1
|
Tan L, Ni Y, Huang Z, Yan J, Wu M, Zhang Z, Zhang F, Wang Z. Efficacy and safety of VEGFR inhibitors for recurrent ovarian cancer: a systematic review. Future Oncol 2024; 20:1943-1960. [PMID: 39129672 PMCID: PMC11498025 DOI: 10.1080/14796694.2024.2373680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Aim: Vascular endothelial growth factor receptor inhibitors (VEGFRIs) have been common used for recurrent ovarian cancer (ROC), but insufficient high-level evidence on verifying its efficacy and safety.Methods: Randomized controlled trials (RCTs) were searched under eight electronic databases. Stata 14.0 and Review Manager 5.3 were used for data analysis. Certainty of the evidence was assessed using the GRADE profiler. This systematic review (SR) was registered under INPLASY (INPLASY202120019).Conclusion: Totally 23 RCTs involving 2810 patients were included in this SR. Current evidence revealed that VEGFRIs had better efficacy, survival and quality of life in the treatment of ROC. Though VEGFRIs increase some drug-related adverse events (AEs), all the AEs could be manageable in the clinical practice.
Collapse
Affiliation(s)
- Linlin Tan
- Shanxi Hospital of Traditional Chinese Medicine,Taiyuan,Shanxi Province,030000,China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510000, China
| | - Yuchun Ni
- Shanxi Hospital of Traditional Chinese Medicine,Taiyuan,Shanxi Province,030000,China
| | - Zhaowei Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Jiaqi Yan
- Shanxi Hospital of Traditional Chinese Medicine,Taiyuan,Shanxi Province,030000,China
| | - Mei Wu
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, 030000, China
| | - Zhipeng Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Fupeng Zhang
- Shanxi Hospital of Traditional Chinese Medicine,Taiyuan,Shanxi Province,030000,China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Zhijie Wang
- Shanxi Hospital of Traditional Chinese Medicine,Taiyuan,Shanxi Province,030000,China
| |
Collapse
|
2
|
Zhang Y, Chen Q, Niu L, Huang H, Yang Z, Liao T, Guan Q, Xiang J. Multi-omics data analysis reveals the complex roles of age in differentiated thyroid cancer. Heliyon 2024; 10:e33595. [PMID: 39044989 PMCID: PMC11263663 DOI: 10.1016/j.heliyon.2024.e33595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Aims Age is a major risk factor for differentiated thyroid cancer (DTC); however, the mechanisms underlying aging-regulated progression of DTC remains unclear. Methods Based on multi-omics data (transcriptional files, somatic mutation files, methylation files) derived from the TCGA database, we comprehensively investigated the genomic and biological features associated with aging in patients with DTC. Results We confirmed that age was an independent risk factor for overall survival and progression-free survival of patients with DTC, and confirmed that 55 years of age (adopted in the 8th AJCC staging system) is an appropriate cutoff for patients with DTC rather than 45 years (adopted in the 7th AJCC staging system). Using 55 years as the cutoff, we demonstrated DNA methylation-driven transcriptional regulation during aging, and identified the landscape of somatic mutations in young and old patients with DTC along with two aging-related mutations: TTN and EIF1AX. Subsequently, we investigated the infiltration of immune cells in DTC, and found that old patients exhibited decreased CD8+ T cells infiltration with lower cytotoxicity. Finally, we constructed a prognosis prediction model based on three age-related genes (PTK2B, E2F1, and GHR) that showed satisfactory performance in predicting patients prognosis. Conclusions We comprehensively investigated the complex interplay between age and biological features of DTC, which may provide new insights into the role of aging in DTC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hu Huang
- Department of Thyroid and Breast Surgery, Jiangnan University Affiliated Hospital, Wuxi, 214000, China
| | - Zhou Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zeng J, Deng Q, Chen Z, Yan S, Dong Q, Zhang Y, Cui Y, Li L, He Y, Shi J. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021-2023). Bioorg Chem 2024; 146:107278. [PMID: 38484586 DOI: 10.1016/j.bioorg.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.
Collapse
Affiliation(s)
- Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuang Yan
- Sichuan University of Arts and Science, DaZhou 635000, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, Sichuan 611137, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Ezelarab HAA, Abd El-Hafeez AA, Ali TFS, Sayed AM, Hassan HA, Beshr EAM, Abbas SH. New 2-oxoindole derivatives as multiple PDGFRα/ß and VEGFR-2 tyrosine kinase inhibitors. Bioorg Chem 2024; 145:107234. [PMID: 38412650 DOI: 10.1016/j.bioorg.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRβ, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRβ active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
6
|
Liu J, Yan S, Du J, Teng L, Yang R, Xu P, Tao W. Mechanism and treatment of diarrhea associated with tyrosine kinase inhibitors. Heliyon 2024; 10:e27531. [PMID: 38501021 PMCID: PMC10945189 DOI: 10.1016/j.heliyon.2024.e27531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have become first-line drugs for cancer treatment. However, their clinical use is seriously hindered since many patients experience diarrhea after receiving TKIs. The mechanisms of TKI-associated diarrhea remain unclear. Most existing therapies are symptomatic treatments based on experience and their effects are unsatisfactory. Therefore, clarification of the mechanisms underlying diarrhea is critical to develop effective anti-diarrhea drugs. This article summarizes several potential mechanisms of TKI-associated diarrhea and reviews current treatment progress.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Juntong Du
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Ru Yang
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, 150001, PR China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Heilongjiang, 150001, PR China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, 150001, PR China
- The Cell Transplantation Key Laboratory of National Health Commission, Heilongjiang, 150001, PR China
| |
Collapse
|
7
|
Wang Y, Sun Y, Li X, Yu X, Zhang K, Liu J, Tian Q, Zhang H, Du X, Wang S. Progress in the treatment of malignant ascites. Crit Rev Oncol Hematol 2024; 194:104237. [PMID: 38128628 DOI: 10.1016/j.critrevonc.2023.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant ascites occurs as a symptom of the terminal stage of cancer, affecting the quality of life through abdominal distension, pain, nausea, anorexia, dyspnea and other symptoms. We describe the current main drug treatments in addition to surgery according to the traditional and new strategies. Traditional treatments were based on anti-tumor chemotherapy and traditional Chinese medicine treatments, as well as diuretics to relieve the patient's symptoms. New treatments mainly involve photothermal therapy, intestinal therapy and targeted immunity. This study emphasizes that both traditional and new therapies have certain advantages and disadvantages, and medication should be adjusted according to different periods of use and different patients. In conclusion, this article reviews the literature to systematically describe the primary treatment modalities for malignant ascites.
Collapse
Affiliation(s)
- Yiqiu Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Xinyue Li
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Yu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Keying Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinglei Liu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Du
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shuling Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
8
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
9
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
11
|
Deng L, Wang L, Zhang J, Zhao L, Meng Y, Zheng J, Xu W, Zhu Z, Huang H. The mechanism of action and biodistribution of a novel EGFR/VEGF bispecific fusion protein that exhibited superior antitumor activities. Heliyon 2023; 9:e16922. [PMID: 37484224 PMCID: PMC10360952 DOI: 10.1016/j.heliyon.2023.e16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite the promising clinical benefits of therapies targeting epidermal growth factor receptor (EGFR) or vascular endothelial growth factor (VEGF) with antibodies in various cancers, resistance to these therapies will inevitably develop following treatment. Recent studies suggest that crosstalk between the EGFR and VEGF signaling pathways might be involved in the development of resistance. Therefore, simultaneous blockade of EGFR and VEGF signaling may be able to counteract this resistance and improve clinical outcomes. Here, we devised a fusion protein with two copies of VEGFR1 domain 2 connected to the C-terminus of cetuximab that can simultaneously bind to EGFR and VEGF and effectively inhibit target cell growth mediated by these two pathways. Furthermore, the fusion protein could bring soluble VEGF into target cells for degradation through internalization upon binding to EGFR. Tissue distribution in mice confirmed that the fusion protein effectively accumulated in tumors compared to its mAb counterpart cetuximab. These features resulted in stronger antitumor efficacies in vivo than the combination of bevacizumab and cetuximab. Thus, we provide a promising new strategy for the treatment of EGFR-overexpressing cancers.
Collapse
|
12
|
Xu W, Yang M, Du X, Peng H, Yang Y, Wang J, Zhang Y. Multifunctional Nanoplatform Based on Sunitinib for Synergistic Phototherapy and Molecular Targeted Therapy of Hepatocellular Carcinoma. MICROMACHINES 2023; 14:613. [PMID: 36985021 PMCID: PMC10059596 DOI: 10.3390/mi14030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a tumor that poses a serious threat to human health, with an extremely low five-year survival rate due to its difficulty in early diagnosis and insensitivity to radiotherapy and chemotherapy. To improve the therapeutic efficiency of HCC, we developed a novel multifunctional nanoplatform (SCF NPs) with an amphiphilic polymer (Ce6-PEG2000-FA) and a multitarget tyrosine kinase inhibitor sunitinib. SCF NPs showed superior therapeutical efficiency for HCC due to the synergetic effect of molecular targeted therapy and phototherapy. The Ce6-PEG2000-FA not only serves as a nanocarrier with excellent biocompatibility but also can act as a therapeutic reagent for photothermal therapy (PTT) and photodynamic therapy (PDT). Furthermore, the folic acid group of Ce6-PEG2000-FA enhanced the active targeting performance of SCF NPs. As a multitargeted tyrosine kinase inhibitor, sunitinib in SCF NPs can play a role in molecular targeted therapies, including tumor growth inhibition and anti-angiogenesis. In vivo experiments, SCF NPs showed multimode imaging capabilities, which can be used for tumorous diagnosis and intraoperative navigation. Meanwhile, SCF NPs showed outstanding synergetic tumor inhibition ability. Tumors of SCF NPs group with laser radiation were eradicated without any recrudescence after 14 days of treatment. Such theranostic nanoparticles offer a novel therapeutic tactic for HCC.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuanlong Du
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hao Peng
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yue Yang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jitao Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
13
|
Zhang X, Shi G, Li S, Rao J, Wen Q, Zhao H. Effect of Dietary Intake on the Pharmacokinetics of the Multitargeted Receptor Tyrosine Kinase Inhibitor Famitinib: Results From a Phase 1 Study in Healthy Chinese Participants. Clin Pharmacol Drug Dev 2023. [PMID: 36867007 DOI: 10.1002/cpdd.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Famitinib is a tyrosine kinase inhibitor under clinical investigation for the treatment of solid tumors. Here, a 3-period crossover trial investigated the effect of high-fat or low-fat food intake on the single-dose pharmacokinetic properties of oral famitinib. Twenty-four healthy Chinese participants were enrolled and received a single 25-mg dose of famitinib malate capsule following a high-fat or low-fat breakfast before dosing. Blood samples were collected before dosing (0 hour) to 192 hours after dosing, and famitinib concentrations in plasma were determined with validated liquid chromatography-tandem mass spectrometry. Compared with the fasting condition, the geometric mean ratios for low-fat/fasting were 98.6%, 107.7%, and 107.5% for maximum plasma concentration, area under the plasma concentration-time curve (AUC) over the dosing interval, and AUC from time 0 to infinity, respectively. Those for high-fat/fasting were 84.4%, 105.0%, and 105.1% for maximum plasma concentration, AUC over the dosing interval, and AUC from time 0 to infinity, respectively. There was no significant difference in adverse events between fasting and fed conditions, and no serious adverse events occurred during the trial. In conclusion, oral famitinib bioavailability is not affected by food intake, implying that patients with cancer do not need to consider dietary status when using famitinib. This is considered important for convenience and treatment compliance.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Clinical Research Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Gexin Shi
- Clinical Research Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaorong Li
- Jiangsu Hengrui Pharmaceuticals Co. Ltd, Lianyungang, China
| | - Jing Rao
- Jiangsu Hengrui Pharmaceuticals Co. Ltd, Lianyungang, China
| | - Qing Wen
- Clinical Research Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengli Zhao
- Clinical Research Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Li J, Shen S, Liu Z, Zhao H, Liu S, Liu Q, Yao GD, Song SJ. Synthesis and Structure-Activity Analysis of Icaritin Derivatives as Potential Tumor Growth Inhibitors of Hepatocellular Carcinoma Cells. JOURNAL OF NATURAL PRODUCTS 2023; 86:290-306. [PMID: 36745506 DOI: 10.1021/acs.jnatprod.2c00908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The prenylated flavonoid icaritin (ICT, 1), a new drug for treating advanced hepatocellular carcinoma (HCC), was selected as a template to develop more potent inhibitors. An initial semisynthetic modification of ICT was performed to obtain a structure-activity relationship (SAR), which indicated that the cytotoxicity is enhanced by OH-3 rhamnosylation and that OH-7 is an important modification site. Based on the results of the SAR study, 46 N-containing ICT derivatives were synthesized and evaluated as the anti-HCC inhibitors. The results showed that most of the derivatives produced inhibited three HCC cell lines used (Hep3B, HepG2 and SMMC-7721). The modification strategy was validated by 3D-QSAR, which provided information for the further design and optimization of ICT. The most potent compound, 11c, exhibited IC50 values of 7.6 and 3.1 μM against HepG2 and SMMC-7721 cells, respectively, which were more potent than those of ICT and sorafenib, respectively. Further mechanistic studies indicated that 11c caused arrest at the G0/G1 phase in the cell cycle and induced cell apoptosis in HepG2 and SMMC-7721 cells.
Collapse
Affiliation(s)
- Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shuai Shen
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zijian Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping, Jilin Province136001, People's Republic of China
| | - Siyang Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping, Jilin Province136001, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
16
|
Ferrari SM, Elia G, Ragusa F, Paparo SR, Mazzi V, Patrizio A, Piaggi S, Baldini E, Centanni M, La Motta C, Antonelli A, Fallahi P. Antineoplastic Activity of Pazopanib in Anaplastic Thyroid Cancer in Primary Culture. Int J Mol Sci 2023; 24:ijms24032398. [PMID: 36768721 PMCID: PMC9916618 DOI: 10.3390/ijms24032398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare and rapidly fatal human cancer. Its usual treatment includes the combination of surgery, external hyperfractionated radiation therapy, and chemotherapy. These treatments permit achieving about 6-10 months of median survival. For this reason, it is challenging to predict the ATC patient clinical therapy responsiveness. Pazopanib is a multitarget tyrosine kinase inhibitor of VEGF receptors, PDGF, and c-Kit. Until now, the effect of pazopanib in primary human ATC cells (pATC) has not been reported in the literature. The aim of our study was to evaluate in vitro the antineoplastic effect of pazopanib in pATC. Surgical thyroidal tissues were collected from five patients with ATC, from thyroid biopsy at the moment of first surgical operation. An inhibition of proliferation, migration, and invasion, and an increase in apoptosis were demonstrated upon treating pATC cells with pazopanib (p < 0.05). Moreover, pazopanib was able to significantly decrease the VEGF expression in pATC cells (p < 0.05). To conclude, in this study, we demonstrate the antineoplastic activity of the antiangiogenic inhibitor, pazopanib, in human pATC in vitro.
Collapse
Affiliation(s)
| | - Giusy Elia
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Francesca Ragusa
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Valeria Mazzi
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Enke Baldini
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Latina, Italy
- Endocrine Unit, AUSL Latina, 04100 Latina, Italy
| | | | - Alessandro Antonelli
- Department of Surgery, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
17
|
Multiomics Study of a Novel Naturally Derived Small Molecule, NSC772864, as a Potential Inhibitor of Proto-Oncogenes Regulating Cell Cycle Progression in Colorectal Cancer. Cells 2023; 12:cells12020340. [PMID: 36672275 PMCID: PMC9856482 DOI: 10.3390/cells12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors, and it contributes to high numbers of deaths globally. Although advances in understanding CRC molecular mechanisms have shed significant light on its pathogenicity, current treatment options, including combined chemotherapy and molecular-targeted agents, are still limited due to resistance, with almost 25% of patients developing distant metastasis. Therefore, identifying novel biomarkers for early diagnosis is crucial, as they will also influence strategies for new targeted therapies. The proto-oncogene, c-Met, a tyrosine kinase that promotes cell proliferation, motility, and invasion; c-MYC, a transcription factor associated with the modulation of the cell cycle, proliferation, apoptosis; and cyclin D1 (CCND1), an essential regulatory protein in the cell cycle, all play crucial roles in cancer progression. In the present study, we explored computational simulations through bioinformatics analysis and identified the overexpression of c-Met/GSK3β/MYC/CCND1 oncogenic signatures that were associated with cancer progression, drug resistance, metastasis, and poor clinical outcomes in CRC. We further demonstrated the anticancer activities of our newly synthesized quinoline-derived compound, NSC772864, against panels of the National Cancer Institute's human CRC cell lines. The compound exhibited cytotoxic activities against various CRC cell lines. Using target prediction tools, we found that c-Met/GSK3β/MYC/CCND1 were target genes for the NSC772864 compound. Subsequently, we performed in silico molecular docking to investigate protein-ligand interactions and discovered that NSC772864 exhibited higher binding affinities with these oncogenes compared to FDA-approved drugs. These findings strongly suggest that NSC772864 is a novel and potential antiCRC agent.
Collapse
|
18
|
Fanciulli G, Modica R, La Salvia A, Grossrubatscher EM, Florio T, Ferraù F, Veresani A, Russo F, Colao A, Faggiano A. Proteasome inhibitors in medullary thyroid carcinoma: time to restart with clinical trials? Front Endocrinol (Lausanne) 2023; 14:1145926. [PMID: 37152939 PMCID: PMC10157225 DOI: 10.3389/fendo.2023.1145926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Medullary thyroid cancer (MTC) is a rare thyroid tumour whose management in advanced stages is challenging, despite effective therapeutic options having expanded in recent years. Proteasome inhibitors (PrIn) have shown the ability to improve patient outcomes, including survival and quality of life, in several malignancies, due to their ability to impair cell proliferation and cause apoptosis through the inhibition of the proteasome activity. Consequently, these drugs could represent a useful tool, alone or in combination with other treatments, in MTC patients. Aim of the study This review aims to summarize the available in vitro and in vivo data about the role of PrIn in MTC. Materials and methods We performed an extensive search for relevant data sources, including full-published articles in international online databases (PubMed, Web of Science, Scopus), preliminary reports in selected international meeting abstract repositories, and short articles published as supplements of international meetings, by using the following terms: medullary thyroid carcinoma, proteasome inhibitors, bortezomib, carfilzomib, ixazomib, delanzomib, marizomib, oprozomib, and MG132. Additionally, we conducted with the same keywords, an in-depth search in registered clinical trials repositories. Results Our search revealed in vitro studies in human and murine MTC cell lines, based on the use of PrIns, both alone and in combination with other anticancer drugs, and two pertinent clinical trials. Conclusion We found a strong discrepancy between the evidence of PrIns effects in preclinical studies, and the scarcity or early interruption of clinical trials. We might speculate that difficulties in enrolling patients, as happens in other rare diseases, may have discouraged trials' implementation in favor of drugs already approved for MTC. However, given the concrete improvement in the comprehension of the molecular basis of PrIn effects in MTC, new clinical trials with accurate inclusion criteria of enrollment might be warranted, in order to ascertain whether this treatment, alone or in combination with other drugs, could indeed represent an option to enhance the therapeutic response, and to ultimately improve patients' outcome and survival.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- Neuroendocrine Tumor Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Endocrine Unit, Azienda Ospedaliero-Universitaria (AOU) Sassari, Sassari, Italy
- *Correspondence: Giuseppe Fanciulli,
| | - Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Erika Maria Grossrubatscher
- Endocrine Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Tullio Florio
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Scientific Institute for Research, Hospitalisation and Healthcare Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Ferraù
- Department of Human Pathology of Adulthood and Childhood “G. Barresi” (DETEV), University of Messina, Messina, Italy
| | - Alessandro Veresani
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, The European Neuroendocrine Tumor Society (ENETS) Center of Excellence, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, The European Neuroendocrine Tumor Society (ENETS) Center of Excellence, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Li W, Li Y, Li J, Pang H. Combination of Novel Therapies and New Attempts in Anaplastic Thyroid Cancer. Technol Cancer Res Treat 2023; 22:15330338231169870. [PMID: 37122242 PMCID: PMC10134164 DOI: 10.1177/15330338231169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies, and it is rapidly falling without any effective therapeutic options. Although radical surgery, radiotherapy, and chemotherapy are performed on patients, the curative effect is suboptimal, and the survival rate is still poor. The discovery of altered gene pathways involved in this aggressive disease has advanced, but molecular targeted drugs targeting these pathways are still in clinical trials. To date, there is no effective way to treat this disease, so it is particularly urgent to find new treatments. At present, multimodal therapy is gradually being applied in clinical practice, which provides a new possibility for prolonging the survival time and improving the prognosis of anaplastic thyroid carcinoma. In this study, we retrospectively analyzed the current clinical multimodal therapy for patients with anaplastic thyroid cancer to evaluate its effect on improving the survival of patients with anaplastic thyroid cancer at different stages.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jia Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
20
|
Li R, Wang Y, Zhao Z, Li X, Liu Z. A bibliometric analysis based on Web of Science from 2012 to 2021: Current situation, hot spots, and global trends of medullary thyroid carcinoma. Front Oncol 2023; 13:1119915. [PMID: 36959786 PMCID: PMC10029728 DOI: 10.3389/fonc.2023.1119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC) is a special type of thyroid carcinoma derived from the C cell of the thyroid gland. Because of the poor prognosis of MTC, a large number of studies on MTC have been conducted in the last 10 years. To better comprehend, it is necessary to clarify and define the dominant countries, organizations, core journals, important authors, and their cumulative research contributions, as well as the cooperative relationships between them. Method English publications with article type article or review about MTC from January 2012 to December 2021 was retrieved from Web of Science core collection, and VOSviewer, CiteSpace, and Microsoft Excel were applied for bibliometric study. Result A total of 1208 articles and reviews were included in this study. The 1208 papers were written by 6364 authors from 1734 organizations in 67 countries, published in 408 journals, and cited 24118 references from 3562 journals. The number of publications was essentially flat from 2012-2021, with the largest proportion of publications coming from the U.S., followed by Italy and China. Thyroid was the most productive journal, and Journal of clinical endocrinology & metabolism was the most cited journal. University of Texas MD Anderson Cancer Center was the most productive institution and Luca Giovanella, was the most productive author. Diagnostic tools, surgical treatment, non-surgical treatment, genetics and relationship with other endocrine diseases were the main research interests in this field. Prognosis has been a cutting-edge topic since 2017. Conclusion As a thyroid cancer with poor prognosis, MTC has received continuous attention in recent years. Current MTC studies mainly focused on disease intervention, mechanism research and prognosis. The main point of this study is to provide an overview of the development process and hot spots of MTC in the last decade. These might provide ideas for further research in the MTC field.
Collapse
Affiliation(s)
- Ruyin Li
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingjiao Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zirui Zhao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiaobin Li, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xiaobin Li, ; Ziwen Liu,
| |
Collapse
|
21
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
22
|
Yuan J, Guo Y. Targeted Therapy for Anaplastic Thyroid Carcinoma: Advances and Management. Cancers (Basel) 2022; 15:cancers15010179. [PMID: 36612173 PMCID: PMC9818071 DOI: 10.3390/cancers15010179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly fatal cancer with the worst prognosis of all thyroid carcinoma (TC) histological subtypes and no standard treatment. In recent years, the explosion of investigations on ATC-targeted agents has provided a new treatment strategy for this malignant condition, and a review of these studies is warranted. We conducted a comprehensive literature search for ATC-targeted drug studies and compiled a summary of their efficacy and adverse effects (AEs) to provide new insights. Multiple clinical trials have demonstrated the efficacy and safety of dabrafenib in combination with trametinib for the treatment of ATC, but vemurafenib and NTRK inhibitors showed limited clinical responses. We found that the previously valued therapeutic effect of lenvatinib may be unsatisfactory; combining tyrosine kinase (TK) inhibitors (TKIs) with other agents results in a higher rate of clinical benefit. In addition, specific medications, including RET inhibitors, mTOR inhibitors, CDK4/6 inhibitors, and Combretastatin A4-phosphate (CA4P), offer tremendous therapeutic potential. The AEs reported for all agents are relatively numerous but largely manageable clinically. More clinical trials are expected to further confirm the effectiveness and safety of these targeted drugs for ATC.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310001, China
- Correspondence:
| |
Collapse
|
23
|
Xie T, Liu B, Liu D, Zhou Y, Yang Q, Wang D, Tang M, Liu W. Cuproptosis-related lncRNA signatures predict prognosis and immune relevance of kidney renal papillary cell carcinoma. Front Pharmacol 2022; 13:1103986. [PMID: 36618928 PMCID: PMC9810632 DOI: 10.3389/fphar.2022.1103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) has a high mortality rate and a poor prognosis. Cu concentrations differed significantly between renal cancer tissues and adjacent normal tissues. Cuproptosis is a newly identified cell death. Long non-coding RNAs (lncRNAs) play a crucial role in the progression of KIRP. In this study, we focused on constructing and validating cuproptosis-related lncRNA signatures to predict the prognosis of KIRP patients and their immune correlation. We created prognosis models using Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. We found that patients in the high-risk group had poorer overall survival (OS) and progression-free survival (PFS) and higher mortality. Risk score and stage are prognosis factors independent of other clinical features. Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and C-index curves showed that cuproptosis-related lncRNA signatures could more accurately predict the prognosis of patients. Functional enrichment analysis suggests that the function of differentially expressed genes (DEGs) is associated with KIRP development and immunity. In immune-related function analysis, we found a significant difference in parainflammation responses between high-risk and low-risk groups. The mutation frequencies of TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D genes in the high-risk group were higher than those in the low-risk group, but the mutation frequencies of MUC16, KIAA109, CUBN, USH2A, DNAH8 and HERC2 genes were significantly lower than those in the low-risk group. Survival analysis of tumor mutation burden (TMB) and combined TMB-risk showed better OS in patients with high TMB. Immune infiltration and immune checkpoint analysis assessed the immune association of six high mutation frequency genes (TTN, MET, KMT2C, PKHD1, SETD2, and KMT2D) with KIRP. Finally, we performed a drug sensitivity analysis and screened 15 potential drugs that differed between high-risk and low-risk patients. In this study, we constructed and validated cuproptosis-related lncRNA signatures that can more accurately predict the prognosis of KIRP patients and provide new potential therapeutic targets and prognosis markers for KIRP patients.
Collapse
Affiliation(s)
- Tongjin Xie
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongbo Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dai Wang
- Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wei Liu,
| |
Collapse
|
24
|
Non-Apoptotic Programmed Cell Death in Thyroid Diseases. Pharmaceuticals (Basel) 2022; 15:ph15121565. [PMID: 36559016 PMCID: PMC9788139 DOI: 10.3390/ph15121565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Thyroid disorders are among the most common endocrinological conditions. As the prevalence of thyroid diseases increases annually, the exploration of thyroid disease mechanisms and the development of treatments are also gradually improving. With the gradual advancement of therapies, non-apoptotic programmed cell death (NAPCD) has immense potential in inflammatory and neoplastic diseases. Autophagy, pyroptosis, ferroptosis, and immunogenic cell death are all classical NAPCD. In this paper, we have compiled the recent mechanistic investigations of thyroid diseases and established the considerable progress by NAPCD in thyroid diseases. Furthermore, we have elucidated the role of various types of NAPCD in different thyroid disorders. This will help us to better understand the pathophysiology of thyroid-related disorders and identify new targets and mechanisms of drug resistance, which may facilitate the development of novel diagnostic and therapeutic strategies for patients with thyroid diseases. Here, we have reviewed the advances in the role of NAPCD in the occurrence, progression, and prognosis of thyroid diseases, and highlighted future research prospects in this area.
Collapse
|
25
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
26
|
Liu C, Liu D, Wang F, Liu Y, Xie J, Xie J, Xie Y. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol 2022; 13:1038927. [PMID: 36451813 PMCID: PMC9701742 DOI: 10.3389/fimmu.2022.1038927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common digestive system malignancy with high mortality and poor prognosis. Accumulating evidence indicates that choline metabolism is closely related to tumorigenesis and development. However, the efficacy of choline metabolism-related signature in predicting patient prognosis, immune microenvironment and chemotherapy response has not been fully clarified. METHODS Choline metabolism-related differentially expressed genes (DEGs) between normal and COAD tissues were screened using datasets from The Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and Genomes (KEGG), AmiGO2 and Reactome Pathway databases. Two choline metabolism-related genes (CHKB and PEMT) were identified by univariate and multivariate Cox regression analyses. TCGA-COAD was the training cohort, and GSE17536 was the validation cohort. Patients in the high- and low-risk groups were distinguished according to the optimal cutoff value of the risk score. A nomogram was used to assess the prognostic accuracy of the choline metabolism-related signature. Calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) were used to improve the clinical applicability of the prognostic signature. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs in the high- and low-risk groups were performed. KEGG cluster analysis was conducted by the KOBAS-i database. The distribution and expression of CHKB and PEMT in various types of immune cells were analyzed based on single-cell RNA sequencing (scRNA-seq). The CIBERSORT and ESTIMATE algorithms evaluated tumor immune cell infiltration in the high- and low-risk groups. Evaluation of the half maximal inhibitory concentration (IC50) of common chemotherapeutic drugs based on the choline metabolism-related signature was performed. Small molecule compounds were predicted using the Connectivity Map (CMap) database. Molecular docking is used to simulate the binding conformation of small molecule compounds and key targets. By immunohistochemistry (IHC), Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) experiments, the expression levels of CHKB and PEMT in human, mouse, and cell lines were detected. RESULTS We constructed and validated a choline metabolism-related signature containing two genes (CHKB and PEMT). The overall survival (OS) of patients in the high-risk group was significantly worse than that of patients in the low-risk group. The nomogram could effectively and accurately predict the OS of COAD patients at 1, 3, and 5 years. The DCA curve and CIC demonstrate the clinical utility of the nomogram. scRNA-seq showed that CHKB was mainly distributed in endothelial cells, while PEMT was mainly distributed in CD4+ T cells and CD8+ T cells. In addition, multiple types of immune cells expressing CHKB and PEMT differed significantly. There were significant differences in the immune microenvironment, immune checkpoint expression and chemotherapy response between the two risk groups. In addition, we screened five potential small molecule drugs that targeted treatment for COAD. Finally, the results of IHC, Western blot, and qRT-PCR consistently showed that the expression of CHKB in human, mouse, and cell lines was elevated in normal samples, while PMET showed the opposite trend. CONCLUSION In conclusion, we constructed a choline metabolism-related signature in COAD and revealed its potential application value in predicting the prognosis, immune microenvironment, and chemotherapy response of patients, which may lay an important theoretical basis for future personalized precision therapy.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
27
|
Chen H, Zhang J, Sun X, Wang Y, Qian Y. Mitophagy-mediated molecular subtypes depict the hallmarks of the tumour metabolism and guide precision chemotherapy in pancreatic adenocarcinoma. Front Cell Dev Biol 2022; 10:901207. [PMID: 35938160 PMCID: PMC9353335 DOI: 10.3389/fcell.2022.901207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mitophagy is closely related to cancer initiation and progression. However, heterogeneity with reference to mitophagy remains unexplored in pancreatic adenocarcinoma (PAAD). Materials and methods: We used Reactome database to download the mitophagy-related, glycolysis-related and cholesterol biosynthesis-related signaling pathways. Unsupervised clustering using the “ConsensusClusterPlus” R package was performed to identify molecular subtypes related to mitophagy and metabolism. Prognosis-related mitophagy regulators were identified by univariate Cox regression analysis. Receiver operating characteristics (ROC) and Kaplan-Meier (K-M) survival analyses were used to assess the diagnostic and prognostic role of the hub genes and prognosis risk model. Weighted gene co-expression network analysis (WGCNA) was utilized for screening the mitophagy subtype-related hub genes. Metascape was utilized to carry out functional enrichment analysis. The “glmnet” R package was utilised for LASSO, and the “e1071” R package was utilised for SVM. Chemotherapeutic drug sensitivity was estimated using the R package “pRRophetic” and Genomics of Drug Sensitivity in Cancer (GDSC) database. The nomogram was established by the “rms” R package. Results: Three distinct mitophagy subtypes (low, high and intermediate) of PAAD were identified based on the landscape of mitophagy regulators. The high mitophagy subtype had the worst prognosis, highest mRNA expression-based stemness index scores and most hypoxic environment compared to the other subtypes. Additionally, glycolysis and cholesterol biosynthesis were significantly elevated. Three mitophagy subtype-specific gene signatures (CAST, CCDC6, and ERLIN1) were extracted using WGCNA and machine learning. Moreover, PAAD tumours were insensitive to Erlotinib, Sunitinib and Imatinib in the high mitophagy subtype and high CAST, CCDC6, and ERLIN1 expressed subtypes. Furthermore, CAST, CCDC6, and ERLIN1 affected immune cell infiltration (M1 and CD8Tcm), resulting in the altered prognosis of patients with PAAD. A nomogram was constructed to screen patients with the low mitophagy subtype, which showed a higher sensitivity to chemotherapeutic agents. Conclusion: Based on various bioinformatics tools and databases, the PAAD heterogeneity regarding mitophagy was systematically examined. Three different PAAD subtypes having different outcomes, metabolism patterns and chemosensitivity were observed. Moreover, three novel biomarkers that are closely associated with mitophagy and have the potential to guide individualised treatment regimens in PAAD were obtained.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuehu Sun
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| |
Collapse
|
28
|
Ragusa F, Ferrari SM, Elia G, Paparo SR, Balestri E, Botrini C, Patrizio A, Mazzi V, Guglielmi G, Foddis R, Spinelli C, Ulisse S, Antonelli A, Fallahi P. Combination Strategies Involving Immune Checkpoint Inhibitors and Tyrosine Kinase or BRAF Inhibitors in Aggressive Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23105731. [PMID: 35628540 PMCID: PMC9144613 DOI: 10.3390/ijms23105731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid cancer is the most common (~90%) type of endocrine-system tumor, accounting for 70% of the deaths from endocrine cancers. In the last years, the high-throughput genomics has been able to identify pathways/molecular targets involved in survival and tumor progression. Targeted therapy and immunotherapy individually have many limitations. Regarding the first one, although it greatly reduces the size of the cancer, clinical responses are generally transient and often lead to cancer relapse after initial treatment. For the second one, although it induces longer-lasting responses in cancer patients than targeted therapy, its response rate is lower. The individual limitations of these two different types of therapies can be overcome by combining them. Here, we discuss MAPK pathway inhibitors, i.e., BRAF and MEK inhibitors, combined with checkpoint inhibitors targeting PD-1, PD-L1, and CTLA-4. Several mutations make tumors resistant to treatments. Therefore, more studies are needed to investigate the patient's individual tumor mutation burden in order to overcome the problem of resistance to therapy and to develop new combination therapies.
Collapse
Affiliation(s)
- Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva Del Lavoro, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Rudy Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, ‘Sapienza’ University of Rome, 00161 Rome, Italy;
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| |
Collapse
|
29
|
Xiang C, Sun WH, Ke Y, Yu X, Wang Y. CDCA8 Contributes to the Development and Progression of Thyroid Cancer through Regulating CDK1. J Cancer 2022; 13:2322-2335. [PMID: 35517403 PMCID: PMC9066215 DOI: 10.7150/jca.64747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background: This study aims to reveal regulatory role of cell division cycle associated 8 (CDCA8) in thyroid cancer progression and metastasis. Methods: A series of experiments in vivo and in vitro were performed to explore the function of CDCA8 in thyroid cancer. Results: Immunohistochemical analysis showed that CDCA8 expression levels were upregulated in thyroid cancer tissues compared with normal tissues, and were statistically correlated with tumor stage. Results of in vitro loss-of-function assay showed that downregulation of endogenous expression of CDCA8 could significantly inhibit cell proliferation, colony formation, cell migration, and promote apoptosis. Thyroid cancer cells lacking CDCA8 expression also had reduced tumorigenicity in vivo. Further, results of preliminary mechanistic exploration showed that CDK1 may be a potential downstream molecule of CDCA8 in regulating thyroid cancer progression. We subsequently confirmed that CDK1 itself exerted a significant regulatory function in thyroid cancer by loss- and gain-of-function experiments. Moreover, overexpression of CDK1 could weaken the tumor suppressive effect caused by CDCA8 knockdown. Conclusions: CDCA8 functions as an oncogene in thyroid cancer, and CDCA8 knockdown suppresses cancer development in vitro and in vivo. Additionally, CDK1 was further identified as a potential target of CDCA8 in thyroid cancer.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Wu-Hui Sun
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - You Ke
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Xing Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Sobocki BK, Perdyan A, Szot O, Rutkowski J. Management of Pheochromocytomas and Paragangliomas: A Case-Based Review of Clinical Aspects and Perspectives. J Clin Med 2022; 11:jcm11092591. [PMID: 35566714 PMCID: PMC9103340 DOI: 10.3390/jcm11092591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Paraganglioma and pheochromocytoma are rare medical conditions. Thus, there are still a small number of studies, clinical trials, and evidence-based data in this field. This makes clinical decisions more difficult. In this study, we present a case report enriched with a short review of available essential clinical data, indicating the need for constant metoxycatecholamine level observation and a proper diagnostic imaging approach, especially in terms of ongoing pandemics. Our research also provides a summary of the molecular background of these diseases, indicating their future role in clinical management. We analyzed the ClinicalTrials.gov dataset in order to show future perspectives. In this paper, the use of the PET-CT before MRI or CT is proposed in specific cases during diagnosis processes contrary to the guidelines. PET-CT may be as effective as standard procedures and may provide a faster diagnosis, which is important in periods with more difficult access to health care, such as during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
- Correspondence: (B.K.S.); (J.R.)
| | - Adrian Perdyan
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Olga Szot
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: (B.K.S.); (J.R.)
| |
Collapse
|
31
|
Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, Guo SD. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 2022; 202:539-557. [PMID: 35074329 DOI: 10.1016/j.ijbiomac.2022.01.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) are expressed in a variety of tumors. Activation of the PDGF/PDGFR signaling pathway is associated with cancer proliferation, metastasis, invasion, and angiogenesis through modulating multiple downstream pathways, including phosphatidylinositol 3 kinase/protein kinase B pathway and mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Therefore, targeting PDGF/PDGFR signaling pathway has been demonstrated to be an effective strategy for cancer therapy, and accordingly, some great progress has been made in this field in the past few decades. This review will focus on the PDGF isoforms and their binding with the related PDGFRs, the PDGF/PDGFR signaling and regulation, and especially present strategies and inhibitors developed for cancer therapy, and the related clinical benefits and side effects.
Collapse
Affiliation(s)
- Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Xi-Yu Tang
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Zhong-Yuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Zhi-Wei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Chen-Feng Ji
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Yan-Jie Li
- Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Shou-Dong Guo
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
32
|
Lu S, Hong Y, Chen H, Wu L, Sun F, Wang J, Zhu J, Que Y, Zhang L, Zhen Z, Sun X, Huang J, Zhang Y. The Efficacy and Safety of Anlotinib in Pediatric Patients With Refractory or Recurrent Solid Tumors. Front Pharmacol 2022; 13:711704. [PMID: 35431969 PMCID: PMC9008584 DOI: 10.3389/fphar.2022.711704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/07/2022] [Indexed: 02/03/2023] Open
Abstract
Objective: Refractory or recurrent pediatric solid tumors lack effective treatments, and are associated with dismal outcomes. Hence, there is an urgent need for a novel therapeutic strategy. This study aimed to evaluate the efficacy and safety of anlotinib, a novel oral multi-kinase angiogenesis inhibitor, in pediatric patients with refractory or recurrent solid tumors.Methods: This single-institutional, observational retrospective study was conducted in Sun Yat-sen University Cancer Center, China. Refractory or recurrent pediatric solid tumor patients treated with anlotinib between 2018 and 2020 were evaluated.Results: Forty-one and 30 patients were enrolled to evaluate the efficacy and safety of anlotinib, respectively. There was partial response in five patients, stable disease in 22 patients, no patient with complete response, with an objective response ratio of 12.2% (5/41; 95% CI 1.7-22.7). The disease control rate was 65.9% (27/41; 95% CI 50.7-81) and the median progression-free survival was 2.87 months (95% CI 0.86-4.88). The incidence rates of any grade and grade 3–4 adverse events were 80% (24/30) and 23.3% (7/30), respectively. Bleeding (20%, 6/30), hand-foot syndrome (16.7%, 5/30), and diarrhea (13.3%, 4/30) were the most common adverse events. Grade 3–4 adverse events included hypertension, hand-foot syndrome, diarrhea, anemia, and thrombocytopenia. There were no adverse events-related deaths.Conclusion: For heavily pretreated pediatric solid tumors, anlotinib monotherapy and its combination with chemotherapy may be an effective treatment option with tolerable adverse events. It is necessary to monitor blood pressure when using anlotinib in children.
Collapse
Affiliation(s)
- Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huimou Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liuhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaofei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Yizhuo Zhang, ; Junting Huang,
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Yizhuo Zhang, ; Junting Huang,
| |
Collapse
|
33
|
Ma Y, Liu X, Bi Y, Wang T, Chen C, Wang Y, Han D, Cao F. Alteration of N6-Methyladenosine mRNA Methylation in a Human Stem Cell-Derived Cardiomyocyte Model of Tyrosine Kinase Inhibitor-Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:849175. [PMID: 35402566 PMCID: PMC8985653 DOI: 10.3389/fcvm.2022.849175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background N6-methyladenosine (m6A) plays important roles in various cardiovascular diseases (CVDs), including cardiac hypertrophy and heart failure. Sunitinib (SUN) is a tyrosine kinase inhibitor (TKI) that is widely used in the treatment of different types of solid and blood tumors, but its efficacy is restricted by a concomitant rise in cardiotoxicities. However, the methylation modification of m6A messenger RNA (mRNA) in cardiomyocytes treated with TKI has not been investigated. Methods The global m6A methylation level of SUN-induced cardiotoxicity was detected by m6A dot blot and colorimetric methylation assay. MeRIP-Seq (methylated RNA immunoprecipitation sequencing) and RNA-seq (RNA sequencing, input) were employed to depict the landscapes of transcriptome and epitranscriptome in TKI. Changes in major m6A-related enzymes were detected by qRT-PCR and Western blot. In addition, the effects of FTO on SUN-induced cardiotoxicity were evaluated by gain and loss of function studies. Results In this study, we observed that the m6A methylation level was significantly elevated in SUN-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and paralleled a positively correlated cellular damage level. Through a genome-wide analysis of m6A mRNA methylation by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and input RNA sequencing (RNA-seq), we identified a total of 2,614 peaks with significant changes, of which 1,695 peaks were significantly upregulated and 919 peaks were significantly downregulated. Quantitative reverse transcription PCR (RT-qPCR), immunofluorescence, and Western blotting revealed that the RNA demethylase fat mass and obesity-associated protein (FTO) was downregulated, whereas the RNA methylases methyltransferase-like 14 (METTL14) and wilms' tumor 1-associating protein (WTAP) were upregulated. Furthermore, gain- and loss-of-function studies substantiated that FTO is cardioprotective in TKI. Conclusion This study deciphered the methylation modification of m6A mRNA in hiPSC-CMs post-TKI treatment and determined that FTO may be a promising therapeutic target for TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yan Ma
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xian Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiming Bi
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tianhu Wang
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cheng Chen
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yabin Wang
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Dong Han
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Dong Han
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, The Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Feng Cao
| |
Collapse
|
34
|
Systemic Therapy in Thyroid Cancer. Indian J Surg Oncol 2022; 13:68-80. [PMID: 35462658 PMCID: PMC8986938 DOI: 10.1007/s13193-021-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. While surgery remains the mainstay of the treatment of all different histologies, for differentiated thyroid cancers, radioactive iodine also plays an important role in management. Once tumor becomes radio-iodine refractory, it needs systemic therapy. Earlier, these tumors had very dismal prognosis. However, with the advancement of technology and research, it has become clear now that thyroid cancer cells are driven by various mutations. Targeting these oncogenic drivers by various molecules have proven to be effective therapeutic strategy in thyroid cancer. Besides, as in other solid tumors, immunotherapy is also being evaluated in thyroid cancer. While these new therapeutic approaches have revolutionized the treatment on advanced/metastatic thyroid cancer, there are definite challenges which limit their use in common clinical practice. These challenges include higher treatment cost and lack of testing to identify the driver mutations. Moreover, there is still need for further research in thyroid cancers to identify oncogenic targets and agent to act upon them.
Collapse
|
35
|
Synthesis and Characterization of Novel Copper(II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies. INORGANICS 2021. [DOI: 10.3390/inorganics10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The main goal of this work was to report the synthesis, characterization, and cytotoxicity study of a novel copper(II)-sunitinib complex, CuSun. It has been synthesized and characterized in solid state and in solution by different methods (such as DFT, FTIR, Raman, UV-vis, EPR, NMR, etc.). The solid-state molecular structure of trichlorosunitinibcopper(II), where sunitinib: N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, for short Cu(Sun)Cl3, was determined by X-ray diffraction. It crystallizes in the triclinic space group P-1 with a = 7.9061(5) Å, b = 12.412(1) Å, c = 13.7005(8) Å, α = 105.021(6)°, β = 106.744(5)°, γ = 91.749(5)°, and Z = 2 molecules per unit cell. Also, we have found π-π interactions and classic and non-classic H-bonds in the crystal structure by using Hirshfeld surface analysis. In the speciation studies, the complex has dissociated in protonated sunitinib and chlorocomplex of copper(II), according to 1HNMR, EPR, UV-vis and conductimetric analysis. Molecular docking of the complex in both, ATP binding site and allosteric site of VEGFR2 have shown no improvement in comparison to the free ligand. Besides, cytotoxicity assay on HepG2 cell line shows similar activity for complex and ligand in the range between 1–25 μM supporting the data obtained from studies in solution.
Collapse
|
36
|
Advances in Biomarker-Driven Targeted Therapies in Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13246194. [PMID: 34944814 PMCID: PMC8699087 DOI: 10.3390/cancers13246194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This article reviews current treatment practices for thyroid cancer with a focus on novel targeted molecular therapy. Rapidly expanding knowledge of the molecular biology of these cancers coupled with the increased availability of genetic testing has led to exciting paradigm shifts in treatment strategies for these tumor types. We aim to provide up-to-date information on these state-of-the-art therapies as a guide for clinicians who specialize in the treatments of thyroid cancer. Abstract Thyroid cancer is the most common type of endocrine malignancy comprising 2–3% of all cancers, with a constant rise in the incidence rate. The standard first-line treatments for thyroid cancer include surgery and radioactive iodine ablation, and a majority of patients show a good response to these therapies. Despite a better response and outcome, approximately twenty percent of patients develop disease recurrence and distant metastasis. With improved knowledge of molecular dysregulation and biological characteristics of thyroid cancer, the development of new treatment strategies comprising novel targets has accelerated. Biomarker-driven targeted therapies have now emerged as a trend for personalized treatments in patients with advanced cancers, and several multiple receptor kinase inhibitors have entered clinical trials (phase I/II/III) to evaluate their safety and efficacy. Most extensively investigated and clinically approved targeted therapies in thyroid cancer include the tyrosine receptor kinase inhibitors that target antiangiogenic markers, BRAF mutation, PI3K/AKT, and MAPK pathway components. In this review, we focus on the current advances in targeted mono- and combination therapies for various types of thyroid cancer.
Collapse
|
37
|
Luengas-Martinez A, Paus R, Young HS. A novel personalised treatment approach for psoriasis: anti-VEGF-A therapy. Br J Dermatol 2021; 186:782-791. [PMID: 34878645 PMCID: PMC9313866 DOI: 10.1111/bjd.20940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2022]
Abstract
Chronic plaque psoriasis is an inflammatory skin disease in which genetic predisposition along with environmental factors lead to the development of the disease, which affects 2% of the UK’s population and is associated with extracutaneous morbidities and a reduced quality of life. A complex crosstalk between innate and adaptive immunity, the epithelia and the vasculature maintain the inflammatory milieu in psoriasis. Despite the development of promising treatment strategies, mostly targeting the immune system, treatments fail to fulfil every patient’s goals. Vascular endothelial growth factor‐A (VEGF‐A) mediates angiogenesis and is upregulated in the plaques and plasma of patients with psoriasis. Transgenic expression of VEGF‐A in experimental models led to the development of skin lesions that share many psoriasis features. Targeting VEGF‐A in in vivo models of psoriasis‐like inflammation resulted in disease clearance. Anti‐angiogenesis treatments are widely used for cancer and eye disease and there are clinical reports of patients treated with VEGF‐A inhibitors who have experienced Psoriasis Area and Severity Index improvement. Existing psoriasis treatments downregulate VEGF‐A and angiogenesis as part of their therapeutic effect. Pharmacogenetics studies suggest the existence of different genetic signatures within patients with psoriasis that correspond with different treatment responsiveness and disease severity. There is a subset of patients with psoriasis with an increased predisposition to produce high levels of VEGF‐A, who may be most likely to benefit from anti‐VEGF‐A therapy, offering an opportunity to personalize treatment in psoriasis. Anti‐VEGF‐A therapies may offer an alternative to existing anticytokine strategies or be complementary to standard treatments for the management of psoriasis.
Collapse
Affiliation(s)
- A Luengas-Martinez
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - R Paus
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H S Young
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Hu J, Xing K, Zhang Y, Liu M, Wang Z. Global research Trends in Tyrosine Kinase Inhibitors: A Co-Word and Visualized Study (Preprint). JMIR Med Inform 2021; 10:e34548. [PMID: 35072634 PMCID: PMC9034433 DOI: 10.2196/34548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jiming Hu
- School of Information Management, Wuhan University, Wuhan, China
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Miao Liu
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, Deng J, Deng Y, Wu Z, Li Q, Song Y, Zhang H, Chen J, Tian K, Ni Y, Pu Z. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021; 11:752725. [PMID: 34707994 PMCID: PMC8543014 DOI: 10.3389/fonc.2021.752725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted therapies such as oral tyrosine kinase inhibitors (TKIs) are the main therapeutic strategy effective for advanced hepatocellular carcinoma (HCC). Currently six tyrosine kinase inhibitors for HCC therapy have been approved. The newly approved first-line drug donafenib represent the major milestones in HCC therapeutics in recent years. However, drug resistance in HCC remains challenging due to random mutations in target receptors as well as downstream pathways. TKIs-based combinatorial therapies with immune checkpoint inhibitors such as PD-1/PD-L1 antibodies afford a promising strategy to further clinical application. Recent developments of nanoparticle-based TKI delivery techniques improve drug absorption and bioavailability, enhance efficient targeting delivery, prolonged circulation time, and reduce harmful side effects on normal tissues, which may improve the therapeutic efficacy of the TKIs. In this review, we summarize the milestones and recent progress in clinical trials of TKIs for HCC therapy. We also provide an overview of the novel nanoparticle-based TKI delivery techniques that enable efficient therapy.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaohe Tian
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Bo Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- College of Engineering, Boston University, Boston, MA, United States
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ying Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qi Li
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yi’an Song
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Hongyuan Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- The Faculty of Arts and Sciences, The University of British Columbia, Kelowna, BC, Canada
| | - Jinjun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Kuifeng Tian
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
40
|
Wei G, Shu X, Zhou Y, Liu X, Chen X, Qiu M. Intra-Abdominal Desmoplastic Small Round Cell Tumor: Current Treatment Options and Perspectives. Front Oncol 2021; 11:705760. [PMID: 34604040 PMCID: PMC8479161 DOI: 10.3389/fonc.2021.705760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
Intra-abdominal desmoplastic small round cell tumor (IDSRCT) is a rare and highly malignant soft tissue neoplasm, which is characterized by rapid progression and poor prognosis. The mechanism underlying the development of this neoplasm remains elusive, but all cases are characterized by the chromosomal translocation t (11;22) (p13; q12), which results in a formation of EWSR1-WT1 gene fusion. The diagnosis of IDSRCT is often made with core-needle tissue biopsy specimens or laparoscopy or laparotomy. Immunohistochemical analyses have shown the co-expression of epithelial, neuronal, myogenic, and mesenchymal differentiation markers. FISH or reverse transcription polymerase chain reaction detecting EWS-WT1 fusion can be performed to assist in molecular confirmation. There is no standard of care for patients with IDSRCT currently, and majority of newly diagnosed patients received the aggressive therapy, which includes >90% resection of surgical debulking, high-dose alkylator-based chemotherapy, and radiotherapy. More recently, targeted therapy has been increasingly administered to recurrent IDSRCT patients and has been associated with improved survival in clinical conditions. Immunotherapy as a possible therapeutic strategy is being explored in patients with IDSRCT. In this review, we summarize currently available knowledge regarding the epidemiology, potential mechanisms, clinical manifestations, diagnosis, treatment, and prognosis of IDSRCT to assist oncologists in comprehensively recognizing and accurately treating this malignancy.
Collapse
Affiliation(s)
- Guixia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyao Shu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xia Liu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorong Chen
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Mari G, Corrieri M, De Crescentini L, Favi G, Santeusanio S, Mantellini F. FeCl
3
‐Catalyzed Formal [3+2] Cyclodimerization of 4‐Carbonyl‐1,2‐diaza‐1,3‐dienes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Matteo Corrieri
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino (PU) Italy
| |
Collapse
|
42
|
Lisco G, De Tullio A, Jirillo E, Giagulli VA, De Pergola G, Guastamacchia E, Triggiani V. Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. J Endocrinol Invest 2021; 44:1801-1814. [PMID: 33765288 PMCID: PMC7992516 DOI: 10.1007/s40618-021-01554-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid dysfunction has been observed in patients with COVID-19, and endocrinologists are requested to understand this clinical issue. Pandemic-related restrictions and reorganization of healthcare services may affect thyroid disease management. OBJECTIVE AND METHODS To analyze and discuss the relationship between COVID-19 and thyroid diseases from several perspectives. PubMed/MEDLINE, Google Scholar, Scopus, ClinicalTrial.gov were searched for this purpose by using free text words and medical subject headings as follows: "sars cov 2", "covid 19", "subacute thyroiditis", "atypical thyroiditis", "chronic thyroiditis", "hashimoto's thyroiditis", "graves' disease", "thyroid nodule", "differentiated thyroid cancer", "medullary thyroid cancer", "methimazole", "levothyroxine", "multikinase inhibitor", "remdesivir", "tocilizumab". Data were collected, analyzed, and discussed to answer the following clinical questions: "What evidence suggests that COVID-19 may induce detrimental consequences on thyroid function?"; "Could previous or concomitant thyroid diseases deteriorate the prognosis of COVID-19 once the infection has occurred?"; "Could medical management of thyroid diseases influence the clinical course of COVID-19?"; "Does medical management of COVID-19 interfere with thyroid function?"; "Are there defined strategies to better manage endocrine diseases despite restrictive measures and in-hospital and ambulatory activities reorganizations?". RESULTS SARS-CoV-2 may induce thyroid dysfunction that is usually reversible, including subclinical and atypical thyroiditis. Patients with baseline thyroid diseases are not at higher risk of contracting or transmitting SARS-CoV-2, and baseline thyroid dysfunction does not foster a worse progression of COVID-19. However, it is unclear whether low levels of free triiodothyronine, observed in seriously ill patients with COVID-19, may worsen the disease's clinical progression and, consequently, if triiodothyronine supplementation could be a tool for reducing this burden. Glucocorticoids and heparin may affect thyroid hormone secretion and measurement, respectively, leading to possible misdiagnosis of thyroid dysfunction in severe cases of COVID-19. High-risk thyroid nodules require a fine-needle aspiration without relevant delay, whereas other non-urgent diagnostic procedures and therapeutic interventions should be postponed. DISCUSSION Currently, we know that SARS-CoV-2 could lead to short-term and reversible thyroid dysfunction, but thyroid diseases seem not to affect the progression of COVID-19. Adequate management of patients with thyroid diseases remains essential during the pandemic, but it could be compromised because of healthcare service restrictions. Endocrine care centers should continuously recognize and classify priority cases for in-person visits and therapeutic procedures. Telemedicine may be a useful tool for managing patients not requiring in-person visits.
Collapse
Affiliation(s)
- G Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy.
| | - A De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - E Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - V A Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - G De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - E Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy
| | - V Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Bari, Apulia, Italy.
| |
Collapse
|
43
|
Ferrari SM, Elia G, Ragusa F, Paparo SR, Mazzi V, Miccoli M, Galdiero MR, Varricchi G, Foddis R, Guglielmi G, Spinelli C, La Motta C, Benvenga S, Antonelli A, Fallahi P. Lenvatinib: an investigational agent for the treatment of differentiated thyroid cancer. Expert Opin Investig Drugs 2021; 30:913-921. [PMID: 34428101 DOI: 10.1080/13543784.2021.1972971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Differentiated thyroid cancer (DTC; >90% of all TCs) derives from follicular cells. Surgery is the main therapeutic strategy, and radioiodine (RAI) is administered after thyroidectomy. When DTC progresses, it does not respond to RAI and thyroid-stimulating hormone (TSH)-suppressive thyroid hormone treatment, and other therapies (i.e. surgery, external beam radiation therapy and chemotherapy) do not lead to a better survival. Thanks to the understanding of the molecular pathways involved in TC progression, important advances have been done. Lenvatinib is a multitargeted tyrosine kinase inhibitor of VEGFR1-3, FGFR1-4, PDGFRα, RET, and KIT signaling networks implicated in tumor angiogenesis, approved in locally recurrent or metastatic, progressive, RAI-refractory DTC. Unmet needs regarding the patient clinical therapy responsiveness in aggressive RAI-refractory DTC still remain. AREAS COVERED We provide an overview from the literature of in vitro, in vivo and real-life studies regarding lenvatinib as an investigational agent for the treatment of aggressive TC. EXPERT OPINION According to the SELECT trial, the treatment should be initiated with a dosage of 24 mg/day, subsequently decreasing it in relation to the side effects. The decision making process in patients with aggressive RAI-refractory DTC should be personalized and the potential toxicity should be properly managed.
Collapse
Affiliation(s)
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR),Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy; WAO Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR),Naples, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva Del Lavoro, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology and Women's Endocrine Health, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Huang Z, Su Q, Li W, Ren H, Huang H, Wang A. Suppressed mitochondrial respiration via NOX5-mediated redox imbalance contributes to the antitumor activity of anlotinib in oral squamous cell carcinoma. J Genet Genomics 2021; 48:582-594. [PMID: 34373220 DOI: 10.1016/j.jgg.2021.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival (mPFS) and median overall survival (mOS) of patients with recurrent and metastatic (R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patient-derived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/mTOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5 (NOX5) expression, elevated reactive oxygen species (ROS) production, impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phospho-Akt (p-AKT) expression and elevated p-eIF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/eIF2α pathway.
Collapse
Affiliation(s)
- Zhexun Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
45
|
Hyytiäinen A, Wahbi W, Väyrynen O, Saarilahti K, Karihtala P, Salo T, Al-Samadi A. Angiogenesis Inhibitors for Head and Neck Squamous Cell Carcinoma Treatment: Is There Still Hope? Front Oncol 2021; 11:683570. [PMID: 34195084 PMCID: PMC8236814 DOI: 10.3389/fonc.2021.683570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) carries poor survival outcomes despite recent progress in cancer treatment in general. Angiogenesis is crucial for tumour survival and progression. Therefore, several agents targeting the pathways that mediate angiogenesis have been developed. We conducted a systematic review to summarise the current clinical trial data examining angiogenesis inhibitors in HNSCC. Methods We carried out a literature search on three angiogenesis inhibitor categories—bevacizumab, tyrosine kinase inhibitors and endostatin—from Ovid MEDLINE, Cochrane Library, Scopus and ClinicalTrials.gov database. Results Here, we analysed 38 clinical trials, total of 1670 patients, investigating 12 angiogenesis inhibitors. All trials were in phase I or II, except one study in phase III on bevacizumab. Angiogenesis inhibitors were used as mono- and combination therapies together with radio-, chemo-, targeted- or immunotherapy. Among 12 angiogenesis inhibitors, bevacizumab was the most studied drug, included in 13 trials. Although bevacizumab appeared effective in various combinations, it associated with high toxicity levels. Endostatin and lenvatinib were well-tolerated and their anticancer effects appeared promising. Conclusions Most studies did not show benefit of angiogenesis inhibitors in HNSCC treatment. Additionally, angiogenesis inhibitors were associated with considerable toxicity. However, some results appear encouraging, suggesting that further investigations of angiogenesis inhibitors, particularly in combination therapies, for HNSCC patients are warranted. Systematic Review Registration PROSPERO (https://www.crd.york.ac.uk/prospero/), identifier CRD42020157144.
Collapse
Affiliation(s)
- Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Otto Väyrynen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Kauko Saarilahti
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Centre and University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland.,Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Oulu Medical Research Centre, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
47
|
ElHady AK, El-Gamil DS, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. 5-Methoxybenzothiophene-2-Carboxamides as Inhibitors of Clk1/4: Optimization of Selectivity and Cellular Potency. Molecules 2021; 26:molecules26041001. [PMID: 33668683 PMCID: PMC7918793 DOI: 10.3390/molecules26041001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
Clks have been shown by recent studies to be promising targets for cancer therapy, as they are considered key regulators in the process of pre-mRNA splicing, which in turn affects every aspect of tumor biology. In particular, Clk1 and -4 are overexpressed in several human tumors. Most of the potent Clk1 inhibitors reported in the literature are non-selective, mainly showing off-target activity towards Clk2, Dyrk1A and Dyrk1B. Herein, we present new 5-methoxybenzothiophene-2-carboxamide derivatives with unprecedented selectivity. In particular, the introduction of a 3,5-difluoro benzyl extension to the methylated amide led to the discovery of compound 10b (cell-free IC50 = 12.7 nM), which was four times more selective for Clk1 over Clk2 than the previously published flagship compound 1b. Moreover, 10b showed an improved growth inhibitory activity with T24 cells (GI50 = 0.43 µM). Furthermore, a new binding model in the ATP pocket of Clk1 was developed based on the structure-activity relationships derived from new rigidified analogues.
Collapse
Affiliation(s)
- Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11865, Egypt
| | - Dalia S. El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-J.C.); (T.-L.H.)
- Department of Cosmetic Science, Providence University, Taichung 433, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-J.C.); (T.-L.H.)
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (A.K.E.); (D.S.E.-G.); (A.H.A.); (M.A.-H.)
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-302-70312; Fax: +49-681-302-70308
| |
Collapse
|
48
|
Chen L, Xu P, Xiao Q, Chen L, Li S, Jian JM, Zhong YB. Sunitinib malate inhibits intestinal tumor development in male Apc Min/+ mice by down-regulating inflammation-related factors with suppressing β-cateinin/c-Myc pathway and re-balancing Bcl-6 and Caspase-3. Int Immunopharmacol 2021; 90:107128. [PMID: 33191180 DOI: 10.1016/j.intimp.2020.107128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Sunitinib is a tyrosine kinase inhibitor for many tumors. Inflammation is one of the most important factors in the development of intestinal tumors. Many inflammation-related factors are regulated by tyrosine kinase receptors. It is reasonable to hypothesize that sunitinib can regulate the development of intestinal tumors by regulating the expression and/or activity of inflammation-related factors. Here, ApcMin/+ male mouse model was used to investigate the effect and mechanism of sunitinib malate against intestinal cancer. Results show that compared to vehicle, after sunitinib malate treatment, overall survival of ApcMin/+ mice was lengthened up to 25 days, with a gain of body weight, reduction of spleen/body weight index, and RBC, WBC and HGC regulated to normal levels of wild type mice, and a number of polyps no less than 1 mm significantly reduced. Meanwhile, in the intestines, the nuclear β-Catenin protein and c-Myc mRNA were both down-regulated, and Bcl-6 was significantly reduced with Caspase-3 up regulated. Furthermore, inflammation-related factors including IL-6, TNF-α, IL-1α, IL-1β and IFN-γ were down-regulated at mRNA levels in the intestines. These results suggest that sunitinib malate can significantly improve the survival status and inhibit intestinal tumor development in male ApcMin/+ mice, through inhibiting inflammation-related factors, while suppressing β-cateinin/c-Myc pathway and re-balancing protein levels of Bcl-6 and Caspase-3.
Collapse
Affiliation(s)
- Lai Chen
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Pan Xu
- Integrated Chinese & Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department of Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Shanshan Li
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Ji-Mo Jian
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan, Shandong 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| | - You-Bao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
49
|
Fallahi P, Ferrari SM, Galdiero MR, Varricchi G, Elia G, Ragusa F, Paparo SR, Benvenga S, Antonelli A. Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin Cancer Biol 2020; 79:180-196. [PMID: 33249201 DOI: 10.1016/j.semcancer.2020.11.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Thyroid cancer (TC) is the eighth most frequently diagnosed cancer worldwide with a rising incidence in the past 20 years. Surgery is the primary strategy of therapy for patients with medullary TC (MTC) and differentiated TC (DTC). In DTC patients, radioactive iodine (RAI) is administered after thyroidectomy. Neck ultrasound, basal and thyroid-stimulating hormone-stimulated thyroglobulin are generally performed every three to six months for the first year, with subsequent intervals depending on initial risk assessment, for the detection of possible persistent/recurrent disease during the follow up. Distant metastases are present at the diagnosis in ∼5 % of DTC patients; up to 15 % of patients have recurrences during the follow up, with a survival reduction (70 %-50 %) at 10-year. During tumor progression, the iodide uptake capability of DTC cancer cells can be lost, making them refractory to RAI, with a negative impact on the prognosis. Significant advances have been done recently in our understanding of the molecular pathways implicated in the progression of TCs. Several drugs have been developed, which inhibit signaling kinases or oncogenic kinases (BRAFV600E, RET/PTC), such as those associated with Platelet-Derived Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor. Tyrosine kinase receptors are involved in cancer cell proliferation, angiogenesis, and lymphangiogenesis. Several tyrosine kinase inhibitors (TKIs) are emerging as new treatments for DTC, MTC and anaplastic TC (ATC), and can induce a clinical response and stabilize the disease. Lenvatinib and sorafenib reached the approval for RAI-refractory DTC, whereas cabozantinib and vandetanib for MTC. These TKIs extend median progression-free survival, but do not increase the overall survival. Severe side effects and drug resistance can develop in TC patients treated with TKIs. Additional studies are needed to identify a potential effective targeted therapy for aggressive TCs, according to their molecular characterization.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy; World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131 Naples, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Messina, Messina, Italy; Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy; Interdepartmental Program on Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, A.O.U. Policlinico Gaetano Martino, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy.
| |
Collapse
|
50
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|