1
|
Jain A, Sharma R, Gautam L, Shrivastava P, Singh KK, Vyas SP. Biomolecular interactions between Plasmodium and human host: A basis of targeted antimalarial therapy. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:401-419. [PMID: 38519002 DOI: 10.1016/j.pharma.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Malaria is one of the serious health concerns worldwide as it remains a clinical challenge due to the complex life cycle of the malaria parasite and the morphological changes it undergoes during infection. The malaria parasite multiplies rapidly and spreads in the population by changing its alternative hosts. These various morphological stages of the parasite in the human host cause clinical symptoms (anemia, fever, and coma). These symptoms arise due to the preprogrammed biology of the parasite in response to the human pathophysiological response. Thus, complete elimination becomes one of the major health challenges. Although malaria vaccine(s) are available in the market, they still contain to cause high morbidity and mortality. Therefore, an approach for eradication is needed through the exploration of novel molecular targets by tracking the epidemiological changes the parasite adopts. This review focuses on the various novel molecular targets.
Collapse
Affiliation(s)
- Anamika Jain
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, M.P., 474005, India.
| | - Laxmikant Gautam
- Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228, India
| | - Priya Shrivastava
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Suresh P Vyas
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India.
| |
Collapse
|
2
|
Manhas A, Ghosh A, Verma Y, Das T, Jha PC. Identification of natural products against enoyl-acyl-carrier-protein reductase in malaria via combined pharmacophore modeling, molecular docking and simulations studies. J Biomol Struct Dyn 2023; 41:2002-2015. [PMID: 35043754 DOI: 10.1080/07391102.2022.2027819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasmodium falciparum is counted as one of the deadly species causing malaria. In that respect, enoyl acyl carrier protein reductase is recognized as one of the attractive druggable targets for the identification of antimalarials. Thus, from the structural proteome of ENR, common feature pharmacophores were constructed. To identify the representative models, all the hypotheses were subjected to validation methods, like, test set, enrichment factor, and Güner-Henry method, and the selected representative hypotheses were used to screen out the drug-like natural products. Further, the screened candidates were advanced to molecular docking calculations. Based on the docking score criteria and presence of essential interaction with Tyr277, seven candidates were shortlisted to conduct the HYDE and QSAR assessment. Further, the stability of these complexes was evaluated by employing molecular dynamics simulations, molecular mechanics-generalized born surface area approach-based free binding energy calculations with the residue-wise contribution of PfENR to the total binding free energy of the complex. On comparing the root mean square deviation, and fluctuation plots of the docked candidates with the reference, all the candidates displayed stable behavior, and the same outcome was depicted from the secondary structure element. However, from the free energy calculations, and residue-wise contribution conducted after dynamics, it was observed that out of seven, only five candidates sustain the binding with Tyr277 and cofactor of PfENR. Therefore, in the current work, the hybrid study of screening and stability lead to the identification of five structurally diverse candidates that can be employed for the design of novel antimalarials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Manhas
- Department of Chemistry, Pandit Deendayal Energy University (former PDPU), Gandhinagar, Gujarat, India
| | - Amar Ghosh
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Yogesh Verma
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Tanay Das
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Niu Z, Ye S, Liu J, Lyu M, Xue L, Li M, Lyu C, Zhao J, Shen B. Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth. PLoS Pathog 2022; 18:e1011009. [PMID: 36449552 PMCID: PMC9744290 DOI: 10.1371/journal.ppat.1011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Many apicomplexan parasites harbor a non-photosynthetic plastid called the apicoplast, which hosts important metabolic pathways like the methylerythritol 4-phosphate (MEP) pathway that synthesizes isoprenoid precursors. Yet many details in apicoplast metabolism are not well understood. In this study, we examined the physiological roles of four glycolytic enzymes in the apicoplast of Toxoplasma gondii. Many glycolytic enzymes in T. gondii have two or more isoforms. Endogenous tagging each of these enzymes found that four of them were localized to the apicoplast, including pyruvate kinase2 (PYK2), phosphoglycerate kinase 2 (PGK2), triosephosphate isomerase 2 (TPI2) and phosphoglyceraldehyde dehydrogenase 2 (GAPDH2). The ATP generating enzymes PYK2 and PGK2 were thought to be the main energy source of the apicoplast. Surprisingly, deleting PYK2 and PGK2 individually or simultaneously did not cause major defects on parasite growth or virulence. In contrast, TPI2 and GAPDH2 are critical for tachyzoite proliferation. Conditional depletion of TPI2 caused significant reduction in the levels of MEP pathway intermediates and led to parasite growth arrest. Reconstitution of another isoprenoid precursor synthesis pathway called the mevalonate pathway in the TPI2 depletion mutant partially rescued its growth defects. Similarly, knocking down the GAPDH2 enzyme that produces NADPH also reduced isoprenoid precursor synthesis through the MEP pathway and inhibited parasite proliferation. In addition, it reduced de novo fatty acid synthesis in the apicoplast. Together, these data suggest a model that the apicoplast dwelling TPI2 provides carbon source for the synthesis of isoprenoid precursor, whereas GAPDH2 supplies reducing power for pathways like MEP, fatty acid synthesis and ferredoxin redox system in T. gondii. As such, both enzymes are critical for parasite growth and serve as potential targets for anti-toxoplasmic intervention designs. On the other hand, the dispensability of PYK2 and PGK2 suggest additional sources for energy in the apicoplast, which deserves further investigation.
Collapse
Affiliation(s)
- Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Jiaojiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Lilan Xue
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, PR China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, PR China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, PR China
- * E-mail:
| |
Collapse
|
4
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Yue SL, Jiang M, Li H, Liu JT. Triflylation of 1,4-Benzoquinones with sodium trifluoromethanesulfinate. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
7
|
Yuan JW, Liu SN, Qu LB. Ammonium iodide-promoted unprecedented arylsulfonylation of quinone with sodium arylsulfinates. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Li PG, Li YC, Zhu T, Zou LH, Wu Z. Hydroxysulfonylation of Quinones with Aryl(alkyl)sulfonyl Hydrazides for the Synthesis of 1,4-Dihydroxy-2-aryl(alkyl)sulfonylbenzenes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ping-Gui Li
- Peter Grünberg Institute (PGI-8); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Yan-Chun Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Tao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
- School of Pharmaceutical Science; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Lihu Avenue 1800 214122 Wuxi P. R. China
| |
Collapse
|
9
|
Ir-catalyzed C–S coupling of quinones with sulfonyl chloride. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0897-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Kelly M, Su CY, Schaber C, Crowley JR, Hsu FF, Carlson JR, Odom AR. Malaria parasites produce volatile mosquito attractants. mBio 2015; 6:e00235-15. [PMID: 25805727 PMCID: PMC4453533 DOI: 10.1128/mbio.00235-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. IMPORTANCE Malaria is a key global health concern. Mosquitoes that transmit malaria are more attracted to malaria parasite-infected mammalian hosts. These studies aimed to understand the chemical signals produced by malaria parasites; such an understanding may lead to new transmission-blocking strategies or noninvasive malaria diagnostics.
Collapse
Affiliation(s)
- Megan Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chih-Ying Su
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Chad Schaber
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan R Crowley
- Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
11
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
12
|
Barteselli A, Parapini S, Basilico N, Mommo D, Sparatore A. Synthesis and evaluation of the antiplasmodial activity of novel indeno[2,1-c]quinoline derivatives. Bioorg Med Chem 2014; 22:5757-65. [DOI: 10.1016/j.bmc.2014.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/21/2014] [Indexed: 11/29/2022]
|
13
|
Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol 2014; 42:437-51. [PMID: 25306882 DOI: 10.1007/s10295-014-1518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
Abstract
Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed.
Collapse
|
14
|
Synthesis of arylsulfonyl-quinones and arylsulfonyl-1,4-diols as FabH inhibitors: Pd-catalyzed direct C-sulfone formation by CS coupling of quinones with arylsulfonyl chloride. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 2013; 8:e59126. [PMID: 23527108 PMCID: PMC3602546 DOI: 10.1371/journal.pone.0059126] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/11/2013] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium abscessus, a non-tuberculous rapidly growing mycobacterium, is recognized as an emerging human pathogen causing a variety of infections ranging from skin and soft tissue infections to severe pulmonary infections. Lack of an optimal treatment regimen and emergence of multi-drug resistance in clinical isolates necessitate the development of better/new drugs against this pathogen. The present study aims at identification and qualitative characterization of promising drug targets in M. abscessus using a novel hierarchical in silico approach, encompassing three phases of analyses. In phase I, five sets of proteins were mined through chokepoint, plasmid, pathway, virulence factors, and resistance genes and protein network analysis. These were filtered in phase II, in order to find out promising drug target candidates through subtractive channel of analysis. The analysis resulted in 40 therapeutic candidates which are likely to be essential for the survival of the pathogen and non-homologous to host, human anti-targets, and gut flora. Many of the identified targets were found to be involved in different metabolisms (viz., amino acid, energy, carbohydrate, fatty acid, and nucleotide), xenobiotics degradation, and bacterial pathogenicity. Finally, in phase III, the candidate targets were qualitatively characterized through cellular localization, broad spectrum, interactome, functionality, and druggability analysis. The study explained their subcellular location identifying drug/vaccine targets, possibility of being broad spectrum target candidate, functional association with metabolically interacting proteins, cellular function (if hypothetical), and finally, druggable property. Outcome of the present study could facilitate the identification of novel antibacterial agents for better treatment of M. abscesses infections.
Collapse
|
16
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Muhammad A, Anis I, Ali Z, Awadelkarim S, Khan A, Khalid A, Shah MR, Galal M, Khan IA, Iqbal Choudhary M. Methylenebissantin: A rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Bioorg Med Chem Lett 2012; 22:610-2. [DOI: 10.1016/j.bmcl.2011.10.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/16/2022]
|
18
|
Discovery of novel selective inhibitors of Staphylococcus aureus β-ketoacyl acyl carrier protein synthase III. Eur J Med Chem 2011; 47:261-9. [PMID: 22104972 DOI: 10.1016/j.ejmech.2011.10.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/22/2011] [Accepted: 10/28/2011] [Indexed: 11/22/2022]
Abstract
β-Ketoacyl-acyl carrier protein synthase III (KAS III) is a condensing enzyme in bacterial fatty acid synthesis and a potential target while designing novel antibiotics. In our previous report, we discovered the lead compound YKAs3003, which serves as an inhibitor of Escherichia coli KAS III (ecKAS III), and determined a reliable pharmacophore map from in silico screening. In this study, we determined two pharmacophore maps from receptor-oriented pharmacophore-based in silico screening of the x-ray structure of Staphylococcus aureus KAS III (saKAS III) to identify potent saKAS III inhibitors. We discovered a new potential inhibitor (6) with broad-spectrum antimicrobial activity and 0.8 nM binding affinity for saKAS III, proving the reliability of our pharmacophore map. Using optimization procedures, we identified three new antimicrobial saKAS III inhibitors: 6c (2,4-dichloro-benzoic acid (2,3,4-trihydroxy-benzylidene)-hydrazide), 6e (4-[(3-chloro-pyrazin-2-yl)-hydrazonomethyl]-benzene-1,3-diol), and 6 (4-[(5-trifluoromethyl-pyridin-2-yl)-hydrazonomethyl]-benzene-1,3-diol). All three inhibitors have a novel 4-hydrazonomethyl-benzene-1,3-diol core structure. These inhibitors exhibited high binding affinity to saKAS III and highly selective antimicrobial activities against S. aureus and methicillin-resistant S. aureus, with minimal inhibitory concentration values of 1-2 μg/mL.
Collapse
|
19
|
Botté CY, Dubar F, McFadden GI, Maréchal E, Biot C. Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem Rev 2011; 112:1269-83. [PMID: 22026508 DOI: 10.1021/cr200258w] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cyrille Y Botté
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CNRS, CEA, INRA, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
20
|
Lee JY, Lee JH, Jeong KW, Lee EJ, Kim YM. Flavonoid Inhibitors of β-Ketoacyl Acyl Carrier Protein Synthase III against Methicillin-Resistant Staphylococcus aureus. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
22
|
Bahl D, Athar F, Soares MBP, de Sá MS, Moreira DRM, Srivastava RM, Leite ACL, Azam A. Structure–activity relationships of mononuclear metal–thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg Med Chem 2010; 18:6857-64. [DOI: 10.1016/j.bmc.2010.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/16/2010] [Indexed: 02/01/2023]
|
23
|
Lactococcus lactis fabH, encoding beta-ketoacyl-acyl carrier protein synthase, can be functionally replaced by the Plasmodium falciparum congener. Appl Environ Microbiol 2010; 76:3959-66. [PMID: 20418430 DOI: 10.1128/aem.00170-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum, in addition to scavenging essential fatty acids from its intra- and intercellular environments, possesses a functional complement of type II fatty acid synthase (FAS) enzymes targeted to the apicoplast organelle. Recent evidence suggests that products of the plasmodial FAS II system may be critical for the parasite's liver-to-blood cycle transition, and it has been speculated that endogenously generated fatty acids may be precursors for essential cofactors, such as lipoate, in the apicoplast. beta-Ketoacyl-acyl carrier protein (ACP) synthase III (pfKASIII or FabH) is one of the key enzymes in the initiating steps of the FAS II pathway, possessing two functions in P. falciparum: the decarboxylative thio-Claisen condensation of malonyl-ACP and various acyl coenzymes A (acyl-CoAs; KAS activity) and the acetyl-CoA:ACP transacylase reaction (ACAT). Here, we report the generation and characterization of a hybrid Lactococcus lactis strain that translates pfKASIII instead of L. lactis fabH to initiate fatty acid biosynthesis. The L. lactis expression vector pMG36e was modified for the efficient overexpression of the plasmodial gene in L. lactis. Transcriptional analysis indicated high-efficiency overexpression, and biochemical KAS and ACAT assays confirm these activities in cell extracts. Phenotypically, the L. lactis strain expressing pfKASIII has a growth rate and fatty acid profiles that are comparable to those of the strain complemented with its endogenous gene, suggesting that pfKASIII can use L. lactis ACP as substrate and perform near-normal function in L. lactis cells. This strain may have potential application as a bacterial model for pfKASIII inhibitor prescreening.
Collapse
|
24
|
Upadhyay SK, Misra A, Surolia N, Surolia A, Sundd M. Backbone chemical shift assignments of the acyl-acyl carrier protein intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:83-85. [PMID: 20182923 DOI: 10.1007/s12104-010-9212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/07/2010] [Indexed: 05/28/2023]
Abstract
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C(4)), -octanoyl (C(8)), -decanoyl (C(10)), -dodecanoyl (C(12)) and -tetradecanoyl (C(14))-ACPs display marked changes in backbone HN, C(alpha) and C(beta) chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
25
|
Na-Bangchang K, Karbwang J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin Pharmacol 2009; 23:387-409. [PMID: 19709319 DOI: 10.1111/j.1472-8206.2009.00709.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimalarial drugs have played a mainstream role in controlling the spread of malaria through the treatment of patients infected with the plasmodial parasites and controlling its transmissibility. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to currently used antimalarials, and the lack of affordable new drugs are the limiting factors in the fight against malaria. In addition, other problems with some existing agents include unfavorable pharmacokinetic properties and adverse effects/toxicity. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. In recent years, major advances have been made in the pharmacology of several antimalarial drugs both in pharmacokinetics and pharmacodynamics aspects. These include the design, development, and optimization of appropriate dosage regimens of antimalarials, basic knowledge in metabolic pathways of key antimalarials, as well as the elucidation of mechanisms of action and resistance of antimalarials. Pharmacologists have been working in close collaboration with scientists in other disciplines of science/biomedical sciences for more understanding on the biology of the parasite, host, in order to exploit rational design of drugs. Multiple general approaches to the identification of new antimalarials are being pursued at this time. All should be implemented in parallel with focus on the rational development of new agents directed against newly identified parasite targets. With major advances in our understanding of malaria parasite biology coupled with the completion of the malaria genome, has presented exciting opportunities for target-based antimalarial drug discovery.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand.
| | | |
Collapse
|
26
|
Grimberg BT, Jaworska MM, Hough LB, Zimmerman PA, Phillips JG. Addressing the malaria drug resistance challenge using flow cytometry to discover new antimalarials. Bioorg Med Chem Lett 2009; 19:5452-7. [PMID: 19666223 PMCID: PMC3131497 DOI: 10.1016/j.bmcl.2009.07.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
A new flow cytometry method that uses an optimized DNA and RNA staining strategy to monitor the growth and development of the Plasmodium falciparum strain W2mef has been used in a pilot study and has identified Bay 43-9006 1, SU 11274 2, and TMC 125 5 as compounds that exhibit potent (<1 microM) overall and ring stage in vitro antimalarial activity.
Collapse
Affiliation(s)
- Brian T Grimberg
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106-7286, USA
| | | | | | | | | |
Collapse
|
27
|
Lee PJ, Bhonsle JB, Gaona HW, Huddler DP, Heady TN, Kreishman-Deitrick M, Bhattacharjee A, McCalmont WF, Gerena L, Lopez-Sanchez M, Roncal NE, Hudson TH, Johnson JD, Prigge ST, Waters NC. Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents. J Med Chem 2009; 52:952-63. [PMID: 19191586 DOI: 10.1021/jm8008103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The importance of fatty acids to the human malaria parasite, Plasmodium falciparum, and differences due to a type I fatty acid synthesis (FAS) pathway in the parasite, make it an attractive drug target. In the present study, we developed and a utilized a pharmacophore to select compounds for testing against PfKASIII, the initiating enzyme of FAS. This effort identified several PfKASIII inhibitors that grouped into various chemical classes of sulfides, sulfonamides, and sulfonyls. Approximately 60% of the submicromolar inhibitors of PfKASIII inhibited in vitro growth of the malaria parasite. These compounds inhibited both drug sensitive and resistant parasites and testing against a mammalian cell line revealed an encouraging in vitro therapeutic index for the most active compounds. Docking studies into the active site of PfKASIII suggest a potential binding mode that exploits amino acid residues at the mouth of the substrate tunnel.
Collapse
Affiliation(s)
- Patricia J Lee
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Upadhyay SK, Misra A, Srivastava R, Surolia N, Surolia A, Sundd M. Structural insights into the acyl intermediates of the Plasmodium falciparum fatty acid synthesis pathway: the mechanism of expansion of the acyl carrier protein core. J Biol Chem 2009; 284:22390-22400. [PMID: 19520851 DOI: 10.1074/jbc.m109.014829] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in Calpha and Cbeta of Ser-37 in tetradecanoyl-ACP. 13C,15N-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C8)- and dodecanoyl (C12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pKa value for the carboxylate, approximately 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Collapse
Affiliation(s)
| | - Ashish Misra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012
| | - Richa Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
| | - Avadhesha Surolia
- National Institute of Immunology, New Delhi 110067; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012
| | - Monica Sundd
- National Institute of Immunology, New Delhi 110067
| |
Collapse
|
29
|
Morde VA, Shaikh MS, Pissurlenkar RRS, Coutinho EC. Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors. Mol Divers 2009; 13:501-17. [DOI: 10.1007/s11030-009-9141-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/13/2009] [Indexed: 11/29/2022]
|
30
|
Novel E. coli beta-ketoacyl-acyl carrier protein synthase III inhibitors as targeted antibiotics. Bioorg Med Chem 2009; 17:1506-13. [PMID: 19185501 DOI: 10.1016/j.bmc.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/21/2022]
Abstract
Beta-ketoacyl-acyl carrier protein synthase (KAS) III is a condensing enzyme that initiates fatty acid biosynthesis in most bacteria. We determined three pharmacophore maps from receptor-oriented pharmacophore-based in silico screening of the X-ray structure of Escherichia coli KAS III (ecKAS III) and choose 16 compounds as candidate ecKAS III inhibitors. Binding inhibitors were characterized using saturation-transfer difference NMR spectroscopy (STD-NMR), and binding constants were determined with fluorescence quenching experiments. Based on the results, we propose that the antimicrobial compound, 4-cyclohexyliminomethyl-benzene-1,3-diol (YKAs3003), is a potent inhibitor of pathogenic KAS III, displaying minimal inhibitory concentration (MIC) values in the range 128-256 microg/mL against various bacteria.
Collapse
|
31
|
Abstract
Cure of rodent malaria with the biocide triclosan highlighted the enzyme FabI as an antimalarial drug target. In this issue of Cell Host & Microbe, Yu et al. (2008) show that FabI is not the principle target of triclosan yet plays an important role specifically in malaria liver stage development.
Collapse
Affiliation(s)
- Maroya D Spalding
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
32
|
Ben Mamoun C, Prigge ST, Vial H. Targeting the Lipid Metabolic Pathways for the Treatment of Malaria. Drug Dev Res 2009; 71:44-55. [PMID: 20559451 DOI: 10.1002/ddr.20347] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The control and eventual eradication of human malaria is considered one of the most important global public health goals of the 21st Century. Malaria, caused by intraerythrocytic protozoan parasites of the genus Plasmodium, is by far the most lethal and among the most prevalent of the infectious diseases. Four species of Plasmodium (P. falciparum, P. malariae, P. ovale, and P. vivax) are known to be infectious to humans, and more recent cases of infection due to P. knowlesi also have been reported. These species cause approximately 300 million annual cases of clinical malaria resulting in around one million deaths mostly caused by P. falciparum. The rapid emergence of drug-resistant Plasmodium strains has severely reduced the potency of medicines commonly used to treat and block the transmission of malaria and threatens the effectiveness of combination therapy in the field. New drugs that target important parasite functions, which are not the target of current antimalarial drugs, and have the potential to act against multi-drug-resistant Plasmodium strains are urgently needed. Recent studies in P. falciparum have unraveled new metabolic pathways for the synthesis of the parasite phospholipids and fatty acids. The present review summarizes our current understanding of these pathways in Plasmodium development and pathogenesis, and provides an update on the efforts underway to characterize their importance using genetic means and to develop antimalarial therapies targeting lipid metabolic pathways.
Collapse
Affiliation(s)
- Choukri Ben Mamoun
- Section of Infectious Disease, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
33
|
Alhamadsheh MM, Waters NC, Sachdeva S, Lee P, Reynolds KA. Synthesis and biological evaluation of novel sulfonyl-naphthalene-1,4-diols as FabH inhibitors. Bioorg Med Chem Lett 2008; 18:6402-5. [PMID: 18996691 DOI: 10.1016/j.bmcl.2008.10.097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
A series of analogs of 2-tosylnaphthalene-1,4-diol were prepared and were found to be potent 10-20 nM reversible inhibitors of the Escherichia coli FabH enzyme. The inhibitors were also effective but to a lesser degree (30 nM-5 microM), against the Mycobacterium tuberculosis and Plasmodium falciparum FabH enzymes. Preliminary SAR studies demonstrated that the sulfonyl group and naphthalene-1,4 diol were required for activity against all enzymes but the toluene portion could be significantly altered and leads to either modest increases or decreases in activity against the three enzymes. The in vitro activity of the analogs against E. coli FabH parallel the in vivo activity against E. coli TolC strain and many of the compounds were also shown to have antimalarial activity against P. falciparum.
Collapse
|
34
|
Carballeira NM. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog Lipid Res 2007; 47:50-61. [PMID: 18023422 DOI: 10.1016/j.plipres.2007.10.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/03/2007] [Accepted: 10/24/2007] [Indexed: 11/30/2022]
Abstract
This review deals with the most recent findings on the antimalarial, antimycobacterial, and antifungal properties of fatty acids, with particular emphasis on novel marine fatty acids. The first section deals with the most recent and some background literature on what has been the latest developments with respect to fatty acids as antimalarial agents and the importance of enzyme inhibition, in particular the inhibition of the enoyl-ACP reductase (FabI) of Plasmodium falciparum, the principal agent responsible for malaria. This section of the review also emphasizes the latest antimalarial research with the very long-chain Delta5,9 fatty acids from sponges. The second section of the review deals with the recent literature on the antimycobacterial activity of fatty acids and the importance of enzyme inhibition, in particular the inhibition of the enoyl-ACP reductase (InhA) of Mycobacterium tuberculosis for antimycobacterial activity. The inhibitory activities of the Delta5,9 fatty acids against InhA as well as that of the alpha-methoxylated fatty acids are also discussed. The importance of Delta5,9 fatty acids as topoisomerase I inhibitors and its connection to cancer is also reviewed. The last part of the review, the antifungal section, also emphasizes the most recent research with antifungal fatty acids and the importance of enzyme inhibition, in particular N-myristoyltransferase (NMT) inhibition, for antifungal activity. This last section of the review emphasizes the latest research with the alpha-methoxylated fatty acids but the importance of acetylenic fatty acids is also considered.
Collapse
Affiliation(s)
- N M Carballeira
- Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan 00931-3346, Puerto Rico.
| |
Collapse
|
35
|
Lu JZ, Muench SP, Allary M, Campbell S, Roberts CW, Mui E, McLeod RL, Rice DW, Prigge ST. Type I and type II fatty acid biosynthesis in Eimeria tenella: enoyl reductase activity and structure. Parasitology 2007; 134:1949-62. [PMID: 17697396 PMCID: PMC2801558 DOI: 10.1017/s0031182007003319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apicomplexan parasites of the genus Eimeria are the major causative agent of avian coccidiosis, leading to high economic losses in the poultry industry. Recent results show that Eimeria tenella harbours an apicoplast organelle, and that a key biosynthetic enzyme, enoyl reductase, is located in this organelle. In related parasites, enoyl reductase is one component of a type II fatty acid synthase (FAS) and has proven to be an attractive target for antimicrobial compounds. We cloned and expressed the mature form of E. tenella enoyl reductase (EtENR) for biochemical and structural studies. Recombinant EtENR exhibits NADH-dependent enoyl reductase activity and is inhibited by triclosan with an IC50 value of 60 nm. The crystal structure of EtENR reveals overall similarity with other ENR enzymes; however, the active site of EtENR is unoccupied, a state rarely observed in other ENR structures. Furthermore, the position of the central beta-sheet appears to block NADH binding and would require significant movement to allow NADH binding, a feature not previously seen in the ENR family. We analysed the E. tenella genomic database for orthologues of well-characterized bacterial and apicomplexan FAS enzymes and identified 6 additional genes, suggesting that E. tenella contains a type II FAS capable of synthesizing saturated, but not unsaturated, fatty acids. Interestingly, we also identified sequences that appear to encode multifunctional type I FAS enzymes, a feature also observed in Toxoplasma gondii, highlighting the similarity between these apicomplexan parasites.
Collapse
Affiliation(s)
- J. Z. Lu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - S. P. Muench
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - M. Allary
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - S. Campbell
- Strathclyde Institute of Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - C. W. Roberts
- Strathclyde Institute of Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - E. Mui
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA
| | - R. L. McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), and Pathology and Committees on Genetics, Molecular Medicine and Immunology and the College, University of Chicago, Chicago, IL 60637, USA
| | - D. W. Rice
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - S. T. Prigge
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Corresponding author: Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA. Tel: +1 443 287 4822. Fax: +1 410 955 0105.
| |
Collapse
|
36
|
Freundlich JS, Wang F, Tsai HC, Kuo M, Shieh HM, Anderson JW, Nkrumah LJ, Valderramos JC, Yu M, Kumar TRS, Valderramos SG, Jacobs WR, Schiehser GA, Jacobus DP, Fidock DA, Sacchettini JC. X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. J Biol Chem 2007; 282:25436-44. [PMID: 17567585 DOI: 10.1074/jbc.m701813200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystal structures of five triclosan analogs, in addition to that of the isoniazid-NAD adduct, are described in relation to their integral role in the design of potent inhibitors of the malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of the novel 5-substituted analogs exhibit low micromolar potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and inhibit purified PfENR enzyme with IC50 values of <200 nM. This study has significantly expanded the knowledge base with regard to the structure-activity relationship of triclosan while affording gains against cultured parasites and purified PfENR enzyme. In contrast to a recent report in the literature, these results demonstrate the ability to improve the in vitro potency of triclosan significantly by replacing the suboptimal 5-chloro group with larger hydrophobic moieties. The biological and x-ray crystallographic data thus demonstrate the flexibility of the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular Plasmodium parasites.
Collapse
Affiliation(s)
- Joel S Freundlich
- Department of Medicinal Chemistry, Jacobus Pharmaceutical Company, Princeton, New Jersey 08540, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Eitner K, Gaweda T, Hoffmann M, Jura M, Rychlewski L, Barciszewski J. eHiTS-to-VMD interface application. The search for tyrosine-tRNA ligase inhibitors. J Chem Inf Model 2007; 47:695-702. [PMID: 17381179 DOI: 10.1021/ci600392r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Owing to the recent development of virtual high-throughput screening (vHTS) and a vast number of compounds subjected to vHTS analyses, it has been essential to automate the processing of computational data required for the analysis and visualization of research results. Using the search for tyrosine-tRNA ligase inhibitors as an example, we present a computer application, an interface between eHiTS software for virtual high-throughput screening and VMD graphic software used to visualize calculation results.
Collapse
Affiliation(s)
- Krystian Eitner
- BioInfoBank Institute, ul. Limanowskiego 24A, 60-744 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
38
|
Allary M, Lu JZ, Zhu L, Prigge ST. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 2007; 63:1331-44. [PMID: 17244193 PMCID: PMC2796473 DOI: 10.1111/j.1365-2958.2007.05592.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.
Collapse
Affiliation(s)
| | | | | | - Sean T. Prigge
- For correspondence. ; Tel. (+1) 443 287 4822; Fax (+1) 410 955 0105
| |
Collapse
|
39
|
Mullin KA, Lim L, Ralph SA, Spurck TP, Handman E, McFadden GI. Membrane transporters in the relict plastid of malaria parasites. Proc Natl Acad Sci U S A 2006; 103:9572-7. [PMID: 16760253 PMCID: PMC1480448 DOI: 10.1073/pnas.0602293103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria parasites contain a nonphotosynthetic plastid homologous to chloroplasts of plants. The parasite plastid synthesizes fatty acids, heme, iron sulfur clusters and isoprenoid precursors and is indispensable, making it an attractive target for antiparasite drugs. How parasite plastid biosynthetic pathways are fuelled in the absence of photosynthetic capture of energy and carbon was not clear. Here, we describe a pair of parasite transporter proteins, PfiTPT and PfoTPT, that are homologues of plant chloroplast innermost membrane transporters responsible for moving phosphorylated C3, C5, and C6 compounds across the plant chloroplast envelope. PfiTPT is shown to be localized in the innermost membrane of the parasite plastid courtesy of a cleavable N-terminal targeting sequence. PfoTPT lacks such a targeting sequence, but is shown to localize in the outermost parasite plastid membrane with its termini projecting into the cytosol. We have identified these membrane proteins in the parasite plastid and determined membrane orientation for PfoTPT. PfiTPT and PfoTPT are proposed to act in tandem to transport phosphorylated C3 compounds from the parasite cytosol into the plastid. Thus, the transporters could shunt glycolytic derivatives of glucose scavenged from the host into the plastid providing carbon, reducing equivalents and ATP to power the organelle.
Collapse
Affiliation(s)
- Kylie A. Mullin
- *Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia; and
| | - Liting Lim
- *Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia; and
| | - Stuart A. Ralph
- *Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia; and
| | - Timothy P. Spurck
- *Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia; and
| | - Emanuela Handman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | - Geoffrey I. McFadden
- *Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Freundlich JS, Yu M, Lucumi E, Kuo M, Tsai HC, Valderramos JC, Karagyozov L, Jacobs WR, Schiehser GA, Fidock DA, Jacobus DP, Sacchettini JC. Synthesis and biological activity of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 2: 2'-substituted triclosan derivatives. Bioorg Med Chem Lett 2006; 16:2163-9. [PMID: 16466916 DOI: 10.1016/j.bmcl.2006.01.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
2'-Substituted analogs of triclosan have been synthesized to target inhibition of the key malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of these compounds exhibit good potency (EC50<500 nM) against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and modest (IC50=1-20 microM) potency against purified PfENR enzyme. Compared to triclosan, this survey of 2'-substituted derivatives has afforded gains in excess of 20- and 30-fold versus the 3D7 and Dd2 strains of parasite, respectively.
Collapse
Affiliation(s)
- Joel S Freundlich
- Department of Medicinal Chemistry, Jacobus Pharmaceutical Company, 37 Cleveland Lane, Princeton, NJ 08540, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu W, Han C, Hu L, Chen K, Shen X, Jiang H. Characterization and inhibitor discovery of one novel malonyl-CoA: Acyl carrier protein transacylase (MCAT) fromHelicobacter pylori. FEBS Lett 2006; 580:697-702. [PMID: 16413022 DOI: 10.1016/j.febslet.2005.12.085] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Type II fatty acid synthesis (FAS II) is an essential process for bacteria survival, and malonyl-CoA:acyl carrier protein transacylase (MCAT) is a key enzyme in FAS II pathway, which is responsible for transferring the malonyl group from malonyl-CoA to the holo-ACP by forming malonyl-ACP. In this work, we described the cloning, characterization and enzymatic inhibition of a new MCAT from Helicobacter pylori strain SS1 (HpMCAT), and the gene sequence of HpfabD was deposited in the GenBank database (Accession No. AY738332 ). Enzymatic characterization of HpMCAT showed that the K(m) value for malonyl-CoA was 21.01+/-2.3 microM, and the thermal- and guanidinium hydrochloride-induced unfolding processes for HpMCAT were quantitatively investigated by circular dichroism spectral analyses. Moreover, a natural product, corytuberine, was discovered to demonstrate inhibitory activity against HpMCAT with IC(50) value at 33.1+/-3.29 microM. Further enzymatic assay results indicated that corytuberine inhibits HpMCAT in an uncompetitive manner. To our knowledge, this is the firstly reported MCAT inhibitor to date. This current work is hoped to supply useful information for better understanding the MCAT features of H. pylori strain, and corytuberine might be used as a potential lead compound in the discovery of the antibacterial agents using HpMCAT as target.
Collapse
Affiliation(s)
- Weizhi Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|