24 weeks). The primary endpoints were the overall response rate and the patients' quality of life at 12 and 24 weeks. RESULTS In this study, 161 patients were enrolled and randomised from 2015 to 2019. A total of 79 were randomly assigned to receive iv.MP and 82 to receive TG. A greater overall response rate was found in the TG group compared with the iv.MP group at week 24 (90.2% vs 68.4%, P = 0.000). Similarly, the patients' quality of life of the TG group showed a significantly higher response than the iv.MP group at week 24 (89.02% vs 72.15%, P = 0.001). The TG therapy showed a better CAS response than the iv.MP (91.5% vs 70.9% improved, P < 0.05), and up to 91.2% of patients were inactive. Also, the TG group showed a significantly higher improved rate of diplopia, proptosis, visual acuity, soft tissue involved and the decrease of eye muscle motility than the iv.MP group at week 24. Significantly more patients in the iv.MP group than the TG group experienced adverse events. CONCLUSION Compared with iv.MP treatment, TG therapy is more effective and safer for patients with active moderate to severe GO.
Collapse
Affiliation(s)
- Xiaozhen Ye
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical College of Nanjing University
| | - Heng Zhao
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical College of Nanjing University
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical College of Nanjing University
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical College of Nanjing University
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical College of Nanjing University
- Correspondence should be addressed to J Shao or J Wang; or
| | - Jian Wang
- Department of Endocrinology, Taikang Xianlin Drum Tower Hospital, Nanjing, Jiangsu Province, China
- Correspondence should be addressed to J Shao or J Wang; or
| |
Collapse
|
35
|
Pei YQ, Zheng YQ, Ding YD, Xu QX, Cao D, Wu YN, Wang R, Yang JX, Liang J, Ma Q, Ge HL. Triptolide Attenuates Vascular Calcification by Upregulating Expression of miRNA-204. Front Pharmacol 2021; 11:581230. [PMID: 33597871 PMCID: PMC7883594 DOI: 10.3389/fphar.2020.581230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
Background: Triptolide (TP), a naturally derived compound from Tripterygium wilfordii, has been proven effective in protecting against cardiovascular system, but the molecular mechanisms underlying its protective effects are poorly understood. In the current study, we sought to test the potential protective role of TP in the regulation of vascular calcification in a rat model and explore whether TP attenuates medial vascular calcification by upregulating miRNA-204. Methods: Vitamin D3 plus nicotine (VDN) was used to induce a vascular calcification (VC) model of rat aorta. Von Kossa and Hematoxylin-Eosin staining were applied to assess the degree of calcification of rat aortas. Calcium content and alkaline phosphatase activity were measured. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was applied to quantify miRNA-204 expression. The localization of runt-related transcription factor-2 (RUNX2) and bone morphogenetic protein-2 (BMP2) expressions were detected by immunohistochemistry and western blotting. Results: Administration of TP greatly reduced vascular calcification in a dose-dependent manner compared with VC controls. The increase in ALP activity and calcium content was ameliorated by TP. Moreover, protein expression levels of BMP2 and RUNX2 were significantly reduced in calcified aortas. MiRNA-204 expression was increased in the TP-treated groups compared with VC controls and the effects of TP were reversed by the intravenous injection of miRNA-204-interfering lentivirus. However, the miRNA-204-overexpressing lentivirus had no additional effects on ALP activity, calcium content, BMP2 and RUNX2 expressions compared with those from TP group. Conclusion: TP inhibited BMP2 and RUNX2 expression and attenuated vascular calcification via upregulating the level of miRNA-204. TP appears to be a potential new therapeutic option for treating vascular calcification.
Collapse
Affiliation(s)
- Yu-Qiang Pei
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong-Qiu Zheng
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Yao-Dong Ding
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Qi-Xiang Xu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Di Cao
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Ya-Ning Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia-Xin Yang
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Jing Liang
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Qian Ma
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Hai-Long Ge
- Drug Research and Development Center, School of Pharmacy, Third-Grade Pharmacology Laboratory of State, Administration of Traditional Chinese Medicine, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| |
Collapse
|
36
|
Alimohammadi N, Koosha F, Rafeian-Kopaei M. Current, New and Future Therapeutic Targets in Inflammatory Bowel Disease: A Systematic Review. Curr Pharm Des 2020; 26:2668-2675. [PMID: 32250220 DOI: 10.2174/1381612826666200406081920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic relapsing conditions resulting from immune system activity in a genetically predisposed individual. IBD is based on progressive damage to the inflamed gut tissue. As its pathogenesis remains unknown, recent accumulating data have demonstrated that IBD is a complex and multi-factorial disorder correlated with host luminal factors, which lead to an imbalance between pro- and anti-inflammatory signaling. The growing understanding of the molecular mechanisms responsible for IBD has suggested a wide range of potential therapeutic targets to treat this condition. Some patients do not have a satisfactory response to current therapeutic medications such as antitumor necrosis factor (TNF) agents, or their response decreases over time. As a result, IBD therapeutics have been changed recently, with several new agents being evaluated. The identification of various inflammatory cascades has led to forming the idea to have novel medications developed. Medications targeting Janus kinases (JAK), leukocyte trafficking Interleukin (IL) 12/23, and Sphingosine 1 phosphate (S1P) are among these newly developed medications and highlight the role of microbial-host interaction in inflammation as a safe promising strategy. This systematic review aims to summarize different molecular targeting therapeutics, the most potent candidates for IBD treatment in recent studies.
Collapse
Affiliation(s)
- Niloufar Alimohammadi
- Department of Medicine, New York University School of Medicine, New York, New York, United States
| | - Farzad Koosha
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York at Stony Brook, New York, United States
| | - Mahmoud Rafeian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahre-kord University of Medical Sciences, Shahre-kord, Iran
| |
Collapse
|
37
|
Liu HJ, Wang M, Hu X, Shi S, Xu P. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003398. [PMID: 32797711 PMCID: PMC7983299 DOI: 10.1002/smll.202003398] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Indexed: 05/30/2023]
Abstract
Photothermal therapy (PTT) has attracted tremendous attention due to its noninvasiveness and localized treatment advantages. However, heat shock proteins (HSPs) associated self-preservation mechanisms bestow cancer cells thermoresistance to protect them from the damage of PTT. To minimize the thermoresistance of cancer cells and improve the efficacy of PTT, an integrated on-demand nanoplatform composed of a photothermal conversion core (gold nanorod, GNR), a cargo of a HSPs inhibitor (triptolide, TPL), a mesoporous silica based nanoreservoir, and a photothermal and redox di-responsive polymer shell is developed. The nanoplatform can be enriched in the tumor site, and internalized into cancer cells, releasing the encapsulated TPL under the trigger of intracellular elevated glutathione and near-infrared laser irradiation. Ultimately, the liberated TPL could diminish thermoresistance of cancer cells by antagonizing the PTT induced heat shock response via multiple mechanisms to maximize the PTT effect for cancer treatment.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| |
Collapse
|
38
|
The effectiveness of treatments for patients with SAPHO syndrome: a follow-up study of 24 cases from a single center and review of literature. Clin Rheumatol 2020; 40:1131-1139. [PMID: 32789818 DOI: 10.1007/s10067-020-05322-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate the effectiveness of current treatments for SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis) by delineating the therapeutic choices and the outcome of patients in a medical center of China and review of the literature. METHOD An observational study was performed on patients diagnosed as SAPHO syndrome in the Peking University First Hospital from 2009 to 2015. Clinical data including osteoarticular and cutaneous manifestations, laboratory and medical imaging findings, treatments, and outcomes were analyzed retrospectively. A literature detailing the usage of medicines and SAPHO syndrome patient responses to treatment were selected. RESULTS Clinical data of 24 patients were analyzed in this study. The mean age was 42.4 ± 15.5 years old at the time of diagnosis. Of a total of 17 patients that received the combination treatments of NSAIDs and DMARDs, 15 of them experienced an improvement in their symptoms. Bisphosphonates were given to 18 patients. Four patients were treated with TNF blockers, and one of them had adalimumab ineffective and then improved by add-on of DMARDs. The mean follow-up period was 2.5 years. Twenty-one patients (87.5%) had a favorable outcome and exhibited improved disease condition in the last follow-up. CONCLUSIONS The majority of patients with SAPHO syndrome respond well to combination therapy of NSAIDs, DMARDs, and bisphosphonates. TNF blockers are effective in a patient refractory to NSAID and DMARDs. However, in case TNF blockers are ineffective, add-on of DMARDs may be effective. Thus, the proper application of conventional DMARDs is still worth a position in the treatment of SAPHO syndrome. Key Points •NSAIDs and DMARDs and/or bisphosphonates can alleviate symptoms of the majority of patients with SAPHO syndrome. •TNF blockers are effective in patients who do not respond well to NSIADs and DMARDs. •In case TNF blockers are ineffective, add-on of conventional DMARDs may be effective.
Collapse
|
39
|
|
40
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
41
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
42
|
Kinder TB, Dranchak PK, Inglese J. High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle. ACS Chem Biol 2020; 15:1974-1986. [PMID: 32459468 PMCID: PMC7859889 DOI: 10.1021/acschembio.0c00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunosuppressants used to treat autoimmunity are often not curative and have many side effects. Our purpose was to identify therapeutics for autoimmunity of the skeletal muscle termed idiopathic inflammatory myopathies (myositis). Recent evidence shows that the pro-inflammatory type I interferons (IFN) and a downstream product major histocompatibility complex (MHC) class I are pathogenic in myositis. We conducted quantitative high-throughput screening on >4500 compounds, including all approved drugs, through a series of cell-based assays to identify those that inhibit the type I IFN-MHC class I pathway in muscle precursor cells (myoblasts). The primary screen utilized CRISPR/Cas9 genome-engineered human myoblasts containing a pro-luminescent reporter HiBit fused to the C-terminus of endogenous MHC class I. Active compounds were counter-screened for cytotoxicity and validated by MHC class I immunofluorescence, Western blot, and RT-qPCR. Actives included Janus kinase inhibitors, with the most potent being ruxolitinib, and epigenetic/transcriptional modulators like histone deacetylase inhibitors and the hypoxia-inducible factor 1 inhibitor echinomycin. Testing in animal models and clinical trials is necessary to translate these therapies to myositis patients. These robust assay technologies can be further utilized to interrogate the basic mechanisms of the type I IFN-MHC class I pathway, identify novel molecular probes, and elucidate possible environmental triggers that may lead to myositis.
Collapse
Affiliation(s)
- Travis B. Kinder
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Patricia K. Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Lai K, Gong Y, Zhao W, Li L, Huang C, Xu F, Zhong X, Jin C. Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother 2020; 129:110312. [PMID: 32559620 DOI: 10.1016/j.biopha.2020.110312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate whether triptolide has inhibitory effects on the development of choroidal neovascularization (CNV), together with its underlying anti-angiogenic mechanisms. METHODS CNV was induced in C57BL/6 J mice using laser photocoagulation. Triptolide at concentrations of 0.035 and 0.07 mg/kg body weight (BW) or the same volume of phosphate-buffered saline (PBS) was intraperitoneally injected into mice 2 days before laser photocoagulation, which was continued daily till the end of the experiment. CNV areas were measured on day 7. The numbers of M1, M2, and F4/80+ macrophages were detected on day 1, 3, and 7 in each group. The levels of vascular endothelial growth factor (VEGF) and inflammatory molecules,including intercellular adhesion molecule (ICAM)-1,tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6) were determined by enzyme-linked immunosorbent assay. Cell proliferation, migration, and tube-formation assays were performed in vitro. RESULTS Triptolide at doses of 0.035 mg/kg BW (66,562 ± 39,253 μm2, n = 5, P<0.05) and 0.07 mg/kg BW (37,271 ± 25,182 μm2, n = 5, P<0.001) significantly reduced CNV areas by 54.9 and 74.8 %, respectively, compared with PBS control (147,699 ± 112,900 μm2, n = 5) in a dose-dependent manner. Protein levels of VEGF, ICAM-1, TNF-α, and IL-6 in the RPE-choroid-sclera complex were significantly downregulated by triptolide treatment on day 3, which was in accordance with the reduced number of infiltrated F4/80+ macrophages and the reduced ratio of M2/F4/80+ macrophages. However, no toxic effects of triptolide on the retina or other systemic organs were observed. In addition, triptolide treatment exerted inhibitory effects on cell proliferation, migration, and tube formation in vitro in a concentration-dependent manner. CONCLUSIONS Triptolide has therapeutic potential in CNV owing to its anti-angiogenic effect.
Collapse
Affiliation(s)
- Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Wenbo Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Xiaojing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
44
|
Tripterygium Glycosides Combined with Leflunomide for Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1230320. [PMID: 32454846 PMCID: PMC7231184 DOI: 10.1155/2020/1230320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Objective To undertake an overview on the overall effects of Tripterygium glycosides (TG) combined with Leflunomide (LEF) for rheumatoid arthritis (RA). Methods We searched electronic databases from database establishment time to December 1, 2019. The clinical trial data of TG combined with LEF (trial group) and control group in the treatment of RA were collected. The Cochrane system was used to evaluate the quality of the literature. RevMan 5.3 software was used to conduct a meta-analysis of the eligible studies. Results A total of 12 randomized controlled trials (RCTs) involving 834 patients with RA were included in this study. The meta-analysis results showed that morning stiffness (mean difference (MD) = −0.29, 95% confidential interval (CI) (−0.45, −0.12), P=0.0005), tender joint count (MD = −1.51, 95% CI (−2.20, −0.83), P=0.0001), swollen joint count (MD = -1.24, 95% CI (−1.59, −0.88), P=0.0001), erythrocyte sedimentation rate (MD = −7.26, 95% CI (−9.92, −4.61), P=0.0001), C-reactive protein (MD = −4.04, 95% CI (−4.93, −3.14), P=0.0001), and rheumatoid factor (MD = −50.88, 95% CI (−72.30, −29.45), P = 0.0001) in the trial groups were lower than those in the control groups. The total effective rate in the trial group was better than that in the control group (risk ratio (RR) = 1.20, 95% CI (1.13, 1.28), P=0.00001). However, there was no significant difference of adverse events (RR = 0.83, 95% CI (0.61, 1.13), P=0.23) while comparing the trial groups with the control groups. Conclusion Our results were found to be superior but limited evidence on the effectiveness of TG combined with LEF in the treatment of RA is available.
Collapse
|
45
|
Li F, Cui H, Jin X, Gong X, Wang W, Wang J. Triptolide inhibits epithelial‑mesenchymal transition and induces apoptosis in gefitinib‑resistant lung cancer cells. Oncol Rep 2020; 43:1569-1579. [PMID: 32323848 PMCID: PMC7107945 DOI: 10.3892/or.2020.7542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib, is used widely to treat non-small cell lung cancer (NSCLC) with EGFR-activating mutations. Unfortunately, the acquired drug resistance promoted by epithelial-mesenchymal transition (EMT) markedly limits the clinical effects and remains a major barrier to a cure. Our previous isobaric tags for relative and absolute quantitation-based proteomics analysis revealed that the E-cadherin protein level was markedly upregulated by triptolide (TP). The present study aimed to determine whether TP reverses the gefitinib resistance of human lung cancer cells by regulating EMT. It was revealed that TP combined with gefitinib synergistically inhibited the migration and invasion of lung adenocarcinoma cell line A549; the combination treatment had a significantly better outcome than that of TP and gefitinib alone. Moreover, TP effectively increased the sensitivity of drug resistant A549 cells to gefitinib by upregulating E-cadherin protein expression and downregulating the MMP9, SNAIL, and vimentin expression levels. The dysregulated E-cadherin expression of gefitinib-sensitive cells induced gefitinib resistance, which could be overcome by TP. Finally, TP combined with gefitinib significantly inhibited the growth of xenograft tumors induced using gefitinib-resistant A549 cells, which was associated with EMT reversal and E-cadherin signaling activation in vivo. The present results indicated that the combination of TP and TKIs may be a promising therapeutic strategy to treat patients with NSCLCs harboring EGFR mutations.
Collapse
Affiliation(s)
- Fangqiong Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Huaizhong Cui
- Department of Clinical Laboratory, XiXi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoting Gong
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
46
|
Zang Y, Lai F, Fu J, Li C, Ma J, Chen C, Liu K, Zhang T, Chen X, Zhang D. Novel nitric oxide-releasing derivatives of triptolide as antitumor and anti-inflammatory agents: Design, synthesis, biological evaluation, and nitric oxide release studies. Eur J Med Chem 2020; 190:112079. [PMID: 32028140 DOI: 10.1016/j.ejmech.2020.112079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/18/2023]
Abstract
A series of novel triptolide/furoxans hybrids were designed and synthesized as analogues of triptolide, which is a naturally derived compound isolated from the thunder god vine (Tripterygium wilfordii Hook. F). Some of these synthesized compounds exhibited antiproliferative activities in the nanomolar range. Among them, compound 33 exhibited both good antiproliferative activity and NO-releasing ability and the acute toxicity of compound 33 decreased more than 160 times (LD50 = 160.9 mg/kg) than triptolide. Moreover, compound 33 significantly inhibited the growth of melanoma at a low dose (0.3 mg/kg) and showed strong anti-inflammatory activity in vitro and in vivo. These results indicate that compound 33 could be a promising candidate for further study.
Collapse
Affiliation(s)
- Yingda Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ke Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
47
|
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019; 10:E47. [PMID: 31892257 PMCID: PMC7022400 DOI: 10.3390/biom10010047] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022] Open
Abstract
The rising burden of cancer worldwide calls for an alternative treatment solution. Herbal medicine provides a very feasible alternative to western medicine against cancer. This article reviews the selected plant species with active phytochemicals, the animal models used for these studies, and their regulatory aspects. This study is based on a meticulous literature review conducted through the search of relevant keywords in databases, Web of Science, Scopus, PubMed, and Google Scholar. Twenty plants were selected based on defined selection criteria for their potent anticancer compounds. The detailed analysis of the research studies revealed that plants play an indispensable role in fighting different cancers such as breast, stomach, oral, colon, lung, hepatic, cervical, and blood cancer cell lines. The in vitro studies showed cancer cell inhibition through DNA damage and activation of apoptosis-inducing enzymes by the secondary metabolites in the plant extracts. Studies that reported in vivo activities of these plants showed remarkable results in the inhibition of cancer in animal models. Further studies should be performed on exploring more plants, their active compounds, and the mechanism of anticancer actions for use as standard herbal medicine.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Ajmal Khan
- Department of Zoology, University of Buner, Sowari 17290, Pakistan;
| | - Parveen Nisar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Mansehra 21120, Pakistan;
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
- National Council for Tibb, Islamabad, Pakistan
| |
Collapse
|
48
|
Triptolide-loaded nanoparticles targeting breast cancer in vivo with reduced toxicity. Int J Pharm 2019; 572:118721. [PMID: 31626922 DOI: 10.1016/j.ijpharm.2019.118721] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
Abstract
Triptolide (TP), a diterpenoid triepoxide that is extracted from the plant Tripterygium wilfordii, has been found to be quite effective for treating many malignant tumors. Although TP was initially considered to be a promising chemotherapeutic agent, its poor solubility and high toxicity limited its potential clinical application. Consequently, we synthesized nanoformulated TP coated with hyaluronic acid (HA) for application in treating breast cancer. Our results showed that TP can prevent tumor progression, but at the cost of significant toxicity. By contrast, using the nanoformulated TP, uptake of drugs into the tumor can be facilitated, which leads to a further increase in efficacy while decreasing systemic toxicity.
Collapse
|
49
|
Zhang X, Xiao Z, Xu H. A review of the total syntheses of triptolide. Beilstein J Org Chem 2019; 15:1984-1995. [PMID: 31501665 PMCID: PMC6720243 DOI: 10.3762/bjoc.15.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022] Open
Abstract
Triptolide is a complex triepoxide diterpene natural product that has attracted considerable interest in the organic chemistry and medicinal chemistry societies due to its intriguing structural features and multiple promising biological activities. In this review, progress in the total syntheses of triptolide are systematically summarized. We hope to gain a better understanding of the field and provide constructive suggestions for future studies of triptolide.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zaozao Xiao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
50
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|