1
|
Shafana Farveen M, Narayanan R. Omic-driven strategies to unveil microbiome potential for biodegradation of plastics: a review. Arch Microbiol 2024; 206:441. [PMID: 39432094 DOI: 10.1007/s00203-024-04165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Plastic waste accumulation has lately been identified as the leading and pervasive environmental concern, harming all living beings, natural habitats, and the global market. Given this issue, developing ecologically friendly solutions, such as biodegradation instead of standard disposal, is critical. To effectively address and develop better strategies, it is critical to understand the inter-relationship between microorganisms and plastic, the role of genes and enzymes involved in this process. However, the complex nature of microbial communities and the diverse mechanisms involved in plastic biodegradation have hindered the development of efficient plastic waste degradation strategies. Omics-driven approaches, encompassing genomics, transcriptomics and proteomics have revolutionized our understanding of microbial ecology and biotechnology. Therefore, this review explores the application of omics technologies in plastic degradation studies and discusses the key findings, challenges, and future prospects of omics-based approaches in identifying novel plastic-degrading microorganisms, enzymes, and metabolic pathways. The integration of omics technologies with advanced molecular technologies such as the recombinant DNA technology and synthetic biology would guide in the optimization of microbial consortia and engineering the microbial systems for enhanced plastic biodegradation under various environmental conditions.
Collapse
Affiliation(s)
- Mohamed Shafana Farveen
- Department of Genetic Engineering, College of Engineering and Technology (CET), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603 203, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering and Technology (CET), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Mohamed SF, Narayanan R. Enterobacter cloacae-mediated polymer biodegradation: in-silico analysis predicts broad spectrum degradation potential by Alkane monooxygenase. Biodegradation 2024; 35:969-991. [PMID: 39001975 DOI: 10.1007/s10532-024-10091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Plastic pollution poses a significant environmental challenge. In this study, the strain Enterobacter cloacae O5-E, a bacterium displaying polyethylene-degrading capabilities was isolated. Over a span of 30 days, analytical techniques including x-ray diffractometry, scanning electron microscopy, optical profilometry, hardness testing and mass spectrometric analysis were employed to examine alterations in the polymer. Results revealed an 11.48% reduction in crystallinity, a 50% decrease in hardness, and a substantial 25-fold increase in surface roughness resulting from the pits and cracks introduced in the polymer by the isolate. Additionally, the presence of degradational by-products revealed via gas chromatography ascertains the steady progression of degradation. Further, recognizing the pivotal role of alkane monooxygenase in plastic degradation, the study expanded to detect this enzyme in the isolate molecularly. Molecular docking studies were conducted to assess the enzyme's affinity with various polymers, demonstrating notable binding capability with most polymers, especially with polyurethane (- 5.47 kcal/mol). These findings highlight the biodegradation potential of Enterobacter cloacae O5-E and the crucial involvement of alkane monooxygenase in the initial steps of the degradation process, offering a promising avenue to address the global plastic pollution crisis.
Collapse
Affiliation(s)
- Shafana Farveen Mohamed
- Department of Genetic Engineering, School of Bioengineering and Faculty of Engineering and Technology, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, School of Bioengineering and Faculty of Engineering and Technology, College of Engineering & Technology (CET), SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Han Z, Nina MRH, Zhang X, Huang H, Fan D, Bai Y. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134532. [PMID: 38749251 DOI: 10.1016/j.jhazmat.2024.134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Polyethylene terephthalate (PET) is widely used for various industrial applications. However, owing to its extremely slow breakdown rate, PET accumulates as plastic trash, which negatively affects the environment and human health. Here, we report two novel PET hydrolases: PpPETase from Pseudomonas paralcaligenes MRCP1333, identified in human feces, and ScPETase from Streptomyces calvus DSM 41452. These two enzymes can decompose various PET materials, including semicrystalline PET powders (Cry-PET) and low-crystallinity PET films (gf-PET). By structure-guided engineering, two variants, PpPETaseY239R/F244G/Y250G and ScPETaseA212C/T249C/N195H/N243K were obtained that decompose Cry-PET 3.1- and 1.9-fold faster than their wild-type enzymes, respectively. The co-expression of ScPETase and mono-(2-hydroxyethyl) terephthalate hydrolase from Ideonella sakaiensis (IsMHETase) resulted in 1.4-fold more degradation than the single enzyme system. This engineered strain degraded Cry-PET and gf-PET by more than 40% and 6%, respectively, after 30 d. The concentrations of terephthalic acid (TPA) in the Cry-PET and gf-PET degradation products were 37.7% and 25.6%, respectively. The discovery of these two novel PET hydrolases provides opportunities to create more powerful biocatalysts for PET biodegradation.
Collapse
Affiliation(s)
- Zhengyang Han
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Hanyao Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Amanna R, Rakshit SK. Review of nomenclature and methods of analysis of polyethylene terephthalic acid hydrolyzing enzymes activity. Biodegradation 2024; 35:341-360. [PMID: 37688750 DOI: 10.1007/s10532-023-10048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Enzymatic degradation of polyethylene terephthalic acid (PET) has been gaining increasing importance. This has resulted in a significant increase in the search for newer enzymes and the development of more efficient enzyme-based systems. Due to the lack of a standard screening process, screening new enzymes has relied on other assays to determine the presence of esterase activity. This, in turn, has led to various nomenclatures and methods used to describe them and measure their activity. Since all PET-hydrolyzing enzymes are α/β hydrolases, they catalyze a serine nucleophilic attack and cleave an ester bond. They are lipases, esterases, cutinases and hydrolases. This has been used interchangeably, leading to difficulties while comparing results and evaluating progress. This review discusses the varied enzyme nomenclature being adapted, the different assays and analysis methods reported, and the strategies used to increase PET-hydrolyzing enzyme efficiency. A section on the various ways to quantify PET hydrolysis is also covered.
Collapse
Affiliation(s)
- Ruth Amanna
- Department of Biotechnology, Lakehead University, Thunder Bay, ON, Canada
- Biorefining Research Institute (BRI), Lakehead University, Thunder Bay, ON, Canada
| | - Sudip K Rakshit
- Department of Biotechnology, Lakehead University, Thunder Bay, ON, Canada.
- Biorefining Research Institute (BRI), Lakehead University, Thunder Bay, ON, Canada.
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON, Canada.
| |
Collapse
|
5
|
Pawano O, Jenpuntarat N, Streit WR, Pérez-García P, Pongtharangkul T, Phinyocheep P, Thayanukul P, Euanorasetr J, Intra B. Exploring untapped bacterial communities and potential polypropylene-degrading enzymes from mangrove sediment through metagenomics analysis. Front Microbiol 2024; 15:1347119. [PMID: 38638899 PMCID: PMC11024650 DOI: 10.3389/fmicb.2024.1347119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The versatility of plastic has resulted in huge amounts being consumed annually. Mismanagement of post-consumption plastic material has led to plastic waste pollution. Biodegradation of plastic by microorganisms has emerged as a potential solution to this problem. Therefore, this study aimed to investigate the microbial communities involved in the biodegradation of polypropylene (PP). Mangrove soil was enriched with virgin PP sheets or chemically pretreated PP comparing between 2 and 4 months enrichment to promote the growth of bacteria involved in PP biodegradation. The diversity of the resulting microbial communities was accessed through 16S metagenomic sequencing. The results indicated that Xanthomonadaceae, unclassified Gaiellales, and Nocardioidaceae were promoted during the enrichment. Additionally, shotgun metagenomics was used to investigate enzymes involved in plastic biodegradation. The results revealed the presence of various putative plastic-degrading enzymes in the mangrove soil, including alcohol dehydrogenase, aldehyde dehydrogenase, and alkane hydroxylase. The degradation of PP plastic was determined using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Water Contact Angle measurements. The FTIR spectra showed a reduced peak intensity of enriched and pretreated PP compared to the control. SEM images revealed the presence of bacterial biofilms as well as cracks on the PP surface. Corresponding to the FTIR and SEM analysis, the water contact angle measurement indicated a decrease in the hydrophobicity of PP and pretreated PP surface during the enrichment.
Collapse
Affiliation(s)
- Onnipa Pawano
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| | - Nuttarin Jenpuntarat
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Pablo Pérez-García
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Molecular Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | | | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Science, Center of Excellence for Vectors and Vector-Borne Diseases, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Jirayut Euanorasetr
- Laboratory of Biotechnological Research for Energy and Bioactive Compound (BREBC), Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| |
Collapse
|
6
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
7
|
Ou D, Ni Y, Li W, He W, Wang L, Huang H, Pan Z. Psychrobacter species enrichment as potential microplastic degrader and the putative biodegradation mechanism in Shenzhen Bay sediment, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132971. [PMID: 37956562 DOI: 10.1016/j.jhazmat.2023.132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental concern due to its ubiquity and longevity. Biodegradation of MPs has garnered significant attention in combatting global MP contamination. This study focused on MPs within sediments near the sewage outlet of Shenzhen Bay. The objective was to elucidate the microbial communities in sediments with varying MPs, particularly those with high MP loads, and to identify microorganisms associated with MP degradation. The results revealed varying MP abundance, ranging from 211 to 4140 items kg-1 dry weight (d. w.), with the highest concentration observed near the outfall. Metagenomic analysis confirmed the enrichment of Psychrobacter species in sediments with high MP content. Psychrobacter accounted for ∼16.71% of the total bacterial community and 41.71% of hydrocarbon degrading bacteria at the S3 site, exhibiting a higher abundance than at other sampling sites. Psychrobacter contributed significantly to bacterial function at S3, as evidenced by the Kyoto Encyclopedia of Genes and Genomes pathway and enzyme analysis. Notably, 28 enzymes involved in MP biodegradation were identified, predominantly comprising oxidoreductases, hydrolases, transferases, ligases, lyases, and isomerases. We propose a putative mechanism for MP biodegradation, involving the breakdown of long-chain plastic polymers and subsequent oxidation of short-chain oligomers, ultimately leading to thorough mineralization.
Collapse
Affiliation(s)
- Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, PR China
| | - Yue Ni
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Institute for Advanced Studies, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603 Kuala Lumpur, Malaysia
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.
| |
Collapse
|
8
|
Herrera DAG, Mojicevic M, Pantelic B, Joshi A, Collins C, Batista M, Torres C, Freitas F, Murray P, Nikodinovic-Runic J, Brennan Fournet M. Exploring Microorganisms from Plastic-Polluted Sites: Unveiling Plastic Degradation and PHA Production Potential. Microorganisms 2023; 11:2914. [PMID: 38138058 PMCID: PMC10745504 DOI: 10.3390/microorganisms11122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The exposure of microorganisms to conventional plastics is a relatively recent occurrence, affording limited time for evolutionary adaptation. As part of the EU-funded project BioICEP, this study delves into the plastic degradation potential of microorganisms isolated from sites with prolonged plastic pollution, such as plastic-polluted forests, biopolymer-contaminated soil, oil-contaminated soil, municipal landfill, but also a distinctive soil sample with plastic pieces buried three decades ago. Additionally, samples from Arthropoda species were investigated. In total, 150 strains were isolated and screened for the ability to use plastic-related substrates (Impranil dispersions, polyethylene terephthalate, terephthalic acid, and bis(2-hydroxyethyl) terephthalate). Twenty isolates selected based on their ability to grow on various substrates were identified as Streptomyces, Bacillus, Enterococcus, and Pseudomonas spp. Morphological features were recorded, and the 16S rRNA sequence was employed to construct a phylogenetic tree. Subsequent assessments unveiled that 5 out of the 20 strains displayed the capability to produce polyhydroxyalkanoates, utilizing pre-treated post-consumer PET samples. With Priestia sp. DG69 and Neobacillus sp. DG40 emerging as the most successful producers (4.14% and 3.34% of PHA, respectively), these strains are poised for further utilization in upcycling purposes, laying the foundation for the development of sustainable strategies for plastic waste management.
Collapse
Affiliation(s)
- Diana A. Garza Herrera
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| | - Marija Mojicevic
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| | - Brana Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (B.P.); (J.N.-R.)
| | - Akanksha Joshi
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Catherine Collins
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Maria Batista
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Cristiana Torres
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Filomena Freitas
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal; (M.B.); (C.T.); (F.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland; (A.J.); (C.C.); (P.M.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (B.P.); (J.N.-R.)
| | - Margaret Brennan Fournet
- PRISM Research Institute, Technological University of the Shannon Midlands Midwest, N37HD68 Athlone, Ireland; (D.A.G.H.); (M.B.F.)
| |
Collapse
|
9
|
Jin J, Arciszewski J, Auclair K, Jia Z. Enzymatic polyethylene biorecycling: Confronting challenges and shaping the future. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132449. [PMID: 37690195 DOI: 10.1016/j.jhazmat.2023.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Polyethylene (PE) is a widely used plastic known for its resistance to biodegradation, posing a significant environmental challenge. Recent advances have shed light on microorganisms and insects capable of breaking down PE and identified potential PE-degrading enzymes (PEases), hinting at the possibility of PE biorecycling. Research on enzymatic PE degradation is still in its early stages, especially compared to the progress made with polyethylene terephthalate (PET). While PET hydrolases have been extensively studied and engineered for improved performance, even the products of PEases remain mostly undefined. This Perspective analyzes the current state of enzymatic PE degradation research, highlighting obstacles in the search for bona fide PEases and suggesting areas for future exploration. A critical challenge impeding progress in this field stems from the inert nature of the C-C and C-H bonds of PE. Furthermore, breaking down PE into small molecules using only one monofunctional enzyme is theoretically impossible. Overcoming these obstacles requires identifying enzymatic pathways, which can be facilitated using emerging technologies like omics, structure-based design, and computer-assisted engineering of enzymes. Understanding the mechanisms underlying PE enzymatic biodegradation is crucial for research progress and for identifying potential solutions to the global plastic pollution crisis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada.
| |
Collapse
|
10
|
Li R, Nie J, Qiu D, Li S, Sun Y, Wang C. Toxic effect of chronic exposure to polyethylene nano/microplastics on oxidative stress, neurotoxicity and gut microbiota of adult zebrafish (Danio rerio). CHEMOSPHERE 2023; 339:139774. [PMID: 37567271 DOI: 10.1016/j.chemosphere.2023.139774] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The rapid development of aquaculture industry has provided a large amount of high-quality animal protein, while the food safety caused by microplastics and nanoplastics (MP/NPs) has become a major concern. In addition, recent evidence has shown the potential toxic effect of PE-MP/NPs, highlighting the need for further research into their environmental and health impacts. Chronic exposure of polyethylene microplastics (PE-MPs) and nanoplastics (PE-NPs) on adult zebrafish were conducted in the present study for 21 d. Organ-dependent oxidative damage induced by MP/NPs was observed. Insignificant differences in neurotoxicity and dysbiosis of gut microbiota were found between MPs and NPs. Changes in glutathione S-transferase (GST), glutathione (GSH), catalase (CAT), lipid peroxidation (LPO), and superoxide dismutase (SOD) showed that MP/NPs induced oxidative damage in gill and intestinal cells of zebrafish. The inhibited AChE activity suggested the potential neurotoxicity of microplastics and nanoplastics (MP/NPs). In addition, chronic exposure increased the alpha-diversity of intestinal microbiota. At the phylum level, the average relative abundance of Proteobacteria increased from 29.73% (control group) to 66.10% (microplastics), 54.84% (nanoplastics) and 60.03% (combined exposure), respectively. Tenericutes decreased from 55.43% (control group) to 20.02% (microplastics), 22.44% (nanoplastics) and 31.77% (combined exposure), respectively. Overall, this study provides new insights and objective evidence for the toxicity assessment of PE-MPs.
Collapse
Affiliation(s)
- Ruixuan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingjing Nie
- Yunnan Ecological Environmental Emergency Investigation and Complaint Center, Kunming, 650034, China
| | - Denggao Qiu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Yingxue Sun
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
11
|
Ascandari A, Aminu S, Safdi NEH, El Allali A, Daoud R. A bibliometric analysis of the global impact of metaproteomics research. Front Microbiol 2023; 14:1217727. [PMID: 37476667 PMCID: PMC10354264 DOI: 10.3389/fmicb.2023.1217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background Metaproteomics is a subfield in meta-omics that is used to characterize the proteome of a microbial community. Despite its importance and the plethora of publications in different research area, scientists struggle to fully comprehend its functional impact on the study of microbiomes. In this study, bibliometric analyses are used to evaluate the current state of metaproteomic research globally as well as evaluate the specific contribution of Africa to this burgeoning research area. In this study, we use bibliometric analyses to evaluate the current state of metaproteomic research globally, identify research frontiers and hotspots, and further predict future trends in metaproteomics. The specific contribution of Africa to this research area was evaluated. Methods Relevant documents from 2004 to 2022 were extracted from the Scopus database. The documents were subjected to bibliometric analyses and visualization using VOS viewer and Biblioshiny package in R. Factors such as the trends in publication, country and institutional cooperation networks, leading scientific journals, author's productivity, and keywords analyses were conducted. The African publications were ranked using Field-Weighted Citation Impact (FWCI) scores. Results A total of 1,138 documents were included and the number of publications increased drastically from 2004 to 2022 with more publications (170) reported in 2021. In terms of publishers, Frontiers in Microbiology had the highest number of total publications (62). The United States of America (USA), Germany, China, and Canada, together with other European countries were the most productive. Institution-wise, the Helmholtz Zentrum für Umweltforschung, Germany had more publications while Max Plank Institute had the highest total collaborative link strength. Jehmlich N. was the most productive author whereas Hettich RL had the highest h-index of 63. Regarding Africa, only 2.2% of the overall publications were from the continent with more publication outputs from South Africa. More than half of the publications from the continent had an FWCI score ≥ 1. Conclusion The scientific outputs of metaproteomics are rapidly evolving with developed countries leading the way. Although Africa showed prospects for future progress, this could only be accelerated by providing funding, increased collaborations, and mentorship programs.
Collapse
Affiliation(s)
- AbdulAziz Ascandari
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Suleiman Aminu
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Nour El Houda Safdi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
12
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
13
|
Jayasekara SK, Joni HD, Jayantha B, Dissanayake L, Mandrell C, Sinharage MM, Molitor R, Jayasekara T, Sivakumar P, Jayakody LN. Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput Struct Biotechnol J 2023; 21:3513-3521. [PMID: 37484494 PMCID: PMC10362282 DOI: 10.1016/j.csbj.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Polyethylene terephthalate (PET) is the largest produced polyester globally, and less than 30% of all the PET produced globally (∼6 billion pounds annually) is currently recycled into lower-quality products. The major drawbacks in current recycling methods (mechanical and chemical), have inspired the exploration of potentially efficient and sustainable PET depolymerization using biological approaches. Researchers have discovered efficient PET hydrolyzing enzymes in the plastisphere and have demonstrated the selective degradation of PET to original monomers thus enabling biological recycling or upcycling. However, several significant hurdles such as the less efficiency of the hydrolytic reaction, low thermostability of the enzymes, and the inability of the enzyme to depolymerize crystalline PET must be addressed in order to establish techno-economically feasible commercial-scale biological PET recycling or upcycling processes. Researchers leverage a synthetic biology-based design; build, test, and learn (DBTL) methodology to develop commercially applicable efficient PET hydrolyzing enzymes through 1) high-throughput metagenomic and proteomic approaches to discover new PET hydrolyzing enzymes with superior properties: and, 2) enzyme engineering approaches to modify and optimize PET hydrolyzing properties. Recently, in-silico platforms including molecular mechanics and machine learning concepts are emerging as innovative tools for the development of more efficient and effective PET recycling through the exploration of novel mutations in PET hydrolyzing enzymes. In-silico-guided PET hydrolyzing enzyme engineering with DBTL cycles enables the rapid development of efficient variants of enzymes over tedious conventional enzyme engineering methods such as random or directed evolution. This review highlights the potential of in-silico-guided PET degrading enzyme engineering to create more efficient variants, including Ideonella sakaiensis PETase (IsPETase) and leaf-branch compost cutinases (LCC). Furthermore, future research prospects are discussed to enable a sustainable circular economy through the bioconversion of PET to original or high-value platform chemicals.
Collapse
Affiliation(s)
- Sandhya K. Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Hriday Dhar Joni
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Bhagya Jayantha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Christopher Mandrell
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Manuka M.S. Sinharage
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Ryan Molitor
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Thushari Jayasekara
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Poopalasingam Sivakumar
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N. Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA
| |
Collapse
|
14
|
Park JW, Kim M, Kim SY, Bae J, Kim TJ. Biodegradation of polystyrene by intestinal symbiotic bacteria isolated from mealworms, the larvae of Tenebrio molitor. Heliyon 2023; 9:e17352. [PMID: 37426801 PMCID: PMC10329137 DOI: 10.1016/j.heliyon.2023.e17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives Polystyrene is a plastic that leads to environmental pollution. In particular, expanded polystyrene is very light and takes up much space, causing additional environmental problems. The aim of this study was to isolate new symbiotic bacteria which degraded polystyrene from mealworms. Methods The population of polystyrene degrading bacteria was increased by enrichment culture of intestinal bacteria from mealworms with polystyrene as a sole carbon source. The degradation activity of isolated bacteria was evaluated by morphological change of micro-polystyrene particles and the surface change of polystyrene films. Results Eight isolated species (Acinetobacter septicus, Agrobacterium tumefaciens, Klebsiella grimontii, Pseudomonas multiresinivorans, Pseudomonas nitroreducens, Pseudomonas plecoglossicida, Serratia marcescens, and Yokenella regensburgei) were identified that degrade polystyrene. Conclusion Bacterial identification shows that a broad spectrum of bacteria decomposing polystyrene coexists in the intestinal tract of mealworms.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Minjun Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Seo-Young Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Jihye Bae
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
15
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
16
|
Martínez-Campos S, González-Pleiter M, Rico A, Schell T, Vighi M, Fernández-Piñas F, Rosal R, Leganés F. Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130271. [PMID: 36351347 DOI: 10.1016/j.jhazmat.2022.130271] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. β-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sergio Martínez-Campos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, Universidad de Valencia, c/ Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Zhang C, Mu Y, Li T, Jin FJ, Jin CZ, Oh HM, Lee HG, Jin L. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere". Front Microbiol 2023; 14:1181967. [PMID: 37138608 PMCID: PMC10150012 DOI: 10.3389/fmicb.2023.1181967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.
Collapse
Affiliation(s)
- Chengxiao Zhang
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yulin Mu
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Hyung-Gwan Lee,
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Long Jin,
| |
Collapse
|
18
|
Wang Q, Huang R, Li R. Impact of the COVID-19 pandemic on research on marine plastic pollution - A bibliometric-based assessment. MARINE POLICY 2022; 146:105285. [PMID: 36120086 PMCID: PMC9464599 DOI: 10.1016/j.marpol.2022.105285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 05/05/2023]
Abstract
Fighting the COVID-19 pandemic has led to a dramatic increase in plastic waste, which has had a huge impact on the environment, including the marine environment. This work aims to evaluate the pattern of national research cooperation, research hotspots, and research evolution before and during the epidemic by systematically reviewing the publications on marine plastic pollution during 2015-2019 (before the pandemic) 2020-2022 (during the pandemic) using the systematic literature review and latent semantic analysis. The results show (i) Compared to pre-pandemic, publications on marine pollution during the COVID-19 pandemic declined briefly and then increased sharply. (ii) Compared with before the pandemic, the national cooperation model has changed during the pandemic, and four major research centers have been formed: Central European countries centered on Italy; Nordic countries centered on United Kingdom; South Korea, India and other developing countries in Asia and Africa and a Pacific Rim country centered on United States and China. (iii) The knowledge map of keyword clustering does not change significantly before and during the COVID-19: ecosystem, spatial distribution, environmental governance and biodegradation. However, there are differences in the sub-category research of the four types of keywords. (iv) The impact of marine plastic on organisms and the governance of marine plastic pollution have become a branch of knowledge that have evolved rapidly during the pandemic. The governance of marine plastic pollution and microplastics are expected to become an important research direction.
Collapse
Affiliation(s)
- Qiang Wang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, Xinjiang, 830046, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Rui Huang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Rongrong Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, Xinjiang, 830046, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| |
Collapse
|
19
|
Jiménez DJ, Öztürk B, Wei R, Bugg TD, Amaya Gomez CV, Salcedo Galan F, Castro-Mayorga JL, Saldarriaga JF, Tarazona NA. Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Appl Environ Microbiol 2022; 88:e0072122. [PMID: 35762791 PMCID: PMC9317848 DOI: 10.1128/aem.00721-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the Anthropocene, plastic pollution is a worldwide concern that must be tackled from different viewpoints, bringing together different areas of science. Microbial transformation of polymers is a broad-spectrum research topic that has become a keystone in the circular economy of fossil-based and biobased plastics. To have an open discussion about these themes, experts in the synthesis of polymers and biodegradation of lignocellulose and plastics convened within the framework of The Transnational Network for Research and Innovation in Microbial Biodiversity, Enzymes Technology and Polymer Science (MENZYPOL-NET), which was recently created by early-stage scientists from Colombia and Germany. In this context, the international workshop "Microbial Synthesis and Degradation of Polymers: Toward a Sustainable Bioeconomy" was held on 27 September 2021 via Zoom. The workshop was divided into two sections, and questions were raised for discussion with panelists and expert guests. Several key points and relevant perspectives were delivered, mainly related to (i) the microbial evolution driven by plastic pollution; (ii) the relevance of and interplay between polymer structure/composition, enzymatic mechanisms, and assessment methods in plastic biodegradation; (iii) the recycling and valorization of plastic waste; (iv) engineered plastic-degrading enzymes; (v) the impact of (micro)plastics on environmental microbiomes; (vi) the isolation of plastic-degrading (PD) microbes and design of PD microbial consortia; and (vii) the synthesis and applications of biobased plastics. Finally, research priorities from these key points were identified within the microbial, enzyme, and polymer sciences.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Timothy D. Bugg
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | - Felipe Salcedo Galan
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | | |
Collapse
|
20
|
García JL. Enzymatic recycling of polyethylene terephthalate through the lens of proprietary processes. Microb Biotechnol 2022; 15:2699-2704. [PMID: 35857573 PMCID: PMC9618317 DOI: 10.1111/1751-7915.14114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
21
|
Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14084425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plastic waste (PW) is one of the most rapid-growing waste streams in municipal solid waste all over the world. India has become a global player in the plastic value chain. Despite low consumption, domestic generation and imports create a significant burden on the overall waste management system, which requires in-depth understanding of the scenario and pathways that can mitigate the crisis. Although Indian researchers have widely researched technology-related issues in academic papers, a substantial knowledge gap exists in understanding the problem’s depth and possible solutions. This review article focuses on current plastic production, consumption, and waste generation in India. This review article mainly analyzes data and information regarding Indian PW management and highlights some critical issues such as reverse supply chain, effective PW management, source-specific recovery, and PW rules in India. Comprehensively, this review will help to identify implementable strategies for policymakers and research opportunities for future researchers in holistic PW management and recycling in India, focusing on the circular economy and sustainable development goals.
Collapse
|
22
|
Tiwari N, Bansal M, Santhiya D, Sharma JG. Insights into microbial diversity on plastisphere by multi-omics. Arch Microbiol 2022; 204:216. [PMID: 35316402 DOI: 10.1007/s00203-022-02806-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Plastic pollution is a major concern in marine environment as it takes many years to degrade and is one of the greatest threats to marine life. Plastic surface, referred to as plastisphere, provides habitat for growth and proliferation of various microorganisms. The discovery of these microbes is necessary to identify significant genes, enzymes and bioactive compounds that could help in bioremediation and other commercial applications. Conventional culture techniques have been successful in identifying few microbes from these habitats, leaving majority of them yet to be explored. As such, to recognize the vivid genetic diversity of microbes residing in plastisphere, their structure and corresponding ecological roles within the ecosystem, an emerging technique, called metagenomics has been explored. The technique is expected to provide hitherto unknown information on microbes from the plastisphere. Metagenomics along with next generation sequencing provides comprehensive knowledge on microbes residing in plastisphere that identifies novel microbes for plastic bioremediation, bioactive compounds and other potential benefits. The following review summarizes the efficiency of metagenomics and next generation sequencing technology over conventionally used methods for culturing microbes. It attempts to illustrate the workflow mechanism of metagenomics to elucidate diverse microbial profiles. Further, importance of integrated multi-omics techniques has been highlighted in discovering microbial ecology residing on plastisphere for wider applications.
Collapse
Affiliation(s)
- Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
23
|
Skariyachan S, Taskeen N, Kishore AP, Krishna BV. Recent advances in plastic degradation - From microbial consortia-based methods to data sciences and computational biology driven approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128086. [PMID: 34933258 DOI: 10.1016/j.jhazmat.2021.128086] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The conventional methods of plastic waste management such as mechanical and chemical recycling, landfill complemented by incineration and pyrosis have limited scope. Thus, microbiological-based approaches by the application of microbial consortia or cocultures are appropriate, cost-effective, and eco-friendly to manage plastic wastes. Screening of novel plastic degrading microorganisms, the formulation of microbial consortia, and utilisation of their enzymes probably play a role in plastic waste management. The by-products of microbial degradation of plastic waste can be used as bio-energy sources, that aids in the development of cost-effective bio-digesters. The recent advancements in computational biology and bioinformatics play a vital role in understanding the molecular basis of enzymatic degradation of plastic polymers by microorganisms. Understanding the three-dimensional structures of plastic degrading enzymes and their metabolic pathways play a vital role in studying the microbial degradation of plastics. The present review highlights the scope of various microorganisms and their enzymes in plastic degradation. The review emphasizes the applications of co-cultures or microbial consortia-based approaches for the enhanced degradation of plastic polymers and the production of value-added end products that can be used as the prototypes of bioenergy sources. The review also provides a comprehensive outlook on the applications of data sciences, computational biology, and bioinformatics resources, and web-based tools towards the study of microbial degradation of plastic polymers.
Collapse
Affiliation(s)
| | - Neha Taskeen
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, Pin 560078, India
| | - Alice Preethi Kishore
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, Pin 560078, India
| | - Bhavya Venkata Krishna
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, Pin 560078, India
| |
Collapse
|
24
|
Bhar A, Biswas RK, Choudhury AK. The influence of COVID-19 pandemic on biomedical waste management, the impact beyond infection. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC8908297 DOI: 10.1007/s43538-022-00070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Excessive population outbursts and associated xenobiotic interventions contribute overproduction of waste materials across the world. Among these waste materials biomedical wastes (BMW) make a significant contribution. The huge accumulation of BMW is not only meant for successive environmental pollution but increases health hazards by cross-contamination and reoccurrence of different fatal infections. The management of BMW gaining continuous attention to the scientific communities for their intriguing potentiality towards public health concerns. Although, world health organization (WHO) and other public health and environmental societies formulate different guidelines for the disposal machinery of BMW but the proper implementation of those rules in public sectors in developing countries is very difficult. In this situation, the sudden prevalence of pandemic like, COVID-19 further worsen such conditions. Huge disposition of medical wastes during COVID-19 detection, treatment, and precautionary measures not only increases the risk of reoccurrence of infection but puts us also in front of a huge challenge of efficient management of these BMW. In this respect, the present review focus on an overview of BMW, existing BMW management, probable consequences of COVID-19 pandemic on the waste management system, and future perspectives.
Collapse
Affiliation(s)
- Anirban Bhar
- Department of Botany (Post Graduate), Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118 West Bengal India
| | - Rohan Kr Biswas
- Department of Botany (Post Graduate), Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118 West Bengal India
| | - Avik Kumar Choudhury
- Department of Botany (Post Graduate), Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118 West Bengal India
| |
Collapse
|
25
|
Martínez-Campos S, Pissaridou P, Drakou K, Shammas C, Andreou K, González-Pleiter M, Fernández-Piñas F, Leganes F, Rosal R, Koutinas M, Kapnisis K, Vasquez MI. Evolution of prokaryotic colonisation of greenhouse plastics discarded into the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113213. [PMID: 35085885 DOI: 10.1016/j.ecoenv.2022.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. β-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.
Collapse
Affiliation(s)
- Sergio Martínez-Campos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Panayiota Pissaridou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus
| | - Katerina Drakou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus
| | - Christos Shammas
- Avva Pharmaceuticals Ltd, Spyrou Kyprianou Ave 23, 4001 Limassol, Cyprus
| | - Kostas Andreou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Francisco Leganes
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianos str., 3036 Limassol, Cyprus.
| |
Collapse
|
26
|
Han P, Teo WZ, Yew WS. Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. ENGINEERING BIOLOGY 2022; 6:23-34. [PMID: 36968558 PMCID: PMC9995160 DOI: 10.1049/enb2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the face of a burgeoning stream of e-waste globally, e-waste recycling becomes increasingly imperative, not only to mitigate the environmental and health risks it poses but also as an urban mining strategy for resource recovery of precious metals, rare Earth elements, and even plastics. As part of the continual efforts to develop greener alternatives to conventional approaches of e-waste recycling, biologically assisted degradation of e-waste offers a promising recourse by capitalising on certain microorganisms' innate ability to interact with metals or degrade plastics. By harnessing emerging genetic tools in synthetic biology, the evolution of novel or enhanced capabilities needed to advance bioremediation and resource recovery could be potentially accelerated by improving enzyme catalytic abilities, modifying substrate specificities, and increasing toxicity tolerance. Yet, the management of e-waste presents formidable challenges due to its massive volume, high component complexity, and associated toxicity. Several limitations will need to be addressed before nascent laboratory-scale achievements in bioremediation can be translated to viable industrial applications. Nonetheless, vested groups, involving both start-up and established companies, have taken visionary steps towards deploying microbes for commercial implementation in e-waste recycling.
Collapse
Affiliation(s)
- Ping Han
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhe Teo
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
27
|
Marana MH, Poulsen R, Thormar EA, Clausen CG, Thit A, Mathiessen H, Jaafar R, Korbut R, Hansen AMB, Hansen M, Limborg MT, Syberg K, von Gersdorff Jørgensen L. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127705. [PMID: 34802818 DOI: 10.1016/j.jhazmat.2021.127705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution has become a major concern on a global scale. The plastic is broken down into minuscule particles, which have an impact on the biosystems, however long-term impacts through an entire generation is largely unknown. Here, we present the first whole generation study exposing fish to a 500 nm polystyrene plastic particle at environmentally relevant concentrations. Short- and long-term adverse effects were investigated in the zebrafish model organism using a holistic multi-omics approach. The particles accumulated in the yolk sac of young larvae and short-term biological impacts included immune-relevant gene regulation related to inflammation and tolerance as well as disruption of metabolic processes, such as the fatty acid and lipid pathways. The long-term effects comprised gene regulations pointing towards skin and/or gill inflammation, dysbiosis of the gut microbiota, a tendency towards decreased condition factor in adult males as well as a lowered reproductive capability. From this study, it can be concluded that exposures to plastic nanoparticles have an impact on population as well as ecosystem level in fish and likely also in other vertebrates.
Collapse
Affiliation(s)
- Moonika Haahr Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rikke Poulsen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Eiríkur Andri Thormar
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Cecilie Grønlund Clausen
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Anna Magdalene Brun Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark.
| |
Collapse
|
28
|
Jin X, Dong J, Guo X, Ding M, Bao R, Luo Y. Current advances in polyurethane biodegradation. POLYM INT 2022. [DOI: 10.1002/pi.6360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuerui Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Jixin Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xufan Guo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Rui Bao
- Center of Infectious Diseases, West China Hospital Sichuan University and Collaborative Innovation Center Chengdu China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Georgia Tech Shenzhen Institute Tianjin University Tangxing Road 133, Nanshan District Shenzhen 518071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| |
Collapse
|
29
|
Chattopadhyay I. Role of microbiome and biofilm in environmental plastic degradation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data. Microorganisms 2021; 9:microorganisms9071422. [PMID: 34209398 PMCID: PMC8305195 DOI: 10.3390/microorganisms9071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The east and southeast rim of Harz mountains (Germany) are marked by a high density of former copper mining places dating back from the late 20th century to the middle age. A set of 18 soil samples from pre- and early industrial mining places and one sample from an industrial mine dump have been selected for investigation by 16S rRNA and compared with six samples from non-mining areas. Although most of the soil samples from the old mines show pH values around 7, RNA profiling reflects many operational taxonomical units (OTUs) belonging to acidophilic genera. For some of these OTUs, similarities were found with their abundances in the comparative samples, while others show significant differences. In addition to pH-dependent bacteria, thermophilic, psychrophilic, and halophilic types were observed. Among these OTUs, several DNA sequences are related to bacteria which are reported to show the ability to metabolize special substrates. Some OTUs absent in comparative samples from limestone substrates, among them Thaumarchaeota were present in the soil group from ancient mines with pH > 7. In contrast, acidophilic types have been found in a sample from a copper slag deposit, e.g., the polymer degrading bacterium Granulicella and Acidicaldus, which is thermophilic, too. Soil samples of the group of pre-industrial mines supplied some less abundant, interesting OTUs as the polymer-degrading Povalibacter and the halophilic Lewinella and Halobacteriovorax. A particularly high number of bacteria (OTUs) which had not been detected in other samples were found at an industrial copper mine dump, among them many halophilic and psychrophilic types. In summary, the results show that soil samples from the ancient copper mining places contain soil bacterial communities that could be a promising source in the search for microorganisms with valuable metabolic capabilities.
Collapse
|
31
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Krupnik N, Asis DT, Belkin N, Rubin-Blum M, Israel Á, Paytan A, Meiri D, Herut B, Rahav E. Dust-borne microbes affect Ulva ohnoi's growth and physiological state. FEMS Microbiol Ecol 2021; 97:6129349. [PMID: 33544820 DOI: 10.1093/femsec/fiab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/03/2021] [Indexed: 11/12/2022] Open
Abstract
The marine macroalgae Ulva sp. is considered an ecosystem engineer in rocky shores of temperate waters worldwide. Ulva sp. harbors a rich diversity of associated microbial epibionts, which are known to affect the algae's typical morphological development and 'health'. We examined the interaction between airborne microbes derived from atmospheric aerosols and Ulva ohnoi growth and physiological state. Specifically, we measured U. ohnoi growth rates and photosynthetic efficiency (Fv/Fm), alongside its microbial epibionts abundance, activity and diversity following dust (containing nutrients and airborne microorganisms) or UV-treated dust (only nutrients) amendments to filtered seawater. Parallel incubations with epibionts-free U. ohnoi (treated with antibiotics that removed the algae epibionts) were also tested to specifically examine if dust-borne microbes can replenish the epibiont community of U. ohnoi. We show that viable airborne microbes can restore U. ohnoi natural microbial epibionts communities, thereby keeping the seaweed alive and 'healthy'. These results suggest that microbes delivered through atmospheric aerosols can affect epiphyte biodiversity in marine flora, especially in areas subjected to high annual atmospheric dust deposition such as the Mediterranean Sea.
Collapse
Affiliation(s)
- Nimrod Krupnik
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel.,Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Dorin Theodora Asis
- Department of Evolutionary and Human Biology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Natalia Belkin
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel
| | - Álvaro Israel
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel
| | - Adina Paytan
- Institute of Marine Science, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Tel-Shikmona 8030, Haifa, 310800, Israel
| |
Collapse
|
33
|
Zhelezova AD, Zverev AO, Zueva AI, Leonov VD, Rozanova OL, Zuev AG, Tiunov AV. Prokaryotic community formation on polyethylene films incubated for six months in a tropical soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116126. [PMID: 33261972 DOI: 10.1016/j.envpol.2020.116126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Polyethylene film is one of the most common types of recalcitrant plastic waste materials. Information regarding the fate of plastic films in soil is scarce compared to the fate of plastic films in aquatic environments. The aim of this study was to evaluate the effects of soil fauna and of impregnation of polyethylene films with oil on the colonization of low-density polyethylene films by prokaryotic communities. The field experiment was performed in a monsoon tropical forest (Vietnam). Polyethylene films were incubated in thermally pre-defaunated soil isolated from the surrounding soil by a stainless steel mesh. Three mesh sizes were used, allowing access to different size groups of soil fauna. The diversity, taxonomic structure and co-occurrence patterns in prokaryotic communities were studied using high-throughput sequencing of 16S rRNA gene libraries. The prokaryotic communities that formed on polyethylene films were slightly different from those inhabiting the surrounding soil. Contrary to our expectations, no difference in the diversity of prokaryotes was observed between microcosms with different mesh sizes. Oil impregnation also had only a minor influence on the prokaryotic community structure. Polyethylene films incubated in microcosms with soil appeared to be colonized by various consortia of prokaryotes as a barren and inert surface.
Collapse
Affiliation(s)
- A D Zhelezova
- V.V. Dokuchaev Soil Science Institute, Moscow, 119017, Russia.
| | - A O Zverev
- All-Russian Research Institute of Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - A I Zueva
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - V D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - O L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - A G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia
| | - A V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Moscow, 119071, Russia; Joint Russian-Vietnamese Tropical Center, Q10, Ho Chi Minh City, Viet Nam
| |
Collapse
|
34
|
Vaishnav A, Sahu J, Singh HB. Genomics of Extremophiles for Sustainable Agriculture and Biotechnological Applications (Part II). Curr Genomics 2020; 21:238-240. [PMID: 33071617 PMCID: PMC7521045 DOI: 10.2174/138920292104200626145516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Anukool Vaishnav
- 1Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura-281121, Uttar Pradesh, India; 2National Center for Cell Sciences (NCCS), University of Pune Campus, University Road, Ganeshkhind, Pune-411007, Maharashtra, India; 3Somvanshi Research Foundation13/21 Vikas Nagar, Lucknow-226022, Uttar Pradesh, India
| | - Jagajjit Sahu
- 1Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura-281121, Uttar Pradesh, India; 2National Center for Cell Sciences (NCCS), University of Pune Campus, University Road, Ganeshkhind, Pune-411007, Maharashtra, India; 3Somvanshi Research Foundation13/21 Vikas Nagar, Lucknow-226022, Uttar Pradesh, India
| | - Harikesh B Singh
- 1Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura-281121, Uttar Pradesh, India; 2National Center for Cell Sciences (NCCS), University of Pune Campus, University Road, Ganeshkhind, Pune-411007, Maharashtra, India; 3Somvanshi Research Foundation13/21 Vikas Nagar, Lucknow-226022, Uttar Pradesh, India
| |
Collapse
|