1
|
Xu Y, Liu X, Guan J, Chen J, Xu X. iTRAQ-Based Proteomic Profiling of Skin Aging Protective Effects of Tremella fuciformis-Derived Polysaccharides on D-Galactose-Induced Aging Mice. Molecules 2024; 29:5191. [PMID: 39519833 PMCID: PMC11547511 DOI: 10.3390/molecules29215191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 106 Da, named NTP, was prepared from the fruiting body of Tremella fuciformis. The anti-skin-aging effects of NTP on d-Galactose-induced aging mice and the biological mechanisms were investigated by an iTRAQ-based proteomics approach. NTP substantially mitigated skin aging characterized by a decreased loss of hydroxyproline and hyaluronic acid and reduced oxidative stress in the skin. Moreover, 43 differentially expressed proteins (DEPs) were identified in response to NTP, of which 23 were up-regulated and 20 were down-regulated. Bioinformatics analysis revealed that these DEPs were mainly involved in the biological functions of cellular and metabolic regulations, immune system responses, and structural components. The findings provided new insights into the biological mechanisms underlying the anti-skin-aging actions of T. fuciformis-derived polysaccharides and facilitated NTP applications in naturally functional foods.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China
| |
Collapse
|
2
|
Liang Y, Luo K, Wang B, Huang B, Fei P, Zhang G. Inhibition of polyphenol oxidase for preventing browning in edible mushrooms: A review. J Food Sci 2024; 89:6796-6817. [PMID: 39363229 DOI: 10.1111/1750-3841.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Edible mushrooms are rich in nutrients and bioactive compounds, but their browning affects their quality and commercial value. This article reviews various methods to inhibit polyphenol oxidase (PPO)-induced browning in mushrooms. Physical methods such as heat treatment, low temperatures, irradiation, and ultrasound effectively reduce PPO activity but may affect mushroom texture and flavor. Chemical inhibitors, including synthetic chemicals and natural plant extracts, provide effective PPO inhibition but require careful monitoring of their content. Biological methods, including gene editing and microbial fermentation, show promise in targeting PPO genes and enhancing antioxidant production. Combining these methods offers a comprehensive strategy for preserving mushroom quality, extending shelf life, and maintaining nutritional value. PRACTICAL APPLICATION: These approaches can be applied in the food industry to improve post-harvest mushroom preservation, enhance product quality, and reduce waste, benefiting both producers and consumers. Further research and innovation are needed to optimize the practical application of these methods in large-scale processing and storage conditions.
Collapse
Affiliation(s)
- Yingqi Liang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Kaimei Luo
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingli Wang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Bingqing Huang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Peng Fei
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| | - Guoguang Zhang
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Universities, Fungus Industry Engineering Technology Center, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, P.R. China
| |
Collapse
|
3
|
Tang C, Zhang L, Wang J, Zou C, Zhang Y, Yuan J. Engineering Saccharomyces boulardii for Probiotic Supplementation of l-Ergothioneine. Biotechnol J 2024; 19:e202400527. [PMID: 39562168 DOI: 10.1002/biot.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Chaoqun Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Junyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Congjia Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Yalin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
4
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
5
|
Kaur J, Farooqi H, Chandra K, Panda BP. Predicting the bioactive compounds of Lentinula edodes and elucidating its interaction with genes associated to obesity through network pharmacology and in-vitro cell-based assay. Heliyon 2024; 10:e27363. [PMID: 38495166 PMCID: PMC10940914 DOI: 10.1016/j.heliyon.2024.e27363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Mushrooms are traditionally used for various medicinal purposes in traditional oriental medicine. The Japanese and Chinese are familiar with the medicinal macro fungus Lentinula edodes (Shiitake mushroom). This study aims to evaluate the role of chemical compounds from L. edodes using network pharmacology and in-vitro studies for management of Obesity. Bioactive compounds in extracts of L. edodes were identified by GC-MS analysis. Compounds were later screened for their drug-like property by Lipinski's rule. In addition, public databases (SEA, STP, Omim and DisGenet) were searched to identify genes associated with selected molecules and obesity, as well as genes that overlap obesity target genes with genes related to L. edodes. Additionally, analysis was performed using Enrichr KG to predict the disease targets of L. edodes. Finally, network was constructed between the overlapping genes and bioactive molecules using Rstudio. Further in-vitro studies were carried out using 3T3-L1 cell line. The genes related to the selected compounds and obesity were identified and overlapped. The disease targets of L. edodes was predicted by enrichment analysis and was found to be linked to obesity. Furthermore, the hub gene was found to be fatty acid amide hydrolase, and the key bioactive compound was hexadecanoic acid methyl ester. The in-vitro cell culture studies confirmed the inhibition of adipogenesis in mushroom extract-treated 3T3-L1 cells and the augmentation of adiponectin. The study suggests that the hub gene fatty acid amide hydrolase might alleviate obesity by inhibiting arachidonoyl ethanolamide signaling, which would enhance the action of fatty acid amide hydrolase and limit appetite in L. edodes extract.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences & Research (HIMSR), Jamia Hamdard, New Delhi 110062 India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
6
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
7
|
Rauf A, Joshi PB, Ahmad Z, Hemeg HA, Olatunde A, Naz S, Hafeez N, Simal-Gandara J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother Res 2023. [PMID: 37157920 DOI: 10.1002/ptr.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review. Front Nutr 2022; 9:1087826. [PMID: 36590224 PMCID: PMC9794872 DOI: 10.3389/fnut.2022.1087826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic components from natural resources is of intense interest to scientists. Mushroom polysaccharides have received growing attention in anti-diabetes fields due to their advantages in broad resources, structure diversity, and multiple bioactivities, which are considered an unlimited source of healthy active components potentially applied in functional foods and nutraceuticals. In this review, the current knowledge about the roles of oxidative stress in the pathogenesis of DM, the extraction method of mushroom polysaccharides, and their potential biological mechanisms associated with anti-diabetes, including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota modulatory actions, were summarized based on a variety of in vitro and in vivo studies, with aiming at better understanding the roles of mushroom polysaccharides in the prevention and management of DM and its complications. Finally, future perspectives including bridging the gap between the intervention of mushroom polysaccharides and the modulation of insulin signaling pathway, revealing structure-bioactivity of mushroom polysaccharides, developing synergistic foods, conducting well-controlled clinical trials that may be very helpful in discovering valuable mushroom polysaccharides and better applications of mushroom polysaccharides in diabetic control were proposed.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, China
| |
Collapse
|
9
|
Investigating the cellular antioxidant and anti-inflammatory effects of the novel peptides in lingzhi mushrooms. Heliyon 2022; 8:e11067. [PMID: 36303910 PMCID: PMC9593296 DOI: 10.1016/j.heliyon.2022.e11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The lingzhi mushroom (Ganoderma lucidum) is well known for its medicinal properties and has long played a role in traditional oriental medicine due to its health-giving benefits and potential to extend life expectancy. The mushroom contains a number of highly bioactive compounds and can also act as an excellent source of protein. This research investigated the peptides obtained from the protein hydrolysates of lingzhi mushrooms to assess their free radical scavenging abilities. These peptides were acquired via different proteases (Alcalase, Neutrase, papain, and pepsin-pancreatin) and were tested at a range of different concentrations (1.0%, 2.5%, and 5.0% w/v). The highest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activities were presented by lingzhi mushroom hydrolysate using 2.5% (w/v) pepsin-pancreatin after 6 h of digestion. The hydrolysate was then fractionated using 10, 5, 3, and 0.65 kDa molecular weight cut-off membranes. The results showed that the MW 0.65 kDa fraction had the highest level of free radical scavenging activity. Further analysis of this MW 0.65 kDa fraction began with another RP-HPLC fractionation technique to obtain three further sub-fractions. De novo peptide sequencing using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was chosen as the optimum method for studying the F3 sub-fraction. DRVSIYGWG and ALLSISSF were discovered as new peptides with different antioxidant properties. Adenocarcinoma colon (Caco-2) cells showed the antioxidant action of these synthesized peptides. This activity was linked to peptide concentration. The peptides and their pure synthetic counterparts were found to reduce NO generation by RAW 264.7 macrophages without causing cytotoxicity. The results of gene expression reveal that the DRVSIYGWG and ALLSISSF peptides were able to cut the expression of the proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in the context of RAW 264.7 macrophages.
Collapse
|
10
|
Navarro del Hierro J, Cantero-Bahillo E, Fernández-Felipe MT, García-Risco MR, Fornari T, Rada P, Doblado L, Ferreira V, Hitos AB, Valverde ÁM, Monsalve M, Martin D. Effects of a Mealworm ( Tenebrio molitor) Extract on Metabolic Syndrome-Related Pathologies: In Vitro Insulin Sensitivity, Inflammatory Response, Hypolipidemic Activity and Oxidative Stress. INSECTS 2022; 13:896. [PMID: 36292844 PMCID: PMC9604471 DOI: 10.3390/insects13100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The mealworm (Tenebrio molitor Linnaeus 1758) is gaining importance as one of the most popular edible insects. Studies focusing on its bioactivities are increasing, although alternative forms of consumption other than the whole insect or flour, such as bioactive non-protein extracts, remain underexplored. Furthermore, the incidence of metabolic syndrome-related pathologies keeps increasing, hence the importance of seeking novel natural sources for reducing the impact of certain risk factors. The aim was to study the potential of a non-protein mealworm extract on metabolic syndrome-related pathologies, obtained with ethanol:water (1:1, v/v) by ultrasound-assisted extraction. We characterized the extract by gas-chromatography mass-spectrometry and assessed its hypolipidemic potential, its ability to scavenger free radicals, to attenuate the inflammatory response in microglial cells, to affect mitochondrial respiration and to enhance insulin sensitivity in mouse hepatocytes. The extract contained fatty acids, monoglycerides, amino acids, certain acids and sugars. The mealworm extract caused a 30% pancreatic lipase inhibition, 80% DPPH· scavenging activity and 55.9% reduction in the bioaccessibility of cholesterol (p = 0.009). The extract was effective in decreasing iNOS levels, increasing basal, maximal and ATP coupled respiration as well as enhancing insulin-mediated AKT phosphorylation at low insulin concentrations (p < 0.05). The potential of a non-protein bioactive mealworm extract against metabolic syndrome-related pathologies is shown, although further studies are needed to elucidate the mechanisms and relationship with compounds.
Collapse
Affiliation(s)
- Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Emma Cantero-Bahillo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - M. Teresa Fernández-Felipe
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Mónica R. García-Risco
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Doblado
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
| | - Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28049 Madrid, Spain; (P.R.); (L.D.); (V.F.); (A.B.H.); (Á.M.V.); (M.M.)
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC–UAM), 28049 Madrid, Spain; (J.N.d.H.); (E.C.-B.); (M.T.F.-F.); (M.R.G.-R.); (T.F.)
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
11
|
Rehman AU, Khan AI, Xin Y, Liang W. Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota. AMB Express 2022; 12:114. [PMID: 36056976 PMCID: PMC9440975 DOI: 10.1186/s13568-022-01451-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Edible mushrooms have now been suggested as promising sources of biological functional ingredients and are the subject of the most recent nutrition research and novel functional foods. Polysaccharides from mushrooms exhibit impressive biological effects, notably against obesity. Obesity is a chronic metabolic disorder characterized by chronic inflammation, gut dysbiosis, and hyperpermeability of the colon. Here, we prove that mushrooms Morchella esculenta polysaccharide (MEP) effects on HFD-induced obesity, colonic inflammation, and gut microbiota dysbiosis. Our findings demonstrate MEP supplementation attenuates obesity parameters and reduces inflammation in the colon via regulation of Toll-like receptor 4 (TLR4), nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inactivation of nuclear factor kappa B (NF-κB). Furthermore, MEP administration restores gut microbiota dysregulation by ameliorating Firmicutes to Bacteroidetes proportion as well as enhancing beneficial bacteria, like Lactobacillus, and inhibiting pathogenic bacteria like Enterococcus. MEP improves gut integrity by increasing tight junction proteins (TJs) and reducing endotoxin levels by controlling Lipopolysaccharide (LPS) in HFD-induced obese mice. These results demonstrated the therapeutic efficacy of MEP in attenuating HFD-induced obesity via regulating inflammatory cascades, ameliorating the gut microbiome, and modulating gut integrity.
Collapse
Affiliation(s)
- Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Wang Liang
- Clinical Stem cell Research Centre, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Giusti A, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. Safety and commercial issues in fresh mushrooms and mushroom-based products sold at retail in Tuscany region. Ital J Food Saf 2022; 11:10044. [PMID: 36120527 PMCID: PMC9472285 DOI: 10.4081/ijfs.2022.10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
The compliance to European and National safety and labelling requirements relating to the sale of spontaneous and cultivated mushrooms and mushroom-based products in Tuscany was assessed. The evidence was collected by the Mycological Inspectorate of North-West Tuscany Local Health Authority during 90 inspections (from 2016 to 2020) at large-scale distribution stores, wholesalers, and restaurants in 10 cities belonging to 3 provinces, and on the labelling analysis of 98 commercial products collected at retail in 2021. Despite a substantial compliance of the inspected activities and products with the regulatory requirements, critical issues were highlighted: 1) EU legislative gap in the definition of specific measures for the safe sale of spontaneous mushrooms; 2) improper shelf storage temperatures of fresh-cut products; 3) incorrect condition of use on the labels of pre-packaged products; 4) lack of countryof- origin declaration in pre-packaged products. Furthermore, the labelling analysis highlighted that 18.4% and 15.3% of the products presented issues in the validity and correctness of the scientific names respect to national requirements in. A revision of the current EU legislation is needed to guarantee consumers safety, also considering the relevant number of poisoning cases related to false mycetisms (ingestion of edible mushrooms unproperly stored or used). Also, a specific revision and harmonization of the EU labelling of mushrooms would be desirable to protect consumers.
Collapse
|
13
|
Xu J, Shen R, Jiao Z, Chen W, Peng D, Wang L, Yu N, Peng C, Cai B, Song H, Chen F, Liu B. Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms. Nutrients 2022; 14:nu14132622. [PMID: 35807802 PMCID: PMC9268676 DOI: 10.3390/nu14132622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Edible and medicinal fungi, a group of eukaryotic organisms with numerous varieties, including Coriolus versicolor, Ganoderma lucidum, Cordyceps sinensis, Pleurotus ostreatus, and Grifola frondosa, have been demonstrated to possess a board range of pharmaceutical properties, including anti-virus, anti-inflammation, and neuroprotection. Moreover, edible and medicinal fungi have been traditionally consumed as food to provide multiple nutrients and as drugs owing to having the activities of invigorating blood circulation, reinforcing the healthy qi, clearing away heat, and eliminating stasis for thousands of years in China. Malignant tumors, well-known as the second leading cause of death globally, accounted for nearly 10 million deaths in 2020. Thus, in-depth exploration of strategies to prevent and treat cancer is extremely urgent. A variety of studies have reported that the main bioactive components of edible and medicinal fungi, mainly polysaccharides and triterpenoids, exhibit diverse anticancer activities via multiple mechanisms, including inhibition of cell proliferation and metastasis, induction of apoptosis and autophagy, reversing multidrug resistance, and regulation of immune responses, thus suggesting their substantial potential in the prevention and treatment of cancer. Our review summarizes the research progress on the anticancer properties of edible and medicinal fungi and the underlying molecular mechanism, which may offer a better understanding of this field. Additionally, few studies have reported the safety and efficacy of extracts from edible and medicinal fungi, which may limit their clinical application. In summary, there is a need to continue to explore the use of those extracts and to further validate their safety and efficacy.
Collapse
Affiliation(s)
- Jing Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
| | - Rui Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
| | - Zhuoya Jiao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.C.); (D.P.); (L.W.); (N.Y.); (C.P.)
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.C.); (D.P.); (L.W.); (N.Y.); (C.P.)
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.C.); (D.P.); (L.W.); (N.Y.); (C.P.)
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.C.); (D.P.); (L.W.); (N.Y.); (C.P.)
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.C.); (D.P.); (L.W.); (N.Y.); (C.P.)
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
- Correspondence: (B.L.); (H.S.); (F.C.)
| | - Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (J.X.); (R.S.); (Z.J.); (B.C.)
- Correspondence: (B.L.); (H.S.); (F.C.)
| | - Bin Liu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
- Correspondence: (B.L.); (H.S.); (F.C.)
| |
Collapse
|
14
|
Das A, Chen CM, Mu SC, Yang SH, Ju YM, Li SC. Medicinal Components in Edible Mushrooms on Diabetes Mellitus Treatment. Pharmaceutics 2022; 14:pharmaceutics14020436. [PMID: 35214168 PMCID: PMC8875793 DOI: 10.3390/pharmaceutics14020436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mushrooms belong to the family “Fungi” and became famous for their medicinal properties and easy accessibility all over the world. Because of its pharmaceutical properties, including anti-diabetic, anti-inflammatory, anti-cancer, and antioxidant properties, it became a hot topic among scientists. However, depending on species and varieties, most of the medicinal properties became indistinct. With this interest, an attempt has been made to scrutinize the role of edible mushrooms (EM) in diabetes mellitus treatment. A systematic contemporary literature review has been carried out from all records such as Science Direct, PubMed, Embase, and Google Scholar with an aim to represents the work has performed on mushrooms focuses on diabetes, insulin resistance (IR), and preventive mechanism of IR, using different kinds of mushroom extracts. The final review represents that EM plays an important role in anticipation of insulin resistance with the help of active compounds, i.e., polysaccharide, vitamin D, and signifies α-glucosidase or α-amylase preventive activities. Although most of the mechanism is not clear yet, many varieties of mushrooms’ medicinal properties have not been studied properly. So, in the future, further investigation is needed on edible medicinal mushrooms to overcome the research gap to use its clinical potential to prevent non-communicable diseases.
Collapse
Affiliation(s)
- Arpita Das
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan;
| | - Shu-Chi Mu
- Department of Pediatrics, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Shu-Hui Yang
- Fengshan Tropical Horticultural Experiment Branch, Taiwan Agricultural Research Institute, Kaohsiung City 83052, Taiwan;
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6560)
| |
Collapse
|
15
|
Zhang NN, Ma H, Zhang ZF, Zhang WN, Chen L, Pan WJ, Wu QX, Lu YM, Chen Y. Characterization and immunomodulatory effect of an alkali-extracted galactomannan from Morchella esculenta. Carbohydr Polym 2022; 278:118960. [PMID: 34973775 DOI: 10.1016/j.carbpol.2021.118960] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
In our continuous exploration for bioactive polysaccharides, a novel polysaccharide FMP-2 was isolated and purified from the fruiting bodies of Morchella esculenta by alkali-assisted extraction. FMP-2 had an average molecular weight of 1.09 × 106 Da and contained mannose, glucuronic acid, glucose, galactose, and arabinose in a molar ratio of 4.10:0.22:1.00:5.75:0.44. The backbone of FMP-2 mainly consisted of 1,2-α-D-Galp, 1,6-α-D-Galp, and 1,4-α-D-Manp, with branches of 1,4,6-α-D-Manp and 1,2,6-α-D-Galp. FMP-2 can stimulate phagocytosis and promote the secretion of NO, ROS, and cytokines like IL-6, IL-1β, and TNF-α in RAW264.7 cells ranging from 25 to 400 μg/mL. FMP-2 had great repairing effect on the immune injury of zebrafish induced by chloramphenicol. The phagocytosis ability of zebrafish macrophages and the proliferation of neutrophils can be greatly enhanced by polysaccharide FMP-2 with concentrations from 50 to 200 μg/mL. These findings suggest that FMP-2 might be used as a potential immunomodulator in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - He Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Zhong-Fei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Wen-Juan Pan
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, PR China.
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, PR China.
| |
Collapse
|
16
|
Xu Y, Xie L, Tang J, He X, Zhang Z, Chen Y, Zhou J, Gan B, Peng W. Morchella importuna Polysaccharides Alleviate Carbon Tetrachloride-Induced Hepatic Oxidative Injury in Mice. Front Physiol 2021; 12:669331. [PMID: 34413784 PMCID: PMC8369260 DOI: 10.3389/fphys.2021.669331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects of Morchella importuna polysaccharides (MIPs) on carbon tetrachloride (CCl4)-induced hepatic damage in mice. A total of 144 female mice were randomly assigned to four treatment groups, namely, control, CCl4, low-dose MIP (LMIP) group, and high-dose MIP (HMIP) group. After the 10-day experiment, serum and liver were sampled for biochemical and metabolomic analyses. The HMIPs markedly decreased the liver weight under CCl4 intoxication. Furthermore, the significantly elevated concentrations of five serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and total bile acid under CCl4 treatment were subverted by MIP administration in a dose-dependent manner. Moreover, MIPs relieved the increased hepatic malonaldehyde and protein carbonyl content and the decreased superoxide dismutase and catalase contents caused by CCl4 intoxication. There was also a dose-dependent decrease in the CCl4-induced inflammatory indices, such as the levels of interleukin-1, interleukin-6, tumor necrosis factor-alpha, and myeloperoxidase, with MIP administration. Subsequent ultra-high performance liquid chromatography-tandem mass spectrometry-based serum metabolomics identified nine metabolites between the control and CCl4 groups and 10 metabolites between the HMIP and CCl4 groups, including some critical metabolites involved in flavonoid biosynthesis, amino acid metabolism, energy metabolism, and toxicant degradation. These novel findings indicate that MIPs may be of therapeutic value in alleviating the oxidative stress and inflammation caused by CCl4. Liquid chromatography-mass spectrometry-based metabolomics provides a valuable opportunity for identifying potential biomarkers and elucidating the protective mechanisms of medicinal mushrooms against hepatic oxidative injury.
Collapse
Affiliation(s)
- Yingyin Xu
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Liyuan Xie
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Tang
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Xiaolan He
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Zhiyuan Zhang
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Ying Chen
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Jie Zhou
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- National-Local Joint Engineering Laboratory of Edible and Medicinal Fungi, Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Science, Chengdu, China
- Scientific Observing and Experimental Station of Agro-microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
17
|
Vamanu E, Dinu LD, Pelinescu DR, Gatea F. Therapeutic Properties of Edible Mushrooms and Herbal Teas in Gut Microbiota Modulation. Microorganisms 2021; 9:microorganisms9061262. [PMID: 34200833 PMCID: PMC8230450 DOI: 10.3390/microorganisms9061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Edible mushrooms are functional foods and valuable but less exploited sources of biologically active compounds. Herbal teas are a range of products widely used due to the therapeutic properties that have been demonstrated by traditional medicine and a supplement in conventional therapies. Their interaction with the human microbiota is an aspect that must be researched, the therapeutic properties depending on the interaction with the microbiota and the consequent fermentative activity. Modulation processes result from the activity of, for example, phenolic acids, which are a major component and which have already demonstrated activity in combating oxidative stress. The aim of this mini-review is to highlight the essential aspects of modulating the microbiota using edible mushrooms and herbal teas. Although the phenolic pattern is different for edible mushrooms and herbal teas, certain non-phenolic compounds (polysaccharides and/or caffeine) are important in alleviating chronic diseases. These specific functional compounds have modulatory properties against oxidative stress, demonstrating health-beneficial effects in vitro and/or In vivo. Moreover, recent advances in improving human health via gut microbiota are presented. Plant-derived miRNAs from mushrooms and herbal teas were highlighted as a potential strategy for new therapeutic effects.
Collapse
Affiliation(s)
- Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
- Correspondence: ; Tel.: +40-742218240
| | - Laura Dorina Dinu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
| | - Diana Roxana Pelinescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| |
Collapse
|
18
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
19
|
Korivi M, Liu BR. Novel and Practical Approaches to Manage Diet-induced Metabolic Disorders: Part-I. Curr Pharm Des 2021; 26:4953-4954. [PMID: 33213310 DOI: 10.2174/138161282639201110165712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic syndrome (MetS) which is caused by poor dietary habits and sedentary behavior is a serious global health problem. MetS is a cluster of risk factors, represented by central obesity, hyperglycemia, dyslipidemia, and hypertension. In the 21st century, MetS and associated comorbidities, including obesity, diabetes and cardiovascular diseases, are the major threats to human health. Practical dietary strategies, nutritional bioactive compounds and a healthy lifestyle are claimed to be efficient in the management of one or more components of MetS. Nevertheless successful management of MetS and commodities is still a major concern. Since hyperglycemia, inflammation and redox imbalance are intrinsically involved in the progression of MetS comorbidities, finding effective strategies that precisely target these systems is highly warranted. In this scenario, pharmacological and non-pharmacological approaches with or without dietary patterns, phytochemicals or exercise interventions are the practical strategies to combat MetS and associated diseases. However, designing and prescribing of optimal nutritional patterns and exercise regimens remains a big challenge to achieve the maximum beneficial effects. This thematic issue addressed the concerns and provided practical strategies to overcome the malady of MetS in the modern world.
Collapse
Affiliation(s)
- Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Landi N, Ragucci S, Culurciello R, Russo R, Valletta M, Pedone PV, Pizzo E, Di Maro A. Ribotoxin-like proteins from Boletus edulis: structural properties, cytotoxicity and in vitro digestibility. Food Chem 2021; 359:129931. [PMID: 33940474 DOI: 10.1016/j.foodchem.2021.129931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023]
Abstract
Porcini are edible mushrooms widely used in cooking due to their extraordinary taste. Despite this, cases of food poisoning have been reported in the recent literature also for ingestion of porcini. Here, we report the isolation from Boletus edulis fruiting bodies of two novel ribotoxin-like proteins (RL-Ps), enzymes already studied in other organisms for their toxicity. These RL-Ps, named Edulitin 1 (16-kDa) and Edulitin 2 (14-kDa), show peculiar structural and enzymatic differences, which probably reflect their different bio-activities and a dose/time dependent toxicity (Edulitin 2) on normal and tumoral human cells. Particularly interesting is the resistance to proteolysis of Edulitin 2, for which it was observed that its toxicity was abolished only after heat treatment (90 °C) followed by proteolysis. As mushroom poisoning is a serious food safety issue, data here presented confirm the existence of toxins also in porcini and the importance of a proper cooking before their consumption.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosanna Culurciello
- Department of Biology, University of Naples 'Federico II', Via Cinthia 26, 80126 Naples, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Via Cinthia 26, 80126 Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|