1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
3
|
Garcia-de la Cruz DD, Juarez-Rojop IE, Tovilla-Zarate CA, Nicolini H, Genis-Mendoza AD. Circulating Cell-Free Mitochondrial DNA in Plasma of Individuals with Schizophrenia and Cognitive Deficit in Mexican Population. Neuropsychiatr Dis Treat 2024; 20:1757-1765. [PMID: 39323935 PMCID: PMC11423824 DOI: 10.2147/ndt.s460554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose Cognitive domains are affected in patients with schizophrenia. Mitochondrial dysfunction has been proposed as a possible origin of these symptoms. Cell-free mitochondrial DNA (cf-mtDNA) is an indicator of cellular stress, and it can be identified in individuals with age-associated disorders, this study aimed to explore the presence of cf-mtDNA in plasma of schizophrenia patients and its association with cognitive deficit. Patients and Methods Ninety-nine subjects were clinically evaluated; the case group included 60 patients diagnosed with schizophrenia and 39 randomly-individuals without psychiatric disorders were included in the comparison group. Cognitive status (MoCA scale) and cell-free mtDNA in blood plasma were assessed and quantified in both groups. Results From the original sample, cf-mtDNA was identified in 43 subjects, 40 patients with schizophrenia and 3 controls (Χ2 = 31.10, p-value < 0.0001). Thirty-nine out of forty patients with schizophrenia had a cognitive deficit. Conclusion According to our findings, cognitive impairment and presence of cf-mtDNA were related in subjects with schizophrenia. Thus, while the cognitive deficit might reflect an accelerated aging process, the cf-mtDNA plays a role as a potential biomarker in this mechanism.
Collapse
Affiliation(s)
- Dulce Dajheanne Garcia-de la Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Salud Mental Villahermosa, Tabasco, México
- Laboratorio de Metabolismo de Lípidos, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México
| | - Isela Esther Juarez-Rojop
- Laboratorio de Metabolismo de Lípidos, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México
| | | | - Humberto Nicolini
- Laboratorio de Genómica de las Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de las Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
- Hospital Psiquiátrico Infantil, Dr. Juan N. Navarro, Ciudad de México, México
| |
Collapse
|
4
|
Wang K, Nguyen T, Gao Y, Guo R, Fan C, Liao H, Li J, Chai J, Xu X, Gong Y, Chen X. Androcin 18-1, a novel scorpion-venom peptide, shows a potent antitumor activity against human U87 cells via inducing mitochondrial dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104137. [PMID: 38759703 DOI: 10.1016/j.ibmb.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18-1 has been identified from the transcriptome profile of the scorpion venom Androctonus bicolor, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18-1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18-1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18-1 in drug development for glioblastoma treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Tienthanh Nguyen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Yihan Gao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Chaofan Fan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiali Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jinwei Chai
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Xueqing Xu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
| |
Collapse
|
5
|
Islam MA, Sehar U, Sultana OF, Mukherjee U, Brownell M, Kshirsagar S, Reddy PH. SuperAgers and centenarians, dynamics of healthy ageing with cognitive resilience. Mech Ageing Dev 2024; 219:111936. [PMID: 38657874 DOI: 10.1016/j.mad.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Graceful healthy ageing and extended longevity is the most desired goal for human race. The process of ageing is inevitable and has a profound impact on the gradual deterioration of our physiology and health since it triggers the onset of many chronic conditions like dementia, osteoporosis, diabetes, arthritis, cancer, and cardiovascular disease. However, some people who lived/live more than 100 years called 'Centenarians" and how do they achieve their extended lifespans are not completely understood. Studying these unknown factors of longevity is important not only to establish a longer human lifespan but also to manage and treat people with shortened lifespans suffering from age-related morbidities. Furthermore, older adults who maintain strong cognitive function are referred to as "SuperAgers" and may be resistant to risk factors linked to cognitive decline. Investigating the mechanisms underlying their cognitive resilience may contribute to the development of therapeutic strategies that support the preservation of cognitive function as people age. The key to a long, physically, and cognitively healthy life has been a mystery to scientists for ages. Developments in the medical sciences helps us to a better understanding of human physiological function and greater access to medical care has led us to an increase in life expectancy. Moreover, inheriting favorable genetic traits and adopting a healthy lifestyle play pivotal roles in promoting longer and healthier lives. Engaging in regular physical activity, maintaining a balanced diet, and avoiding harmful habits such as smoking contribute to overall well-being. The synergy between positive lifestyle choices, access to education, socio-economic factors, environmental determinants and genetic supremacy enhances the potential for a longer and healthier life. Our article aims to examine the factors associated with healthy ageing, particularly focusing on cognitive health in centenarians. We will also be discussing different aspects of ageing including genomic instability, metabolic burden, oxidative stress and inflammation, mitochondrial dysfunction, cellular senescence, immunosenescence, and sarcopenia.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
6
|
You W, Knoops K, Berendschot TTJM, Benedikter BJ, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. PGC-1a mediated mitochondrial biogenesis promotes recovery and survival of neuronal cells from cellular degeneration. Cell Death Discov 2024; 10:180. [PMID: 38632223 PMCID: PMC11024166 DOI: 10.1038/s41420-024-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of structure and function of neurons, often including the death of the neuron. Previously, we reported that, by removing the cell death stimulus, dying/injured neurons could survive and recover from the process of regulated cell death, even if the cells already displayed various signs of cellular damage. Now we investigated the role of mitochondrial dynamics (fission/fusion, biogenesis, mitophagy) in both degeneration and in recovery of neuronal cells. In neuronal PC12 cells, exposure to ethanol (EtOH) induced massive neurite loss along with widespread mitochondrial fragmentation, mitochondrial membrane potential loss, reduced ATP production, and decreased total mitochondrial volume. By removing EtOH timely all these mitochondrial parameters recovered to normal levels. Meanwhile, cells regrew neurites and survived. Study of the mitochondrial dynamics showed that autophagy was activated only during the cellular degeneration phase (EtOH treatment) but not in the recovery phase (EtOH removed), and it was not dependent on the Parkin/PINK1 mediated mitophagy pathway. Protein expression of key regulators of mitochondrial fission, phospho-Drp1Ser616 and S-OPA1, increased during EtOH treatment and recovered to normal levels after removing EtOH. In addition, the critical role of PGC-1α mediated mitochondrial biogenesis in cellular recovery was revealed: inhibition of PGC-1α using SR-18292 after EtOH removal significantly impeded recovery of mitochondrial damage, regeneration of neurites, and cell survival in a concentration-dependent manner. Taken together, our study showed reversibility of mitochondrial morphological and functional damage in stressed neuronal cells and revealed that PGC-1α mediated mitochondrial biogenesis played a critical role in the cellular recovery. This molecular mechanism could be a target for neuroprotection and neurorescue in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kèvin Knoops
- The Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Wang Y, Song C, Yin G, Meng Y, Zhang F. Alleviation of behavioral deficits, amyloid-β deposition, and mitochondrial structure damage associated with mitophagy upregulation in AD animal models via AAV9-IGF-1 treatment. Brain Res 2024; 1827:148743. [PMID: 38159592 DOI: 10.1016/j.brainres.2023.148743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
By safeguarding the neurological system, insulin-like growth factor 1 (IGF-1) may have a role in the etiology of Alzheimer's disease (AD). The mechanism and signaling route, however, remain unclear. This research aimed to investigate the impact of IGF-1 on AD as well as its possible mechanism and signaling route. In this work, intracerebroventricular AAV9-IGF-1 was delivered to APP/PS1 transgenic mice. Following therapy, the Morris water maze and passive avoidance tests were administered to evaluate spatial learning and memory. The elevated plus maze, the open field test, and the sucrose preference test were used to evaluate anxious-depressive-like behavior. Thioflavin S staining was employed to visualize Aβ deposition, and ELISA was used to determine the quantities of soluble Aβ1-40 and Aβ1-42. Transmission electron microscopy was used to view the mitochondrial structure and mitophagy vesicles. The protein expression levels of PINK1, Parkin, and LC3-II/LC3-I were finally determined by Western blotting. AAV9-IGF-1 therapy enhanced spatial learning and memory, relieved anxious-depressive-like behavior impairments, lowered amyloid-β deposition, and decreased levels of soluble Aβ1-40 and Aβ1-42. In addition, AAV9-IGF-1 therapy restored mitochondrial integrity and increased the number of mitophagy in transgenic mice expressing APP/PS1. These results indicate that IGF-1 is protective for APP/PS1 mice. The mechanism of the favorable benefits mediated by IGF-1 was connected to an increase in mitophagy, which might give a novel therapy target in the future.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Zibo Central Hospital, Shandong University, Zibo 255000, China
| | - Chaoyuan Song
- Department of Neurology, Shandong University of Traditional Chinese Medicine, Jinan 250000, China; Department of Neurology, Zibo Central Hospital, Shandong University, Zibo 255000, China
| | - Guoliang Yin
- Department of Neurology, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Ye Meng
- Department of Neurology, Zibo Central Hospital, Shandong University, Zibo 255000, China
| | - Fengxia Zhang
- Department of Neurology, Shandong University of Traditional Chinese Medicine, Jinan 250000, China; Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
8
|
Chandra PK, Panner Selvam MK, Castorena-Gonzalez JA, Rutkai I, Sikka SC, Mostany R, Busija DW. Fibrinogen in mice cerebral microvessels induces blood-brain barrier dysregulation with aging via a dynamin-related protein 1-dependent pathway. GeroScience 2024; 46:395-415. [PMID: 37897653 PMCID: PMC10828490 DOI: 10.1007/s11357-023-00988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023] Open
Abstract
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA
| |
Collapse
|
9
|
Fan C, Wang JX, Xiong ZE, Hu SS, Zhou AJ, Yuan D, Zhang CC, Zhou ZY, Wang T. Saponins from Panax japonicus improve neuronal mitochondrial injury of aging rats. PHARMACEUTICAL BIOLOGY 2023; 61:1401-1412. [PMID: 37667488 PMCID: PMC10484050 DOI: 10.1080/13880209.2023.2244532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
CONTEXT Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-oxidative and anti-aging effects. OBJECTIVE We evaluated the neuroprotective effects of SPJ on aging rats. MATERIALS AND METHODS Sprague-Dawley rats (18-months-old) were randomly divided into aging and SPJ groups (n = 8). Five-month-old rats were taken as the adult control (n = 8). The rats were fed a normal chow diet or the SPJ-containing diet (10 or 30 mg/kg) for 4 months. An in vitro model was established by d-galactose (d-Gal) in the SH-SY5Y cell line and pretreated with SPJ (25 and 50 µg/mL). The neuroprotection of SPJ was evaluated via Nissl staining, flow cytometry, transmission electron microscopy and Western blotting in vivo and in vitro. RESULTS SPJ improved the neuronal degeneration and mitochondrial morphology that are associated with aging. Meanwhile, SPJ up-regulated the protein levels of mitofusin 2 (Mfn2) and optic atrophy 1 (Opa1) and down-regulated the protein level of dynamin-like protein 1 (Drp1) in the hippocampus of aging rats (p < 0.05 or p < 0.01 vs. 22 M). The in vitro studies also demonstrated that SPJ attenuated d-Gal-induced cell senescence concomitant with the improvement in mitochondrial function; SPJ, also up-regulated the Mfn2 and Opa1 protein levels, whereas the Drp1 protein level (p < 0.05 or p < 0.01 vs. d-Gal group) was down-regulated. DISCUSSION AND CONCLUSIONS Further research on the elderly population will contribute to the development and utilization of SPJ for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cheng Fan
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| | - Jin-Xin Wang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Zhang-E. Xiong
- Department of Gastroenterology, Wuhan Third Hospital, Wuhan, China
| | - Shan-Shan Hu
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Ao-Jia Zhou
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Chang-Cheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Zhi-Yong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Ting Wang
- Institute of Pharmaceutical Process, Academy of Nutrition and Health Hubei Province Key Laboratory of Occupational Hazard Identification and Control School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| |
Collapse
|
10
|
Lombardi P, Karadayian AG, Guerra JI, Bustamante J, Rodríguez de Lores Arnaiz G, Lores-Arnaiz S. Mitochondrial bioenergetics and cytometric characterization of a synaptosomal preparation from mouse brain cortex. Mitochondrion 2023; 73:95-107. [PMID: 37944836 DOI: 10.1016/j.mito.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Mitochondrial function at synapses can be assessed in isolated nerve terminals. Synaptosomes are structures obtained in vitro by detaching the nerve endings from neuronal bodies under controlled homogenization conditions. Several protocols have been described for the preparation of intact synaptosomal fractions. Herein a fast and economical method to obtain synaptosomes with optimal intrasynaptic mitochondria functionality was described. Synaptosomal fractions were obtained from mouse brain cortex by differential centrifugation followed by centrifugation in a Ficoll gradient. The characteristics of the subcellular particles obtained were analyzed by flow cytometry employing specific tools. Integrity and specificity of the obtained organelles were evaluated by calcein and SNAP-25 probes. The proportion of positive events of the synaptosomal preparation was 75 ± 2 % and 48 ± 7% for calcein and Synaptosomal-Associated Protein of 25 kDa (SNAP-25), respectively. Mitochondrial integrity was evaluated by flow cytometric analysis of cardiolipin content, which indicated that 73 ± 1% of the total events were 10 N-nonylacridine orange (NAO)-positive. Oxygen consumption, ATP production and mitochondrial membrane potential determinations showed that mitochondria inside synaptosomes remained functional after the isolation procedure. Mitochondrial and synaptosomal enrichment were determined by measuring synaptosomes/ homogenate ratio of specific markers. Functionality of synaptosomes was verified by nitric oxide detection after glutamate addition. As compared with other methods, the present protocol can be performed briefly, does not imply high economic costs, and provides an useful tool for the isolation of a synaptosomal preparation with high mitochondrial respiratory capacity and an adequate integrity and function of intraterminal mitochondria.
Collapse
Affiliation(s)
- Paulina Lombardi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | - Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | - Juan I Guerra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina
| | | | - Georgina Rodríguez de Lores Arnaiz
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular "Profesor Alberto Boveris" (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Prasad Panda S, Kesharwani A. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden. Mitochondrion 2023; 71:1-16. [PMID: 37172668 DOI: 10.1016/j.mito.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The mitochondrial electron transport chain (mtETC) requires mainly coenzyme Q10 (CoQ10), copper (Cu2+), calcium (Ca2+), and iron (Fe2+) ions for efficient ATP production. According to cross-sectional research, up to 50% of patients with micronutrient imbalances have been linked to oxidative stress, mitochondrial dysfunction, reduced ATP production, and the prognosis of various diseases. The condition of ferroptosis, which is caused by the downregulation of CoQ10 and the activation of non-coding micro RNAs (miRs), is strongly linked to free radical accumulation, cancer, and neurodegenerative diseases. The entry of micronutrients into the mitochondrial matrix depends upon the higher threshold level of mitochondrial membrane potential (ΔΨm), and high cytosolic micronutrients. The elevated micronutrient in the mitochondrial matrix causes the utilization of all ATP, leading to a drop in ATP levels. Mitochondrial calcium uniporter (MCU) and Na+/Ca2+ exchanger (NCX) play a major role in Ca2+ influx in the mitochondrial matrix. The mitochondrial Ca2+ overload is regulated by specific miRs such as miR1, miR7, miR25, miR145, miR138, and miR214, thereby reducing apoptosis and improving ATP production. Cuproptosis is primarily brought on by increased Cu+ build-up and mitochondrial proteotoxic stress, mediated by ferredoxin-1 (FDX1) and long non-coding RNAs. Cu importers (SLC31A1) and exporters (ATP7B) influence intracellular Cu2+ levels to control cuproptosis. According to literature reviews, very few randomized micronutrient interventions have been carried out, despite the identification of a high prevalence of micronutrient deficiencies. In this review, we concentrated on essential micronutrients and specific miRs associated with ATP production that balance oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
14
|
Hernandez CM, Barkey RE, Craven KM, Pedemonte KA, Alisantosa B, Sanchez JO, Flinn JM. Transfusion with Blood Plasma from Young Mice Affects rTg4510 Transgenic Tau Mice Modeling of Alzheimer's Disease. Brain Sci 2023; 13:841. [PMID: 37371321 DOI: 10.3390/brainsci13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the buildup of plaques and tangles in the brain. Tangles are formed when the stabilizing protein, tau, becomes hyperphosphorylated and clumps together. There are limited treatments for AD; therefore, the exploration of new treatments is warranted. Previous research showed that plasma transfusion from young donor mice improved spatial memory and increased synaptic proteins in old transgenic APP/PS1 mice, suggesting a remediation of memory and synaptic function. In the current study, plasma was transfused from 2-3-month-old young wildtype mice (WT) to 8-month-old rTg4510 mice expressing human tau (Tau). One week after the transfusions, behavior and tau pathology were examined. We found that Tau mice injected with plasma had lower expression of phosphorylated tau (ptau) in the brain, accompanied by fewer tau tangles in the cortex and CA1 region of the hippocampus and smaller tau tangles in the cortex, when compared to Tau mice injected with saline. Despite no improvement in behavior, the decreased level of ptau and tangles open the door to future studies involving plasma transfusions.
Collapse
Affiliation(s)
- Carlos M Hernandez
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Rachel E Barkey
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Kristen M Craven
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Karin A Pedemonte
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bernadette Alisantosa
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jonathan O Sanchez
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jane M Flinn
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
15
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Benfeito S, Fernandes C, Chavarria D, Barreiro S, Cagide F, Sequeira L, Teixeira J, Silva R, Remião F, Oliveira PJ, Uriarte E, Borges F. Modulating Cytotoxicity with Lego-like Chemistry: Upgrading Mitochondriotropic Antioxidants with Prototypical Cationic Carrier Bricks. J Med Chem 2023; 66:1835-1851. [PMID: 36716281 DOI: 10.1021/acs.jmedchem.2c01630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the lipophilic triphenylphosphonium (TPP+) cation is widely used to target antioxidants to mitochondria, TPP+-based derivatives have shown cytotoxicity in several biological in vitro models. We confirmed that Mito.TPP is cytotoxic to both human neuronal (SH-SY5Y) and hepatic (HepG2) cells, decreasing intracellular adenosine triphosphate (ATP) levels, leading to mitochondrial membrane depolarization and reduced mitochondrial mass after 24 h. We surpassed this concern using nitrogen-derived cationic carriers (Mito.PICO, Mito.ISOQ, and Mito.IMIDZ). As opposed to Mito.TPP, these novel compounds were not cytotoxic to SH-SY5Y and HepG2 cells up to 50 μM and after 24 h of incubation. All of the cationic derivatives accumulated inside the mitochondrial matrix and acted as neuroprotective agents against iron(III), hydrogen peroxide, and tert-butyl hydroperoxide insults. The overall data showed that nitrogen-based cationic carriers can modulate the biological performance of mitochondria-directed antioxidants and are an alternative to the TPP cation.
Collapse
Affiliation(s)
- Sofia Benfeito
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sandra Barreiro
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lisa Sequeira
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Teixeira
- CNC─Center for Neuroscience and Cell Biology, CIBB─Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Renata Silva
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo J Oliveira
- CNC─Center for Neuroscience and Cell Biology, CIBB─Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenio Uriarte
- Departamento Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autonoma de Chile, Av. Libertador Bernardo O'Higgins, 7500912 Santiago de Chile, Chile
| | - Fernanda Borges
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Kashif M, Sivaprakasam P, Vijendra P, Waseem M, Pandurangan AK. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer's Disease. Curr Pharm Des 2023; 29:3428-3441. [PMID: 38038007 DOI: 10.2174/0113816128264355231121064704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIM Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Prathibha Sivaprakasam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Poornima Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Mohammad Waseem
- Department of Pharmaceutical Science, University of Maryland, Eastern Shore, Baltimore, USA
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
19
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
21
|
Nguyen T, Guo R, Chai J, Wu J, Liu J, Chen X, Abdel-Rahman MA, Xia H, Xu X. Smp24, a Scorpion-Venom Peptide, Exhibits Potent Antitumor Effects against Hepatoma HepG2 Cells via Multi-Mechanisms In Vivo and In Vitro. Toxins (Basel) 2022; 14:toxins14100717. [PMID: 36287985 PMCID: PMC9607800 DOI: 10.3390/toxins14100717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Scorpion-venom-derived peptides have become a promising anticancer agent due to their cytotoxicity against tumor cells via multiple mechanisms. The suppressive effect of the cationic antimicrobial peptide Smp24, which is derived from the venom of ScorpioMaurus palmatus, on the proliferation of the hepatoma cell line HepG2 has been reported earlier. However, its mode of action against HepG2 hepatoma cells remains unclear. In the current research, Smp24 was discovered to suppress the viability of HepG2 cells while having a minor effect on normal LO2 cells. Moreover, endocytosis and pore formation were demonstrated to be involved in the uptake of Smp24 into HepG2 cells, which subsequently interacted with the mitochondrial membrane and caused the decrease in its potential, cytoskeleton reorganization, ROS accumulation, mitochondrial dysfunction, and alteration of apoptosis- and autophagy-related signaling pathways. The protecting activity of Smp24 in the HepG2 xenograft mice model was also demonstrated. Therefore, our data suggest that the antitumor effect of Smp24 is closely related to the induction of cell apoptosis, cycle arrest, and autophagy via cell membrane disruption and mitochondrial dysfunction, suggesting a potential alternative in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Tienthanh Nguyen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruiyin Guo
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | | | - Hu Xia
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Correspondence: (H.X.); (X.X.); Tel.: +86-20-61648537 (X.X.)
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (H.X.); (X.X.); Tel.: +86-20-61648537 (X.X.)
| |
Collapse
|
22
|
Krestinin RR, Baburina YL, Odinokova IV, Sotnikova LD, Krestinina OV. The Effect of Astaxanthin on the Functional State of Brain Mitochondria in Rats with Heart Failure. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Vijayan M, Alvir RV, Alvir RV, Bunquin LE, Pradeepkiran JA, Reddy PH. A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell 2022; 21:e13663. [PMID: 35801276 PMCID: PMC9381918 DOI: 10.1111/acel.13663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of mental dementia in the aged population. AD is characterized by the progressive decline of memory and multiple cognitive functions, and changes in behavior and personality. Recent research has revealed age-dependent increased levels of VDAC1 in postmortem AD brains and cerebral cortices of APP, APPxPS1, and 3xAD.Tg mice. Further, we found abnormal interaction between VDAC1 and P-Tau in the AD brains, leading to mitochondrial structural and functional defects. Our current study aimed to understand the impact of a partial reduction of voltage-dependent anion channel 1 (VDAC1) protein on mitophagy/autophagy, mitochondrial and synaptic activities, and behavior changes in transgenic TAU mice in Alzheimer's disease. To determine if a partial reduction of VDAC1 reduces mitochondrial and synaptic toxicities in transgenic Tau (P301L) mice, we crossed heterozygote VDAC1 knockout (VDAC1+/- ) mice with TAU mice and generated double mutant (VDAC1+/- /TAU) mice. We assessed phenotypic behavior, protein levels of mitophagy, autophagy, synaptic, other key proteins, mitochondrial morphology, and dendritic spines in TAU mice relative to double mutant mice. Partial reduction of VDAC1 rescued the TAU-induced behavioral impairments such as motor coordination and exploratory behavioral changes, and learning and spatial memory impairments in VDAC1+/- /TAU mice. Protein levels of mitophagy, autophagy, and synaptic proteins were significantly increased in double mutant mice compared with TAU mice. In addition, dendritic spines were significantly increased; the mitochondrial number was significantly reduced, and mitochondrial length was increased in double mutant mice. Based on these observations, we conclude that reduced VDAC1 is beneficial in symptomatic-transgenic TAU mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Rainier Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Razelle Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
24
|
Preventing Axonal Sodium Overload or Mitochondrial Calcium Uptake Protects Axonal Mitochondria from Oxidative Stress-Induced Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6125711. [PMID: 35663200 PMCID: PMC9157283 DOI: 10.1155/2022/6125711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
In neuroinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative stress is believed to contribute to neuroaxonal damage. Previously, we demonstrated that exposure to hydrogen peroxide (H2O2) alters mitochondrial morphology and motility in myelinated axons and that these changes initiate at the nodes of Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons. The increased intra-axonal sodium may revert the axonal sodium-calcium exchangers and thus may lead to a pathological calcium overload in the axoplasm and mitochondria. Here, we used the explanted murine ventral spinal roots to investigate whether modulation of sodium or calcium influx may prevent mitochondrial alterations in myelinated axons during exogenous application of H2O2 inducing oxidative stress. For that, tetrodotoxin, an inhibitor of voltage-gated sodium ion channels, and ruthenium 360, an inhibitor of the mitochondrial calcium uniporter, were applied simultaneously with hydrogen peroxide to axons. Mitochondrial shape and motility were analyzed. We showed that inhibition of axonal sodium influx prevented oxidative stress-induced morphological changes (i.e., increase in circularity and area and decrease in length) and preserved mitochondrial membrane potential, which is crucial for ATP production. Blocking mitochondrial calcium uptake prevented decrease in mitochondrial motility and also preserved membrane potential. Our findings indicate that alterations of both mitochondrial morphology and motility in the contexts of oxidative stress can be counterbalanced by modulating intramitochondrial ion concentrations pharmacologically. Moreover, motile mitochondria show preserved membrane potentials, pointing to a close association between mitochondrial motility and functionality.
Collapse
|
25
|
Kundu S, Hossain KS, Moni A, Zahan MS, Rahman MM, Uddin MJ. Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects. Mol Biol Rep 2022; 49:9749-9758. [PMID: 35441940 DOI: 10.1007/s11033-022-07460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide public health concern. Nutritional interventions become a primary concern in managing various diseases, including CKD. Ketogenic diets (KD) are a popular diet and an increasingly used diet for weight loss. MAIN BODY With the increasing cases of CKD, KD has been proposed as a treatment by many scientists. Several studies have shown that KD can slow down the progression rate of renal abnormalities. Also, this diet is regarded as a safe route for managing CKD. CKD is generally associated with increased inflammation, oxidative stress, fibrosis, autophagy dysfunction, and mitochondrial dysfunction, while all of these can be attenuated by KD. The protective effect of KD is mainly mediated through inhibition of ROS, NF-κB, and p62 signaling. CONCLUSIONS It is suggested that KD could be considered a new strategy for managing and treating CKD more carefully. This review explores the potential of KD on CKD and the mechanism involved in KD-mediated kidney protection.
Collapse
Affiliation(s)
- Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh. .,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
26
|
Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2249749. [PMID: 35340218 PMCID: PMC8956398 DOI: 10.1155/2022/2249749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Ageing is a physiological process of progressive decline in the organism function over time. It affects every organ in the body and is a significant risk for chronic diseases. Molecular hydrogen has therapeutic and preventive effects on various organs. It has antioxidative properties as it directly neutralizes hydroxyl radicals and reduces peroxynitrite level. It also activates Nrf2 and HO-1, which regulate many antioxidant enzymes and proteasomes. Through its antioxidative effect, hydrogen maintains genomic stability, mitigates cellular senescence, and takes part in histone modification, telomere maintenance, and proteostasis. In addition, hydrogen may prevent inflammation and regulate the nutrient-sensing mTOR system, autophagy, apoptosis, and mitochondria, which are all factors related to ageing. Hydrogen can also be used for prevention and treatment of various ageing-related diseases, such as neurodegenerative disorders, cardiovascular disease, pulmonary disease, diabetes, and cancer. This paper reviews the basic research and recent application of hydrogen in order to support hydrogen use in medicine for ageing prevention and ageing-related disease therapy.
Collapse
|
27
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
28
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
29
|
PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer's disease models. Neurochem Int 2022; 154:105298. [DOI: 10.1016/j.neuint.2022.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
|
30
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
31
|
Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W. Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals (Basel) 2021; 14:ph14121221. [PMID: 34959622 PMCID: PMC8703835 DOI: 10.3390/ph14121221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease and Parkinson's disease are the most common forms of neurodegenerative illnesses. It has been widely accepted that neuroinflammation is the key pathogenic mechanism in neurodegeneration. Both mitochondrial dysfunction and enhanced NLRP3 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 3) inflammasome complex activity have a crucial role in inducing and sustaining neuroinflammation. In addition, mitochondrial-related inflammatory factors could drive the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-18 (IL-18). The present review includes a broadened approach to the role of mitochondrial dysfunction resulting in abnormal NLRP3 activation in selected neurodegenerative diseases. Moreover, we also discuss the potential mitochondria-focused treatments that could influence the NLRP3 complex.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| | - Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Cegłowska 80, 01-809 Warsaw, Poland
- Correspondence:
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| |
Collapse
|
32
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
33
|
Bečanović K, Asghar M, Gadawska I, Sachdeva S, Walker D, Lazarowski ER, Franciosi S, Park KHJ, Côté HCF, Leavitt BR. Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. NPJ Aging Mech Dis 2021; 7:26. [PMID: 34650085 PMCID: PMC8516942 DOI: 10.1038/s41514-021-00079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial dysfunction and bioenergetics failure are common pathological hallmarks in Huntington's disease (HD) and aging. In the present study, we used the YAC128 murine model of HD to examine the effects of mutant huntingtin on mitochondrial parameters related to aging in brain and skeletal muscle. We have conducted a cross-sectional natural history study of mitochondrial DNA changes in the YAC128 mouse. Here, we first show that the mitochondrial volume fraction appears to increase in the axons and dendrite regions adjacent to the striatal neuron cell bodies in old mice. Mitochondrial DNA copy number (mtDNAcn) was used as a proxy measure for mitochondrial biogenesis and function. We observed that the mtDNAcn changes significantly with age and genotype in a tissue-specific manner. We found a positive correlation between aging and the mtDNAcn in striatum and skeletal muscle but not in cortex. Notably, the YAC128 mice had lower mtDNAcn in cortex and skeletal muscle. We further show that mtDNA deletions are present in striatal and skeletal muscle tissue in both young and aged YAC128 and WT mice. Tracking gene expression levels cross-sectionally in mice allowed us to identify contributions of age and genotype to transcriptional variance in mitochondria-related genes. These findings provide insights into the role of mitochondrial dynamics in HD pathogenesis in both brain and skeletal muscle, and suggest that mtDNAcn in skeletal muscle tissue may be a potential biomarker that should be investigated further in human HD.
Collapse
Affiliation(s)
- Kristina Bečanović
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Asghar
- grid.4714.60000 0004 1937 0626Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Izabella Gadawska
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Shiny Sachdeva
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - David Walker
- grid.416553.00000 0000 8589 2327The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Disease, St Paul’s Hospital, Vancouver, BC Canada
| | - Eduardo. R. Lazarowski
- grid.410711.20000 0001 1034 1720Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC USA
| | - Sonia Franciosi
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, BC Canada
| | - Kevin H. J. Park
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada ,grid.253856.f0000 0001 2113 4110Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI USA
| | - Hélène C. F. Côté
- grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Blair R. Leavitt
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
34
|
Ahangar-Sirous R, Poudineh M, Ansari A, Nili A, Dana SMMA, Nasiri Z, Hosseini ZS, Karami D, Mokhtari M, Deravi N. Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:377-398. [PMID: 34579639 DOI: 10.2174/1871527320666210927101257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Age-related neurological disorders [ANDs] involve neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD], the most frequent kind of dementia in elderly people, and Parkinson's disease [PD], and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, Aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works has been done to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.
Collapse
Affiliation(s)
| | | | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ali Nili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | | | - Zahra Nasiri
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Dariush Karami
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran. Iran
| | - Niloofar Deravi
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
35
|
Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:S109-S126. [PMID: 33325385 DOI: 10.3233/jad-201074] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral hypoxia-ischemia can induce a wide spectrum of biologic responses that include depolarization, excitotoxicity, oxidative stress, inflammation, and apoptosis, and result in neurodegeneration. Several adaptive and survival endogenous mechanisms can also be activated giving an opportunity for the affected cells to remain alive, waiting for helper signals that avoid apoptosis. These signals appear to help cells, depending on intensity, chronicity, and proximity to the central hypoxic area of the affected tissue. These mechanisms are present not only in a large list of brain pathologies affecting commonly older individuals, but also in other pathologies such as refractory epilepsies, encephalopathies, or brain trauma, where neurodegenerative features such as cognitive and/or motor deficits sequelae can be developed. The hypoxia inducible factor 1α (HIF-1α) is a master transcription factor driving a wide spectrum cellular response. HIF-1α may induce erythropoietin (EPO) receptor overexpression, which provides the therapeutic opportunity to administer pharmacological doses of EPO to rescue and/or repair affected brain tissue. Intranasal administration of EPO combined with other antioxidant and anti-inflammatory compounds could become an effective therapeutic alternative, to avoid and/or slow down neurodegenerative deterioration without producing adverse peripheral effects.
Collapse
Affiliation(s)
- Amalia Merelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Marisa Repetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica; Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL, UBA-CONICET), Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Jerónimo Auzmendi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
36
|
Galizzi G, Palumbo L, Amato A, Conigliaro A, Nuzzo D, Terzo S, Caruana L, Picone P, Alessandro R, Mulè F, Di Carlo M. Altered insulin pathway compromises mitochondrial function and quality control both in in vitro and in vivo model systems. Mitochondrion 2021; 60:178-188. [PMID: 34454074 DOI: 10.1016/j.mito.2021.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022]
Abstract
Altered insulin signaling and insulin resistance are considered the link between Alzheimer's disease (AD) and metabolic syndrome. Here, by using an in vitro and an in vivo model, we investigated the relationship between these disorders focusing on neuronal mitochondrial dysfunction and mitophagy. In vitro Aβ insult induced the opening of mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (ΔΨm) loss, and apoptosis while insulin addition ameliorated these dysfunctions. The same alterations were detected in a 16 weeks of age mouse model of diet-induced obesity and insulin resistance. In addition, we detected an increase of fission related proteins and activation of mitophagy, proved by the rise of PINK1 and Parkin proteins. Nevertheless, in vitro, the increase of p62 and LC3 indicated an alteration in autophagy, while, in vivo decreased expression of p62 and increase of LC3 suggested removing of damaged mitochondria. Finally, in aged mice (28 and 48 weeks), the data indicated impairment of mitophagy and suggested the accumulation of damaged mitochondria. Taken together these outcomes indicate that alteration of the insulin pathway affects mitochondrial integrity, and effective mitophagy is age-dependent.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Laura Palumbo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy
| | - Alice Conigliaro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (Bi.N.D.), Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy; Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (Bi.N.D) (sez. Anatomia Umana) Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Luca Caruana
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Riccardo Alessandro
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy; Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (Bi.N.D.), Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), CNR, via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
37
|
Morton H, Kshirsagar S, Orlov E, Bunquin LE, Sawant N, Boleng L, George M, Basu T, Ramasubramanian B, Pradeepkiran JA, Kumar S, Vijayan M, Reddy AP, Reddy PH. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radic Biol Med 2021; 172:652-667. [PMID: 34246776 DOI: 10.1016/j.freeradbiomed.2021.07.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. AD is marked by multiple cellular changes, including deregulation of microRNAs, activation of glia and astrocytes, hormonal imbalance, defective mitophagy, synaptic degeneration, in addition to extracellular neuritic amyloid-beta (Aβ) plaques, phosphorylated tau (P-tau), and intracellular neurofibrillary tangles (NFTs). Recent research in AD revealed that defective synaptic mitophagy leads to synaptic degeneration and cognitive dysfunction in AD neurons. Our critical analyses of mitochondria and Aβ and P-tau revealed that increased levels of Aβ and P-Tau, and abnormal interactions between Aβ and Drp1, P-Tau and Drp1 induced increased mitochondrial fragmentation and proliferation of dysfunctional mitochondria in AD neurons and depleted Parkin and PINK1 levels. These events ultimately lead to impaired clearance of dead and/or dying mitochondria in AD neurons. The purpose of our article is to highlight the recent research on mitochondria and synapses in relation to Aβ and P-tau, focusing on recent developments.
Collapse
Affiliation(s)
- Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lloyd E Bunquin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lauren Boleng
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - Mathew George
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Nutritional Science, College of Human Sciences, Texas Tech University, 1301Akron Ave, Lubbock, TX, 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
38
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
39
|
Yan W, Zhang T, Kang Y, Zhang G, Ji X, Feng X, Shi G. Testosterone ameliorates age-related brain mitochondrial dysfunction. Aging (Albany NY) 2021; 13:16229-16247. [PMID: 34139672 PMCID: PMC8266321 DOI: 10.18632/aging.203153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
Brain mitochondrial dysfunction and reduced testosterone levels are common features of aging in men. Although evidence suggests that the two phenomena are interrelated, it is unclear whether testosterone supplementation ameliorates mitochondrial dysfunction in the aging male brain. Here, we show that testosterone supplementation significantly alleviates exploratory behavioral deficits and oxidative damage in the substantia nigra and hippocampus of aging male rats. These effects were consistent with improved mitochondrial function, reflected by testosterone-induced increases in mitochondrial membrane potential (MMP), antioxidant enzyme (GSH-PX, catalase, and Mn-SOD) expression/activity, and mitochondrial respiratory complex activities in both brain regions. Furthermore, elevated PGC-1α, NRF-1, and TFAM expression (suggestive of enhanced mitochondrial biogenesis), increased citrate synthase activity, mtDNA copy number, and ND1, COX1, and ATP6 expression (indicative of increased mitochondrial content), as well as increased PINK1/Parkin and decreased P62 expression (suggesting mitophagy activation), were detected in the substantial nigra and hippocampus of aged male rats after testosterone supplementation. These findings suggest that testosterone supplementation may be a viable approach to ameliorating brain mitochondrial dysfunction and thus prevent or treat cognitive-behavioral deficits and neurodegenerative conditions associated with aging.
Collapse
Affiliation(s)
- Wensheng Yan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xu Feng
- Hebei Laboratory Animal Center, Hebei Medical University, Shijiazhuang, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
Jangampalli Adi P, Reddy PH. Phosphorylated tau targeted small-molecule PROTACs for the treatment of Alzheimer's disease and tauopathies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166162. [PMID: 33940164 DOI: 10.1016/j.bbadis.2021.166162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tau is a microtubule-stabilizing protein that plays an important role in the formation of axonal microtubules in neurons. Phosphorylated tau (p-Tau) has received great attention in the field of Alzheimer's disease (AD) as a potential therapeutic target due to its involvement with synaptic damage and neuronal dysfunction. Mounting evidence suggests that amyloid beta (Aβ)-targeted clinical trials continuously failed; therefore, it is important to consider alternative therapeutic strategies such as p-tau-PROTACs targeted small molecules for AD and other tauopathies. The present article describes the characteristics of tau biology, structure, and function in both healthy and pathological states in AD. It also explains data from studies that have identified the involvement of p-tau in neuronal damage and synaptic and cognitive functions in AD. Current article also covers several aspects, including small molecule inhibitors, and the development of p-tau-PROTACs targeted drug molecules to treat patients with AD and other tauopathies.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
41
|
Vijayan M, Bose C, Reddy PH. Protective effects of a small molecule inhibitor, DDQ against amyloid beta in Alzheimer's disease. Mitochondrion 2021; 59:17-29. [PMID: 33839321 DOI: 10.1016/j.mito.2021.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/20/2023]
Abstract
The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against mutant APP and amyloid-beta (Aβ) in Alzheimer's disease (AD). To achieve our objective, we used a well characterized amyloid-beta precursor protein (APP) transgenic mouse model (Tg2576 strain). We administered DDQ, a 20 mg/kg body weight (previously determined in our laboratory) intra-peritoneally 3-times per week for 2 months, starting at the beginning of the 12th month, until the end of the 14th month. Further, using biochemical and molecular methods, we measured the levels of DDQ in the blood, skeletal muscle, and brain. Using Morris Water Maze, Y-maze, open field, and rotarod tests, we assessed cognitive behavior after DDQ treatment. Using q-RT-PCR, immunoblotting, transmission electron microscopy, and Golgi-cox staining methods, we studied mRNA and protein levels of longevity genes SIRTUINS, mitochondrial number & length, and dendritic spine number and length in DDQ-treated APP mice. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Our behavioral analysis of rotarod, open field, Y-maze, and Morris Water Maze tests revealed that DDQ ameliorated cognitive decline (Morris Water Maze), improved working memory (Y-Maze), exploratory behavior (open field), and motor coordination (rotarod) in DDQ-treated APP mice. Interestingly, longevity genes SIRTUINS, mitochondrial biogenesis, fusion, mitophagy, autophagy and synaptic genes were upregulated in DDQ-treated APP mice relative to untreated APP mice. Dendritic spines and the quality mitochondria were significantly increased in DDQ treated APP mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging, and anti-amyloid-beta effects and a promising molecule to reduce age-and amyloid-beta-induced toxicities in AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
42
|
Varshney V, Garabadu D. Ang (1-7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer's disease-like rats. Neuropeptides 2021; 86:102122. [PMID: 33508525 DOI: 10.1016/j.npep.2021.102122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/31/2022]
Abstract
Renin Angiotensin System plays significant role in the memory acquisition and consolidation apart from its hemodynamic function in the pathophysiology of Alzheimer's disease (AD). It has been reported that Ang (1-7) ameliorates the cognitive impairment in experimental animals. However, the effect of Ang (1-7)/Mas receptor signaling is yet to be explored in Aβ42-induced memory impairment. Aβ42 was intracerebroventricularly injected into the male rats on day-1 (D-1) of the experimental schedule of 14 days. All the drugs were administered from D-1 to D-14 in the study design. Aβ42 significantly increased the escape latency during Morris water maze (MWM) test on D-10 to13 in the animals. Further, Aβ42 significantly decreased the time spent and percentage of total distance travelled in the target quadrant of the rats on D-14 in the MWM test. Aβ42 also significantly decreased the spontaneous alteration behavior on D-14 during Y-maze test. Moreover, there was a significant increase in the level of Aβ42, decrease in the cholinergic function (in terms of decreased acetylcholine and activity of cholinesterase, and increased activity of acetylcholinesterase), mitochondrial function, integrity and bioenergetics, and apoptosis in all the rat brain regions. Further, Aβ42 significantly decreased the level of expression of heme oxygenase-1 in all the rat brain regions. Ang (1-7) attenuated Aβ42-induced changes in the behavioral, biochemical and molecular observations in all the selected rat brain regions. However, A779, Mas receptor blocker, significantly abolished the beneficial effects of Ang (1-7) in Aβ42-induced cognitive deficit animals. These observations clearly indicate that the Ang (1-7)/Mas receptor activation could be a potential alternative option in the management of AD.
Collapse
Affiliation(s)
- Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281 406, India.
| |
Collapse
|
43
|
Carvalho C, Cardoso S. Diabetes-Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxid Redox Signal 2021; 34:631-649. [PMID: 32098477 DOI: 10.1089/ars.2020.8056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: It is of common sense that the world population is aging and life expectancy is increasing. However, as the population ages, there is also an exponential risk to live into the ages where the brain-related frailties and neurodegenerative diseases develop. Hand in hand with those events, the world is witnessing a major upsurge in diabetes diagnostics. Remarkably, all of this seems to be narrowly related, and clinical and research communities highlight for the upcoming threat that it will represent for the present and future generations. Recent Advances: It is of utmost importance to clarify the influence of diabetes-related metabolic features on brain health and the mechanisms underlying the increased likelihood of developing neurodegenerative diseases, in particular Alzheimer's disease. Thereupon, a wealth of evidence suggests that mitochondria and associated oxidative stress are at the root of the link between diabetes and co-occurring disorders in the brain. Critical Issues: The scientific community has been challenged with constant failures of clinical trials raising major issues in the advance of the therapeutic field to fight chronic diseases epidemics. Thus, a change of paradigms is urgently needed. Future Directions: It has become urgent to identify new and solid candidates able to clinically reproduce the positive outcomes obtained in preclinical studies. On this basis, strategies settled to counteract diabetes-induced neurodegeneration encompassing mitochondrial dysfunction, redox status imbalance, and/or insulin dysregulation seem worth to follow. Hopefully, ongoing innovative research based on reliable experimental tools will soon bring the desired answers allowing pharmaceutical industry to apply such knowledge to human medicine.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Caicedo A, Zambrano K, Sanon S, Gavilanes AWD. Extracellular mitochondria in the cerebrospinal fluid (CSF): Potential types and key roles in central nervous system (CNS) physiology and pathogenesis. Mitochondrion 2021; 58:255-269. [PMID: 33662579 DOI: 10.1016/j.mito.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
The cerebrospinal fluid (CSF) has an important role in the transport of nutrients and signaling molecules to the central nervous and immune systems through its circulation along the brain and spinal cord tissues. The mitochondrial activity in the central nervous system (CNS) is essential in processes such as neuroplasticity, neural differentiation and production of neurotransmitters. Interestingly, extracellular and active mitochondria have been detected in the CSF where they act as a biomarker for the outcome of pathologies such as subarachnoid hemorrhage and delayed cerebral ischemia. Additionally, cell-free-circulating mitochondrial DNA (ccf-mtDNA) has been detected in both the CSF of healthy donors and in that of patients with neurodegenerative diseases. Key questions arise as there is still much debate regarding if ccf-mtDNA detected in CSF is associated with a diversity of active or inactive extracellular mitochondria coexisting in distinct pathologies. Additionally, it is of great scientific and medical importance to identify the role of extracellular mitochondria (active and inactive) in the CSF and the difference between them being damage associated molecular patterns (DAMPs) or factors that promote homeostasis. This review analyzes the different types of extracellular mitochondria, methods for their identification and their presence in CSF. Extracellular mitochondria in the CSF could have an important implication in health and disease, which may lead to the development of medical approaches that utilize mitochondria as therapeutic agents.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Cornell University, Ithaca, United States
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
45
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
46
|
Ganji R, Reddy PH. Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases. Front Aging Neurosci 2021; 12:614650. [PMID: 33510633 PMCID: PMC7835331 DOI: 10.3389/fnagi.2020.614650] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has become a deadly pandemic with surging mortality rates and no cure. COVID-19 is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) with a range of clinical symptoms, including cough, fever, chills, headache, shortness of breath, difficulty breathing, muscle pain, and a loss of smell or taste. Aged individuals with compromised immunity are highly susceptible to COVID-19 and the likelihood of mortality increases with age and the presence of comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, or chronic obstructive pulmonary disease. Emerging evidence suggests that COVID-19 highjacks mitochondria of immune cells, replicates within mitochondrial structures, and impairs mitochondrial dynamics leading to cell death. Mitochondria are the powerhouses of the cell and are largely involved in maintaining cell immunity, homeostasis, and cell survival/death. Increasing evidence suggests that mitochondria from COVID-19 infected cells are highly vulnerable, and vulnerability increases with age. The purpose of our article is to summarize the role of various age-related comorbidities such as diabetes, obesity, and neurological diseases in increasing mortality rates amongst the elderly with COVID-19. Our article also highlights the interaction between coronavirus and mitochondrial dynamics in immune cells. We also highlight the current treatments, lifestyles, and safety measures that can help protect against COVID-19. Further research is urgently needed to understand the molecular mechanisms between the mitochondrial virus and disease progression in COVID-19 patients.
Collapse
Affiliation(s)
- Riya Ganji
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Departments of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
47
|
Tran M, Reddy PH. Defective Autophagy and Mitophagy in Aging and Alzheimer's Disease. Front Neurosci 2021; 14:612757. [PMID: 33488352 PMCID: PMC7820371 DOI: 10.3389/fnins.2020.612757] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is the time-dependent process that all living organisms go through characterized by declining physiological function due to alterations in metabolic and molecular pathways. Many decades of research have been devoted to uncovering the cellular changes and progression of aging and have revealed that not all organisms with the same chronological age exhibit the same age-related declines in physiological function. In assessing biological age, factors such as epigenetic changes, telomere length, oxidative damage, and mitochondrial dysfunction in rescue mechanisms such as autophagy all play major roles. Recent studies have focused on autophagy dysfunction in aging, particularly on mitophagy due to its major role in energy generation and reactive oxidative species generation of mitochondria. Mitophagy has been implicated in playing a role in the pathogenesis of many age-related diseases, including Alzheimer's disease (AD), Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The purpose of our article is to highlight the mechanisms of autophagy and mitophagy and how defects in these pathways contribute to the physiological markers of aging and AD. This article also discusses how mitochondrial dysfunction, abnormal mitochondrial dynamics, impaired biogenesis, and defective mitophagy are related to aging and AD progression. This article highlights recent studies of amyloid beta and phosphorylated tau in relation to autophagy and mitophagy in AD.
Collapse
Affiliation(s)
- Michael Tran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
48
|
John A, Reddy PH. Synaptic basis of Alzheimer's disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev 2021; 65:101208. [PMID: 33157321 PMCID: PMC7770124 DOI: 10.1016/j.arr.2020.101208] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive and synaptic failure disease. Despite the many years of research, AD still harbors many secrets. As more of the world's population grows older, researchers are striving to find greater information on disease progression and pathogenesis. Identifying and treating the markers of this disease, or better yet, preventing it all together, are the hopes of those investing in this field of study. Several years of research revealed that synaptic pathology and mitochondrial oxidative damage are early events in disease progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. As the disease progresses, there are significant changes at the synapse. These changes can both shed greater light onto the progression of the disease and serve as markers and therapeutic targets. This article addresses the mechanisms of synaptic action, mitochondrial regulation/dysregulation, resulting synaptic changes caused by amyloid beta and phosphorylated tau in AD progression. This article also highlights recent developments of risk factors, genetics and ApoE4 involvement, factors related to synaptic damage and loss, mislocalization of amyloid beta and phosphorylated tau, mitophagy, microglial activation and synapse-based therapies in AD. Furthermore, impairments in LTD and reactivation of microglia are discussed.
Collapse
Affiliation(s)
- Albin John
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
49
|
The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3232869. [PMID: 33193999 PMCID: PMC7641266 DOI: 10.1155/2020/3232869] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases including Alzheimer's disease and Parkinson's disease are aging-associated diseases with irreversible damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases. Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing the basis for novel strategies of clinical diagnosis and treatment.
Collapse
|
50
|
Semwal BC, Garabadu D. 5-N-ethyl Carboxamidoadenosine Stimulates Adenosine-2b Receptor-Mediated Mitogen-Activated Protein Kinase Pathway to Improve Brain Mitochondrial Function in Amyloid Beta-Induced Cognitive Deficit Mice. Neuromolecular Med 2020; 22:542-556. [PMID: 32926328 DOI: 10.1007/s12017-020-08615-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss in memory as one of the cardinal features. 5-N-ethyl carboxamidoadenosine (NECA), an agonist of adenosine-2b receptor, exerts neuroprotective activity against several experimental conditions. Further, NECA activates mitogen-activated protein kinase (MAPK) and also attenuates mitochondrial toxicity in mammalian tissues other than brain. Moreover, there is no report on the role of A2b/MAPK-mediated signaling pathway in Aβ-induced mitochondrial toxicity in the brain of the experimental animals. Therefore, the present study evaluated the neuroprotective activity of NECA with or without MAPK inhibitor against Aβ-induced cognitive deficit and mitochondrial toxicity in the experimental rodents. Further, the effect of NECA with or without MAPK inhibitor was evaluated on Aβ-induced mitochondrial toxicity in the memory-sensitive mice brain regions. Intracerebroventricular (ICV) injection of Aβ 1-42 was injected to healthy male mice through Hamilton syringe via polyethylene tube to induce AD-like behavioral manifestations. NECA attenuated Aβ-induced cognitive impairments in the rodents. In addition, NECA ameliorated Aβ-induced Aβ accumulation and cholinergic dysfunction in the selected memory-sensitive mouse HIP, PFC, and AMY. Further, NECA significantly attenuated Aβ-induced mitochondrial toxicity in terms of decrease in the mitochondrial function, integrity, and bioenergetics in the brain regions of these animals. However, MAPKI diminished the therapeutic effects of NECA on behavioral, biochemical, and molecular observations in AD-like animals. Therefore, it can be speculated that NECA exhibits neuroprotective activity perhaps through MAPK activation in AD-like rodents. Moreover, A2b-mediated MAPK activation could be a promising target in the management of AD.
Collapse
Affiliation(s)
- Bhupesh Chandra Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|