1
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
2
|
Krupa I, Treacy NJ, Clerkin S, Davis JL, Miller AF, Saiani A, Wychowaniec JK, Reynaud EG, Brougham DF, Crean J. Protocol for the Growth and Maturation of hiPSC-Derived Kidney Organoids using Mechanically Defined Hydrogels. Curr Protoc 2024; 4:e1096. [PMID: 38984433 DOI: 10.1002/cpz1.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With recent advances in the reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs), gene editing technologies, and protocols for the directed differentiation of stem cells into heterogeneous tissues, iPSC-derived kidney organoids have emerged as a useful means to study processes of renal development and disease. Considerable advances guided by knowledge of fundamental renal developmental signaling pathways have been made with the use of exogenous morphogens to generate more robust kidney-like tissues in vitro. However, both biochemical and biophysical microenvironmental cues are major influences on tissue development and self-organization. In the context of engineering the biophysical aspects of the microenvironment, the use of hydrogel extracellular scaffolds for organoid studies has been gaining interest. Two families of hydrogels have recently been the subject of significant attention: self-assembling peptide hydrogels (SAPHs), which are fully synthetic and chemically defined, and gelatin methacryloyl (GelMA) hydrogels, which are semi-synthetic. Both can be used as support matrices for growing kidney organoids. Based on our recently published work, we highlight methods describing the generation of human iPSC (hiPSC)-derived kidney organoids and their maturation within SAPHs and GelMA hydrogels. We also detail protocols required for the characterization of such organoids using immunofluorescence imaging. Together, these protocols should enable the user to grow hiPSC-derived kidney organoids within hydrogels of this kind and evaluate the effects that the biophysical microenvironment provided by the hydrogels has on kidney organoid maturation. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Directed differentiation of human induced pluripotent stem cells (hiPSCs) into kidney organoids and maturation within mechanically tunable self-assembling peptide hydrogels (SAPHs) Alternate Protocol: Encapsulation of day 9 nephron progenitor aggregates in gelatin methacryloyl (GelMA) hydrogels. Support Protocol 1: Human induced pluripotent stem cell (hiPSC) culture. Support Protocol 2: Organoid fixation with paraformaldehyde (PFA) Basic Protocol 2: Whole-mount immunofluorescence imaging of kidney organoids. Basic Protocol 3: Immunofluorescence of organoid cryosections.
Collapse
Affiliation(s)
- Ivan Krupa
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Niall J Treacy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Shane Clerkin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Jessica L Davis
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Aline F Miller
- Department of Chemical Engineering & Manchester Institute of Biotechnology (MIB), School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, United Kingdom
| | - Alberto Saiani
- Division of Pharmacy and Optometry & Manchester Institute of Biotechnology (MIB), School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Jacek K Wychowaniec
- UCD School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
- Current address: AO Research Institute Davos, Davos, Switzerland
| | - Emmanuel G Reynaud
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
4
|
Zhang T, Qian C, Song M, Tang Y, Zhou Y, Dong G, Shen Q, Chen W, Wang A, Shen S, Zhao Y, Lu Y. Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy. Int J Mol Sci 2024; 25:2680. [PMID: 38473926 DOI: 10.3390/ijms25052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells. Furthermore, iPSC-based cell therapy has emerged as a focal point of clinical interest. In this review, we provide an extensive overview of non-integrative reprogramming methods that have evolved since the inception of iPSC technology. We also deliver a comprehensive examination of iPSC-derived organoids, spanning the realms of the nervous system, cardiovascular system, and oncology, as well as systematically elucidate recent advancements in iPSC-related cell therapies.
Collapse
Affiliation(s)
- Teng Zhang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Yang Zhao
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
6
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
iPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter? Cells 2021; 10:cells10061470. [PMID: 34208270 PMCID: PMC8230744 DOI: 10.3390/cells10061470] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The production of induced pluripotent stem cells (iPSCs) represent a breakthrough in regenerative medicine, providing new opportunities for understanding basic molecular mechanisms of human development and molecular aspects of degenerative diseases. In contrast to human embryonic stem cells (ESCs), iPSCs do not raise any ethical concerns regarding the onset of human personhood. Still, they present some technical issues related to immune rejection after transplantation and potential tumorigenicity, indicating that more steps forward must be completed to use iPSCs as a viable tool for in vivo tissue regeneration. On the other hand, cell source origin may be pivotal to iPSC generation since residual epigenetic memory could influence the iPSC phenotype and transplantation outcome. In this paper, we first review the impact of reprogramming methods and the choice of the tissue of origin on the epigenetic memory of the iPSCs or their differentiated cells. Next, we describe the importance of induction methods to determine the reprogramming efficiency and avoid integration in the host genome that could alter gene expression. Finally, we compare the significance of the tissue of origin and the inter-individual genetic variation modification that has been lightly evaluated so far, but which significantly impacts reprogramming.
Collapse
|
8
|
Fus-Kujawa A, Mendrek B, Trybus A, Bajdak-Rusinek K, Stepien KL, Sieron AL. Potential of Induced Pluripotent Stem Cells for Use in Gene Therapy: History, Molecular Bases, and Medical Perspectives. Biomolecules 2021; 11:biom11050699. [PMID: 34067183 PMCID: PMC8151405 DOI: 10.3390/biom11050699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are defined as reprogrammed somatic cells exhibiting embryonic stem cell characteristics. Since their discovery in 2006, efforts have been made to utilize iPSCs in clinical settings. One of the promising fields of medicine, in which genetically patient-specific stem cells may prove themselves useful, is gene therapy. iPSCs technology holds potential in both creating models of genetic diseases and delivering therapeutic agents into the organism via auto-transplants, which reduces the risk of rejection compared to allotransplants. However, in order to safely administer genetically corrected stem cells into patients’ tissues, efforts must be made to establish stably pluripotent stem cells and reduce the risk of insertional tumorigenesis. In order to achieve this, optimal reprogramming factors and vectors must be considered. Therefore, in this review, the molecular bases of reprogramming safe iPSCs for clinical applications and recent attempts to translate iPSCs technology into the clinical setting are discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (A.T.); (K.L.S.)
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland;
| | - Anna Trybus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (A.T.); (K.L.S.)
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland;
| | - Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (A.T.); (K.L.S.)
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland; (A.F.-K.); (A.T.); (K.L.S.)
- Correspondence:
| |
Collapse
|
9
|
Generation of Human Neural Progenitors from Blood Samples by Interrupted Reprogramming. Methods Mol Biol 2021; 2454:241-255. [PMID: 33826126 DOI: 10.1007/7651_2021_386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human neuronal cell cultures are essential tools for biological and preclinical studies of our nervous system. Since we have very limited access to primary human neural samples, derivation of proliferative neural progenitor cells (NPCs) from cells harvested by minimally invasive sampling is a key issue. Here we describe a "shortcut" method to establish proliferative NPC cultures directly from peripheral blood mononuclear cells (PBMCs) via interrupted reprogramming. In addition, we provide procedures to characterize the NPC stage.
Collapse
|
10
|
Mehrban N, Cardinale D, Gallo SC, Lee DDH, Arne Scott D, Dong H, Bowen J, Woolfson DN, Birchall MA, O'Callaghan C. α-Helical peptides on plasma-treated polymers promote ciliation of airway epithelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111935. [PMID: 33641925 DOI: 10.1016/j.msec.2021.111935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesised that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present "gold-standard" materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration.
Collapse
Affiliation(s)
- Nazia Mehrban
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK.
| | - Daniela Cardinale
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Santiago C Gallo
- Institute for Frontier Materials, Deakin University, 75 Pigdons Rd, Victoria, VIC 3216, Australia
| | - Dani D H Lee
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - D Arne Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Hanshan Dong
- School of Metallurgy and Materials, University of Birmingham, Elms Rd, Birmingham B15 2SE, UK
| | - James Bowen
- School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin A Birchall
- UCL Ear Institute, University College London, 332 Grays Inn Rd, London WC1X 8EE, UK
| | - Christopher O'Callaghan
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK
| |
Collapse
|
11
|
Szabó E, Juhász F, Hathy E, Reé D, Homolya L, Erdei Z, Réthelyi JM, Apáti Á. Functional Comparison of Blood-Derived Human Neural Progenitor Cells. Int J Mol Sci 2020; 21:E9118. [PMID: 33266139 PMCID: PMC7730078 DOI: 10.3390/ijms21239118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples. Here, we demonstrate a method to generate shortcut NPCs (sNPCs) from blood mononuclear cells and present a detailed comparison of these sNPCs with NPCs obtained from the same blood samples through stable iPSC clones and a subsequent neural differentiation (classical NPCs-cNPCs). Peripheral blood cells were obtained from a schizophrenia patient and his two healthy parents (a case-parent trio), while a further umbilical cord blood sample was obtained from the cord of a healthy new-born. The expression of stage-specific markers in sNPCs and cNPCs were compared both at the protein and RNA levels. We also performed functional tests to investigate Wnt and glutamate signaling and the oxidative stress, as these pathways have been suggested to play important roles in the pathophysiology of schizophrenia. We found similar responses in the two types of NPCs, suggesting that the shortcut procedure provides sNPCs, allowing an efficient screening of disease-related phenotypes.
Collapse
Affiliation(s)
- Eszter Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| | - Flóra Juhász
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| | - Edit Hathy
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary;
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Dóra Reé
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| | - Zsuzsa Erdei
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| | - János M. Réthelyi
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary;
- National Brain Research Project (NAP) Molecular Psychiatry Research Group, Hungarian Academy of Sciences and Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (E.S.); (F.J.); (D.R.); (L.H.); (Z.E.)
| |
Collapse
|
12
|
Development of a High-Efficacy Reprogramming Method for Generating Human Induced Pluripotent Stem (iPS) Cells from Pathologic and Senescent Somatic Cells. Int J Mol Sci 2020; 21:ijms21186764. [PMID: 32942642 PMCID: PMC7555779 DOI: 10.3390/ijms21186764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a type of artificial pluripotent stem cell induced by the epigenetic silencing of somatic cells by the Yamanaka factors. Advances in iPS cell reprogramming technology will allow aging or damaged cells to be replaced by a patient's own rejuvenated cells. However, tissue that is senescent or pathologic has a relatively low reprogramming efficiency as compared with juvenile or robust tissue, resulting in incomplete reprogramming; iPS cells generated from such tissue types do not have sufficient differentiation ability and are therefore difficult to apply clinically. Here, we develop a new reprogramming method and examine it using myofibroblasts, which are pathologic somatic cells, from patient skin tissue and from each of the four heart chambers of a recipient heart in heart transplant surgery. By adjusting the type and amount of vectors containing transcriptional factors for iPS cell reprogramming, as well as adjusting the transfection load and culture medium, the efficiency of iPS cell induction from aged patient skin-derived fibroblasts was increased, and we successfully induced iPS cells from myocardial fibroblasts isolated from the pathologic heart of a heart transplant recipient.
Collapse
|
13
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Schneeberger K, Sánchez‐Romero N, Ye S, van Steenbeek FG, Oosterhoff LA, Pla Palacin I, Chen C, van Wolferen ME, van Tienderen G, Lieshout R, Colemonts‐Vroninks H, Schene I, Hoekstra R, Verstegen MM, van der Laan LJ, Penning LC, Fuchs SA, Clevers H, De Kock J, Baptista PM, Spee B. Large-Scale Production of LGR5-Positive Bipotential Human Liver Stem Cells. Hepatology 2020; 72:257-270. [PMID: 31715015 PMCID: PMC7496924 DOI: 10.1002/hep.31037] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. APPROACH AND RESULTS Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40-fold cell expansion after 2 weeks, compared with 6-fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver-like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up-regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. CONCLUSIONS We established a highly efficient method for culturing large numbers of LGR5-positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | | | - Shicheng Ye
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Iris Pla Palacin
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
| | - Chen Chen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands,Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtthe Netherlands
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Gilles van Tienderen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Ruby Lieshout
- Department of SurgeryErasmus MC‐University Medical CenterRotterdamthe Netherlands
| | - Haaike Colemonts‐Vroninks
- Department of In Vitro Toxicology and Dermato‐cosmetologyFaculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Imre Schene
- Division of Pediatric GastroenterologyWilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal ResearchGastroenterology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands,Surgical LaboratoryDepartment of SurgeryAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | | | | | - Louis C. Penning
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Sabine A. Fuchs
- Division of Pediatric GastroenterologyWilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hans Clevers
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtthe Netherlands,Cancer Genomics NetherlandsUniversity Medical Center UtrechtUtrechtthe Netherlands,Princess Máxima CenterUtrechtthe Netherlands
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato‐cosmetologyFaculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd)MadridSpain,Fundación ARAIDZaragozaSpain,Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain,Department of Biomedical and Aerospace EngineeringUniversidad Carlos III de MadridMadridSpain
| | - Bart Spee
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
15
|
Heidari-Khoei H, Esfandiari F, Hajari MA, Ghorbaninejad Z, Piryaei A, Baharvand H. Organoid technology in female reproductive biomedicine. Reprod Biol Endocrinol 2020; 18:64. [PMID: 32552764 PMCID: PMC7301968 DOI: 10.1186/s12958-020-00621-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in organoid technology are revolutionizing our knowledge about the biology, physiology, and function of various organs. Female reproductive biology and medicine also benefit from this technology. Organoids recapitulate features of different reproductive organs including the uterus, fallopian tubes, and ovaries, as well as trophoblasts. The genetic stability of organoids and long-lasting commitment to their tissue of origin during long-term culture makes them attractive substitutes for animal and in vitro models. Despite current limitations, organoids offer a promising platform to address fundamental questions regarding the reproductive system's physiology and pathology. They provide a human source to harness stem cells for regenerative medicine, heal damaged epithelia in specific diseases, and study biological processes in healthy and pathological conditions. The combination of male and female reproductive organoids with other technologies, such as microfluidics technology, would enable scientists to create a multi-organoid-on-a-chip platform for the next step to human-on-a-chip platforms for clinical applications, drug discovery, and toxicology studies. The present review discusses recent advances in producing organoid models of reproductive organs and highlights their applications, as well as technical challenges and future directions.
Collapse
Affiliation(s)
- Heidar Heidari-Khoei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Mohammad Amin Hajari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4719, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
16
|
Liu K, Ma W, Li C, Li J, Zhang X, Liu J, Liu W, Wu Z, Zang C, Liang Y, Guo J, Li L. Advances in Transcription Factors Related to Neuroglial Cell Reprogramming. Transl Neurosci 2020; 11:17-27. [PMID: 32161682 PMCID: PMC7053399 DOI: 10.1515/tnsci-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/07/2020] [Indexed: 11/27/2022] Open
Abstract
Neuroglial cells have a high level of plasticity, and many types of these cells are present in the nervous system. Neuroglial cells provide diverse therapeutic targets for neurological diseases and injury repair. Cell reprogramming technology provides an efficient pathway for cell transformation during neural regeneration, while transcription factor-mediated reprogramming can facilitate the understanding of how neuroglial cells mature into functional neurons and promote neurological function recovery.
Collapse
Affiliation(s)
- Kuangpin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Junjun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Xingkui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Zheng Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chenghao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jianhui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
18
|
Okur FV, Cevher İ, Özdemir C, Kocaefe Ç, Çetinkaya DU. Osteopetrotic induced pluripotent stem cells derived from patients with different disease-associated mutations by non-integrating reprogramming methods. Stem Cell Res Ther 2019; 10:211. [PMID: 31315669 PMCID: PMC6637500 DOI: 10.1186/s13287-019-1316-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autosomal recessive osteopetrosis is a genetically and phenotypically heterogeneous disease, caused by defects in osteoclast formation and function. The only available treatment is allogeneic stem cell transplantation that has still high morbidity and mortality. The goal of the present study was to generate iPSCs from bone marrow-derived MSCs of osteopetrosis patients with three most common mutations by using two different integration-free gene transfer methods and compare their efficiencies. The secondary objective was to select the most appropriate integration-free production method for our institutional iPSC bank using this rare disease as a prototype. METHODS Two different integration-free gene transfer methods (episomal and Sendai viral vectors) were tested and compared on the same set of patient samples exhibiting three different mutations associated with osteopetrosis. Generated iPSCs were characterized by standard assays, including immunophenotyping, immunocytochemistry, RT-PCR, embryoid body, and teratoma assays. Karyotype analyses were performed to evaluate genetic stability. RESULTS iPSC lines exhibiting typical ESC-like colony morphology were shown to express pluripotency markers by immunofluorescence staining. Over 90% of the cells were found positive for SSEA-4 and OCT3/4 and negative/weak positive for CD29 by flow cytometry. Immunohistochemical staining of teratoma and spontaneously differentiated embryoid body sections confirmed their trilineage differentiation potential. All iPSC lines expressed pluripotency-related genes. Karyotype analyses were found normal. Direct sequencing of PCR-amplified DNA showed that disease-related mutations were retained in the patient-specific iPSCs. CONCLUSION Generation of iPSC using SeV and episomal DNA vectors have several advantages over other methods like the ease of production, reliability, high efficiency, and safety, which is required for translational research. Furthermore, owing to the pluripotency and self-renewal capacity, patient-specific iPSCs seem to be ideal cell source for the modeling of a rare genetic bone disease like osteopetrosis to identify osteoclast defects, leading to clinical heterogeneity in osteopetrosis patients, especially among those with different mutations in the same gene.
Collapse
Affiliation(s)
- Fatma Visal Okur
- Hacettepe University, Center for Stem Cell Research and Development PEDI-STEM, Ankara, Turkey. .,Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - İnci Cevher
- Hacettepe University, Center for Stem Cell Research and Development PEDI-STEM, Ankara, Turkey
| | - Cansu Özdemir
- Hacettepe University, Center for Stem Cell Research and Development PEDI-STEM, Ankara, Turkey
| | - Çetin Kocaefe
- Hacettepe University, Center for Stem Cell Research and Development PEDI-STEM, Ankara, Turkey.,Department of Medical Biology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University, Center for Stem Cell Research and Development PEDI-STEM, Ankara, Turkey.,Division of Pediatric Hematology and Bone Marrow Transplantation Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Foveau B, Correia AS, Hébert SS, Rainone S, Potvin O, Kergoat MJ, Belleville S, Duchesne S, LeBlanc AC. Stem Cell-Derived Neurons as Cellular Models of Sporadic Alzheimer’s Disease. J Alzheimers Dis 2019; 67:893-910. [DOI: 10.3233/jad-180833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ana Sofia Correia
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Sébastien S. Hébert
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Sara Rainone
- Université Laval, Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
| | - Olivier Potvin
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Marie-Jeanne Kergoat
- Université de Montréal, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Sylvie Belleville
- Université de Montréal, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Simon Duchesne
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Rohani L, Johnson AA, Naghsh P, Rancourt DE, Ulrich H, Holland H. Concise Review: Molecular Cytogenetics and Quality Control: Clinical Guardians for Pluripotent Stem Cells. Stem Cells Transl Med 2018; 7:867-875. [PMID: 30218497 PMCID: PMC6265634 DOI: 10.1002/sctm.18-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022] Open
Abstract
Now that induced pluripotent stem cell (iPSC)‐based transplants have been performed in humans and organizations have begun producing clinical‐grade iPSCs, it is imperative that strict quality control standards are agreed upon. This is essential as both ESCs and iPSCs have been shown to accumulate genomic aberrations during long‐term culturing. These aberrations can include copy number variations, trisomy, amplifications of chromosomal regions, deletions of chromosomal regions, loss of heterozygosity, and epigenetic abnormalities. Moreover, although the differences between iPSCs and ESCs appear largely negligible when a high enough n number is used for comparison, the reprogramming process can generate further aberrations in iPSCs, including copy number variations and deletions in tumor‐suppressor genes. If mutations or epigenetic signatures are present in parental cells, these can also be carried over into iPSCs. To maximize patient safety, we recommend a set of standards to be utilized when preparing iPSCs for clinical use. Reprogramming methods that do not involve genomic integration should be used. Cultured cells should be grown using feeder‐free and serum‐free systems to avoid animal contamination. Karyotyping, whole‐genome sequencing, gene expression analyses, and standard sterility tests should all become routine quality control tests. Analysis of mitochondrial DNA integrity, whole‐epigenome analyses, as well as single‐cell genome sequencing of large cell populations may also prove beneficial. Furthermore, clinical‐grade stem cells need to be produced under accepted regulatory good manufacturing process standards. The creation of haplobanks that provide major histocompatibility complex matching is also recommended to improve allogeneic stem cell engraftment. Stem Cells Translational Medicine2018;7:867–875
Collapse
Affiliation(s)
- Leili Rohani
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Miyagawa S, Sawa Y. Building a new strategy for treating heart failure using Induced Pluripotent Stem Cells. J Cardiol 2018; 72:445-448. [PMID: 30172684 DOI: 10.1016/j.jjcc.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Although cell therapy using myoblasts, bone marrow cells, or other stem cells appears to improve functional recovery of the failing heart, mainly by cytokine paracrine effects, its effectiveness in severely damaged myocardium is limited, probably because there are too few residual myocytes to promote cytokine-induced angiogenesis. Recently, cardiogenic stem cells, such as c-kit-positive cells, were reported to generate cardiomyogenic lineages, and basic research experiments showed that implanting these cells, which can differentiate into cardiomyocytes, improves heart function. However, this functional recovery may have also mainly depended on cytokine paracrine effects, because the differentiation to cardiomyocytes in vivo was poor. In contrast, while Induced Pluripotent Stem Cell-derived cardiomyocytes have paracrine effects, they also have the potential to supply newly born myocytes that can function synchronously with the recipient myocardium as "mechanically working cells" in severely damaged myocardium. Thus, they could represent a "true" myocardial regeneration therapy that can actually regenerate severely damaged myocardium. In addition, iPS cells, especially disease-specific iPS cells, have other applications in regenerative medicine such as in drug screening. In this report, we present the state of basic research in the field of cardiac iPS cells.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
22
|
Kaushik G, Ponnusamy MP, Batra SK. Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells 2018; 36:1329-1340. [PMID: 29770526 DOI: 10.1002/stem.2852] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cultures use the property of some cells to self-organize in matrices and generate structures that can be programmed to represent an organ or a pathology. Organoid cultures are the 3D cultivation of source tissue (ranging from cells to tissue fragments) in a support matrix and specialized media that nearly resembles the physiological environment. Depending on the source tissue, growth factors, and inhibitors provided, organoids can be programmed to recapitulate the biology of a system and progression of pathology. Organoids are genetically stable, and genetically amenable, making them very suitable tools to study tissue homeostasis and cancer. In this Review, we focus on providing recent technical advances from published literature to efficiently use organoids as a tool for disease modeling and therapeutics. Also, we discuss stem cell biology principles used to generate multiple organoids and their characteristics, with a brief description of methodology. A major theme of this review is to expand organoid applications to the study disease progression and drug response in different cancers. We also discuss shortcomings, limitations, and advantages of developed 3D cultures, with the rationale behind the methodology. Stem Cells 2018;36:1329-1340.
Collapse
Affiliation(s)
- Garima Kaushik
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
23
|
Mansouri M, Berger P. Multigene delivery in mammalian cells: Recent advances and applications. Biotechnol Adv 2018; 36:871-879. [PMID: 29374595 DOI: 10.1016/j.biotechadv.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/27/2022]
Abstract
Systems for multigene delivery in mammalian cells, particularly in the context of genome engineering, have gained a lot of attention in biomolecular research and medicine. Initially these methods were based on RNA polymerase II promoters and were used for the production of protein complexes and for applications in cell biology such as reprogramming of somatic cells to stem cells. Emerging technologies such as CRISPR/Cas9-based genome engineering, which enable any alteration at the genomic level of an organism, require additional elements including U6-driven expression cassettes for RNA expression and homology constructs for designed genome modifications. For these applications, systems with high DNA capacity, flexibility and transfer rates are needed. In this article, we briefly give an update on some of recent strategies that facilitate multigene assembly and delivery into mammalian cells. Also, we review applications in various fields of biology that rely on multigene delivery systems.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
24
|
Induced Pluripotent Stem Cell-Derived Red Blood Cells and Platelet Concentrates: From Bench to Bedside. Cells 2017; 7:cells7010002. [PMID: 29280988 PMCID: PMC5789275 DOI: 10.3390/cells7010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.
Collapse
|
25
|
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40:168-181. [PMID: 28903069 DOI: 10.1016/j.arr.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.
Collapse
Affiliation(s)
- Micaela López-León
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina.
| |
Collapse
|
26
|
Chiang MY, Lin YZ, Chang SJ, Shyu WC, Lu HE, Chen SY. Direct Reprogramming of Human Suspension Cells into Mesodermal Cell Lineages via Combined Magnetic Targeting and Photothermal Stimulation by Magnetic Graphene Oxide Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700703. [PMID: 28665509 DOI: 10.1002/smll.201700703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Suspension cells can provide a source of cells for cellular reprogramming, but they are difficult to transfect by nonviral vectors. An efficient and safe nonviral vector (GO-Fe3 O4 -PEI complexes) based on iron oxide nanoparticle (Fe3 O4 )-decorated graphene oxide (GO) complexed with polyethylenimine (PEI) for the first time is developed for delivering three individual episomal plasmids (pCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL) encoding pluripotent-related factors of Oct3/4, shRNA against p53, Sox2, Klf4, L-Myc, and Lin28 into human peripheral blood mononuclear cells (PBMCs) simultaneously. The combined treatment of magnetic stirring and near-infrared (NIR)-laser irradiation, which can promote contact between the complexes and floating cells and increase the cell membrane permeability, respectively, is used to conduct multiple physical stimulations for suspension PBMCs transfection. The PCR analysis shows that the combinatorial effect of magnetic targeting and photothermal stimulation obviously promoted the transfection efficiency of suspension cells. The transfected cells show positive expression of the pluripotency markers, including Nanog, Oct4, and Sox2, and have potential to differentiate into mesoderm and ectoderm cells. The results demonstrate that the GO-Fe3 O4 -PEI complex provides a safe, convenient, and efficient tool for reprogramming PBMCs into partially induced pluripotent stem cells, which are able to rapidly transdifferentiate into mesodermal lineages without full reprogramming.
Collapse
Affiliation(s)
- Min-Yu Chiang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yi-Zhen Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University (Yanchao Campus), Kaohsiung, 82445, Taiwan, ROC
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Translational Medicine Research Center and Department of Neurology, China Medical University & Hospital, Taichung, 40447, Taiwan, ROC
| | - Huai-En Lu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan, ROC
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| |
Collapse
|
27
|
Targeted release of transcription factors for human cell reprogramming by ZEBRA cell-penetrating peptide. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Butler CR, Hynds RE, Gowers KHC, Lee DDH, Brown JM, Crowley C, Teixeira VH, Smith CM, Urbani L, Hamilton NJ, Thakrar RM, Booth HL, Birchall MA, De Coppi P, Giangreco A, O'Callaghan C, Janes SM. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. Am J Respir Crit Care Med 2017; 194:156-68. [PMID: 26840431 DOI: 10.1164/rccm.201507-1414oc] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. OBJECTIVES To define a scalable cell culture system to deliver airway epithelium to clinical grafts. METHODS Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. MEASUREMENTS AND MAIN RESULTS 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. CONCLUSIONS Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.
Collapse
Affiliation(s)
- Colin R Butler
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Robert E Hynds
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Kate H C Gowers
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Dani Do Hyang Lee
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - James M Brown
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Claire Crowley
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Vitor H Teixeira
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Claire M Smith
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - Luca Urbani
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Nicholas J Hamilton
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Ricky M Thakrar
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Helen L Booth
- 4 Department of Thoracic Medicine, University College London Hospitals, London, United Kingdom; and
| | - Martin A Birchall
- 5 UCL Ear Institute, Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| | - Paolo De Coppi
- 3 Stem Cell and Regenerative Medicine Section, Great Ormond Street Hospital and UCL Institute of Child Health, London, United Kingdom
| | - Adam Giangreco
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Christopher O'Callaghan
- 2 Respiratory, Critical Care, and Anesthesia, Institute of Child Health, University College London, London, United Kingdom
| | - Sam M Janes
- 1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.,4 Department of Thoracic Medicine, University College London Hospitals, London, United Kingdom; and
| |
Collapse
|
29
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
30
|
Bone regeneration in the stem cell era: safe play for the patient? Clin Rheumatol 2017; 36:745-752. [DOI: 10.1007/s10067-017-3581-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/05/2017] [Accepted: 02/13/2017] [Indexed: 01/21/2023]
|
31
|
Chung JW. Spot the difference: Solving the puzzle of hidden pictures in the lizard genome for identification of regeneration factors. BMB Rep 2017; 49:249-54. [PMID: 26949021 PMCID: PMC5070703 DOI: 10.5483/bmbrep.2016.49.5.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
All living things share some common life processes, such as growth and reproduction, and have the ability to respond to their environment. However, each type of organism has its own specialized way of managing biological events. Genetic sequences determine phenotypic and physiological traits. Based on genetic information, comparative genomics has been used to delineate the differences and similarities between various genomes, and significant progress has been made in understanding regenerative biology by comparing the genomes of a variety of lower animal models of regeneration, such as planaria, zebra fish, and newts. However, the genome of lizards has been relatively ignored until recently, even though lizards have been studied as an excellent amniote model of tissue regeneration. Very recently, whole genome sequences of lizards have been uncovered, and several attempts have been made to find regeneration factors based on genetic information. In this article, recent advances in comparative analysis of the lizard genome are introduced, and their biological implications and putative applications for regenerative medicine and stem cell biology are discussed. [BMB Reports 2016; 49(5): 249-254]
Collapse
Affiliation(s)
- Jin Woong Chung
- Department of Biological Science, Dong-A University, Busan 49315, Korea
| |
Collapse
|
32
|
Bharathan SP, Manian KV, Aalam SMM, Palani D, Deshpande PA, Pratheesh MD, Srivastava A, Velayudhan SR. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open 2017; 6:100-108. [PMID: 28089995 PMCID: PMC5278432 DOI: 10.1242/bio.022111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of fibroblast (CD13), pluripotency markers (SSEA-4 and TRA-1-60) and a retrovirally expressed red fluorescent protein (RV-RFP), we compared the efficiency of these features to identify bona fide hiPSC colonies. The co-expression kinetics of fibroblast and pluripotency markers in the cells being reprogrammed and the emerging colonies revealed the heterogeneity within SSEA-4+ and TRA-1-60+ cells, and the inadequacy of these commonly used pluripotency markers for the identification of bona fide hiPSC colonies. The characteristic morphological changes in the emerging hiPSC colonies derived from fibroblasts expressing RV-RFP showed a good correlation between hiPSC morphology acquisition and silencing of RV-RFP and facilitated the easy identification of hiPSCs. The kinetics of retroviral silencing and pluripotency marker expression in emerging colonies suggested that combining both these markers could demarcate the stages of reprogramming with better precision than with pluripotency markers alone. Our results clearly demonstrate that the pluripotency markers that are routinely analyzed for the characterization of established iPSC colonies are not suitable for the isolation of pluripotent cells in the early stages of reprogramming, and silencing of retrovirally expressed reporter genes helps in the identification of colonies that have attained a pluripotent state and the morphology of human embryonic stem cells (hESCs). Summary: The use of hESC-like morphology, retroviral transgene silencing and temporal expression of pluripotency markers are compared as methods to aid in the identification of hiPSC clones.
Collapse
Affiliation(s)
- Sumitha Prameela Bharathan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Kannan Vrindavan Manian
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Syed Mohammed Musheer Aalam
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Dhavapriya Palani
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | | | - Mankuzhy Damodaran Pratheesh
- Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Shaji Ramachandran Velayudhan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India .,Centre for Stem Cell Research (Unit of InStem, Bengaluru), Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
33
|
Berthoin L, Toussaint B, Garban F, Le Gouellec A, Caulier B, Polack B, Laurin D. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe. Int J Pharm 2016; 513:678-687. [PMID: 27697633 DOI: 10.1016/j.ijpharm.2016.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34+ hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34+ hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming.
Collapse
Affiliation(s)
- Lionel Berthoin
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France.
| | - Bertrand Toussaint
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France.
| | - Frédéric Garban
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France; Etablissement Français du Sang, 29 av du Maquis du Grésivaudan, BP35, 38701 La Tronche, France.
| | - Audrey Le Gouellec
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France.
| | - Benjamin Caulier
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France; Etablissement Français du Sang, 29 av du Maquis du Grésivaudan, BP35, 38701 La Tronche, France.
| | - Benoît Polack
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France.
| | - David Laurin
- TIMC-TheREx Laboratory UMR 5525, CNRS, Université Grenoble Alpes, Grenoble F-38041, France; Etablissement Français du Sang, 29 av du Maquis du Grésivaudan, BP35, 38701 La Tronche, France.
| |
Collapse
|
34
|
Robert MA, Lytvyn V, Deforet F, Gilbert R, Gaillet B. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol 2016; 59:9-23. [PMID: 27830536 DOI: 10.1007/s12033-016-9987-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.
Collapse
Affiliation(s)
- Marc-André Robert
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Viktoria Lytvyn
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Francis Deforet
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Rénald Gilbert
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Bruno Gaillet
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada. .,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada.
| |
Collapse
|
35
|
Miyagawa S, Fukushima S, Imanishi Y, Kawamura T, Mochizuki-Oda N, Masuda S, Sawa Y. Building A New Treatment For Heart Failure-Transplantation of Induced Pluripotent Stem Cell-derived Cells into the Heart. Curr Gene Ther 2016; 16:5-13. [PMID: 26785736 PMCID: PMC4997929 DOI: 10.2174/1566523216666160119094143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/08/2023]
Abstract
Advanced cardiac failure is a progressive intractable disease and is the main cause of mortality and morbidity worldwide. Since this pathology is represented by a definite decrease in cardiomyocyte number, supplementation of functional cardiomyocytes into the heart would hypothetically be an ideal therapeutic option. Recently, unlimited in vitro production of human functional cardiomyocytes was established by using induced pluripotent stem cell (iPSC) technology, which avoids the use of human embryos. A number of basic studies including ours have shown that transplantation of iPSC-derived cardiomyocytes (iPSC-CMs) into the damaged heart leads to recovery of cardiac function, thereby establishing “proof-of-concept” of this iPSC-transplantation therapy. However, considering clinical application of this therapy, its feasibility, safety, and therapeutic efficacy need to be further investigated in the pre-clinical stage. This review summarizes up-to-date important topics related to safety and efficacy of iPSC-CMs transplantation therapy for cardiac disease and discusses the prospects for this treatment in clinical studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
36
|
Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients. Ann Hematol 2016; 95:1617-25. [PMID: 27465155 DOI: 10.1007/s00277-016-2756-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.
Collapse
|
37
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Mousavinejad M, Andrews PW, Shoraki EK. Current Biosafety Considerations in Stem Cell Therapy. CELL JOURNAL 2016; 18:281-7. [PMID: 27540533 PMCID: PMC4988427 DOI: 10.22074/cellj.2016.4324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies.
Collapse
Affiliation(s)
- Masoumeh Mousavinejad
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Elham Kargar Shoraki
- Department of Biological Sciences, Faculty of Science, Tehran Kharazmi University, Tehran, Iran
| |
Collapse
|
39
|
Borges GT, Vêncio EF, Quek SI, Chen A, Salvanha DM, Vêncio RZN, Nguyen HM, Vessella RL, Cavanaugh C, Ware CB, Troisch P, Liu AY. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming. J Cell Physiol 2016; 231:2040-7. [PMID: 26773436 DOI: 10.1002/jcp.25313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gisely T Borges
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Pharmacy School, Federal University of Goiás, Goiânia, Brazil
| | - Eneida F Vêncio
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Oral Pathology, Dental School, Federal University of Goiás, Goiânia, Brazil
| | - Sue-Ing Quek
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adeline Chen
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Diego M Salvanha
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Ricardo Z N Vêncio
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, Washington.,Puget Sound VA Medical Center, Seattle, Washington
| | - Christopher Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Focosi D, Pistello M. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking. Stem Cells Transl Med 2016; 5:269-74. [PMID: 26819256 DOI: 10.5966/sctm.2015-0257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/04/2015] [Indexed: 01/25/2023] Open
Abstract
Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy Virology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
41
|
Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016; 2016:3658013. [PMID: 26880956 PMCID: PMC4737003 DOI: 10.1155/2016/3658013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues.
Collapse
|
42
|
KEPEKÇİ AH, ÖZTURAN OÖ, KÖKER MY. Pluripotent stem cells and their use in hearing loss. Turk J Biol 2016. [DOI: 10.3906/biy-1508-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
43
|
Oh K, Kim SR, Kim DK, Seo MW, Lee C, Lee HM, Oh JE, Choi EY, Lee DS, Gho YS, Park KS. In Vivo Differentiation of Therapeutic Insulin-Producing Cells from Bone Marrow Cells via Extracellular Vesicle-Mimetic Nanovesicles. ACS NANO 2015; 9:11718-11727. [PMID: 26513554 DOI: 10.1021/acsnano.5b02997] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current diabetes mellitus pandemic constitutes an important global health problem. Reductions in the mass and function of β-cells contribute to most of the pathophysiology underlying diabetes. Thus, physiological control of blood glucose levels can be adequately restored by replacing functioning β-cell mass. Sources of functional islets for transplantation are limited, resulting in great interest in the development of alternate sources, and recent progress regarding cell fate change via utilization of extracellular vesicles, also known as exosomes and microvesicles, is notable. Thus, this study investigated the therapeutic capacity of extracellular vesicle-mimetic nanovesicles (NVs) derived from a murine pancreatic β-cell line. To differentiate insulin-producing cells effectively, a three-dimensional in vivo microenvironment was constructed in which extracellular vesicle-mimetic NVs were applied to subcutaneous Matrigel platforms containing bone marrow (BM) cells in diabetic immunocompromised mice. Long-term control of glucose levels was achieved over 60 days, and differentiation of donor BM cells into insulin-producing cells in the subcutaneous Matrigel platforms, which were composed of islet-like cell clusters with extensive capillary networks, was confirmed along with the expression of key pancreatic β-cell markers. The resectioning of the subcutaneous Matrigel platforms caused a rebound in blood glucose levels and confirmed the source of functioning β-cells. Thus, efficient differentiation of therapeutic insulin-producing cells was attained in vivo through the use of extracellular vesicle-mimetic NVs, which maintained physiological glucose levels.
Collapse
Affiliation(s)
| | - Sae Rom Kim
- Department of Life Sciences, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | | | - Changjin Lee
- Department of Life Sciences, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Hak Mo Lee
- Biomedical Research Institute, Seoul National University Hospital , Seoul 110-744, Korea
| | - Ju-Eun Oh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 110-799, Korea
| | | | | | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Kyong Soo Park
- Biomedical Research Institute, Seoul National University Hospital , Seoul 110-744, Korea
- Department of Internal Medicine, Seoul National University College of Medicine , Seoul 110-799, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 110-799, Korea
| |
Collapse
|
44
|
Alghazali KM, Nima ZA, Hamzah RN, Dhar MS, Anderson DE, Biris AS. Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metab Rev 2015; 47:431-54. [PMID: 26651522 DOI: 10.3109/03602532.2015.1115871] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone loss and failure of proper bone healing continues to be a significant medical condition in need of solutions that can be implemented successfully both in human and veterinary medicine. This is particularly true when large segmental defects are present, the bone has failed to return to normal form or function, or the healing process is extremely prolonged. Given the inherent complexity of bone tissue - its unique structural, mechanical, and compositional properties, as well as its ability to support various cells - it is difficult to find ideal candidate materials that could be used as the foundation for tissue regeneration from technological platforms. Recently, important developments have been made in the implementation of complex structures built both at the macro- and the nano-level that have been shown to positively impact bone formation and to have the ability to deliver active biological molecules (drugs, growth factors, proteins, cells) for controlled tissue regeneration and the prevention of infection. These materials are diverse, ranging from polymers to ceramics and various composites. This review presents developments in this area with a focus on the role of scaffold structure and chemistry on the biologic processes that influence bone physiology and regeneration.
Collapse
Affiliation(s)
- Karrer M Alghazali
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Zeid A Nima
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Rabab N Hamzah
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| | - Madhu S Dhar
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - David E Anderson
- b Tissue Regeneration Laboratory, Department of Large Animal Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville , TN , USA
| | - Alexandru S Biris
- a Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock , AR , USA and
| |
Collapse
|
45
|
Schwarz JS, de Jonge HR, Forrest JN. Value of Organoids from Comparative Epithelia Models. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2015; 88:367-74. [PMID: 26604860 PMCID: PMC4654185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organoids have tremendous therapeutic potential. They were recently defined as a collection of organ-specific cell types, which self-organize through cell-sorting, develop from stem cells, and perform an organ specific function. The ability to study organoid development and growth in culture and manipulate their genetic makeup makes them particularly suitable for studying development, disease, and drug efficacy. Organoids show great promise in personalized medicine. From a single patient biopsy, investigators can make hundreds of organoids with the genetic landscape of the patient of origin. This genetic similarity makes organoids an ideal system in which to test drug efficacy. While many investigators assume human organoids are the ultimate model system, we believe that the generation of epithelial organoids of comparative model organisms has great potential. Many key transport discoveries were made using marine organisms. In this paper, we describe how deriving organoids from the spiny dogfish shark, zebrafish, and killifish can contribute to the fields of comparative biology and disease modeling with future prospects for personalized medicine.
Collapse
Affiliation(s)
- Julia S. Schwarz
- Yale College, Yale University, New Haven, Connecticut,Department of Medicine, Yale School of Medicine, New Haven, Connecticut,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N. Forrest
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine,To whom all correspondence should be addressed: John N. Forrest, Jr., MD, Office of Student Research, 308 ESH, Yale School of Medicine, New Haven, CT; Tele: 203-785-6633; Fax: 203-785-6936;
| |
Collapse
|
46
|
New Immunosuppressive Cell Therapy to Prolong Survival of Induced Pluripotent Stem Cell–Derived Allografts. Transplantation 2015; 99:2301-10. [DOI: 10.1097/tp.0000000000000875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Athanassiou-Papaefthymiou M, Papagerakis P, Papagerakis S. Isolation and Characterization of Human Adult Epithelial Stem Cells from the Periodontal Ligament. J Dent Res 2015; 94:1591-600. [PMID: 26392003 DOI: 10.1177/0022034515606401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a novel method for the isolation of adult human epithelial stem cells (hEpiSCs) from the epithelial component of the periodontal ligament-the human epithelial cell rests of Malassez (hERM). hEpiSC-rich integrin-α6(+ve) hERM cells derived by fluorometry can be clonally expanded, can grow organoids, and express the markers of pluripotency (OCT4, NANOG, SOX2), polycomb protein RING1B, and the hEpiSC supermarker LGR5. They maintain the growth profile of their originating hERM in vitro. Subcutaneous cotransplantation with mesenchymal stem cells from the dental pulp on poly-l-lactic acid scaffolds in nude mice gave rise to perfect heterotopic ossicles in vivo with ultrastructure of dentin, enamel, cementum, and bone. These remarkable fully mineralized ossicles underscore the importance of epithelial-mesenchymal crosstalk in tissue regeneration using human progenitor stem cells, which may have already committed to lineage despite maintaining hallmarks of pluripotency. In addition, we report the clonal expansion and isolation of human LGR5(+ve) cells from the hERM in xeno-free culture conditions. The genetic profile of LGR5(+ve) cells includes both markers of pluripotency and genes important for secretory epithelial and dental epithelial cell differentiation, giving us a first insight into periodontal ligament-derived hEpiSCs.
Collapse
Affiliation(s)
- M Athanassiou-Papaefthymiou
- Laboratory of Tooth Organogenesis and Regeneration, Department of Orthodontics and Pediatric Medicine, School of Dentistry; Center for Organogenesis, School of Medicine; Center for Computational Medicine and Bioinformatics; University of Michigan, Ann Arbor, MI, USA Laboratory for Oral, Head, and Neck Cancer Metastasis, Kresge Hearing Research Institute, Department of Otolaryngology and Comprehensive Cancer Center, Medical School, University of Michigan, Ann Arbor, MI, USA The Cancer Cure, Ann Arbor, MI, USA
| | - P Papagerakis
- Laboratory of Tooth Organogenesis and Regeneration, Department of Orthodontics and Pediatric Medicine, School of Dentistry; Center for Organogenesis, School of Medicine; Center for Computational Medicine and Bioinformatics; University of Michigan, Ann Arbor, MI, USA
| | - S Papagerakis
- Laboratory for Oral, Head, and Neck Cancer Metastasis, Kresge Hearing Research Institute, Department of Otolaryngology and Comprehensive Cancer Center, Medical School, University of Michigan, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Tang S, Xie M, Cao N, Ding S. Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. J Med Chem 2015; 59:2-15. [PMID: 26322868 DOI: 10.1021/acs.jmedchem.5b00789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This manuscript will review recent developments in modeling a variety of diseases (including their cellular phenotypes) with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Shibing Tang
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Min Xie
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Nan Cao
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| | - Sheng Ding
- Gladstone Institutes , 1650 Owens Street, San Francisco, California 94158, United States
| |
Collapse
|
49
|
Wenker SD, Casalía M, Candedo VC, Casabona JC, Pitossi FJ. Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett 2015; 589:3396-406. [PMID: 26226418 DOI: 10.1016/j.febslet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.
Collapse
|
50
|
Meraviglia V, Zanon A, Lavdas AA, Schwienbacher C, Silipigni R, Di Segni M, Chen HSV, Pramstaller PP, Hicks AA, Rossini A. Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids. J Vis Exp 2015:e52885. [PMID: 26131963 DOI: 10.3791/52885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by forcing the expression of four transcription factors (Oct-4, Sox-2, Klf-4, and c-Myc), typically expressed by human embryonic stem cells (hESCs). Due to their similarity with hESCs, iPSCs have become an important tool for potential patient-specific regenerative medicine, avoiding ethical issues associated with hESCs. In order to obtain cells suitable for clinical application, transgene-free iPSCs need to be generated to avoid transgene reactivation, altered gene expression and misguided differentiation. Moreover, a highly efficient and inexpensive reprogramming method is necessary to derive sufficient iPSCs for therapeutic purposes. Given this need, an efficient non-integrating episomal plasmid approach is the preferable choice for iPSC derivation. Currently the most common cell type used for reprogramming purposes are fibroblasts, the isolation of which requires tissue biopsy, an invasive surgical procedure for the patient. Therefore, human peripheral blood represents the most accessible and least invasive tissue for iPSC generation. In this study, a cost-effective and viral-free protocol using non-integrating episomal plasmids is reported for the generation of iPSCs from human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats after whole blood centrifugation and without density gradient separation.
Collapse
Affiliation(s)
| | | | | | | | - Rosamaria Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico
| | - Marina Di Segni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico
| | - Huei-Sheng Vincent Chen
- Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute
| | | | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC)
| | | |
Collapse
|