1
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
2
|
Yang R, Wu X, Gounni AS, Xie J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med 2023; 11:312-315. [PMID: 38130649 PMCID: PMC10732574 DOI: 10.2478/jtim-2023-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO. 1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan430022, Hubei Province, China
| | - Abdelilah Soussi Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, ManitobaR3E 0W3, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| |
Collapse
|
3
|
Shah BK, Singh B, Wang Y, Xie S, Wang C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediators Inflamm 2023; 2023:8840594. [PMID: 37457746 PMCID: PMC10344637 DOI: 10.1155/2023/8840594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Most patients diagnosed with chronic obstructive pulmonary disease (COPD) present with hallmark features of airway mucus hypersecretion, including cough and expectoration. Airway mucus function as a native immune system of the lung that severs to trap particulate matter and pathogens and allows them to clear from the lung via cough and ciliary transport. Chronic mucus hypersecretion (CMH) is the main factor contributing to the increased risk of morbidity and mortality in specific subsets of COPD patients. It is, therefore, primarily important to develop medications that suppress mucus hypersecretions in these patients. Although there have been some advances in COPD treatment, more work remains to be done to better understand the mechanism underlying airway mucus hypersecretion and seek more effective treatments. This review article discusses the structure and significance of mucus in the lungs focusing on gel-forming mucins and the impacts of CMH in the lungs. Furthermore, we summarize the article with pharmacological and nonpharmacological treatments as well as novel and interventional procedures to control CMH in COPD patients.
Collapse
Affiliation(s)
- Binay Kumar Shah
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University School of Medicine, Shanghai 200092, China
| | - Bivek Singh
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yukun Wang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
4
|
Moniot A, Braux J, Siboni R, Guillaume C, Audonnet S, Allart-Simon I, Sapi J, Tirouvanziam R, Gérard S, Gangloff SC, Velard F. Inhibition of Recruitment and Activation of Neutrophils by Pyridazinone-Scaffold-Based Compounds. Int J Mol Sci 2022; 23:ijms23137226. [PMID: 35806233 PMCID: PMC9266889 DOI: 10.3390/ijms23137226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/07/2022] Open
Abstract
In inflammatory diseases, polymorphonuclear neutrophils (PMNs) are known to produce elevated levels of pro-inflammatory cytokines and proteases. To limit ensuing exacerbated cell responses and tissue damage, novel therapeutic agents are sought. 4aa and 4ba, two pyridazinone-scaffold-based phosphodiesterase-IV inhibitors are compared in vitro to zardaverine for their ability to: (1) modulate production of pro-inflammatory mediators, reactive oxygen species (ROS), and phagocytosis; (2) modulate degranulation by PMNs after transepithelial lung migration. Compound 4ba and zardaverine were tested in vivo for their ability to limit tissue recruitment of PMNs in a murine air pouch model. In vitro treatment of lipopolysaccharide-stimulated PMNs with compounds 4aa and 4ba inhibited the release of interleukin-8, tumor necrosis factor-α, and matrix metalloproteinase-9. PMNs phagocytic ability, but not ROS production, was reduced following treatment. Using a lung inflammation model, we proved that PMNs transmigration led to reduced expression of the CD16 phagocytic receptor, which was significantly blunted after treatment with compound 4ba or zardaverine. Using the murine air pouch model, LPS-induced PMNs recruitment was significantly decreased upon addition of compound 4ba or zardaverine. Our data suggest that new pyridazinone derivatives have therapeutic potential in inflammatory diseases by limiting tissue recruitment and activation of PMNs.
Collapse
Affiliation(s)
- Aurélie Moniot
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Julien Braux
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Renaud Siboni
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Christine Guillaume
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Sandra Audonnet
- Université de Reims Champagne-Ardenne, URCACyt, 51 Rue Cognacq Jay, 51100 Reims, France;
| | - Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Center for CF and Airways Disease Research, Children’s Healthcare of Atlanta, 2015 Uppergate Road, Atlanta, GA 30322, USA
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, UMR CNRS 7312 ICMR, 51 Rue Cognacq Jay, 51100 Reims, France; (I.A.-S.); (J.S.); (S.G.)
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
| | - Frédéric Velard
- Université de Reims Champagne-Ardenne, EA 4691 BIOS, 51 Rue Cognacq Jay, 51100 Reims, France; (A.M.); (J.B.); (R.S.); (C.G.); (S.C.G.)
- Correspondence: ; Tel.: +33-3-26-91-80-10
| |
Collapse
|
5
|
Chitosan-Coated Solid Lipid Nano-Encapsulation Improves the Therapeutic Antiairway Inflammation Effect of Berberine against COPD in Cigarette Smoke-Exposed Rats. Can Respir J 2022; 2022:8509396. [PMID: 35465190 PMCID: PMC9033382 DOI: 10.1155/2022/8509396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Berberine (Ber) is an isoquinoline alkaloid that has shown therapeutic potential in mice with chronic obstructive pulmonary disease (COPD). However, the therapeutic efficiency of Ber is restricted by its low aqueous solubility and bioavailability. Chitosan and solid lipid nanoparticles (SLNs) have demonstrated great abilities as delivery systems in enhancing the bioavailability of therapeutic compounds. The present study aimed to get together the biological features of SLNs with the advantages of chitosan to formulate an efficient nano-carrier platform for the oral delivery of Ber and evaluate the therapeutic effect of the prepared Ber-encapsulated nanoparticles on airway inflammation in cigarette smoke (CS)-induced COPD rats. The Ber-encapsulated SLE-chitosan formulation was manufactured using a modified solvent-injection method followed by a homogenization process. Physicochemical properties, encapsulation efficiency, in vitro stability and Ber release, and pharmacokinetics of the manufactured formulation were evaluated. The COPD rat model was developed by exposing animals to CS. To study the therapeutic efficiency of Ber-encapsulated SLE-chitosan nanoparticles and pure berberine, the histopathological changes of the lung tissues, levels of inflammatory cells and cytokines, and activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) enzymes were evaluated in bronchoalveolar lavage fluid (BALF). Ber-encapsulated SLE-chitosan showed the particle size in nano-range with high stability and controlled slow-release profile in vitro in simulated gastric (pH 1.5) and intestinal (pH 6.8) fluids. Administration of Ber-loaded SLE-chitosan nanoparticles could significantly ameliorate inflammation scores in lung tissues and reduce levels of inflammatory cells (neutrophils and macrophages) and inflammatory cytokines (IL-1β, Il-6, Il-17, and TNFα) in BALF when compared with the pure Ber. SLE-chitosan-based nanoparticles can strongly improve the therapeutic anti-inflammatory impact of Ber against CS-induced airway inflammation in COPD rats, suggesting the promising application of Ber-encapsulated SLN-chitosan nanoparticles for treating COPD and other inflammation-mediated diseases.
Collapse
|
6
|
Chen TT, Wu SM, Chen KY, Tseng CH, Ho SC, Chuang HC, Feng PH, Liu WT, Han CL, Huang EWC, Yeh YK, Lee KY. Suppressor of variegation 3-9 homologue 1 impairment and neutrophil-skewed systemic inflammation are associated with comorbidities in COPD. BMC Pulm Med 2021; 21:276. [PMID: 34598691 PMCID: PMC8487160 DOI: 10.1186/s12890-021-01628-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic manifestations and comorbidities are characteristics of chronic obstructive pulmonary disease (COPD) and are probably due to systemic inflammation. The histone methyltransferase SUV39H1 controls the Th1/Th2 balance. We previously reported that reduced SUV39H1 expression contributed to abnormal inflammation in COPD. Here, we aimed to determine whether impaired SUV39H1 expression in COPD patients associated with neutrophilic/eosinophilic inflammation responses and comorbidities. METHODS A total of 213 COPD patients and 13 healthy controls were recruited from the Shuang Ho Hospital, Taipei Medical University. SUV39H1 levels in peripheral blood mononuclear cells (PBMCs) from 13 healthy and 30 COPD participants were measured by immunoblotting. We classified the patients into two groups based on low (fold change, FC < 0.5) and high SUV39H1 expression (FC ≥ 0.5) compared to normal controls. Clinical outcomes including neutrophil or eosinophil counts associated with SUV39H1-related inflammation were evaluated by Chi square analyses or Mann-Whitney U test. The correlations between the percentage of neutrophils and number of COPD comorbidities or Charlson Comorbidity Index (CCI) scores were performed by Spearman's rank analysis. RESULTS Low SUV39H1 expression group had high neutrophil counts relative to high SUV39H1expression group. In the COPD cohort, the high comorbidity group (≥ 2 comorbidities) had higher counts of whole white blood cell (WBC) and neutrophil, and lower proportion of eosinophil and eosinophil/neutrophil, as compared with low comorbidity group (0 and 1 comorbidities). The quantity of neutrophils was associated with COPD comorbidities (Spearman's r = 0.388, p < 0.001), but not with CCI scores. We also found that the high comorbidity group had more exacerbations per year compared with low comorbidity group (1.5 vs. 0.9 average exacerbations, p = 0.005). However, there were no significant differences between groups with these non-frequent (0-1 exacerbation) and frequent exacerbations per year (> 1 exacerbation) in numbers of WBC and proportion of neutrophils, eosinophils or eosinophil/neutrophil. Finally, patients with high comorbidities had lower SUV39H1 levels in their PBMCs than did those with low comorbidities. CONCLUSION Blood neutrophil counts are associated with comorbidities in COPD patients. Impaired SUV39H1 expression in PBMCs from COPD patients are correlated with neutrophilic inflammation and comorbidities.
Collapse
Affiliation(s)
- Tzu-Tao Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei, Taiwan
| | - Erick Wan-Chun Huang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Woolcock Institute of Medical Research, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Kovach MA, Che K, Brundin B, Andersson A, Asgeirsdottir H, Padra M, Lindén SK, Qvarfordt I, Newstead MW, Standiford TJ, Lindén A. IL-36 Cytokines Promote Inflammation in the Lungs of Long-Term Smokers. Am J Respir Cell Mol Biol 2021; 64:173-182. [PMID: 33105081 PMCID: PMC7874394 DOI: 10.1165/rcmb.2020-0035oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with high morbidity and mortality. The IL-36 family are proinflammatory cytokines that are known to shape innate immune responses, including those critical to bacterial pneumonia. The objective of this study was to determine whether IL-36 cytokines promote a proinflammatory milieu in the lungs of long-term smokers with and without COPD. Concentrations of IL-36 cytokines were measured in plasma and BAL fluid from subjects in a pilot study (n = 23) of long-term smokers with and without COPD in vivo and from a variety of lung cells (from 3-5 donors) stimulated with bacteria or cigarette smoke components in vitro. Pulmonary macrophages were stimulated with IL-36 cytokines in vitro, and chemokine and cytokine production was assessed. IL-36α and IL-36γ are produced to varying degrees in murine and human lung cells in response to bacterial stimuli and cigarette smoke components in vitro. Moreover, whereas IL-36γ production is upregulated early after cigarette smoke stimulation and wanes over time, IL-36α production requires a longer duration of exposure. IL-36α and IL-36γ are enhanced systemically and locally in long-term smokers with and without COPD, and local IL-36α concentrations display a positive correlation with declining ventilatory lung function and increasing proinflammatory cytokine concentrations. In vitro, IL-36α and IL-36γ induce proinflammatory chemokines and cytokines in a concentration-dependent fashion that requires IL-36R and MyD88. IL-36 cytokine production is altered in long-term smokers with and without COPD and contributes to shaping a proinflammatory milieu in the lungs.
Collapse
Affiliation(s)
- Melissa A. Kovach
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karlhans Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Brundin
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Andersson
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helga Asgeirsdottir
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Médea Padra
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael W. Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Kim DK, Kim JY, Han YE, Kim JK, Lim HS, Eun KM, Yang SK, Kim DW. Elastase-Positive Neutrophils Are Associated With Refractoriness of Chronic Rhinosinusitis With Nasal Polyps in an Asian Population. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:42-55. [PMID: 31743963 PMCID: PMC6875473 DOI: 10.4168/aair.2020.12.1.42] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Purpose Various immune cells, including eosinophils and neutrophils, are known to contribute to the development of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the current understanding of the role of neutrophils in the development of CRSwNP still remains unclear. Therefore, we investigated risk factors for refractoriness of CRSwNP in an Asian population. Methods Protein levels of 17 neutrophil-related mediators in nasal polyps (NPs) were determined by multiplex immunoassay, and exploratory factor analysis using principal component analysis was performed. Immunofluorescence analysis was conducted to detect human neutrophil elastase (HNE) or myeloperoxidase (MPO)-positive cells. Tissue eosinophilic nasal polyp (ENP) and tissue neutrophilia (Neuhigh) were defined as greater than 70 eosinophils and 20 HNE-positive cells, otherwise was classified into non-eosinophilic nasal polyp (NENP) and absence of tissue neutrophilia (Neulow). Results In terms of disease control status, NENP-Neulow patients showed the higher rate of disease control than NENP-Neuhigh and ENP-Neuhigh patients. Linear by linear association demonstrated the trend in refractoriness from NENP-Neulow to NENP-Neuhigh or ENP-Neulow to ENP-Neuhigh. When multiple logistic regression was performed, tissue neutrophilia (hazard ratio, 4.38; 95% confidence interval, 1.76-10.85) was found as the strongest risk factor for CRSwNP refractoriness. Additionally, exploratory factor analysis revealed that interleukin (IL)-18, interferon-γ, IL-1Ra, tumor necrosis factor-α, oncostatin M, and MPO were associated with good disease control status, whereas IL-36α and IL-1α were associated with refractory disease control status. In subgroup analysis, HNE-positive cells and IL-36α were significantly upregulated in the refractory group (P = 0.0132 and P = 0.0395, respectively), whereas MPO and IL-18 showed higher expression in the controlled group (P = 0.0002 and P = 0.0009, respectively). Moreover, immunofluorescence analysis revealed that IL-36R+HNE+-double positive cells were significantly increased in the refractory group compared to the control group. We also found that the ratio of HNE-positive cells to α1 anti-trypsin was increased in the refractory group. Conclusions Tissue neutrophilia had an influence on treatment outcomes in the Asian CRSwNP patients. HNE-positive cells and IL-36α may be biomarkers for predicting refractoriness in Asians with CRSwNP. Additionally, imbalances in HNE and α1 anti-trypsin may be associated with pathophysiology of neutrophilic chronic rhinosinusitis.
Collapse
Affiliation(s)
- Dong Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon, Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Youp Kim
- Department of Otorhinolaryngology, Armed Forces Capital Hospital, Seongnam, Korea
| | - Young Eun Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Joon Kon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Suk Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Koo Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Salem I, Kimak M, Conic R, Bragazzi NL, Watad A, Adawi M, Bridgewood C, Pacifico A, Santus P, Rizzi M, Petrou S, Colombo D, Fiore M, Pigatto PDM, Damiani G. Neutrophilic Dermatoses and Their Implication in Pathophysiology of Asthma and Other Respiratory Comorbidities: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7315274. [PMID: 31281845 PMCID: PMC6590566 DOI: 10.1155/2019/7315274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/14/2019] [Indexed: 01/20/2023]
Abstract
Neutrophilic dermatoses (ND) are a polymorphous group of noncontagious dermatological disorders that share the common histological feature of a sterile cutaneous infiltration of mature neutrophils. Clinical manifestations can vary from nodules, pustules, and bulla to erosions and ulcerations. The etiopathogenesis of neutrophilic dermatoses has continuously evolved. Accumulating genetic, clinical, and histological evidence point to NDs being classified in the spectrum of autoinflammatory conditions. However, unlike the monogenic autoinflammatory syndromes where a clear multiple change in the inflammasome structure/function is demonstrated, NDs display several proinflammatory abnormalities, mainly driven by IL-1, IL-17, and tumor necrosis factor-alpha (TNF-a). Additionally, because of the frequent association with extracutaneous manifestations where neutrophils seem to play a crucial role, it was plausible also to consider NDs as a cutaneous presentation of a systemic neutrophilic condition. Neutrophilic dermatoses are more frequently recognized in association with respiratory disorders than by chance alone. The combination of the two, particularly in the context of their overlapping immune responses mediated primarily by neutrophils, raises the likelihood of a common neutrophilic systemic disease or an aberrant innate immunity disorder. Associated respiratory conditions can serve as a trigger or may develop or be exacerbated secondary to the uncontrolled skin disorder. Physicians should be aware of the possible pulmonary comorbidities and apply this knowledge in the three steps of patients' management, work-up, diagnosis, and treatment. In this review, we attempt to unravel the pathophysiological mechanisms of this association and also present some evidence for the role of targeted therapy in the treatment of both conditions.
Collapse
Affiliation(s)
- Iman Salem
- Department of Dermatology, Case Western Reserve University, Cleveland, USA
| | - Mark Kimak
- Department of Dermatology, Case Western Reserve University, Cleveland, USA
| | - Rosalynn Conic
- Department of Dermatology, Case Western Reserve University, Cleveland, USA
| | - Nicola L. Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Abdulla Watad
- Department of Medicine “B”, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Mohammad Adawi
- Padeh and Ziv Hospitals, Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Charlie Bridgewood
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | | | - Pierachille Santus
- Department of Biomedical Sciences L. Sacco, University of Milan, Milan, Italy
- Respiratory Unit, Center for Sleep and Respiratory Disorders, “Luigi Sacco” University Hospital, Milan, Italy
| | - Maurizio Rizzi
- Respiratory Unit, Center for Sleep and Respiratory Disorders, “Luigi Sacco” University Hospital, Milan, Italy
| | - Stephen Petrou
- Emergency Medicine, Good Samaritan Hospital Medical Center, New York, USA
| | - Delia Colombo
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paolo D. M. Pigatto
- Clinical Dermatology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giovanni Damiani
- Department of Dermatology, Case Western Reserve University, Cleveland, USA
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Clinical Dermatology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Young Dermatologists Italian Network, Centro Studi GISED, Bergamo, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Unità Operativa di Dermatologia, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Blakeborough L, Watson JS. The importance of obtaining a sputum sample and how it can aid diagnosis and treatment. ACTA ACUST UNITED AC 2019; 28:295-298. [PMID: 30907645 DOI: 10.12968/bjon.2019.28.5.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Respiratory disease has a major impact on the NHS and continues to be a growing problem as each year passes. However, through improving diagnosis and management of respiratory disease the problem could be lessened. Taking a sputum sample is common practice within respiratory medicine especially for patients with chronic obstructive pulmonary disease (COPD) and helps to diagnose, confirm infection and offer correct treatment. It is important that the multidisciplinary team are aware of how to appropriately obtain sputum samples and when to request them. It is important as a respiratory health professional to understand the patient's usual sputum history including colour, amount and viscosity. Antibiotic stewardship aims to reduce antibiotic resistance through offering the most appropriate antibiotics for those with a bacterial infection and to discourage antibiotic prescribing for those that have not. This should result in better patient outcomes and lower healthcare costs.
Collapse
Affiliation(s)
- Leanne Blakeborough
- Advanced Nurse Practitioner Course (Masters Level) with Anglia Ruskin University and Community Respiratory Nurse Specialist, Chelmsford
| | - Jane S Watson
- Senior Lecturer in Community Nursing, Anglia Ruskin University, Chelmsford
| |
Collapse
|
11
|
Lokwani R, Wark PAB, Baines KJ, Barker D, Simpson JL. Hypersegmented airway neutrophils and its association with reduced lung function in adults with obstructive airway disease: an exploratory study. BMJ Open 2019; 9:e024330. [PMID: 30696679 PMCID: PMC6352776 DOI: 10.1136/bmjopen-2018-024330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The significance of neutrophilic inflammation in obstructive airway disease remains controversial. Recent studies have demonstrated presence of an active neutrophil population in systemic circulation, featuring hypersegmented morphology, with high oxidative burst and functional plasticity in inflammatory conditions. The aim of this study was to characterise neutrophil subsets in bronchial lavage (BL) of obstructive airway disease participants (asthma, chronic obstructive pulmonary disease (COPD) and bronchiectasis) and healthy controls on the basis of nuclear morphology and to assess the association between neutrophil subsets and the clinical parameters of the obstructive airway disease participants. DESIGN A cross-sectional exploratory study. SETTING John Hunter Hospital and Hunter Medical Research Institute, Australia. PARTICIPANTS Seventy-eight adults with obstructive airway disease comprised those with stable asthma (n=39), COPD (n=20) and bronchiectasis (n=19) and 20 healthy controls. MATERIALS AND METHODS Cytospins were prepared and neutrophil subsets were classified based on nuclear morphology into hypersegmented (>4 lobes), normal (2-4 lobes) and banded (1 lobe) neutrophils and enumerated. RESULTS Neutrophils from each subset were identified in all participants. Numbers of hypersegmented neutrophils were elevated in participants with airway disease compared with healthy controls (p<0.001). Both the number and the proportion of hypersegmented neutrophils were highest in COPD participants (median (Q1-Q3) of 1073.6 (258.8-2742) × 102/mL and 24.5 (14.0-46.5)%, respectively). An increased proportion of hypersegmented neutrophils in airway disease participants was significantly associated with lower forced expiratory volume in 1 s/forced vital capacity per cent (Spearman's r=-0.322, p=0.004). CONCLUSION Neutrophil heterogeneity is common in BL and is associated with more severe airflow obstruction in adults with airway disease. Further work is required to elucidate the functional consequences of hypersegmented neutrophils in the pathogenesis of disease.
Collapse
Affiliation(s)
- Ravi Lokwani
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Katherine J Baines
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Daniel Barker
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| |
Collapse
|
12
|
Wang X, Polverino F, Rojas-Quintero J, Zhang D, Sánchez J, Yambayev I, Lindqvist E, Virtala R, Djukanovic R, Davies DE, Wilson S, O'Donnell R, Cunoosamy D, Hazon P, Higham A, Singh D, Olsson H, Owen CA. A Disintegrin and A Metalloproteinase-9 (ADAM9): A Novel Proteinase Culprit with Multifarious Contributions to COPD. Am J Respir Crit Care Med 2018; 198:1500-1518. [PMID: 29864380 PMCID: PMC6298633 DOI: 10.1164/rccm.201711-2300oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice. METHODS ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured. RESULTS ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis. CONCLUSIONS ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Francesca Polverino
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Joselyn Rojas-Quintero
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Duo Zhang
- Boston University, 1846, Boston, Massachusetts, United States
| | - José Sánchez
- AstraZeneca R&D, Quantitative Biology, Discovery Sciences, Gothenburgh, Sweden
| | - Ilyas Yambayev
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Eva Lindqvist
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Robert Virtala
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Ratko Djukanovic
- Southampton University, Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Donna E Davies
- Brooke Laboratory, Infection, Inflammation & Repair, Southampton, Hampshire, United Kingdom of Great Britain and Northern Ireland
| | - Susan Wilson
- University of Southampton, 7423, Southampton, United Kingdom of Great Britain and Northern Ireland
| | | | - Danen Cunoosamy
- AstraZeneca, Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Petra Hazon
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Andrew Higham
- University of South Manchester NHS Foundation Trust, Medicines Evaluation Unit, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Dave Singh
- North West Lung Research Centre, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Henric Olsson
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Caroline A Owen
- Brigham and Women's Hospital, Boston, Massachusetts, United States ;
| |
Collapse
|
13
|
Perales-Puchalt A, Perez-Sanz J, Payne KK, Svoronos N, Allegrezza MJ, Chaurio RA, Anadon C, Calmette J, Biswas S, Mine JA, Costich TL, Nickels L, Wickramasinghe J, Rutkowski MR, Conejo-Garcia JR. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol 2018; 103:799-805. [PMID: 29537705 PMCID: PMC6004318 DOI: 10.1002/jlb.5hi1117-446rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022] Open
Abstract
Due to their cytotoxic activities, many anticancer drugs cause extensive damage to the intestinal mucosa and have antibiotic activities. Here, we show that cisplatin induces significant changes in the repertoire of intestinal commensal bacteria that exacerbate mucosal damage. Restoration of the microbiota through fecal-pellet gavage drives healing of cisplatin-induced intestinal damage. Bacterial translocation to the blood stream is correspondingly abrogated, resulting in a significant reduction in systemic inflammation, as evidenced by decreased serum IL-6 and reduced mobilization of granulocytes. Mechanistically, reversal of dysbiosis in response to fecal gavage results in the production of protective mucins and mobilization of CD11b+ myeloid cells to the intestinal mucosa, which promotes angiogenesis. Administration of Ruminococcus gnavus, a bacterial strain selectively depleted by cisplatin treatment, could only partially restore the integrity of the intestinal mucosa and reduce systemic inflammation, without measurable increases in the accumulation of mucin proteins. Together, our results indicate that reconstitution of the full repertoire of intestinal bacteria altered by cisplatin treatment accelerates healing of the intestinal epithelium and ameliorates systemic inflammation. Therefore, fecal microbiota transplant could paradoxically prevent life-threatening bacteremia in cancer patients treated with chemotherapy.
Collapse
Affiliation(s)
- Alfredo Perales-Puchalt
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jairo Perez-Sanz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carmen Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Joseph Calmette
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Logan Nickels
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jayamanna Wickramasinghe
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Melanie R Rutkowski
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
14
|
Dağlioğlu C. Cloning, expression, and activity analysis of human cathepsin C in the yeast Pichia pastoris. Turk J Biol 2017; 41:746-753. [PMID: 30814849 DOI: 10.3906/biy-1704-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The yeast Pichia pastoris expression system was investigated for the production of human cathepsin C (CatC) recombinant protein. The full-length CatC cDNA, corresponding to amino acids 12-475, was synthesized from interleukin-2 (IL-2) stimulated human peripheral blood mononuclear cells and subcloned in the pGEM-T cloning vector. After confirming the DNA sequence of the insert, the gene was cloned into the pPICZαA expression vector under the control of the methanol-inducible alcohol oxidase (AOX1) promoter and transformed to P. pastoris X-33 cells. The expressed protein was secreted into the culture medium through the α-factor mating signal sequence of the expression vector. Analysis of the culture supernatant revealed that the recombinant human CatC was secreted as a 58-kDa molecule, indicating that human CatC was accumulated in the culture supernatant as proform composed of the residual propart, the activation peptide, and the heavy and light chains. Extracellular recombinant proCatC was further activated by cysteine endoprotease papain in vitro and its activity was confirmed by assays using a synthetic substrate.
Collapse
Affiliation(s)
- Cenk Dağlioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology , Urla, İzmir , Turkey
| |
Collapse
|
15
|
Almeida-Reis R, Theodoro-Junior OA, Oliveira BTM, Oliva LV, Toledo-Arruda AC, Bonturi CR, Brito MV, Lopes FDTQS, Prado CM, Florencio AC, Martins MA, Owen CA, Leick EA, Oliva MLV, Tibério IFLC. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8287125. [PMID: 28466019 PMCID: PMC5390602 DOI: 10.1155/2017/8287125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rafael Almeida-Reis
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bruno T M Oliveira
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro V Oliva
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Camila R Bonturi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marlon V Brito
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ariana C Florencio
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Edna A Leick
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maria L V Oliva
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Bchir S, Nasr HB, Bouchet S, Benzarti M, Garrouch A, Tabka Z, Susin S, Chahed K, Bauvois B. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med 2016; 21:1280-1291. [PMID: 28004483 PMCID: PMC5487915 DOI: 10.1111/jcmm.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence points towards smoking‐related phenotypic differences in chronic obstructive pulmonary disease (COPD). As COPD is associated with systemic inflammation, we determined whether smoking status is related to serum levels of matrix metalloproteinase‐9 (pro‐ and active MMP‐9), neutrophil gelatinase‐associated lipocalin (NGAL) and the proMMP‐9/NGAL complex in patients with COPD. Serum samples were collected in 100 stable‐phase COPD patients (82 smokers, 18 never‐smokers) and 28 healthy adults (21 smokers, 7 never‐smokers). Serum levels of studied factors were measured in ELISA. Our data provide the first evidence of simultaneously elevated serum levels of MMP‐9, NGAL and proMMP‐9/NGAL in COPD smokers. While the triad discriminated between smokers and non‐smokers in the COPD group, MMP‐9 and proMMP‐9/NGAL (but not NGAL) discriminated between smokers with and without COPD. Adjustment for age and smoking pack‐years did not alter the findings. Serum MMP‐9, NGAL and proMMP‐9/NGAL levels were not correlated with the GOLD stage or FEV1 decline. Furthermore, serum levels of neutrophil elastase (NE) and MMP‐3 (but not of IL‐6 and MMP‐12) were also higher in COPD smokers than in healthy smokers before and after adjustment for age and pack‐years. Among COPD smokers, levels of MMP‐9, NGAL and proMMP‐9/NGAL were positively correlated with NE (P < 0.0001) but not with the remaining factors. Gelatin zymography detected proMMP‐9 in serum samples of healthy and COPD smoking groups. Our results suggest that associated serum levels of proMMP‐9, NGAL, proMMP‐9/NGAL and NE may reflect the state of systemic inflammation in COPD related to cigarette smoking.
Collapse
Affiliation(s)
- Sarra Bchir
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.,Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Hela Ben Nasr
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Sandrine Bouchet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France.,Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Mohamed Benzarti
- Service de Pneumo-Allergologie, CHU Farhat Hached, Sousse, Tunisia
| | | | - Zouhair Tabka
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Santos Susin
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Karim Chahed
- Unité de recherche UR12ES06, Physiologie de l'Exercice et Physiopathologie de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia.,Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Universités UPMC Paris 06, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Park SH, Gong JH, Choi YJ, Kang MK, Kim YH, Kang YH. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice. PLoS One 2015; 10:e0143526. [PMID: 26599511 PMCID: PMC4657928 DOI: 10.1371/journal.pone.0143526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022] Open
Abstract
Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Ju-Hyun Gong
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
- * E-mail:
| |
Collapse
|
18
|
Martin MJ, Harrison TW. Causes of chronic productive cough: An approach to management. Respir Med 2015; 109:1105-13. [PMID: 26184784 DOI: 10.1016/j.rmed.2015.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 04/13/2015] [Accepted: 05/24/2015] [Indexed: 02/04/2023]
Abstract
A chronic 'productive' or 'wet' cough is a common presenting complaint for patients attending the adult respiratory clinic. Most reviews and guidelines suggest that the causes of a productive cough are the same as those of a non-productive cough and as such the same diagnostic pathway should be followed. We suggest a different diagnostic approach for patients with a productive cough, focussing on the conditions that are the most likely causes of this problem. This review is intended to briefly summarise the epidemiology, clinical features, pathophysiology and treatment of a number of conditions which are often associated with chronic productive cough to aid decision making when encountering a patient with this often distressing symptom. The conditions discussed include bronchiectasis, chronic bronchitis, asthma, eosinophilic bronchitis and immunodeficiency. We also propose an adult version of the paediatric diagnosis of protracted bacterial bronchitis (PBB) in patients with idiopathic chronic productive cough who appear to respond well to low dose macrolide therapy.
Collapse
Affiliation(s)
- Matthew J Martin
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham City Hospital, Nottingham, UK.
| | - Tim W Harrison
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
19
|
Friedrichs B, Neumann U, Schüller J, Peck MJ. Cigarette-smoke-induced priming of neutrophils from smokers and non-smokers for increased oxidative burst response is mediated by TNF-α. Toxicol In Vitro 2014; 28:1249-58. [PMID: 24997298 DOI: 10.1016/j.tiv.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
In vitro treatment of human peripheral blood neutrophils from smokers and non-smokers with an aqueous cigarette smoke (CS) extract resulted in a concentration-dependent increase in surface expression of CD11b and CD66b and a corresponding decrease of CD62L, together with a concentration-dependent release of MMP-8, MMP-9, and lactoferrin, indicating considerable activation and degranulation. However, the burst response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) was unchanged in CS-stimulated neutrophils from both smokers and non-smokers. When supernatants from CS-treated monocytic MonoMac-6 (MM6) cells were used for activation of neutrophils, concentration-dependent changes in surface marker expression, granule protein release, and the oxidative burst response to fMLP were observed, again with no major differences between smokers and non-smokers. CS-treated MM6 cells released significant amounts of IL-8 and TNF-α into the culture supernatant. However, antibody blocking experiments showed that only TNF-α mediated the increased burst response in neutrophils. These data show that, in the presence of secondary cells, CS is able to prime neutrophils for an increased burst response to fMLP which is mediated by TNF-α, released from the secondary cells in response to CS. Following stimulation with priming agents, peripheral blood neutrophils from healthy smokers show an equal burst response compared to those from non-smokers.
Collapse
Affiliation(s)
- Bärbel Friedrichs
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Ute Neumann
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Jutta Schüller
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Michael J Peck
- Philip Morris International R&D, Philip Morris Products S.A., CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
20
|
Meijer M, Rijkers GT, van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:1055-68. [PMID: 24168412 DOI: 10.1586/1744666x.2013.851347] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a decreased airflow due to airway narrowing that, once it occurs, is not fully reversible. The disease usually is progressive and associated with an enhanced inflammatory response in the lungs after exposure to noxious particles or gases. After removal of the noxious particles, the inflammation can continue in a self-sustaining manner. It has been established that improper activation of neutrophils lies at the core of the pathology. This paper provides an overview of the mechanisms by which neutrophils can induce the pulmonary damage of COPD. As the pathogenesis of COPD is slowly being unraveled, new points of intervention are discovered, some of which with promising results.
Collapse
Affiliation(s)
- Mariska Meijer
- Department of Science, University College Roosevelt, Lange Noordstraat 1, 4113 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
21
|
Seiberling M, Kamtchoua T, Stryszak P, Ma X, Langdon RB, Khalilieh S. Humoral immunity and delayed-type hypersensitivity in healthy subjects treated for 30days with MK-7123, a selective CXCR2 antagonist. Int Immunopharmacol 2013; 17:178-83. [DOI: 10.1016/j.intimp.2013.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/02/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
|
22
|
Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res 2013; 37:167-75. [PMID: 23717169 PMCID: PMC3659635 DOI: 10.5142/jgr.2013.37.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/22/2012] [Accepted: 12/05/2012] [Indexed: 12/24/2022] Open
Abstract
Korean red ginseng (KRG) is reported to have anti-allergic properties, including beneficial effects on asthma and atopic dermatitis. However, its effect on allergic rhinitis has not been studied extensively. This study examined how KRG affected allergic inflammation of the nasal cavity in an allergic mouse model. A total of 40 Balb/c female mice were divided into four experimental groups according to treatment and allergic state: group 1 (G1), saline only; group 2 (G2), ovalbumin (OVA); group 3 (G3), OVA+KRG; and group 4 (G4), OVA+dexamethasone. Serum IgE levels were significantly lower in the KRG treatment group (G3) than in the allergic group (G2). However, serum IgG1 levels did not differ between G2 and G3. In the nasal lavage fluid, IL-4 and IL-5 levels were significantly lower in G3 than in G2 (p<0.05). H&E and Luna staining revealed that the eosinophil count was lower in G3 and G4 than in G2 (p<0.05). Immunohistochemical staining revealed that there were fewer IL-4-, IL- 5-, and MUC5AC-positive cells in G3 and G4 than in G2 (p<0.05). These results indicate that KRG reduces the nasal allergic inflammatory reaction in an allergic murine model by reducing Th2 cytokines.
Collapse
Affiliation(s)
- Joo Hyun Jung
- Department of Otolaryngology, Head & Neck Surgery, Gil Medical Center, School of Medicine, Gachon University, Incheon 405-760, Korea
| | | | | | | | | |
Collapse
|
23
|
The immune response and its therapeutic modulation in bronchiectasis. Pulm Med 2012; 2012:280528. [PMID: 23094149 PMCID: PMC3474275 DOI: 10.1155/2012/280528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon.
Collapse
|
24
|
Rubach JK, Cui G, Schneck JL, Taylor AN, Zhao B, Smallwood A, Nevins N, Wisnoski D, Thrall SH, Meek TD. The Amino-Acid Substituents of Dipeptide Substrates of Cathepsin C Can Determine the Rate-Limiting Steps of Catalysis. Biochemistry 2012; 51:7551-68. [DOI: 10.1021/bi300719b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jon K. Rubach
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Guanglei Cui
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Jessica L. Schneck
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Amy N. Taylor
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Baoguang Zhao
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Angela Smallwood
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Neysa Nevins
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - David Wisnoski
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Sara H. Thrall
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| | - Thomas D. Meek
- Department
of Biological Reagents and Assay Development, §Department of Computational and Structural
Chemistry, and ∥Department of Screening and Compound Profiling, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville
Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
25
|
Boots AW, Gerloff K, Bartholomé R, van Berlo D, Ledermann K, Haenen GRMM, Bast A, van Schooten FJ, Albrecht C, Schins RPF. Neutrophils augment LPS-mediated pro-inflammatory signaling in human lung epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1151-62. [PMID: 22575681 DOI: 10.1016/j.bbamcr.2012.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of polymorphonuclear neutrophils in pulmonary host defense is well recognized. The influence of a pre-existing inflammation driven by neutrophils (neutrophilic inflammation) on the airway epithelial response toward pro-inflammatory exogenous triggers, however, is still poorly addressed. Therefore, the aim of the present study is to investigate the effect of neutrophils on lipopolysaccharide (LPS)-induced pro-inflammatory signaling in lung epithelial cells. Additionally, underlying signaling pathways are examined. METHODS Human bronchial epithelial cells (BEAS-2B) were co-incubated with human peripheral blood neutrophils or bone-marrow derived neutrophils from either C57BL/6J wild type or nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase deficient (p47(phox-/-)) mice. Upon stimulation with LPS, interleukin (IL)-8 production and reactive oxygen species (ROS) generation were measured. Additionally, activation of the extracellular signal-regulated kinases (ERK) 1/2 and nuclear factor (NF)-κB signaling pathways was analyzed. RESULTS Our studies show that the presence of neutrophils synergistically increases LPS-induced IL-8 and ROS production by BEAS-2B cells without inducing cytotoxicity. The observed IL-8 response to endotoxin increases in proportion to time, LPS-concentration and the number of neutrophils present. Moreover, this synergistic IL-8 production strongly correlated with the chemotactic properties of the co-incubations and significantly depended on a functional neutrophilic NADPH oxidase. The presence of neutrophils also augments LPS-induced phosphorylation of ERK1/2 and IκBα as well as NF-κB RelA DNA binding activity in BEAS-2B cells. CONCLUSIONS Our results indicate that the pro-inflammatory effects of LPS toward lung epithelial cells are amplified during a pre-existing neutrophilic inflammation. These findings support the concept that patients suffering from pulmonary neutrophilic inflammation are more susceptible toward exogenous pro-inflammatory triggers.
Collapse
Affiliation(s)
- Agnes W Boots
- IUF-Leibniz Institut für Umweltmedizinische Forschung at the Heinrich Heine University, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jung JH, Kang IG, Cha HE, Choe SH, Kim ST. Effect of Asian Sand Dust on Mucin Production in NCI-H292 Cells and Allergic Murine Model. Otolaryngol Head Neck Surg 2012; 146:887-94. [DOI: 10.1177/0194599812439011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effect of Asian sand dust (ASD) on mucin production in human respiratory epithelial cells in vitro and in allergic murine nasal epithelial cells. Study Design. Controlled, in vitro. Setting. Academic research laboratory. Materials and Methods. Human NCI-H292 cells were treated with ASD and analyzed by immunostaining, reverse transcriptase–polymerase chain reaction for MUC5AC mRNA expression, and Periodic Acid Schiff (PAS) staining. Forty female BALB/c mice were classified into 4 groups. Two groups were sensitized with ovalbumin (OVA), and 1 of these was treated with ASD (ASD+OVA). The 2 nonsensitized groups were treated with ASD or saline. Then the murine nasal mucosal tissues were evaluated by hematoxylin and eosin (H&E) staining, PAS staining, and immunostaining for MUC5AC and transforming growth factor (TGF)-α proteins. Results. The numbers of MUC5AC-immunopositive NCI-H292 cells and PAS-positive NCI-H292 cells were significantly higher in the ASD-treated cells than in the control cells ( P = .039 and P = .029, respectively). MUC5AC mRNA expression in the cells increased with increasing concentrations of ASD. In the murine nasal epithelial tissues, the numbers of eosinophils and PAS-positive cells were significantly higher in the ASD+OVA group than in the OVA group (H&E staining, P = .037; PAS staining, P = .019). At 2 weeks, the numbers of MUC5AC- and TGF-α–positive cells in the nasal epithelial tissue were significantly higher in the ASD+OVA group than in the OVA group ( P = .031 and P = .033, respectively). Conclusion. ASD can induce mucin production in respiratory epithelial cells.
Collapse
Affiliation(s)
- Joo Hyun Jung
- Department of Otorhinolaryngology, Gil Medical Center, Graduate School of Medicine, Gachon University, Incheon City, Korea
| | - Il Gyu Kang
- Department of Otorhinolaryngology, Gil Medical Center, Graduate School of Medicine, Gachon University, Incheon City, Korea
| | - Heung Eog Cha
- Department of Otorhinolaryngology, Gil Medical Center, Graduate School of Medicine, Gachon University, Incheon City, Korea
| | - Sung Ho Choe
- Department of Otorhinolaryngology, Gil Medical Center, Graduate School of Medicine, Gachon University, Incheon City, Korea
| | - Seon Tae Kim
- Department of Otorhinolaryngology, Gil Medical Center, Graduate School of Medicine, Gachon University, Incheon City, Korea
| |
Collapse
|
27
|
Sadowska AM. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2012; 6:127-35. [DOI: 10.1177/1753465812437563] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop an efficient therapy for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication that can suppress various pathogenic processes in this disease. NAC is a thiol compound, which provides sulfhydryl groups. NAC can act as a precursor of reduced glutathione and as a direct reactive oxygen species scavenger, hence regulating the redox status in the cells. In this way NAC can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and inflammatory response. Mucus hypersecretion has been reported in COPD and in other respiratory conditions. Two pathological processes have been described to play an important role in COPD, namely oxidative stress and inflammation. Both of these processes can induce mucin gene expression leading to mucin production. NAC, therefore, may influence mucin expression by acting on oxidative stress and inflammation, and play a role as a mucolytic agent. In this review we focus on the mucolysis of NAC in the management of COPD.
Collapse
Affiliation(s)
- Anna M. Sadowska
- Department of Respiratory Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
28
|
Cox LAT. An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:1543-1560. [PMID: 21477084 DOI: 10.1111/j.1539-6924.2011.01610.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Whether crystalline silica (CS) exposure increases risk of lung cancer in humans without silicosis, and, if so, whether the exposure-response relation has a threshold, have been much debated. Epidemiological evidence is ambiguous and conflicting. Experimental data show that high levels of CS cause lung cancer in rats, although not in other species, including mice, guinea pigs, or hamsters; but the relevance of such animal data to humans has been uncertain. This article applies recent insights into the toxicology of lung diseases caused by poorly soluble particles (PSPs), and by CS in particular, to model the exposure-response relation between CS and risk of lung pathologies such as chronic inflammation, silicosis, fibrosis, and lung cancer. An inflammatory mode of action is described, having substantial empirical support, in which exposure increases alveolar macrophages and neutrophils in the alveolar epithelium, leading to increased reactive oxygen species (ROS) and nitrogen species (RNS), pro-inflammatory mediators such as TNF-alpha, and eventual damage to lung tissue and epithelial hyperplasia, resulting in fibrosis and increased lung cancer risk among silicotics. This mode of action involves several positive feedback loops. Exposures that increase the gain factors around such loops can create a disease state with elevated levels of ROS, TNF-alpha, TGF-beta, alveolar macrophages, and neutrophils. This mechanism implies a "tipping point" threshold for the exposure-response relation. Applying this new model to epidemiological data, we conclude that current permissible exposure levels, on the order of 0.1 mg/m³, are probably below the threshold for triggering lung diseases in humans.
Collapse
|
29
|
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. AREAS COVERED An overview of major developments in COPD research with emphasis on low-molecular mass neutrophil elastase inhibitors is described in this review. EXPERT OPINION Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is still limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as a human neutrophil elastase or MMP-12 inhibitor with an anti-inflammatory agent such as a PDE4 inhibitor or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- William C Groutas
- Wichita State University, Department of Chemistry, Wichita, KS 67260, USA.
| | | | | |
Collapse
|
30
|
Lainé D, Palovich M, McCleland B, Petitjean E, Delhom I, Xie H, Deng J, Lin G, Davis R, Jolit A, Nevins N, Zhao B, Villa J, Schneck J, McDevitt P, Midgett R, Kmett C, Umbrecht S, Peck B, Davis AB, Bettoun D. Discovery of novel cyanamide-based inhibitors of cathepsin C. ACS Med Chem Lett 2011; 2:142-7. [PMID: 24900293 DOI: 10.1021/ml100212k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/03/2010] [Indexed: 11/29/2022] Open
Abstract
The discovery of potent and selective cyanamide-based inhibitors of the cysteine protease cathepsin C is detailed. Optimization of the template with regard to plasma stability led to the identification of compound 17, a potent cathepsin C inhibitor with excellent selectivity over other cathepsins and potent in vivo activity in a cigarette smoke mouse model.
Collapse
Affiliation(s)
- Dramane Lainé
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Michael Palovich
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Brent McCleland
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Emilie Petitjean
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Isabelle Delhom
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Haibo Xie
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Jianghe Deng
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Guoliang Lin
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Roderick Davis
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Anais Jolit
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Neysa Nevins
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Baoguang Zhao
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Jim Villa
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Jessica Schneck
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Patrick McDevitt
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Robert Midgett
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Casey Kmett
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Sandra Umbrecht
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Brian Peck
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - Alicia Bacon Davis
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| | - David Bettoun
- GlaxoSmithKline, Respiratory CEDD, 709 Swedeland Road, P.O. Box 1539, King of Prussia, Pennsylvania 19406-0939, United States
| |
Collapse
|
31
|
Gonçalves RB, Coletta RD, Silvério KG, Benevides L, Casati MZ, da Silva JS, Nociti FH. Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 2011; 60:409-24. [PMID: 21298317 DOI: 10.1007/s00011-011-0308-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 11/25/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammation is a critical component of normal tissue repair, as well as being fundamental to the body's defense against infection. Environmental factors, such as smoking, have been reported to modify the host response and hence modify inflammation progression, severity and outcome. Therefore, a comprehensive understanding of the molecular mechanisms by which smoking affects inflammation is vital for preventive and therapeutic strategies on a clinical level. AIM The purpose of the present article is to review the potential biological mechanisms by which smoking affects inflammation, emphasizing recent developments. RESULTS Smoking is reported to effect a number of biological mediators of inflammation through its effect on immune-inflammatory cells, leading to an immunosuppressant state. Recent evidence strongly suggests that the molecular mechanisms behind the modulation of inflammation by smoking mainly involve the nuclear factor-kappa B (NF-kB) family, through the activation of both an inhibitor of IkB kinase (IKK)-dependent and -independent pathway. In addition to NF-kB activation, a number of transcriptional factors including GATA, PAX5 and Smad 3/4, have also been implicated. CONCLUSION Multiple mechanisms may be responsible for the association of smoking and inflammation, and the identification of potential therapeutic targets should guide future research.
Collapse
Affiliation(s)
- R B Gonçalves
- Department of Periodontology and Research Group in Oral Ecology, Faculty of Dentistry, Laval University, Quebec City, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Cox LAT. A causal model of chronic obstructive pulmonary disease (COPD) risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:38-62. [PMID: 20846171 DOI: 10.1111/j.1539-6924.2010.01487.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Research on the etiology of chronic pulmonary disease (COPD), an irreversible degenerative lung disease affecting 15% to 20% of smokers, has blossomed over the past half-century. Profound new insights have emerged from a combination of in vitro and -omics studies on affected lung cell populations (including cytotoxic CD8(+) T lymphocytes, regulatory CD4(+) helper T cells, dendritic cells, alveolar macrophages and neutrophils, alveolar and bronchiolar epithelial cells, goblet cells, and fibroblasts) and extracellular matrix components (especially, elastin and collagen fibers); in vivo studies on wild-type and genetically engineered mice and other rodents; clinical investigation of cell- and molecular-level changes in asymptomatic smokers and COPD patients; genetic studies of susceptible and rapidly-progressing phenotypes (both human and animal); biomarker studies of enzyme and protein degradation products in induced sputum, bronchiolar lavage, urine, and blood; and epidemiological and clinical investigations of the time course of disease progression. To this rich mix of data, we add a relatively simple in silico computational model that incorporates recent insights into COPD disease causation and progression. Our model explains irreversible degeneration of lung tissue as resulting from a cascade of positive feedback loops: a macrophage inflammation loop, a neutrophil inflammation loop, and an alveolar epithelial cell apoptosis loop. Unrepaired damage results in clinical symptoms. The resulting model illustrates how to simplify and make more understandable the main aspects of the very complex dynamics of COPD initiation and progression, as well as how to predict the effects on risk of interventions that affect specific biological responses.
Collapse
|
33
|
Ahlem CN, Page TM, Auci DL, Kennedy MR, Mangano K, Nicoletti F, Ge Y, Huang Y, White SK, Villegas S, Conrad D, Wang A, Reading CL, Frincke JM. Novel components of the human metabolome: the identification, characterization and anti-inflammatory activity of two 5-androstene tetrols. Steroids 2011; 76:145-55. [PMID: 20974164 DOI: 10.1016/j.steroids.2010.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023]
Abstract
Two natural 5-androstene steroid tetrols, androst-5-ene-3β,7β,16α,17β-tetrol (HE3177) and androst-5-ene-3α,7β,16α,17β-tetrol (HE3413), were discovered in human plasma and urine. These compounds had significant aqueous solubility, did not bind or transactivate steroid-binding nuclear hormone receptors, and were not immunosuppressive in murine mixed-lymphocyte studies. Both compounds appear to be metabolic end products, as they were resistant to primary and secondary metabolism. Both were orally bioavailable, and were very well tolerated in a two-week dose-intensive toxicity study in mice. Anti-inflammatory properties were found with exogenous administration of these compounds in rodent disease models of multiple sclerosis, lung injury, chronic prostatitis, and colitis.
Collapse
Affiliation(s)
- Clarence N Ahlem
- Harbor Biosciences, Inc., 9171 Towne Centre Drive, Suite 180, San Diego, CA 92122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Conrad D, Wang A, Pieters R, Nicoletti F, Mangano K, van Heeckeren AM, White SK, Frincke JM, Reading CL, Stickney D, Auci DL. HE3286, an oral synthetic steroid, treats lung inflammation in mice without immune suppression. JOURNAL OF INFLAMMATION-LONDON 2010; 7:52. [PMID: 21034489 PMCID: PMC2984480 DOI: 10.1186/1476-9255-7-52] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/30/2010] [Indexed: 01/26/2023]
Abstract
Background 17α-Ethynyl-5-androsten-3β, 7β, 17β-triol (HE3286) is a synthetic derivative of an endogenous steroid androstenetriol (β-AET), a metabolite of the abundant adrenal steroid deyhdroepiandrosterone (DHEA), with broad anti-inflammatory activities. We tested the ability of this novel synthetic steroid with improved pharmacological properties to limit non-productive lung inflammation in rodents and attempted to gauge its immunological impact. Methods and Results In mice, oral treatment with HE3286 (40 mg/kg) significantly (p < 0.05) decreased neutrophil counts and exudate volumes (~50%) in carrageenan-induced pleurisy, and myeloperoxidase in lipopolysaccharide-induced lung injury. HE3286 (40 mg/kg) was not found to be profoundly immune suppressive in any of the classical animal models of immune function, including those used to evaluate antigen specific immune responses in vivo (ovalbumin immunization). When mice treated for two weeks with HE3286 were challenged with K. pneumoniae, nearly identical survival kinetics were observed in vehicle-treated, HE3286-treated and untreated groups. Conclusions HE3286 represents a novel, first-in-class anti-inflammatory agent that may translate certain benefits of β-AET observed in rodents into treatments for chronic inflammatory pulmonary disease.
Collapse
Affiliation(s)
- Douglas Conrad
- Harbor Biosciences, 9171 Towne Centre Drive, Suite 180, San Diego, CA 92122, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Corps KN, Islam Z, Pestka JJ, Harkema JR. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury. Toxicol Pathol 2010; 38:429-51. [PMID: 20430879 DOI: 10.1177/0192623310364026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrocyclic trichothecene mycotoxins encountered in water-damaged buildings have been suggested to contribute to illnesses of the upper respiratory tract. Here, the authors characterized the adverse effects of repeated exposures to roridin A (RA), a representative macrocyclic trichothecene, on the nasal airways of mice and assessed the persistence of these effects. Young, adult, female C57BL/6 mice were exposed to single daily, intranasal, instillations of RA (0.4, 2, 10, or 50 microg/kg body weight [bw]) in saline (50 microl) or saline alone (controls) over 3 weeks or 250 microg/kg RA over 2 weeks. Histopathologic, immunohistochemical, and morphometric analyses of nasal airways conducted 24 hr after the last instillation revealed that the lowest-effect level was 10 microg/kg bw. RA exposure induced a dose-dependent, neutrophilic rhinitis with mucus hypersecretion, atrophy and exfoliation of nasal transitional and respiratory epithelium, olfactory epithelial atrophy and loss of olfactory sensory neurons (OSNs). In a second study, the persistence of lesions in mice instilled with 250 microg/kg bw RA was assessed. Nasal inflammation and excess luminal mucus were resolved after 3 weeks, but OSN loss was still evident in olfactory epithelium (OE). These results suggest that nasal inflammation, mucus hypersecretion, and olfactory neurotoxicity could be important adverse health effects associated with short-term, repeated, airborne exposures to macrocyclic trichothecenes.
Collapse
Affiliation(s)
- Kara N Corps
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
36
|
Braga PC, Dal Sasso M, Culici M, Spallino A, Marabini L, Bianchi T, Nappi G. Effects of sulphurous water on human neutrophil elastase release. Ther Adv Respir Dis 2010; 4:333-40. [DOI: 10.1177/1753465810376783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Molecules bearing a sulphide (HS) group, such as glutathione, play a fundamental role in the defensive system of human airways, as shown by the fact that the lining fluid covering the epithelia of the respiratory tract contains very high concentrations of glutathione: the lungs and nose, respectively, contain about 140 and 40 times the concentrations found in plasma. Consequently, various low-weight soluble molecules bearing an HS group (including N-acetylcysteine, mesna and thiopronine, and prodrugs such as stepronine and erdosteine) have been used for therapeutic purposes. HS groups can also be therapeutically administered by means of sulphurous thermal water containing HS groups. The aim of this study was to investigate the direct activity of such water on the release of elastase by activated human neutrophils. Method: After the neutrophils were incubated with increasing amounts of sulphurous water or the HS/hydrogen sulphide donor sodium hydrosulphide (NaHS), elastase release was initiated by N-formyl-methionyl-leucyl-phenylalanine and measured by means of spectrofluorimetry using methylsuccinylalanylprolylvalyl-methylcoumarin amide as the fluorogenic substrate. To verify the presence of direct action on elastase we determined the diameter of the area of elastinolysis on elastine-agarose gel plates. Results: The sulphurous water significantly inhibited elastase release at HS concentrations ranging from 4.5 to 18 μg/ml, as assayed using the iodometric method; in the case of NaHS, the inhibition was significant at HS concentrations ranging from 2.2 to 18 μg/ml. The concentration-effect regression lines of both were parallel and neither showed any direct elastolytic activity. Conclusions: Previous claims concerning the activity of sulphurous water have been based on the patients’ subjective sense of wellbeing and on symptomatic (or general) clinical improvements that are not easy to define or quantify exactly. Our findings indicate that, in addition to its known mucolytic and antioxidant activity, sulphurous water also has an anti-elastase activity that may help to control the inflammatory processes of upper and lower airway diseases.
Collapse
Affiliation(s)
- Pier Carlo Braga
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy,
| | - Monica Dal Sasso
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Culici
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Alessandra Spallino
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Laura Marabini
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | - Giuseppe Nappi
- Center of SPA Thermal Medicine, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
37
|
The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. Biochem Pharmacol 2010; 80:1190-200. [PMID: 20599799 DOI: 10.1016/j.bcp.2010.06.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/02/2023]
Abstract
The pericarp of Sapindus mukorossi Gaertn is traditionally used as an expectorant in Japan, China, and Taiwan. Activated neutrophils produce high concentrations of the superoxide anion (O(2)(-)) and elastase known to be involved in airway mucus hypersecretion. In the present study, the anti-inflammatory functions of hederagenin 3-O-(3,4-O-di-acetyl-alpha-L-arabinopyranoside)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (SMG-1), a saponin isolated from S. mukorossi, and its underlying mechanisms were investigated in human neutrophils. SMG-1 potently and concentration-dependently inhibited O(2)(*-) generation and elastase release in N-Formyl-Met-Leu-Phe (FMLP)-activated human neutrophils. Furthermore, SMG-1 reduced membrane-associated p47(phox) expression in FMLP-induced intact neutrophils, but did not alter subcellular NADPH oxidase activity in reconstituted systems. SMG-1 attenuated FMLP-induced increase of cytosolic calcium concentration and phosphorylation of p38 MAPK, ERK, JNK, and AKT. However, SMG-1 displayed no effect on cellular cAMP levels and activity of adenylate cyclase and phosphodiesterase. Significantly, receptor-binding analysis showed that SMG-1 inhibited FMLP binding to its receptor in a concentration-dependent manner. In contrast, neither phorbol myristate acetate-induced O(2)(*-) generation and MAPKs activation nor thapsigargin-caused calcium mobilization was altered by SMG-1. Taken together, our results demonstrate that SMG-1 is a natural inhibitor of the FMLP receptor, which may have the potential to be developed into a useful new therapeutic agent for treating neutrophilic inflammatory diseases.
Collapse
|
38
|
Effect of Tanreqing Injection on treatment of acute exacerbation of chronic obstructive pulmonary disease with Chinese medicine syndrome of retention of phlegm and heat in Fei. Chin J Integr Med 2010; 16:131-7. [PMID: 20473738 DOI: 10.1007/s11655-010-0131-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the effect of Tanreqing Injection (TRQI) on the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with Chinese medicine syndrome of retention of phlegm and heat in Fei (RPHF). METHODS In a prospective randomized controlled clinical trial, 90 patients with AECOPD of RPHF syndrome were randomly assigned to 3 groups, TRQI and controls A and B, each with 30 cases. The TRQI group was administered with the intravenous injections of 20 mL TRQI once a day and conventional Western medicine treatment. Control group A was administered with the intravenous injection of 15 mg ambroxol hydrochloride twice a day and conventional Western medicine treatment, and control group B was administered with conventional Western medicine treatment only. The treatments were administered for 10 days. Chinese medical symptoms and signs were scored, and plasma concentrations of interleukin (IL)-8 and neutrophil elastase (NE) were recorded. RESULTS (1) The Chinese medical symptoms (cough, sputum amount, expectoration, dyspnea and fever) and signs (tongue and pulse) improved significantly in the TRQI group (P<0.05 or P<0.01), and improvements in cough, sputum amount and expectoration were better in the TRQI group than control group B (P<0.05); there was no significant difference between the TRQI group and control group A (P>0.05). The sign of tongue was also improved significantly in the TRQI group (P<0.05). (2) The overall effects in the TRQI group and control group A were significantly better than in control group B (P<0.05), with no significant differences between the TRQI group and control group A (P>0.05). There was no significant difference in the total effective rate among the three groups (P>0.05). (3) After treatment, the plasma concentrations of IL-8 and NE decreased in the TRQI group and control group A (P<0.05), and the concentration of IL-8 in control group B decreased (P<0.05). The difference in IL-8 was greater in the TRQI group than in control group A and B before and after treatment, and the change in NE was greater in control group A than in the TRQI group and control group B, but there was no statistical significance among the three groups with regards to the change in IL-8 or NE (P>0.05). CONCLUSION TRQI could improved the Chinese medical signs and symptoms in the patients with AECOPD, possibly because of the decreasing plasma levels of IL-8 and NE which could improve response to airway inflammation and mucus hypersecretion.
Collapse
|
39
|
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6:e1000902. [PMID: 20485566 PMCID: PMC2869315 DOI: 10.1371/journal.ppat.1000902] [Citation(s) in RCA: 456] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/08/2010] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC) are important causes of diarrheal disease and other serious complications worldwide. Despite many studies addressing the pathogenic strategies used by these microbes, how the host protects itself from these pathogens is poorly understood. A critical question we address here is whether the thick mucus layer that overlies the intestinal surface plays a role in host protection. Since EPEC and EHEC do not infect mice efficiently, we used a related mouse pathogen called Citrobacter rodentium to infect and compare responses between wildtype mice and Muc2-deficient mice, which are defective in mucus production. We show that Muc2-deficient mice are extremely susceptible to C. rodentium infection-induced mortality and disease. Muc2-deficient mice were also colonized faster and had higher pathogen burdens throughout the experiment. Resident (non-pathogenic) bacteria were found to interact with C. rodentium and host tissues in Muc2-deficient mice, indicating Muc2 regulates all forms of intestinal microbiota at the gut surface. Deficiency in mucus production also contributed to increased leakiness of the gut, which allowed microbes to enter mucosal tissues. Our study shows that Muc2-dependent mucus production is critical for effective management of both pathogenic and non-pathogenic bacteria during infection by an EPEC/EHEC-like pathogen.
Collapse
Affiliation(s)
- Kirk S. B. Bergstrom
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Vanessa Kissoon-Singh
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L. Gibson
- Department of Biology and Physical Geography, Irving K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Marinieve Montero
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ho Pan Sham
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Natasha Ryz
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Tina Huang
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Anna Velcich
- Department of Oncology, Albert Einstein Cancer Center/Montefiore Medical Center, Bronx, New York, United States of America
| | - B. Brett Finlay
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kris Chadee
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (KC); (BAV)
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
- * E-mail: (KC); (BAV)
| |
Collapse
|
40
|
Laine DI, Busch-Petersen J. Inhibitors of cathepsin C (dipeptidyl peptidase I). Expert Opin Ther Pat 2010; 20:497-506. [DOI: 10.1517/13543771003657172] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Gelb AF, Taylor CF, Cassino C, Shinar CM, Schein MJ, Zamel N. Tiotropium induced bronchodilation and protection from dynamic hyperinflation is independent of extent of emphysema in COPD. Pulm Pharmacol Ther 2009; 22:237-42. [DOI: 10.1016/j.pupt.2008.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 11/12/2008] [Accepted: 12/22/2008] [Indexed: 11/16/2022]
|
42
|
Makris D, Vrekoussis T, Izoldi M, Alexandra K, Katerina D, Dimitris T, Michalis A, Tzortzaki E, Siafakas NM, Tzanakis N. Increased apoptosis of neutrophils in induced sputum of COPD patients. Respir Med 2009; 103:1130-5. [PMID: 19329291 DOI: 10.1016/j.rmed.2009.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 02/10/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
AIM The aim of the current study was to evaluate apoptosis in induced sputum neutrophils and to investigate the relationship between the number of apoptotic cells and clinical parameters in COPD patients. METHODS Twenty-four COPD ex-smoker patients and 10 healthy controls were included in the study. All subjects underwent clinical evaluation and sputum induction. Sputum cell in situ apoptosis was identified using white light microscopy and TUNEL assay technique. Apoptosis of neutrophils obtained by sputum induction was expressed as apoptotic rate (AR=percentage of apoptotic neutrophils over the number of neutrophils measured). RESULTS TUNEL assay revealed statistically significant higher AR in COPD patients than controls (p=0.004). Patients with FEV(1)<50%pred had significantly higher median (IQR) AR (%) compared to patients with FEV(1)>or=50% [26.3 (16-29) vs 13.1 (8.6-21), p=0.01]. No significant association was found between the number of apoptotic cells and age, symptoms or medication used. CONCLUSION The significantly increased apoptotic rate of neutrophils that were found in COPD patients with advanced disease compared to controls might reflect either a deregulation of apoptosis of neutrophils or, a reduced clearance of apoptotic neutrophils from the airways. The pathophysiologic significance of the observed phenomenon has to be further explored.
Collapse
Affiliation(s)
- Demosthenes Makris
- Department of Thoracic Medicine, University of Crete, Medical School, Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li W. A study of the mechanism of Qingre Huatan therapy in treatment of acute exacerbation of chronic obstructive pulmonary disease by improving airway inflammation and mucus hypersecretion. ACTA ACUST UNITED AC 2008; 6:799-805. [DOI: 10.3736/jcim20080806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Abstract
Major advances in understanding regulated mucin secretion from airway goblet cells have been made in the past decade in the areas of pharmacology and basic cell biology. For instance, it is now appreciated that nucleotide agonists acting locally through P2Y purinoceptors on apical membranes of surface goblet cells provide the major regulatory system for mucin secretion. Similarly, Clara cells, the primary secretory cell in the mouse airways (and human small airways), are now recognized as major mucin-secreting cells. In Clara cells, the relative lack of staining for mucosubstances reflects essentially equal baseline rates of mucin synthesis and secretion, with little to no accumulation of mucin granules in storage pools. During mucous metaplasia induced under inflammatory conditions, mucin synthesis is massively upregulated in Clara cells, and stored mucin granules come to dominate the secretory cell phenotype. More importantly, we have seen a transition in the past few years from a pharmacological focus on regulated mucin secretion to a more molecular mechanistic focus that has great promise going forward. In part, these advances are occurring through the use of well-differentiated primary human bronchial epithelial cell cultures, but recent work in mouse models perhaps has had the most important impact. Emerging data from Munc13-2- and synaptotagmin 2-deficient mouse models represent the first direct, molecular-level manipulations of proteins involved in regulated secretory cell mucin secretion. These new data indicate that Munc13-2 is responsible for regulating a baseline mucin secretory pathway in the airways and is not essential for purinergic agonist-induced mucin secretion. In contrast, synaptotagmin 2, a fast Ca2+ sensor for the SNARE complex, is essential for regulated secretion. Interestingly, these early results suggest that there are two pathways for excocytic mucin release from goblet cells.
Collapse
Affiliation(s)
- C William Davis
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | |
Collapse
|
45
|
Therien AG, Bernier V, Weicker S, Tawa P, Falgueyret JP, Mathieu MC, Honsberger J, Pomerleau V, Robichaud A, Stocco R, Dufresne L, Houshyar H, Lafleur J, Ramachandran C, O'Neill GP, Slipetz D, Tan CM. Adenovirus IL-13-induced airway disease in mice: a corticosteroid-resistant model of severe asthma. Am J Respir Cell Mol Biol 2008; 39:26-35. [PMID: 18258919 DOI: 10.1165/rcmb.2007-0240oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin 13 (IL-13) is considered to be a key driver of the development of airway allergic inflammation and remodeling leading to airway hyperresponsiveness (AHR). How precisely IL-13 leads to the development of airway inflammation, AHR, and mucus production is not fully understood. In order to identify key mediators downstream of IL-13, we administered adenovirus IL-13 to specifically induce IL-13-dependent inflammation in the lungs of mice. This approach was shown to induce cardinal features of lung disease, specifically airway inflammation, elevated cytokines, AHR, and mucus secretion. Notably, the model is resistant to corticosteroid treatment and is characterized by marked neutrophilia, two hallmarks of more severe forms of asthma. To identify IL-13-dependent mediators, we performed a limited-scale two-dimensional SDS-PAGE proteomic analysis and identified proteins significantly modulated in this model. Intriguingly, several identified proteins were unique to this model, whereas others correlated with those modulated in a mouse ovalbumin-induced pulmonary inflammation model. We corroborated this approach by illustrating that proteomic analysis can identify known pathways/mediators downstream of IL-13. Thus, we have characterized a murine adenovirus IL-13 lung model that recapitulates specific disease traits observed in human asthma, and have exploited this model to identify effectors downstream of IL-13. Collectively, these findings will enable a broader appreciation of IL-13 and its impact on disease pathways in the lung.
Collapse
Affiliation(s)
- Alex G Therien
- Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Casado B, Iadarola P, Pannell LK, Luisetti M, Corsico A, Ansaldo E, Ferrarotti I, Boschetto P, Baraniuk JN. Protein Expression in Sputum of Smokers and Chronic Obstructive Pulmonary Disease Patients: A Pilot Study by CapLC-ESI-Q-TOF. J Proteome Res 2007; 6:4615-23. [DOI: 10.1021/pr070440q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Begoña Casado
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Paolo Iadarola
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Lewis K. Pannell
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Maurizio Luisetti
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Angelo Corsico
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Elena Ansaldo
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Ilaria Ferrarotti
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - Piera Boschetto
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| | - James N. Baraniuk
- Dipartimento di Biochimica “A. Castellani”, Universitaʼ di Pavia, Italy, Division of Rheumatology, Immunology and Allergy, Georgetown University Proteomics Laboratory, Washington, DC 20057, Cancer Research Institute, University of South Alabama, Mobile, AL 36688, Laboratorio di Biochimica e Genetica, Clinica di Malattie dellʼApparato Respiratorio, Fondazione IRCCS Policlinico San Matteo, Universitaʼdi Pavia, Italy, and Dipartimento di Medicina Clinica e Sperimentale, Sezione di Igiene e Medicina del
| |
Collapse
|
47
|
Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar F. Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol (1985) 2007; 103:700-9. [PMID: 17495117 DOI: 10.1152/japplphysiol.00225.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exercise elicits an immunological “danger” type of stress and inflammatory response that, on occasion, becomes dysregulated and detrimental to health. Examples include anaphylaxis, exercise-induced asthma, overuse syndromes, and exacerbation of intercurrent illnesses. In dangerous exercise, the normal balance between pro- and anti-inflammatory responses is upset. A possible pathophysiological mechanism is characterized by the concept of exercise modulation of previously activated leukocytes. In this model, circulating leukocytes are rendered more responsive than normal to the immune stimulus of exercise. For example, in the case of exercise anaphylaxis, food-sensitized immune cells may be relatively innocuous until they are redistributed during exercise from gut-associated circulatory depots, like the spleen, into the central circulation. In the case of asthma, the prior activation of leukocytes may be the result of genetic or environmental factors. In the case of overuse syndromes, the normally short-lived neutrophil may, because of acidosis and hypoxia, inhibit apoptosis and play a role in prolongation of inflammation rather than healing. Dangerous exercise demonstrates that the stress/inflammatory response caused by physical activity is robust and sufficiently powerful, perhaps, to alter subsequent responses. These longer term effects may occur through as yet unexplored mechanisms of immune “tolerance” and/or by a training-associated reduction in the innate immune response to brief exercise. A better understanding of sometimes failed homeostatic physiological systems can lead to new insights with significant implication for clinical translation.
Collapse
Affiliation(s)
- Dan Michael Cooper
- Pediatric Exercise Research Center, Department of Pediatrics, University of California, Irvine, California, USA.
| | | | | | | |
Collapse
|
48
|
Domagała-Kulawik J, Hoser G, Dabrowska M, Chazan R. Increased proportion of Fas positive CD8+ cells in peripheral blood of patients with COPD. Respir Med 2007; 101:1338-43. [PMID: 17118637 DOI: 10.1016/j.rmed.2006.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/26/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation in pulmonary tissue and is also associated with systemic effects. The objective of this study was determination of lymphocyte subpopulation and the expression of Fas receptor on lymphocytes derived from peripheral blood of patients with stable COPD (n=18) and a control group: asymptomatic smokers (n=12) and non-smokers (n=12). Flow cytometry method with monoclonal antibodies was used for evaluation of lymphocyte subsets: CD4+ and CD8+ and the expression of Fas (CD95) on T lymphocytes. We found an elevated proportion of CD8+ cells in the blood of COPD patients. Proportion of Fas+ T lymphocytes was significantly higher in patients with COPD when compared with asymptomatic smokers and non-smokers (mean: 84.4% vs. 71.6% vs. 61.0% for Fas+/ CD4+ and 88.1% vs. 73.8% vs. 58.3% for Fas+/CD8+ lymphocytes). The proportion of Fas positive CD8+ cells significantly correlated with the degree of airway obstruction and hypoxemia. The significant correlations of Fas positive CD4+ and Fas positive CD8+ with smoking history expressed as pack years smoked were observed. Our observation of an elevated proportion of circulating lymphocytes bearing Fas receptor may play a role in induction of these cells' apoptosis and indicate the role of Fas/ FasL pathway in the changes in proportion of lymphocyte subpopulations in patients with COPD.
Collapse
Affiliation(s)
- Joanna Domagała-Kulawik
- Department of Pneumonology and Allergology, Warsaw Medical University, ul. Banacha 1a, 02 097 Warsaw, Poland.
| | | | | | | |
Collapse
|
49
|
Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Deno G, Bond R, Gonsiorek W, Billah MM, Fine JS, Hey JA. A Novel, Orally Active CXCR1/2 Receptor Antagonist, Sch527123, Inhibits Neutrophil Recruitment, Mucus Production, and Goblet Cell Hyperplasia in Animal Models of Pulmonary Inflammation. J Pharmacol Exp Ther 2007; 322:486-93. [PMID: 17496165 DOI: 10.1124/jpet.106.119040] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sch527123 [2-hydroxy-N,N-dimethyl-3-[[2-[[1(R)-(5-methyl-2-furanyl)propyl]amino]-3,4-dioxo-1-cyclobuten-1-yl]amino]ben-zamide] is a potent, selective antagonist of the human CXCR1 and CXCR2 receptors (Gonsiorek et al., 2007). Here we describe its pharmacologic properties at rodent CXCR2 and at the CXCR1 and CXCR2 receptors in the cynomolgus monkey, as well as its in vivo activity in models demonstrating prominent pulmonary neutrophilia, goblet cell hyperplasia, and mucus production. Sch527123 bound with high affinity to the CXCR2 receptors of mouse (K(d) = 0.20 nM), rat (K(d) = 0.20 nM), and cynomolgus monkey (K(d) = 0.08 nM) and was a potent antagonist of CXCR2-mediated chemotaxis (IC(50) approximately 3-6 nM). In contrast, Sch527123 bound to cynomolgus CXCR1 with lesser affinity (K(d) = 41 nM) and weakly inhibited cynomolgus CXCR1-mediated chemotaxis (IC(50) approximately 1000 nM). Oral treatment with Sch527123 blocked pulmonary neutrophilia (ED(50) = 1.2 mg/kg) and goblet cell hyperplasia (32-38% inhibition at 1-3 mg/kg) in mice following the intranasal lipopolysaccharide (LPS) administration. In rats, Sch527123 suppressed the pulmonary neutrophilia (ED(50) = 1.8 mg/kg) and increase in bronchoalveolar lavage (BAL) mucin content (ED(50) =<0.1 mg/kg) induced by intratracheal (i.t.) LPS. Sch527123 also suppressed the pulmonary neutrophilia (ED(50) = 1.3 mg/kg), goblet cell hyperplasia (ED(50) = 0.7 mg/kg), and increase in BAL mucin content (ED(50) = <1 mg/kg) in rats after i.t. administration of vanadium pentoxide. In cynomolgus monkeys, Sch527123 reduced the pulmonary neutrophilia induced by repeat bronchoscopy and lavage (ED(50) = 0.3 mg/kg). Therefore, Sch527123 may offer benefit for the treatment of inflammatory lung disorders in which pulmonary neutrophilia and mucus hypersecretion are important components of the underlying disease pathology.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacokinetics
- Anti-Inflammatory Agents/therapeutic use
- Benzamides/metabolism
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Biological Availability
- Bronchitis/chemically induced
- Bronchitis/drug therapy
- Bronchitis/metabolism
- Bronchoalveolar Lavage
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoscopy
- Cell Line
- Cell Membrane/metabolism
- Chemokines, CXC/analysis
- Chemokines, CXC/metabolism
- Chemotaxis/drug effects
- Chemotaxis, Leukocyte/drug effects
- Cyclobutanes/metabolism
- Cyclobutanes/pharmacology
- Cyclobutanes/therapeutic use
- Disease Models, Animal
- Goblet Cells/pathology
- Hyperplasia/drug therapy
- Hyperplasia/pathology
- Lipopolysaccharides/pharmacology
- Lung/metabolism
- Lung/pathology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mucins/analysis
- Mucins/metabolism
- Mucus/metabolism
- Neutrophils/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Interleukin-8A/antagonists & inhibitors
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Vanadium Compounds/pharmacology
Collapse
Affiliation(s)
- Richard W Chapman
- Schering Plough Research Institute, Pulmonary and Peripheral Neurobiology, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Karmouty-Quintana H, Cannet C, Sugar R, Fozard JR, Page CP, Beckmann N. Capsaicin-induced mucus secretion in rat airways assessed in vivo and non-invasively by magnetic resonance imaging. Br J Pharmacol 2007; 150:1022-30. [PMID: 17351665 PMCID: PMC2013907 DOI: 10.1038/sj.bjp.0707168] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE An up-regulation of the sensory neural pathways in the lung has been implicated in asthma and chronic obstructive pulmonary disease (COPD) and is thought to contribute to mucus hypersecretion, an essential feature of both diseases. The aim of this study was to assess non-invasively the acute effects (up to 60 min) of sensory nerve stimulation by capsaicin in the lung, using magnetic resonance imaging (MRI). EXPERIMENTAL APPROACH Male Brown Norway rats were imaged prior to and 10, 30 and 60 min after intra-tracheal challenge with capsaicin (30 microg kg(-1)) or vehicle (0.5% ethanol solution). In subsequent studies, pre-treatment with the transient receptor potential vanilloid (TRPV)-1 antagonist, capsazepine; the dual neurokinin (NK) 1 and NK2 receptor antagonist, DNK333 and the mast cell stabilizer, di-sodium cromoglycate (DSCG) was used to modulate the effects of capsaicin. KEY RESULTS Diffuse fluid signals were detected by MRI in the lung as early as 10 min after capsaicin, remaining constant 30 and 60 min after treatment. Broncho-alveolar lavage (BAL) fluid analysis performed 60 min after capsaicin revealed increased mucin concentration. Capsazepine (3.5 mg kg(-1)), DNK333 (10 mg kg(-1)) but not DSCG (10 mg kg(-1)) administered prophylactically were able to block the effect of capsaicin in the airways. CONCLUSIONS AND IMPLICATIONS These observations suggest that the fluid signals detected by MRI after capsaicin administration reflected predominantly the release of mucus following activation of sensory nerves. They point to the opportunity of non-invasively assessing with MRI the influence of neuronal mechanisms in animal models of asthma and COPD.
Collapse
Affiliation(s)
- H Karmouty-Quintana
- Discovery Technologies, Novartis Institutes for BioMedical Research Basel, Switzerland
- Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health Sciences, King's College London, UK
| | - C Cannet
- Discovery Technologies, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - R Sugar
- Novartis Horsham Research Centre Horsham, UK
| | - J R Fozard
- Respiratory Diseases Area, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health Sciences, King's College London, UK
| | - N Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research Basel, Switzerland
- Author for correspondence:
| |
Collapse
|