1
|
Oyón Díaz de Cerio J, Venneri G, Orefice I, Forestiero M, Baena CR, Tassone GB, Percopo I, Sardo A, Panno ML, Giordano F, Di Dato V. Effects of Amphidinium carterae Phytocompounds on Proliferation and the Epithelial-Mesenchymal Transition Process in T98G Glioblastoma Cells. Mar Drugs 2025; 23:173. [PMID: 40278295 PMCID: PMC12029094 DOI: 10.3390/md23040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive type of brain cancer, frequently invasive, with a low survival rate and complicated treatment. Recent studies have shown the modulation of epithelial-mesenchymal transition (EMT) biomarkers in glioblastoma cells associated with tumor progression, chemoresistance, and relapse after treatment. GBM handlings are based on aggressive chemical therapies and surgical resection with poor percentage of survival, boosting the search for more specific remedies. Marine eukaryotic microalgae are rapidly advancing as a source of anticancer drugs due to their ability to produce potent secondary metabolites with biological activity. Among such microalgae, dinoflagellates, belonging to the species Amphidinium carterae, are known producers of neurotoxins and cytotoxic compounds. We tested the capability of chemical extracts from two different strains of A. carterae to modulate the EMT markers in T98G, human GBM cells. In vitro proliferation and migration studies and EMT biomarkers' abundance and modulation assays showed that the different A. carterae strains differently modulated both EMT markers and the proliferation/migration capability of GBM cells. This study sets the bases to find a marine microalgae-derived natural compound that could potentially target the epithelial-mesenchymal transition in brain-derived tumor types.
Collapse
Affiliation(s)
- Julia Oyón Díaz de Cerio
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Giulia Venneri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Ida Orefice
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Martina Forestiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Carlos Roman Baena
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Gianluca Bruno Tassone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Isabella Percopo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn Napoli, 80122 Naples, Italy;
| | - Angela Sardo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Valeria Di Dato
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| |
Collapse
|
2
|
Bleisch R, Ihadjadene Y, Torrisi A, Walther T, Mühlstädt G, Steingröwer J, Streif S, Krujatz F. Physiological Adaptation of Chromochloris zofingiensis in Three-Phased Cultivation Performed in a Pilot-Scale Photobioreactor. Life (Basel) 2025; 15:648. [PMID: 40283202 PMCID: PMC12028653 DOI: 10.3390/life15040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Chromochloris zofingiensis is a green alga that serves as a valuable source of lipids, proteins, and carotenoids. Compared to well-studied microalgal carotenoid producers, C. zofingiensis offers several advantages, including high biomass, lipid and carotenoid productivity as well as less susceptibility to contaminations. C. zofingiensis can achieve growth rates up to four times higher than those of H. pluvialis under optimal phototrophic conditions. Although several studies have examined its cultivation and carotenogenesis under different tropic growth modes at laboratory scale, few have focused on pilot-scale systems. The goal of this study is to investigate the microalga's physiological adaptation in a 200 L tubular photobioreactor during a three-phase semi-continuous cultivation strategy, particularly focusing on the changes in macromolecular and pigment composition. After an initial biomass accumulation phase, a two-phased stress phase was applied combining nutrient depletion (phase 1) and osmotic salt stress conditions (phase 2). Following this procedure, the cellular protein content dropped to 44.7% of its initial level, while the lipid content rose by up to 320%. Additionally, the astaxanthin concentration increased from 1.1 mg/gDW to 4.9 mg/gDW during the last osmotic stress phases, aligning with results from published laboratory-scale studies.
Collapse
Affiliation(s)
- Richard Bleisch
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
| | - Agnese Torrisi
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy;
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
| | | | - Juliane Steingröwer
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
| | - Stefan Streif
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, 35392 Giessen, Germany
| | - Felix Krujatz
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
- biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
| |
Collapse
|
3
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
4
|
Kim DY, Park HJ, Eom JI, Han CH, Pan CH, Lee JK. Ethanol Extract of the Microalga Phaeodactylum tricornutum Shows Hepatoprotective Effects against Acetaminophen-Induced Acute Liver Injury in Mice. Int J Mol Sci 2024; 25:6247. [PMID: 38892435 PMCID: PMC11172906 DOI: 10.3390/ijms25116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Acute liver failure is an infrequent yet fatal condition marked by rapid liver function decline, leading to abnormalities in blood clotting and cognitive impairment among individuals without prior liver ailments. The primary reasons for liver failure are infection with hepatitis virus or overdose of certain medicines, such as acetaminophen. Phaeodactylum tricornutum (PT), a type of microalgae known as a diatom species, has been reported to contain an active ingredient with anti-inflammatory and anti-obesity effects. In this study, we evaluated the preventive and therapeutic activities of PT extract in acute liver failure. To achieve our purpose, we used two different acute liver failure models: acetaminophen- and D-GalN/LPS-induced acute liver failure. PT extract showed protective activity against acetaminophen-induced acute liver failure through attenuation of the inflammatory response. However, we failed to demonstrate the protective effects of PT against acute liver injury in the D-GalN/LPS model. Although the PT extract did not show protective activity against two different acute liver failure animal models, this study clearly demonstrates the importance of considering the differences among animal models when selecting an acute liver failure model for evaluation.
Collapse
Affiliation(s)
- Dae Yoon Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Hui Jin Park
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Jae-In Eom
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Cheol-Ho Han
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Cheol-Ho Pan
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.)
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28160, Republic of Korea;
| |
Collapse
|
5
|
Greipel E, Kósa A, Böddi B, Bakony M, Bernát G, Felföldi T, Preininger É, Kutasi J. Extraction of chlorophyll a from Tetradesmus obliquus-a method upgrade. Biol Futur 2024; 75:243-250. [PMID: 38388863 DOI: 10.1007/s42977-024-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Nowadays, the use of algae is prevalent for both industrial and agricultural purposes. The determination of chlorophyll (Chl) content is a commonly used method for estimating the phytoplankton abundance in different water bodies or biomass density of algal cultures. The aim of the present work is to optimise the efficiency of the Chl extraction from the green alga Tetradesmus obliquus using methanol as extracting solvent. The extraction efficiency was estimated by measuring the Chl a concentration of the extracts using fluorescence spectroscopy. To increase the extraction yield, glass fibre filters with algal cells on top were treated with 10% (v/v) formalin prior to the extraction. We found that this pretreatment significantly enhanced the extraction yield of Chl without its chemical decomposition. We also found that the optimal cell concentration for Chl determination ranged from 1.44 × 104 to 3.60 × 105 cells/mL and the extraction efficiency was lower when the cell density of the culture was out of this range. These results highlight the importance of the optimization of the pigment extraction for the studied algal species.
Collapse
Affiliation(s)
- E Greipel
- Albitech Ltd., Berlini u. 47-49, Budapest, 1045, Hungary.
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny.1/C, Budapest, 1117, Hungary.
| | - A Kósa
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny.1/C, Budapest, 1117, Hungary
| | - B Böddi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny.1/C, Budapest, 1117, Hungary
| | - M Bakony
- Centre for Translational Medicine, Semmelweis University, Baross U. 22. Budapest, Budapest, 1085, Hungary
| | - G Bernát
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno Utca. 3. Tihany, Tihany, 8237, Hungary
| | - T Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter Stny.1/C, Budapest, 1117, Hungary
| | - É Preininger
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny.1/C, Budapest, 1117, Hungary
- Research Centre for Fruit Growing, Institute of Horticultural Science, Hungarian University of Agriculture and Life Sciences, Park Str. 2, Budapest, 1223, Hungary
| | - J Kutasi
- Albitech Ltd., Berlini u. 47-49, Budapest, 1045, Hungary
| |
Collapse
|
6
|
Ahmed AQ, Mohammed NJ, Zefenkey ZF, Mamand SF, Hassannejad S, Hassan AO, Hassan RR. Investigate Freshwater Algae Extract's Efficacy in Treating Diabetes Ulcers and Its Anti-Staphylococcal Properties. Rep Biochem Mol Biol 2024; 13:114-123. [PMID: 39582826 PMCID: PMC11580128 DOI: 10.61186/rbmb.13.1.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/25/2024] [Indexed: 11/26/2024]
Abstract
Background Infection of diabetic foot ulcer is very common and leads in 20% of cases to amputation. Antibiotic-resistant Staphylococcus aureus is the main cause of severe infection. Antibiotic resistance is a major challenge to the global health system. This work aimed to investigate the antibacterial efficacy of some algae extracts against Staphylococcus aureus isolated from diabetic foot ulcers. Methods freshwater river samples were collected to isolate the algae, and PCR was used for identification. The ethanol, water, and ethyl acetate extract of these algae were prepared and analyzed using high-performance liquid chromatography-mass spectrometry to determine the key components that have antibacterial properties. The antibacterial activity of these extracts against S. aureus was determined by broth dilution and well diffusion methods. Results Chlorella vulgaris and Anabaena flos-aquae were isolated from freshwater river and identified by PCR. Anabaena flos-aquae has a greater antibacterial efficacy against Staphylococcus aureus in comparison to Chlorella vulgaris, and the ethanolic extract demonstrated superior outcomes compared to the aqueous and ethyl acetate extracts. The MS spectrum of both algae had a very similar pattern, but the frequency of detected peaks was different. Conclusions Ethanolic extract of A. flos-aquae and Chlorella vulgaris can be suggested to treat and control diabetic foot ulcer infection caused by S. aureus. Further studies are required to explore the full potential of these algae safely and extensively.
Collapse
Affiliation(s)
- Alwan Qader Ahmed
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Nyan Jasim Mohammed
- Department of Medical Microbiology, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Zean Fetehallah Zefenkey
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Shilan Farhad Mamand
- Department of Medical Microbiology, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Sahar Hassannejad
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Abdullah Othman Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
| |
Collapse
|
7
|
Greipel E, Nagy K, Csákvári E, Dér L, Galajda P, Kutasi J. Chemotactic Interactions of Scenedesmus sp. and Azospirillum brasilense Investigated by Microfluidic Methods. MICROBIAL ECOLOGY 2024; 87:52. [PMID: 38498218 PMCID: PMC10948495 DOI: 10.1007/s00248-024-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.
Collapse
Affiliation(s)
- Erika Greipel
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny 1/C, H-1117, Budapest, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Eszter Csákvári
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2, 6726, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Peter Galajda
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - József Kutasi
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
| |
Collapse
|
8
|
Mériot V, Roussel A, Brunet N, Chomerat N, Bilien G, Le Déan L, Berteaux-lecellier V, Coulombier N, Lebouvier N, Jauffrais T. Heterocapsa cf. bohaiensis (dinoflagellate): identification and response to nickel and iron stress revealed through chlorophyll a fluorescence. PHOTOSYNTHETICA 2024; 62:27-39. [PMID: 39650634 PMCID: PMC11609768 DOI: 10.32615/ps.2023.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 12/11/2024]
Abstract
Metal toxicity in marine ecosystems is a growing issue owing to terrestrial runoff and anthropogenic pollution. Heterocapsa cf. bohaiensis, a newly isolated dinoflagellate from New Caledonia, was cultivated in photobioreactors operating continuously with high concentrations of nickel (1.70 10-5M) (Ni2+) and/or iron (1.79 10-5M) (Fe2+) and their photosynthetic efficiency was assessed. The photosynthetic measurements indicated that H. cf. bohaiensis was tolerant to Ni2+ but sensitive to Fe2+ high concentrations. In the presence of Fe2+, maximum quantum efficiency and maximal relative electron transport rate decreased from 0.62 to 0.47 and from 156 to 102, respectively. The JIP-tests suggested a reduction of the photosynthesis in response to Fe2+ due to a disruption in the electron transport chain rather than a defect in the light absorption and trapping capacity which were on the contrary enhanced by Fe2+. These results bring new knowledge on the impact of nickel and iron on microalgae photosynthetic pathways.
Collapse
Affiliation(s)
- V. Mériot
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - A. Roussel
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - N. Brunet
- CRESICA, 98851 Nouméa, New Caledonia
| | - N. Chomerat
- Ifremer, Littoral – LERBO, Place de la Croix, Concarneau, F-29900, France
| | - G. Bilien
- Ifremer, Littoral – LERBO, Place de la Croix, Concarneau, F-29900, France
| | - L. Le Déan
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| | - V. Berteaux-lecellier
- CNRS, Ifremer, IRD, University of New Caledonia, University of La Réunion, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Nouméa, New Caledonia
| | - N. Coulombier
- ADECAL Technopole, 1 Bis Rue Berthelot, 98846 Nouméa, New Caledonia
| | - N. Lebouvier
- ISEA, EA7484, Campus de Nouville, University of New Caledonia, 98851 Nouméa, New Caledonia
| | - T. Jauffrais
- Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia
| |
Collapse
|
9
|
Shitanaka T, Fujioka H, Khan M, Kaur M, Du ZY, Khanal SK. Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies. BIORESOURCE TECHNOLOGY 2024; 391:129924. [PMID: 37925082 DOI: 10.1016/j.biortech.2023.129924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
The market value of microalgae has grown exponentially over the past two decades, due to their use in the pharmaceutical, nutraceutical, cosmetic, and aquatic/animal feed industries. In particular, high-value products such as omega-3 fatty acids, proteins, and pigments derived from microalgae have high demand. However, the supply of these high-value microalgal bioproducts is hampered by several critical factors, including low biomass and bioproduct yields, inefficiencies in monitoring microalgal growth, and costly harvesting methods. To overcome these constraints, strategies such as synthetic biology, bubble generation, photobioreactor designs, electro-/magnetic-/bioflocculation, and artificial intelligence integration in microalgal production are being explored. These strategies have significant promise in improving the production of microalgae, which will further boost market availability of algal-derived bioproducts. This review focuses on the recent advances in these technologies. Furthermore, this review aims to provide a critical analysis of the challenges in existing algae bioprocessing methods, and highlights future research directions.
Collapse
Affiliation(s)
- Ty Shitanaka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Haylee Fujioka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Muzammil Khan
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Manpreet Kaur
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
10
|
An SM, Cho K, Kim ES, Ki H, Choi G, Kang NS. Description and Characterization of the Odontella aurita OAOSH22, a Marine Diatom Rich in Eicosapentaenoic Acid and Fucoxanthin, Isolated from Osan Harbor, Korea. Mar Drugs 2023; 21:563. [PMID: 37999387 PMCID: PMC10671887 DOI: 10.3390/md21110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g-1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g-1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.M.A.); (K.C.); (E.S.K.); (H.K.); (G.C.)
| |
Collapse
|
11
|
Pappalardo I, Santarsiero A, Radice RP, Martelli G, Grassi G, de Oliveira MR, Infantino V, Todisco S. Effects of Extracts of Two Selected Strains of Haematococcus pluvialis on Adipocyte Function. Life (Basel) 2023; 13:1737. [PMID: 37629594 PMCID: PMC10455862 DOI: 10.3390/life13081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, microalgae are arousing considerable interest as a source of countless molecules with potential impacts in the nutraceutical and pharmaceutical fields. Haematococcus pluvialis, also named Haematococcus lacustris, is the largest producer of astaxanthin, a carotenoid exhibiting powerful health effects, including anti-lipogenic and anti-diabetic activities. This study was carried out to investigate the properties of two selected strains of H. pluvialis (FBR1 and FBR2) on lipid metabolism, lipolysis and adipogenesis using an in vitro obesity model. FBR1 and FBR2 showed no antiproliferative effect at the lowest concentration in 3T3-L1 adipocytes. Treatment with FBR2 extract reduced lipid deposition, detected via Oil Red O staining and the immunocontent of the adipogenic proteins PPARγ, ACLY and AMPK was revealed using Western blot analysis. Extracts from both strains induced lipolysis in vitro and reduced the secretion of interleukin-6 and tumor necrosis factor-α. Moreover, the FBR1 and FBR2 extracts improved mitochondrial function, reducing the levels of mitochondrial superoxide anion radical and increasing mitochondrial mass compared to untreated adipocytes. These findings suggest that FBR2 extract, more so than FBR1, may represent a promising strategy in overweight and obesity prevention and treatment.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
- Bioinnova Srls, Via Ponte Nove Luci, 22, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Giulia Grassi
- School of Agriculture, University of Basilicata, Forest, Food and Environmental Sciences, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Marcos Roberto de Oliveira
- Departamento de Bioquímica Rua Ramiro Barcelos, Universidade Federal do Rio Grande do Sul (UFRGS), 2600 Anexo Santa Cecília, Porto Alegre 90610-000, RS, Brazil;
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| |
Collapse
|
12
|
Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 2023; 46:1077-1097. [PMID: 36331626 PMCID: PMC10345032 DOI: 10.1007/s00449-022-02796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
13
|
Lim Y, Park SH, Kim EJ, Lim H, Jang J, Hong IS, Kim S, Jung Y. Polar microalgae extracts protect human HaCaT keratinocytes from damaging stimuli and ameliorate psoriatic skin inflammation in mice. Biol Res 2023; 56:40. [PMID: 37438821 DOI: 10.1186/s40659-023-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Polar microalgae contain unique compounds that enable them to adapt to extreme environments. As the skin barrier is our first line of defense against external threats, polar microalgae extracts may possess restorative properties for damaged skin, but the potential of microalgae extracts as skin protective agents remains unknown. PURPOSE This study aimed to analyze compound profiles from polar microalgae extracts, evaluate their potential as skin epithelial protective agents, and examine the underlying mechanisms. METHODS Six different polar microalgae, Micractinium sp. (KSF0015 and KSF0041), Chlamydomonas sp. (KNM0029C, KSF0037, and KSF0134), and Chlorococcum sp. (KSF0003), were collected from the Antarctic or Arctic regions. Compound profiles of polar and non-polar microalgae extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The protective activities of polar microalgae extracts on human keratinocyte cell lines against oxidative stress, radiation, and psoriatic cytokine exposure were assessed. The potential anti-inflammatory mechanisms mediated by KSF0041, a polar microalga with protective properties against oxidative stress, ultraviolet (UV) B, and an inflammatory cytokine cocktail, were investigated using RNA-sequencing analysis. To evaluate the therapeutic activity of KSF0041, an imiquimod-induced murine model of psoriatic dermatitis was used. RESULTS Polar microalgae contain components comparable to those of their non-polar counterparts, but also showed distinct differences, particularly in fatty acid composition. Polar microalgae extracts had a greater ability to scavenge free radicals than did non-polar microalgae and enhanced the viability of HaCaT cells, a human keratinocyte cell line, following exposure to UVB radiation or psoriatic cytokines. These extracts also reduced barrier integrity damage and decreased mRNA levels of inflammatory cytokines in psoriatic HaCaT cells. Treatment with KSF0041 extract altered the transcriptome of psoriatic HaCaT cells toward a more normal state. Furthermore, KSF0041 extract had a therapeutic effect in a mouse model of psoriasis. CONCLUSIONS Bioactive compounds from polar microalgae extracts could provide novel therapeutics for damaged and/or inflamed skin.
Collapse
Affiliation(s)
- YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - So-Hyun Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Korea
| | - HeeJun Lim
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea.
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea.
| |
Collapse
|
14
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
15
|
Agarwal A, Selvam A, Majood M, Agrawal O, Chakrabarti S, Mukherjee M. Carbon nanosheets to unravel the production of bioactive compounds from microalgae: A robust approach in drug discovery. Drug Discov Today 2023; 28:103586. [PMID: 37080385 DOI: 10.1016/j.drudis.2023.103586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
The conglomeration of active pharmaceutical ingredients (APIs) has influenced the development of life-saving drugs. These APIs are customarily synthetic products, albeit with adverse side effects. Thus, to overcome the bottlenecks associated with synthetically derived APIs, the approach of photocatalytically obtaining bioactive compounds from natural ingredients has emerged. Amid the pool of photoactive nanomaterials, this short review emphasizes the intelligent strategy of exploiting photoactive carbon nanosheets to photocatalytically derive bioactive compounds from natural algal biomass to treat many acute or chronic medical conditions. Carbon nanosheets result in phototrophic harvesting of bioactive compounds from microalgae as a result of their being an effective biocatalyst that increases the rate of photosynthesis. To understand the clinical translation of bioactive compounds, the pharmacodynamics of algal bioactive compounds are highlighted to determine the practicality and feasibility of using this green approach for pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
16
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
17
|
Chen Y, Liang H, Du H, Jesumani V, He W, Cheong KL, Li T, Hong T. Industry chain and challenges of microalgal food industry-a review. Crit Rev Food Sci Nutr 2022; 64:4789-4816. [PMID: 36377724 DOI: 10.1080/10408398.2022.2145455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the whole world is facing hunger due to the increase in the global population and the rising level of food consumption. Unfortunately, the impact of environmental, climate, and political issues on agriculture has resulted in limited global food resources. Thus, it is important to develop new food sources that are environmentally friendly and not subject to climate or space limitations. Microalgae represent a potential source of nutrients and bioactive components for a wide range of high-value products. Advances in cultivation and genetic engineering techniques provide prospective approaches to widen their application for food. However, there are currently problems in the microalgae food industry in terms of assessing nutritional value, selecting processes for microalgae culture, obtaining suitable commercial strains of microalgae, etc. Additionally, the limitations of real data of market opportunities for microalgae make it difficult to assess their actual potential and to develop a better industrial chain. This review addresses the current status of the microalgae food industry, the process of commercializing microalgae food and breeding methods. Current research progress in addressing the limitations of microalgae industrialization and future prospects for developing microalgae food products are discussed.
Collapse
Affiliation(s)
- Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Valentina Jesumani
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
18
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
19
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. Int J Mol Sci 2022; 23:ijms231810680. [PMID: 36142592 PMCID: PMC9502410 DOI: 10.3390/ijms231810680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new “omic” technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.
Collapse
|
21
|
Darwesh OM, Mahmoud RH, Abdo SM, Marrez DA. Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00753. [PMID: 35864885 PMCID: PMC9294494 DOI: 10.1016/j.btre.2022.e00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 04/17/2023]
Abstract
In this work, freshwater microalga, Haematococcus lacustris was isolated from the River Nile, identified and deposited in genebank under name of H. lacustris isolate REH10 with accession number OK336515. N-hexane extract was produced high inhibition effects against multi-antibiotic resistant pathogens. The n-Hexane extract was fractionated and 2 fractions (F3 & F4) exhibited high antibacterial activity (15 - 20 mm) compared with other fractions. Thus, they sub-fractionated and 2 sub-fractions produced from the F3 had high inhibition activity against all tested pathogens (18-20 mm). To identify the main compounds responsible for inhibition growth of multi-drug resistance bacteria, GC-MS chromatogram analyses was applied on the F3 and its sub-fractions 2 and 3. Five compounds detected in the 2 sub-fractions. Palmitic acid was identified as the first report antibacterial agent. The antioxidant activity of SF3-3 was reached to 86 and 80.5% for DPPH and ABTS.+ tests, respectively.
Collapse
Affiliation(s)
- Osama M. Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt
- Corresponding author.
| | - Rehab H. Mahmoud
- Water Pollution Research department, National Research Centre, Cairo 12622, Egypt
| | - Sayeda M. Abdo
- Water Pollution Research department, National Research Centre, Cairo 12622, Egypt
| | - Diaa A. Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
22
|
Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022; 62:999-1029. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
Microalgae and cyanobacteria (blue-green algae) are used as food by humans. They have gained a lot of attention in recent years because of their potential applications in biotechnology. Microalgae and cyanobacteria are good sources of many valuable compounds, including important biologically active compounds with antiviral, antibacterial, antifungal, and anticancer activities. Under optimal growth condition and stress factors, algal biomass produce varieties of potential bioactive compounds. In the current review, bioactive compounds production and their remarkable applications such as pharmaceutical and nutraceutical applications along with processes involved in identification and characterization of the novel bioactive compounds are discussed. Comprehensive knowledge about the exploration, extraction, screening, and trading of bioactive products from microalgae and cyanobacteria and their pharmaceutical and other applications will open up new avenues for drug discovery and bioprospecting.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ramu Meenatchi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Kalpana Pachillu
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Foundation for Aquaculture Innovation and Technology Transfer (FAITT), Thoraipakkam, Chennai, Tamil Nadu, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
23
|
Mehdizadeh Allaf M, Fadlallah H, Jarrahi M, Peerhossaini H. Growth and pigment production of
Synechocystis
sp.
PCC
6803 under shear stress. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Malihe Mehdizadeh Allaf
- Mechanics of Active Fluids and Bacterial Physics Lab, Department of Civil and Environmental Engineering Western University London ON Canada
| | - Hadi Fadlallah
- Laboratoire AstroParticules et Cosmologie (APC) ‐ CNRS Université de Paris Paris France
| | | | - Hassan Peerhossaini
- Mechanics of Active Fluids and Bacterial Physics Lab, Department of Civil and Environmental Engineering Western University London ON Canada
- Laboratoire AstroParticules et Cosmologie (APC) ‐ CNRS Université de Paris Paris France
- Department of Mechanical & Materials Engineering Western University London ON Canada
| |
Collapse
|
24
|
De Novo Transcriptome of the Flagellate Isochrysis galbana Identifies Genes Involved in the Metabolism of Antiproliferative Metabolites. BIOLOGY 2022; 11:biology11050771. [PMID: 35625500 PMCID: PMC9138222 DOI: 10.3390/biology11050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Haptophytes are important primary producers in the oceans, and among the phylum Haptophyta, the flagellate Isochrysis galbana has been found to be rich in high-value compounds, such as lipids, carotenoids and highly branched polysaccharides. In the present work, I. galbana was cultured and collected at both stationary and exponential growth phases. A transcriptomic approach was used to analyze the possible activation of metabolic pathways responsible for bioactive compound synthesis at the gene level. Differential expression analysis of samples collected at the exponential versus stationary growth phase allowed the identification of genes involved in the glycerophospholipid metabolic process, the sterol biosynthetic process, ADP-ribose diphosphatase activity and others. I. galbana raw extracts and fractions were tested on specific human cancer cells for possible antiproliferative activity. The most active fractions, without affecting normal cells, were fractions enriched in nucleosides (fraction B) and triglycerides (fraction E) for algae collected in the exponential growth phase and fraction E for stationary phase samples. Overall, transcriptomic and bioactivity data confirmed the activation of metabolic pathways involved in the synthesis of bioactive compounds giving new insights on possible Isochrysis applications in the anticancer sector.
Collapse
|
25
|
Marchand J, Hu H, Manoylov K, Schoefs B. Editorial: Metabolic Regulation of Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2022; 13:897639. [PMID: 35592565 PMCID: PMC9111530 DOI: 10.3389/fpls.2022.897639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Justine Marchand
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratory Biologie des Organismes, Stress, Santé Environnement, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kalina Manoylov
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA, United States
| | - Benoît Schoefs
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratory Biologie des Organismes, Stress, Santé Environnement, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
26
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
27
|
Boutarfa S, Senoussi MM, Gonzalez-Silvera D, López-Jiménez JÁ, Aboal M. The Green Microalga Coelastrella thermophila var. globulina (Scenedesmaceae, Chlorophyta) Isolated from an Algerian Hot Spring as a Potential Source of Fatty Acids. Life (Basel) 2022; 12:life12040560. [PMID: 35455051 PMCID: PMC9028475 DOI: 10.3390/life12040560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Screening microalgae from extreme environments, including hot springs, is an important research topic that has lately emerged. A thermophilic green alga was isolated from a north-eastern Algerian hot spring at a temperature of 63 °C, and its fatty acid (FA) profile was explored. The strain was cultivated in BBM medium at 35 °C in a 16:8 h light/dark cycle and 75 μM photons m−2 s−1. The morphological studies combined with phylogenetic analysis revealed that the isolate was Coelastrella thermophila var. globulina Q. Wang, H. Song, X. Liu, G. Liu and Z. Hu. The monounsaturated fatty acid (MUFA) content was 51.12%. The saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) content, respectively, accounted for 27.01% and 21.87%. The main FA was oleic acid (18:1n–9), whose value was 35.95%, followed in decreasing order by palmitic acid (16:0) with 21.45%, linoleic acid (18:2n–6) with 14.38% and α-linolenic acid (18:3n–3) with 04.22%. The FA profile exhibited high total n–6 and n–3 PUFA values (15.80% and 5.76%, respectively). Coelastrella thermophila var. globulina is particularly interesting for producing n-6 and n-3 PUFA and is likely suitable for other biotechnological purposes. This is the first time that this taxon has been reported in hot springs. Other species can be expected to be reported, which emphasises the importance of the biodiversity of extreme habitats.
Collapse
Affiliation(s)
- Soumia Boutarfa
- Laboratory of Biomolecules and Plant Breeding, Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria;
- Laboratory of Algology, Department of Plant Biology, Faculty of Biology, Espinardo Campus, E-30100 Murcia, Spain;
- Correspondence:
| | - Mohammed Mourad Senoussi
- Laboratory of Biomolecules and Plant Breeding, Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria;
| | - Daniel Gonzalez-Silvera
- Department of Physiology, University of Murcia, E-30100 Murcia, Spain; (D.G.-S.); (J.Á.L.-J.)
| | | | - Marina Aboal
- Laboratory of Algology, Department of Plant Biology, Faculty of Biology, Espinardo Campus, E-30100 Murcia, Spain;
| |
Collapse
|
28
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
29
|
Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel MY. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci 2022; 29:1043-1052. [PMID: 35197773 PMCID: PMC8848016 DOI: 10.1016/j.sjbs.2021.09.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
Microalgae represent promising sources of bioactive compounds for pharmaceutical and industrial applications. The emergence of antibiotic resistant bacteria leads to the need to explore new cost-effective, safe, and potent bioactive compounds from the microalgae. This study aimed to investigate the potential of local microalgae for their antimicrobial properties and bioactive compounds. Three local microalgae namely Chlorella sorokiniana (UKM2), Chlorella sp. UKM8, and Scenedesmus sp. UKM9 biomass methanol extracts (ME) were prepared and tested against Gram-positive and Gram-negative bacteria. Chlorella sp. UKM8-ME showed the highest antibacterial activity. UKM8-ME minimum inhibitory concentrations were in the range of 0.312 to 6.25 mg/mL. Cytotoxicity evaluation using MTT assay showed that the microalgae methanolic extracts did not exhibit cytotoxicity against Vero-cells. The UKM8-ME was mainly containing 28 compounds from the Gas Chromatography-Mass Spectrometry (GC–MS) analysis. Major compounds of UKM8-ME included phenol (18.5%), hexadecanoic acid (18.25%), phytol (14.43%), 9,12-octadecadienoic acid (13.69%), and bicyclo[3.1.1]heptane (7.23%), which have been previously described to possess antimicrobial activity. Hence, Chlorella sp. (UKM8) methanol extracts showed promising antibacterial activity. More comprehensive studies are required to purify these antimicrobial compounds and develop our understanding on their mechanism in UKM8-ME to unleash their specific potential.
Collapse
|
30
|
Wan Afifudeen CL, Teh KY, Cha TS. Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Mol Biol Rep 2022; 49:1475-1490. [PMID: 34751914 PMCID: PMC8576090 DOI: 10.1007/s11033-021-06903-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
Collapse
Affiliation(s)
- Che Lah Wan Afifudeen
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Kit Yinn Teh
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| |
Collapse
|
31
|
Scarsini M, Thiriet-Rupert S, Veidl B, Mondeguer F, Hu H, Marchand J, Schoefs B. The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. FRONTIERS IN PLANT SCIENCE 2022; 12:760516. [PMID: 35126407 PMCID: PMC8811913 DOI: 10.3389/fpls.2021.760516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Collapse
Affiliation(s)
- Matteo Scarsini
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Stanislas Thiriet-Rupert
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
- Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France
| | - Brigitte Veidl
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Florence Mondeguer
- Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China
| | - Justine Marchand
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
32
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
33
|
Composition, cultivation and potential applications of Chlorella zofingiensis – A comprehensive review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Tanguy G, Legat A, Gonçalves O, Marchal L, Schoefs B. Selection of Culture Conditions and Cell Morphology for Biocompatible Extraction of β-Carotene from Dunaliella salina. Mar Drugs 2021; 19:md19110648. [PMID: 34822519 PMCID: PMC8624086 DOI: 10.3390/md19110648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Biocompatible extraction emerges recently as a means to reduce costs of biotechnology processing of microalgae. In this frame, this study aimed at determining how specific culture conditions and the associated cell morphology impact the biocompatibility and the extraction yield of β-carotene from the green microalga Dunaliella salina using n-decane. The results highlight the relationship between the cell disruption yield and cell volume, the circularity and the relative abundance of naturally permeabilized cells. The disruption rate increased with both the cell volume and circularity. This was particularly obvious for volume and circularity exceeding 1500 µm3 and 0.7, respectively. The extraction of β-carotene was the most biocompatible with small (600 µm3) and circular cells (0.7) stressed in photobioreactor (30% of carotenoids recovery with 15% cell disruption). The naturally permeabilized cells were disrupted first; the remaining cells seems to follow a gradual permeabilization process: reversibility (up to 20 s) then irreversibility and cell disruption. This opens new carotenoid production schemes based on growing robust β-carotene enriched cells to ensure biocompatible extraction.
Collapse
Affiliation(s)
- Guillaume Tanguy
- Laboratoire GEPEA, Université de Nantes, Oniris, UMR 6144, 44600 Saint-Nazaire, France; (G.T.); (A.L.); (O.G.); (L.M.)
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications, Laboratoire Mer Molécules Santé, IUML–FR 3473 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - Aline Legat
- Laboratoire GEPEA, Université de Nantes, Oniris, UMR 6144, 44600 Saint-Nazaire, France; (G.T.); (A.L.); (O.G.); (L.M.)
| | - Olivier Gonçalves
- Laboratoire GEPEA, Université de Nantes, Oniris, UMR 6144, 44600 Saint-Nazaire, France; (G.T.); (A.L.); (O.G.); (L.M.)
| | - Luc Marchal
- Laboratoire GEPEA, Université de Nantes, Oniris, UMR 6144, 44600 Saint-Nazaire, France; (G.T.); (A.L.); (O.G.); (L.M.)
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications, Laboratoire Mer Molécules Santé, IUML–FR 3473 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
- Correspondence:
| |
Collapse
|
35
|
Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148636. [PMID: 34323759 DOI: 10.1016/j.scitotenv.2021.148636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial biomass has constituted a crucial third and fourth-generation biofuel material, with great potential to synthesize a wide range of metabolites, mainly carbohydrates. Lately, carbohydrate-based biofuels from cyanobacteria, such as bioethanol, biohydrogen, and biobutanol, have attracted attention as a sustainable alternative to petroleum-based products. Cyanobacteria can perform a simple process of saccharification, and extracted carbohydrates can be converted into biofuels with two alternatives; the first one consists of a fermentative process based on bacteria or yeasts, while the second alternative consists of an internal metabolic process of their own in intracellular carbohydrate content, either by the natural or genetic engineered process. This study reviewed carbohydrate-enriched cyanobacterial biomass as feedstock for biofuels. Detailed insights on technical strategies and limitations of cultivation, polysaccharide accumulation strategies for further fermentation process were provided. Advances and challenges in bioethanol, biohydrogen, and biobutanol production by cyanobacteria synthesis and an independent fermentative process are presented. Critical outlook on life-cycle assessment and techno-economical aspects for large-scale application of these technologies were discussed.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, Jiutepec, Morelos CP, 62550, Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico.
| | - Hector Rodríguez-Rangel
- Division de Estudios de Posgrado e Investigación, Tecnológico Nacional de México Campus Culiacán, Juan de Dios Batiz 310 pte. Col Guadalupe, CP, 80220 Culiacàn, Mexico
| | - A Balbuena Ortega
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Adriana Longoria
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Ruth Domínguez-Espíndola
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| |
Collapse
|
36
|
Scarsini M, Thurotte A, Veidl B, Amiard F, Niepceron F, Badawi M, Lagarde F, Schoefs B, Marchand J. Metabolite Quantification by Fourier Transform Infrared Spectroscopy in Diatoms: Proof of Concept on Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2021; 12:756421. [PMID: 34858459 PMCID: PMC8631545 DOI: 10.3389/fpls.2021.756421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Diatoms are feedstock for the production of sustainable biocommodities, including biofuel. The biochemical characterization of newly isolated or genetically modified strains is seminal to identify the strains that display interesting features for both research and industrial applications. Biochemical quantification of organic macromolecules cellular quotas are time-consuming methodologies which often require large amount of biological sample. Vibrational spectroscopy is an essential tool applied in several fields of research. A Fourier transform infrared (FTIR) microscopy-based imaging protocol was developed for the simultaneous cellular quota quantification of lipids, carbohydrates, and proteins of the diatom Phaeodactylum tricornutum. The low amount of sample required for the quantification allows the high throughput quantification on small volume cultures. A proof of concept was performed (1) on nitrogen-starved experimental cultures and (2) on three different P. tricornutum wild-type strains. The results are supported by the observation in situ of lipid droplets by confocal and brightfield microscopy. The results show that major differences exist in the regulation of lipid metabolism between ecotypes of P. tricornutum.
Collapse
Affiliation(s)
- Matteo Scarsini
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Adrien Thurotte
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Brigitte Veidl
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Frederic Amiard
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Frederick Niepceron
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Myriam Badawi
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Fabienne Lagarde
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| |
Collapse
|
37
|
Seasonal Nutritional Profile of Gelidium corneum (Rhodophyta, Gelidiaceae) from the Center of Portugal. Foods 2021; 10:foods10102394. [PMID: 34681442 PMCID: PMC8536063 DOI: 10.3390/foods10102394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Gelidium corneum is a well-known agarophyte, harvested worldwide for its high agar quality. However, the species also exhibits an interesting nutritional profile, but with seasonal variations. Therefore, to evaluate the nutritional value of G. corneum, ash, crude protein, total lipids, and carbohydrates were analyzed at different times of the year. The heavy metals mercury, arsenic, lead, cadmium, and tin, as well as iodine were also measured. Finally, the seasonal antioxidant capacity of G. corneum extracts was evaluated. Our results indicate that the biomass is rich in protein (up to 16.25 ± 0.33%) and carbohydrates (up to 39.5 ± 3.29%), and low in lipids (up to 2.75 ± 0.28%), and especially in the summer, the AI, TI indexes, n-6/n-3 and h/H ratios (0.93, 0.6, 0.88 and 1.08, respectively) are very interesting. None of the contaminants exceeded the legally established limits, and the iodine values were adequate for a healthy diet. Finally, the antioxidant capacity is fair, with the DPPH ≤ 10.89 ± 1.46%, and ABTS ≤ 13.90 ± 1.54% inhibition, FRAP ≤ 0.91 ± 0.22 AAE.g−1, and TPC ≤ 6.82 ± 0.26 GAE.g−1. The results show that G. corneum is an attractive resource, with potential use as food or as a food supplement.
Collapse
|
38
|
Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Regulatory role of death specific protein in response to nutrient limitation in a marine diatom. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Khan MJ, Ahirwar A, Schoefs B, Pugazhendhi A, Varjani S, Rajendran K, Bhatia SK, Saratale GD, Saratale RG, Vinayak V. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. ENVIRONMENTAL RESEARCH 2021; 201:111550. [PMID: 34224710 DOI: 10.1016/j.envres.2021.111550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/16/2023]
Abstract
Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Arivalagan Pugazhendhi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
41
|
Coulombier N, Jauffrais T, Lebouvier N. Antioxidant Compounds from Microalgae: A Review. Mar Drugs 2021; 19:549. [PMID: 34677448 PMCID: PMC8537667 DOI: 10.3390/md19100549] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 Bis Rue Berthelot, 98846 Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia, France;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de Nouvelle Calédonie, 98851 Nouméa, New Caledonia, France;
| |
Collapse
|
42
|
Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, Wang Z. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr 2021; 9:5279-5292. [PMID: 34532034 PMCID: PMC8441504 DOI: 10.1002/fsn3.2471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/30/2021] [Accepted: 06/12/2021] [Indexed: 02/05/2023] Open
Abstract
Microalgae is one of the most important components in the aquatic ecosystem, and they are increasingly used in food and medicine production for human consumption due to their rapid growth cycle and survival ability in the harsh environment. Now, the exploration of microalgae has been gradually deepening, mainly focused on the field of nutrition, medicine, and cosmetics. A great deal of studies has shown that microalgae have a variety of functions in regulating the body health and preventing disease, such as nitrogen fixation, antitumor, antivirus, antioxidation, anti-inflammatory, and antithrombotic. Furthermore, microalgae can synthesize various high-valued bioactive substances, such as proteins, lipids, polysaccharides, and pigments. In this paper, we have briefly reviewed the research progress of main bioactive components in microalgae, proteins, lipids, polysaccharides, pigments, and other nutrients included, as well as their present application situation. This paper can provide the guidance for research and development of industrial production of microalgae.
Collapse
Affiliation(s)
- Jinhong Wu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinzhe Gu
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Danlu Yang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shannan Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Scientific Observation and Research Field Station of Pearl River Estuary EcosystemGuangzhouChina
- Southern Marine Science and Engineering
Guangdong LaboratoryGuangzhouChina
| | - Shaoyun Wang
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Xu Chen
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Zhengwu Wang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
43
|
Kaha M, Iwamoto K, Yahya NA, Suhaimi N, Sugiura N, Hara H, Othman N, Zakaria Z, Suzuki K. Enhancement of astaxanthin accumulation using black light in Coelastrum and Monoraphidium isolated from Malaysia. Sci Rep 2021; 11:11708. [PMID: 34083633 PMCID: PMC8175563 DOI: 10.1038/s41598-021-91128-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day-1) compared to that of Coelastrum sp. (0.22 day-1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture-1) compared to that in control condition (0.185 g mL-1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture-1) compared to that in control condition (0.363 g mL culture-1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
Collapse
Affiliation(s)
- Marshila Kaha
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Nurul Ashyikin Yahya
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Noraiza Suhaimi
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norio Sugiura
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Hirofumi Hara
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nor'Azizi Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Zuriati Zakaria
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Kengo Suzuki
- Euglena Co., Ltd, Tokyo, 108-0014, Japan.,Microalgae Production Control Technology Laboratory, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
44
|
Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development. Mar Drugs 2021; 19:md19060319. [PMID: 34070907 PMCID: PMC8229015 DOI: 10.3390/md19060319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Microalgae and cyanobacteria represent a diverse renewable resource with significant potential for the industrial production of goods and services with high added value. However, scientific, technical/technological, legislative and market gaps and barriers still limit the growth of these markets in Europe and the number of exploited species. We conducted an in-depth survey of European microalgae researchers, experts and stakeholders to identify these limitations and to discuss strategies, recommendations and guidelines to overcome these barriers. Here, we present the findings of this study which detail the main promising markets for microalgae and cyanobacteria in the coming decades, an updated SWOT analysis of the sector, the current opportunities, limitations, risks and threats for microalgae research and market sectors in Europe, a traffic light analysis for a quick assessment of market opportunities for each microalgae sector and detailed recommendations/guidelines for overcoming the scientific, technical/technological, legislative and market gaps and barriers.
Collapse
|
45
|
Chaïb S, Pistevos JC, Bertrand C, Bonnard I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-κB and Nrf2 Signaling Pathways. Mol Neurobiol 2021; 58:3515-3528. [PMID: 33745115 PMCID: PMC8257518 DOI: 10.1007/s12035-021-02353-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Activation of microglia results in the increased production and release of a series of inflammatory and neurotoxic mediators, which play essential roles in structural and functional neuronal damage and in the development and progression of a number of neurodegenerative diseases. The microalga Euglena gracilis (Euglena), rich in vitamins, minerals, and other nutrients, has gained increasing attention due to its antimicrobial, anti-viral, antitumor, and anti-inflammatory activities. In particular, anti-inflammatory properties of Euglena could exert neuroprotective functions in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying the anti-inflammatory effect of Euglena are not fully understood. In this study, we investigated whether Euglena could attenuate microglia activation and we also studied the mechanism of its anti-inflammatory activity. Our results showed that non-cytotoxic concentrations of a Euglena acetone extract (EAE) downregulated the mRNA expression levels and release of pro-inflammatory mediators, including NO, IL-1β, and TNF-α in LPS-stimulated microglia. EAE also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit and increased the mRNA expression of nuclear factor erythroid 2–related factor (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, the release of pro-inflammatory mediators and NF-κB activation were also blocked by EAE in the presence of ML385, a specific Nrf2 inhibitor. Together, these results show that EAE overcomes LPS-induced microglia pro-inflammatory responses through downregulation of NF-κB and activation of Nrf2 signaling pathways, although the two pathways seem to get involved in an independent manner.
Collapse
|
47
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 DOI: 10.21203/rs.3.rs-40890/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|
48
|
Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, Nagao N, Maulidiani M, Banerjee S, Sulaiman F, Ismail IS. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis galbana. Mar Drugs 2021; 19:md19030139. [PMID: 33801258 PMCID: PMC7998644 DOI: 10.3390/md19030139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS–DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana’s chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Awanis Azizan
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Khozirah Shaari
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Faridah Abas
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Norio Nagao
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Sanjoy Banerjee
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Fadzil Sulaiman
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Intan Safinar Ismail
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-7492
| |
Collapse
|
49
|
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients 2021; 13:nu13020563. [PMID: 33572056 PMCID: PMC7916042 DOI: 10.3390/nu13020563] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Marine and freshwater algae and their products are in growing demand worldwide because of their nutritional and functional properties. Microalgae (unicellular algae) will constitute one of the major foods of the future for nutritional and environmental reasons. They are sources of high-quality protein and bioactive molecules with potential application in the modern epidemics of obesity and diabetes. They may also contribute decisively to sustainability through carbon dioxide fixation and minimization of agricultural land use. This paper reviews current knowledge of the effects of consuming edible microalgae on the metabolic alterations known as metabolic syndrome (MS). These microalgae include Chlorella, Spirulina (Arthrospira) and Tetraselmis as well as Isochrysis and Nannochloropsis as candidates for human consumption. Chlorella biomass has shown antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic effects in humans and other mammals. The components of microalgae reviewed suggest that they may be effective against MS at two levels: in the early stages, to work against the development of insulin resistance (IR), and later, when pancreatic -cell function is already compromised. The active components at both stages are antioxidant scavengers and anti-inflammatory lipid mediators such as carotenoids and -3 PUFAs (eicosapentaenoic acid/docosahexaenoic acid; EPA/DHA), prebiotic polysaccharides, phenolics, antihypertensive peptides, several pigments such as phycobilins and phycocyanin, and some vitamins, such as folate. As a source of high-quality protein, including an array of bioactive molecules with potential activity against the modern epidemics of obesity and diabetes, microalgae are proposed as excellent foods for the future. Moreover, their incorporation into the human diet would decisively contribute to a more sustainable world because of their roles in carbon dioxide fixation and reducing the use of land for agricultural purposes.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
- Correspondence: ; Tel.: +34-934-021-556
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
50
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 PMCID: PMC7979453 DOI: 10.1007/s10811-021-02372-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/07/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|