1
|
Merza Mohammad TA, Al-Haideri M, Azeez Al-Naqshabandi A. Decoding the immune Response: Analyzing PBMCs in ischemic stroke and Evaluating the effects of Rivaroxaban on gene expression. Hum Immunol 2025; 86:111252. [PMID: 39903995 DOI: 10.1016/j.humimm.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Ischemic stroke (IS) is primarily caused by intricate inflammatory pathways and is a major global reason for mortality and disability. Patients with atrial fibrillation are treated with Rivaroxaban, a direct factor Xa inhibitor, to avoid stroke. This study looks at how certain genes are expressed in individuals with IS and how Rivaroxaban affects these genes and proteins. METHODS Using gene expression data from the GEO database, dysregulated genes in IS patients were found. Peripheral blood mononuclear cells from 50 IS patients were used to measure the expression of CXCL8, CXCL2, and G0S2 90 days before and after Rivaroxaban therapy using RT-PCR and ELISA. The Enrichr online tool was used to perform a functional enrichment analysis. RESULTS GEO2R analysis revealed that CXCL8, CXCL2, and G0S2 were significantly upregulated in IS samples compared to controls. Following Rivaroxaban therapy, the mRNA and protein levels of these genes showed a marked reduction, indicating a potential anti-inflammatory effect. CONCLUSION Rivaroxaban may control inflammatory responses in patients with IS, according to the study, which also reveals important genes implicated in IS. These results demonstrate the possibility of focused treatment approaches to reduce inflammation brought on by stroke.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- College of pharmacy Hawler Medical University Kurdistan region Iraq; University of Kurdistan Hewlêr (UKH) School of Medicine/ pharmacy department Kurdistan Region-Erbil Iraq.
| | - Maysoon Al-Haideri
- University of Kurdistan Hewlêr (UKH) School of Medicine/ pharmacy department Kurdistan Region-Erbil Iraq
| | | |
Collapse
|
2
|
Sarallah R, Jahani S, Soltani Khaboushan A, Moaveni AK, Amiri M, Majidi Zolbin M. The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases. Brain Behav Immun Health 2025; 43:100932. [PMID: 39834554 PMCID: PMC11743895 DOI: 10.1016/j.bbih.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies. In AD, dysregulation of this axis contributes to amyloid-β accumulation and tau hyperphosphorylation, leading to synaptic dysfunction and cognitive decline. PD studies reveal that CXCL12/CXCR4 signaling influences dopaminergic neuron survival and microglial activation, affecting cognitive function. In MS, the axis modulates neuroinflammation and demyelination processes, impacting cognitive performance. ALS research indicates that the CXCL12/CXCR4/CXCR7 pathway is involved in motor neuron degeneration and associated cognitive deficits. Across these diseases, the axis influences neuroinflammation, synaptic plasticity, and neuronal survival through various signaling cascades, including PI3K/AKT, MAPK, and JAK/STAT pathways. Emerging evidence suggests that modulating this axis could provide neuroprotective effects and potentially alleviate cognitive symptoms. This review highlights the potential of the CXCL12/CXCR4/CXCR7 axis as a therapeutic target for addressing CI in neurodegenerative diseases. It also underscores the need for further research to fully elucidate its role and develop effective interventions, potentially leading to improved clinical management strategies for these devastating disorders.
Collapse
Affiliation(s)
| | - Shima Jahani
- MS Research Center Neuroscience Institute, Tehran University of Medical Science, Iran
| | - Alireza Soltani Khaboushan
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pedrosa RMSM, Kros JM, Schrijver B, Berrevoets C, Marques RB, van Eijck CCHJ, Debets R, Leenen PM, Dik WA, Mustafa DM. T lymphocyte-derived IFN-γ facilitates breast cancer cells to pass the blood-brain barrier: An in vitro study corroborating translational data. Heliyon 2024; 10:e36598. [PMID: 39262976 PMCID: PMC11388388 DOI: 10.1016/j.heliyon.2024.e36598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
The appearance of brain metastasis is the most serious complication of breast cancer with mostly fatal outcomes. To reach the brain, tumor cells need to pass the blood-brain barrier (BBB). The molecular mechanisms underlying penetration of the BBB are largely unknown. Previously we found that tumor-infiltrating T lymphocytes enhance the development of brain metastasis of estrogen receptor-negative (ER-) breast cancer. In the current study, we investigate the contribution of T lymphocytes and the IFN-γ pathway in enabling breast cancer cells to pass the in vitro BBB. CD8+ cells display the strongest stimulatory effect on breast cancer cell passage. We show that inhibition of the IFN-γ receptor in MDA-MB-231 breast cancer cells, or neutralization of soluble IFN-γ, impairs the in vitro trespassing of breast cancer cells. Importantly, we validated our findings using gene expression data of breast cancer patients. The CXCL-9,-10,-11/CXCR3 axis, dependent on IFN-γ signaling activity, was overexpressed in primary breast cancer samples of patients who developed brain metastasis. The data support a role for T-lymphocytes and the IFN-γ pathway in the formation of brain metastasis of ER-breast cancer, and offer targets to design future therapies for preventing breast cancer cells to cross the BBB.
Collapse
Affiliation(s)
- Rute M S M Pedrosa
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Benjamin Schrijver
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rute B Marques
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Reno Debets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - PieterJ M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - DanaA M Mustafa
- Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Pajarillo E, Nyarko-Danquah I, Digman A, Vied C, Son DS, Lee J, Aschner M, Lee E. Astrocytic Yin Yang 1 is critical for murine brain development and protection against apoptosis, oxidative stress, and inflammation. Glia 2023; 71:450-466. [PMID: 36300569 PMCID: PMC9772165 DOI: 10.1002/glia.24286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA 32306
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA 37208
| | - Jayden Lee
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, USA 02215
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA, 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| |
Collapse
|
5
|
Lv N, Wang Y, Liu Y, Tang J, Lei Q, Wang Y, Wei H. Decreased Microglia in Pax2 Mutant Mice Leads to Impaired Learning and Memory. ACS Chem Neurosci 2022; 13:2490-2502. [PMID: 35929805 DOI: 10.1021/acschemneuro.2c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Impaired learning and memory ability is one of the characteristics of a variety of neurological diseases, and its molecular mechanisms are complex and diverse and are regulated by a variety of factors. It is generally believed that synaptic plasticity plays an important role in the process of learning and memory. The protein encoded by the Pax2 gene is a transcription factor involved in neuron migration and cell fate determination during neural development. Mice knocked out of BDNF in the Pax2 lineage-derived interneuron precursor exhibited learning disabilities and severe cognitive impairment. In this study, Pax2 heterozygous gene (Pax2+/- mice) deletion mice were used as the research objects and behavioral tests were used to observe the effect of Pax2 gene deletion on learning and memory ability; morphological and molecular biological methods were used to observe the effect of Pax2 gene deletion on the neural structure. Single-cell transcriptome sequencing was used to observe the cell subtypes and differentially expressed genes (DEGs) and signaling pathways affected by Pax2 gene deletion and the possible molecular mechanisms. The results showed that Pax2+/- mice had impaired learning and memory ability, abnormal synaptic structure, and significantly reduced number of microglia clusters, and DEGs were associated with pro-inflammatory chemokines. Finally, we speculate that Pax2 gene deletion may lead to abnormal chemokines and chemokine receptors by affecting microglia.
Collapse
Affiliation(s)
- Na Lv
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030012, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Yongfeng Liu
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Jiaming Tang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Graduate College, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Qiang Lei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030012, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Yizhuo Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| |
Collapse
|
6
|
van Aalst E, Wylie BJ. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. Front Mol Biosci 2021; 8:724603. [PMID: 34490352 PMCID: PMC8417553 DOI: 10.3389/fmolb.2021.724603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Cholesterol as an allosteric modulator of G protein-coupled receptor (GPCR) function is well documented. This quintessential mammalian lipid facilitates receptor–ligand interactions and multimerization states. Functionally, this introduces a complicated mechanism for the homeostatic modulation of GPCR signaling. Chemokine receptors are Class A GPCRs responsible for immune cell trafficking through the binding of endogenous peptide ligands. CCR3 is a CC motif chemokine receptor expressed by eosinophils and basophils. It traffics these cells by transducing the signal stimulated by the CC motif chemokine primary messengers 11, 24, and 26. These behaviors are close to the human immunoresponse. Thus, CCR3 is implicated in cancer metastasis and inflammatory conditions. However, there is a paucity of experimental evidence linking the functional states of CCR3 to the molecular mechanisms of cholesterol–receptor cooperativity. In this vein, we present a means to combine codon harmonization and a maltose-binding protein fusion tag to produce CCR3 from E. coli. This technique yields ∼2.6 mg of functional GPCR per liter of minimal media. We leveraged this protein production capability to investigate the effects of cholesterol on CCR3 function in vitro. We found that affinity for the endogenous ligand CCL11 increases in a dose-dependent manner with cholesterol concentration in both styrene:maleic acid lipid particles (SMALPs) and proteoliposomes. This heightened receptor activation directly translates to increased signal transduction as measured by the GTPase activity of the bound G-protein α inhibitory subunit 3 (Gαi3). This work represents a critical step forward in understanding the role of cholesterol-GPCR allostery in regulation of signal transduction.
Collapse
Affiliation(s)
- Evan van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
7
|
Ahearn OC, Watson MN, Rawls SM. Chemokines, cytokines and substance use disorders. Drug Alcohol Depend 2021; 220:108511. [PMID: 33465606 PMCID: PMC7889725 DOI: 10.1016/j.drugalcdep.2021.108511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
Efficacious pharmacotherapies for the treatment of substance use disorders need to be expanded and improved. Non-neuronal cells, particularly astrocytes and microglia, have emerged as therapeutic targets for the development of pharmacotherapies to treat dependence and relapse that accompanies chronic drug use. Cytokines and chemokines are neuroimmune factors expressed in neurons, astrocytes, and microglia that demonstrate promising clinical utility as therapeutic targets for substance use disorders. In this review, we describe a role for cytokines and chemokines in the rewarding and reinforcing effects of alcohol, opioids, and psychostimulants. We also discuss emerging cytokine- and chemokine-based therapeutic strategies that differ from conventional strategies directed toward transporters and receptors within the dopamine, glutamate, GABA, serotonin, and GABA systems.
Collapse
Affiliation(s)
- Olivia C. Ahearn
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA
| | - Mia N. Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University Philadelphia, PA, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
10
|
Chang GQ, Collier AD, Karatayev O, Gulati G, Boorgu DSSK, Leibowitz SF. Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring. Alcohol Clin Exp Res 2020; 44:866-879. [PMID: 32020622 DOI: 10.1111/acer.14296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prenatal exposure to ethanol (EtOH) has lasting effects on neuropeptide and neuroimmune systems in the brain alongside detrimental alcohol-related behaviors. At low-to-moderate doses, prenatal EtOH stimulates neurogenesis in lateral hypothalamus (LH) and increases neurons that express the orexigenic peptides hypocretin/orexin (Hcrt/OX) and melanin-concentrating hormone (MCH), and the proinflammatory chemokine CCL2, which through its receptor CCR2 stimulates cell differentiation and movement. Our recent studies demonstrated that CCL2 and CCR2 colocalize with MCH neurons and are involved in EtOH's stimulatory effect on their development but show no relation to Hcrt/OX. Here, we investigated another chemokine, CXCL12, and its receptor, CXCR4, which promote neurogenesis and neuroprogenitor cell proliferation, to determine if they also exhibit peptide specificity in their response to EtOH exposure. METHODS Pregnant rats were intraorally administered a moderate dose of EtOH (2 g/kg/d) from embryonic day 10 (E10) to E15. Their embryos and postnatal offspring were examined using real-time quantitative PCR and immunofluorescence histochemistry, to determine if EtOH affects CXCL12 and CXCR4 and the colocalization of CXCR4 with Hcrt/OX and MCH neurons in the LH and with radial glia neuroprogenitor cells in the hypothalamic neuroepithelium (NEP). RESULTS Prenatal EtOH strongly stimulated CXCL12 and CXCR4 in LH neurons of embryos and postnatal offspring. This stimulation was significantly stronger in Hcrt/OX than MCH neurons in LH and also occurred in radial glia neuroprogenitor cells dense in the NEP. These effects were sexually dimorphic, consistently stronger in females than males. CONCLUSIONS While showing prenatal EtOH exposure to have a sexually dimorphic, stimulatory effect on CXCL12 and CXCR4 in LH similar to CCL2 and its receptor, these results reveal their distinct relationship to the peptide neurons, with the former closely related to Hcrt/OX and the latter to MCH, and they link EtOH's actions in LH to a stimulatory effect on neuroprogenitor cells in the NEP.
Collapse
Affiliation(s)
- Guo-Qing Chang
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Adam D Collier
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Olga Karatayev
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | - Gazal Gulati
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| | | | - Sarah F Leibowitz
- From the, Laboratory of Behavioral Neurobiology, (GQC, ADC, OK, GG, SFL), The Rockefeller University, New York, New York
| |
Collapse
|
11
|
Mei M, Zhou Y, Liu M, Zhao F, Wang C, Ding J, Lu M, Hu G. Antioxidant and anti-inflammatory effects of dexrazoxane on dopaminergic neuron degeneration in rodent models of Parkinson's disease. Neuropharmacology 2019; 160:107758. [DOI: 10.1016/j.neuropharm.2019.107758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/04/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
|
12
|
Vidaña B, Johnson N, Fooks AR, Sánchez‐Cordón PJ, Hicks DJ, Nuñez A. West Nile Virus spread and differential chemokine response in the central nervous system of mice: Role in pathogenic mechanisms of encephalitis. Transbound Emerg Dis 2019; 67:799-810. [DOI: 10.1111/tbed.13401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Beatriz Vidaña
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency APHA,‐Weybridge AddlestoneKT15 3NBUK
| | - Anthony R. Fooks
- Virology Department, Animal and Plant Health Agency APHA,‐Weybridge AddlestoneKT15 3NBUK
| | | | - Daniel J. Hicks
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| | - Alejandro Nuñez
- Pathology Department, Animal and Plant Health Agency APHA‐Weybridge AddlestoneKT15 3NBUK
| |
Collapse
|
13
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 Chemokine System in Embryonic Hypothalamus: Involvement in Sexually Dimorphic Stimulatory Effects of Prenatal Ethanol Exposure on Peptide-Expressing Neurons. Neuroscience 2019; 424:155-171. [PMID: 31705896 DOI: 10.1016/j.neuroscience.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 µg/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females.
Collapse
|
14
|
Valiati FE, Hizo GH, Pinto JV, Kauer-Sant`Anna M. The Possible Role of Telomere Length and Chemokines in the Aging Process: A Transdiagnostic Review in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190719155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Psychiatric disorders are common, reaching a worldwide prevalence of 29.2%. They are associated with a high risk of premature death and with accelerated aging in clinical, molecular and neuroimaging studies. Recently, there is strong evidence suggesting a possible role of telomere length and chemokines in aging processes in psychiatric disorders.Objective:We aimed to review the literature on telomere length and chemokines and its association with early aging in mental illnesses on a transdiagnostic approach.Results:The review highlights the association between psychiatric disorders and early aging. Several independent studies have reported shorter telomere length and dysregulations on levels of circulating chemokines in schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders, suggesting a complex interaction between these markers in a transdiagnostic level. However, studies have investigated the inflammatory markers and telomere shortening separately and associated with a particular diagnosis, rather than as a transdiagnostic biological feature.Conclusion:There is consistent evidence supporting the relationship between accelerated aging, telomere length, and chemokines in mental disorders, but they have been studied individually. Thus, more research is needed to improve the knowledge of accelerated senescence and its biomarkers in psychiatry, not only individually in each diagnosis, but also based on a transdiagnostic perspective. Moreover, further research should try to elucidate how the intricate association between the chemokines and telomeres together may contribute to the aging process in psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Márcia Kauer-Sant`Anna
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
15
|
Sun C, Zhu L, Ma R, Ren J, Wang J, Gao S, Yang D, Ning K, Ling B, Lu B, Chen X, Xu J. Astrocytic miR-324-5p is essential for synaptic formation by suppressing the secretion of CCL5 from astrocytes. Cell Death Dis 2019; 10:141. [PMID: 30760705 PMCID: PMC6374376 DOI: 10.1038/s41419-019-1329-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/01/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
There is accumulating evidence that astrocytes play an important role in synaptic formation, plasticity, and pruning. Dicer and the fine-tuning of microRNA (miRNA) network are important for maintaining the normal functions of central nervous system and dysregulation of miRNAs is implicated in neurological disorders. However, little is known about the role of Dicer and miRNAs of astrocytes in the homeostasis of synapse as well as its plasticity. By selectively deleting Dicer in postnatal astrocytes, Dicer-deficient mice exhibited reactive astrogliosis and deficits in dendritic spine formation. Astrocyte-conditioned medium (ACM) collected from Dicer-null astrocytes caused synapse degeneration in cultured primary neurons. The expression of chemokine ligand 5 (CCL5) elevated in Dicer-deleted astrocytes which led to the significant augmentation of secreted CCL5 in ACM. In neurons treated with Dicer KO-ACM, CCL5 supplementation inhibited MAPK/CREB signaling pathway and exacerbated the synaptic formation deficiency, while CCL5 knockdown partially rescued the synapse degeneration. Moreover, we validated CCL5 as miR-324-5p targeted gene. ACM collected from miR-324-5p antagomir-transfected astrocytes mimicked the effect of CCL5 treatment on inhibiting synapse formation and MAPK/CREB signaling in Dicer KO-ACM-cocultured neurons. Furthermore, decreased miR-324-5p expression and elevated CCL5 expression were observed in the brain of aging mice. Our work reveals the non-cell-autonomous roles of astroglial miRNAs in regulation of astrocytic secretory milieu and neuronal synaptogenesis, implicating the loss or misregulation of astroglial miRNA network may contribute to neuroinflammation, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Chenxi Sun
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Zhu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongjie Ma
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Ren
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, Kunming, China.
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xu Chen
- Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Rahman MH, Kim MS, Lee IK, Yu R, Suk K. Interglial Crosstalk in Obesity-Induced Hypothalamic Inflammation. Front Neurosci 2018; 12:939. [PMID: 30618568 PMCID: PMC6300514 DOI: 10.3389/fnins.2018.00939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022] Open
Abstract
Glial cells have recently gained particular attention for their close involvement in neuroinflammation and metabolic disorders including obesity and diabetes. In the central nervous system (CNS), different types of resident glial cells have been documented to express several signaling molecules and related receptors, and their crosstalks have been implicated in physiology and pathology of the CNS. Emerging evidence illustrates that malfunctioning glia and their products are an important component of hypothalamic inflammation. Recent studies have suggested that glia–glia crosstalk is a pivotal mechanism of overnutrition-induced chronic hypothalamic inflammation, which might be intrinsically associated with obesity/diabetes and their pathological consequences. This review covers the recent advances in the molecular aspects of interglial crosstalk in hypothalamic inflammation, proposing a central role of such a crosstalk in the development of obesity, diabetes, and related complications. Finally, we discuss the possibilities and challenges of targeting glial cells and their crosstalk for a better understanding of hypothalamic inflammation and related metabolic dysfunctions.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Koper OM, Kamińska J, Grygorczuk S, Zajkowska J, Kemona H. CXCL9 concentrations in cerebrospinal fluid and serum of patients with tick-borne encephalitis. Arch Med Sci 2018; 14:313-320. [PMID: 29593804 PMCID: PMC5868655 DOI: 10.5114/aoms.2016.58667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The aim of our current study was to evaluate cerebrospinal fluid (CSF) and serum CXCL9 concentrations and diagnostic usefulness of this molecule in tick-borne encephalitis (TBE). The study included TBE patients in the acute phase (TBE I) and after 2 weeks of follow-up (TBE II). The control group consisted of patients investigated for suspected central nervous system (CNS) infection, but with normal CSF findings. MATERIAL AND METHODS Concentrations of CXCL9 were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Cerebrospinal fluid and serum concentrations of CXCL9 in patients with TBE were significantly higher than in controls (p < 0.001). This alteration was also observed in the case of the CXCL9 index (ICXCL9; CSF CXCL9 concentration divided by serum CXCL9 concentration) (p < 0.001); moreover, ICXCL9 significantly decreased after 2 weeks (p < 0.001). This is the first study to evaluate the CSF and serum levels of CXCL9 in subjects with TBE. CONCLUSIONS CXCL9 is a ligand for CXCR3, which was found on all Th1 memory lymphocytes present in the peripheral blood; therefore the elevated concentrations of CXCL9 in TBE patients as compared to the controls might indicate that this chemokine perhaps takes part in the trafficking of Th1 cells into the CNS. The results presented here support the hypothesis that CXCL9 may play a role in TBE. However, further studies are required to determine whether this protein might be used as a potential tool for the diagnosis and monitoring of inflammation in TBE.
Collapse
Affiliation(s)
- Olga M. Koper
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Halina Kemona
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Sanchez NS, Quinn KE, Ashley AK, Ashley RL. In the ovine pituitary, CXCR4 is localized in gonadotropes and somatotropes and increases with elevated serum progesterone. Domest Anim Endocrinol 2018; 62:88-97. [PMID: 29157995 PMCID: PMC5728413 DOI: 10.1016/j.domaniend.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
The pituitary is the central endocrine regulator of reproduction and in addition to various hormones regulating its actions, other molecules, such as chemokines, influence pituitary physiology as well. Despite reports over 2 decades ago that chemokines regulate the pituitary, much of the basic biology discerning chemokine action in the pituitary is unclear. A small number of chemokines and their receptors have been localized to the pituitary, yet chemokine ligand 12 (CXCL12) and its receptor, CXCR4, have received the most attention as both are increased in human pituitary adenomas. This chemokine duo was also reported in normal human and rat pituitary, suggestive of a functional role and that this chemokine axis might function in pituitaries from other mammalian species. To date, reports of CXCL12 and CXCR4 in pituitary from livestock are lacking, and research on pituitary during pregnancy in any mammalian species is limited. Moreover, progesterone regulates CXCR4 expression in a tissue-dependent manner, but whether differing concentrations of progesterone reaching the pituitary modulate CXCL12 or CXCR4 is not known. To address these gaps, our first objective was to determine if CXCL12 and CXCR4 expression and protein abundance differ in sheep pituitary during early gestation (days 20, 25, and 30 of gestation) compared to nonpregnant ewes. The second objective was to determine if CXCL12 or CXCR4 production was altered in the ovine pituitary when circulating progesterone concentrations are elevated. The expression of CXCL12 messenger RNA decreased on day 20 of gestation compared to nonpregnant ewes; CXCL12 protein was similar across all days tested. In nonpregnant and pregnant ewes, CXCR4 was localized to somatotropes and gonadotropes on all days tested. Abundance of CXCR4 increased in the pituitary tissue of pregnant ewes with elevated circulating progesterone compared with pregnant ewes with normal circulating progesterone concentrations (control). The present study details CXCL12 and CXCR4 in normal ovine pituitary and reveals that gonadotropes and somatotropes may be regulated by CXCL12/CXCR4, underscoring this signaling axis as a potential new class of modulator in endocrine functions.
Collapse
Affiliation(s)
- N S Sanchez
- Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, NM 88003, USA
| | - K E Quinn
- Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, NM 88003, USA
| | - A K Ashley
- Department of Chemistry and Biochemistry, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, NM 88003, USA
| | - R L Ashley
- Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, NM 88003, USA.
| |
Collapse
|
19
|
Murta V, Ferrari C. Peripheral Inflammation and Demyelinating Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:263-285. [PMID: 27714694 DOI: 10.1007/978-3-319-40764-7_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform "primed" microglia into an "active" state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Ferrari
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Zhang G, Wang J, Yao G, Shi B. Downregulation of CCL2 induced by the upregulation of microRNA-206 is associated with the severity of HEV71 encephalitis. Mol Med Rep 2017; 16:4620-4626. [PMID: 28765968 PMCID: PMC5647018 DOI: 10.3892/mmr.2017.7142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have been investigated widely as key regulators of gene expression in different diseases by affecting the miRNA‑mediated regulatory function. Human enterovirus 71 (HEV71) can cause a series of human diseases, including encephalitis. Chemokine (C‑C motif) ligand 2 (CCL2) is one of the important genes involved in regulating inflammation. However, the mechanisms underlying HEV71 encephalitis mediated by CCL2 remain to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression level of miR‑206 and the mRNA expression of CCL2 in samples. Western blot analysis was used to detect the protein levels of CCL2. A luciferase assay was used to verify the miR‑206 target site in CCL2. A CCK‑8 assay and flow cytometry were used to determine cell proliferation and apoptosis. The results demonstrated that miR‑206 was downregulated in severe HEV71 encephalitis. Using bioinformatics analysis, miR‑206 was predicted to target the human CCL2 3'‑untranslated region (3'‑UTR). A dual‑luciferase assay demonstrated that miR‑206 downregulated the expression of CCL2 by directly targeting its 3'‑UTR, whereas CCL2 3'‑UTR mutations completely eliminated its interaction with miR‑206. The expression levels of miR‑206 and CCL2 were inversely correlated in cerebrospinal fluid. The expression of exogenous miRNA, which mimicked miR‑206 miRNA, decreased the protein and mRNA levels of CCL2, whereas the suppression of endogenous miR‑206 resulted in an increase of the protein and mRNA levels of CCL2. The present study also found that miR‑206 promoted NPC cell proliferation and reduced the apoptosis of NPC cells via CCL2. The mechanism is likely to involve suppression of the expression of miR‑206 and upregulation of the expression of CCL2, important in regulating the progress of HEV71 encephalitis. In conclusion, miR‑206 may be useful in the prognosis and treatment of HEV71 encephalitis.
Collapse
Affiliation(s)
- Guangyou Zhang
- Department of Pediatrics, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jiwen Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guo Yao
- Department of Pediatrics, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Baohai Shi
- Department of Pediatrics, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
21
|
Cerri C, Caleo M, Bozzi Y. Chemokines as new inflammatory players in the pathogenesis of epilepsy. Epilepsy Res 2017; 136:77-83. [PMID: 28780154 DOI: 10.1016/j.eplepsyres.2017.07.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
A large series of clinical and experimental studies supports a link between inflammation and epilepsy, indicating that inflammatory processes within the brain are important contributors to seizure recurrence and precipitation. Systemic inflammation can precipitate seizures in children suffering from epileptic encephalopathies, and hallmarks of a chronic inflammatory state have been found in patients with temporal lobe epilepsy. Research performed on animal models of epilepsy further corroborates the idea that seizures upregulate inflammatory mediators, which in turn may enhance brain excitability and neuronal degeneration. Several inflammatory molecules and their signaling pathways have been implicated in epilepsy. Among these, the chemokine pathway has increasingly gained attention. Chemokines are small cytokines secreted by blood cells, which act as chemoattractants for leukocyte migration. Recent studies indicate that chemokines and their receptors are also produced by brain cells, and are involved in various neurological disorders including epilepsy. In this review, we will focus on a subset of pro-inflammatory chemokines (namely CCL2, CCL3, CCL5, CX3CL1) and their receptors, and their increasingly recognized role in seizure control.
Collapse
Affiliation(s)
- Chiara Cerri
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy; Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy.
| | - Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy.
| | - Yuri Bozzi
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy; Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy.
| |
Collapse
|
22
|
Lin Y, Luo LL, Sun J, Gao W, Tian Y, Park E, Baker A, Chen J, Jiang R, Zhang J. Relationship of Circulating CXCR4 + EPC with Prognosis of Mild Traumatic Brain Injury Patients. Aging Dis 2017; 8:115-127. [PMID: 28203485 PMCID: PMC5287384 DOI: 10.14336/ad.2016.0610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023] Open
Abstract
To investigate the changes of circulating endothelial progenitor cells (EPCs) and stromal cell-derived factor-1α (SDF-1α)/CXCR4 expression in patients with mild traumatic brain injury (TBI) and the correlation between EPC level and the prognosis of mild TBI. 72 TBI patients (57 mild TBI, 15 moderate TBI patients) and 25 healthy subjects (control) were included. The number of circulating EPCs, CD34+, and CD133+ cells and the percentage of CXCR4+ cells in each cell population at 1,4,7,14,21 days after TBI were counted by flow cytometer. SDF-1α levels in serum were detected by ELISA assay. The patients were divided into poor and good prognosis groups based on Extended Glasgow Outcome Scale and Activity of Daily Living Scale at 3 months after TBI. Correlation analysis between each detected index and prognosis of mild TBI was performed. Moderate TBI patients have higher levels of SDF-1α and CXCR4 expression than mild TBI patients (P < 0.05). The percentage of CXCR4+ EPCs at day 7 post-TBI was significantly higher in mild TBI patients with poor prognosis than the ones with good prognosis (P < 0.05). HAMA and HAMD scores in mild TBI patients were significantly lower than moderate TBI patients (P < 0.05) in early term. The percentage of CXCR4+ EPCs at day 7 after TBI was significantly correlated with the prognosis outcome at 3 months. The mobilization of circulating EPCs can be induced in mild TBI. The expression of CXCR4+ in EPCs at 7 days after TBI reflects the short-term prognosis of brain injury, and could be a potential biological marker for prognosis prediction of mild TBI.
Collapse
Affiliation(s)
- Yunpeng Lin
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Lan Lan Luo
- 2Department off Psychological Science, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jian Sun
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Weiwei Gao
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ye Tian
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Eugene Park
- 3Department of Traumatic Critical Care Unit, St. Michael's Hospital, Toronto, Canada
| | - Andrew Baker
- 3Department of Traumatic Critical Care Unit, St. Michael's Hospital, Toronto, Canada
| | - Jieli Chen
- 4Department of Neurology, Henry Ford Hospital, Detroit, MI USA; 5Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jianning Zhang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
23
|
Markovic-Bozic J, Karpe B, Potocnik I, Jerin A, Vranic A, Novak-Jankovic V. Effect of propofol and sevoflurane on the inflammatory response of patients undergoing craniotomy. BMC Anesthesiol 2016; 16:18. [PMID: 27001425 PMCID: PMC4802874 DOI: 10.1186/s12871-016-0182-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The purpose of this randomised, single-centre study was to prospectively investigate the impact of anaesthetic techniques for craniotomy on the release of cytokines IL-6, IL-8, IL-10, and to determine whether intravenous anaesthesia compared to inhalational anaesthesia attenuates the inflammatory response. METHODS The study enroled 40 patients undergoing craniotomy, allocated into two equal groups to receive either sevoflurane (n = 20) or propofol (n = 20) in conjunction with remifentanil and rocuronium. The lungs were ventilated mechanically to maintain normocapnia. Remifentanil infusion was adjusted according to the degree of surgical manipulation and increased when mean arterial pressure and the heart rate increased by more than 30 % from baseline. The depth of anaesthesia was adjusted to maintain a bispectral index (BIS) of 40-60. Invasive haemodynamic monitoring was used. Serum levels of IL-6, IL-8 and IL-10 were measured before surgery and anaesthesia, during tumour removal, at the end of surgery, and at 24 and 48 h after surgery. Postoperative complications (pain, vomiting, changes in blood pressure, infection and pulmonary, cardiovascular and neurological events) were monitored during the first 15 days after surgery. RESULTS Compared with patients anaesthetised with sevoflurane, patients who received propofol had higher levels of IL-10 (p = 0.0001) and lower IL-6/IL-10 concentration ratio during and at the end of surgery (p = 0.0001). Both groups showed only a minor response of IL- 8 during and at the end of the surgery (p = 0.57). CONCLUSIONS Patients who received propofol had higher levels of IL-10 during surgery. Neither sevoflurane nor propofol had any significant impact on the occurrence of postoperative complications. Our findings should incite future studies to prove a potential medically important anti-inflammatory role of propofol in neuroanaesthesia. CLINICAL TRIAL REGISTRATION Identified as NCT02229201 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Jasmina Markovic-Bozic
- Department of Anaesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, SI-1000 Slovenia
| | - Blaz Karpe
- Faculty of Natural Science and Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Potocnik
- Department of Anaesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, SI-1000 Slovenia
| | - Ales Jerin
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Vranic
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Service de Neurochirurgie, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Vesna Novak-Jankovic
- Department of Anaesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, SI-1000 Slovenia
| |
Collapse
|
24
|
Sattlecker M, Khondoker M, Proitsi P, Williams S, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Dobson RJ. Longitudinal Protein Changes in Blood Plasma Associated with the Rate of Cognitive Decline in Alzheimer's Disease. J Alzheimers Dis 2016; 49:1105-14. [PMID: 26599049 DOI: 10.3233/jad-140669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biomarkers of Alzheimer's disease (AD) progression are needed to support the development of urgently needed disease modifying drugs. We employed a SOMAscan assay for quantifying 1,001 proteins in blood samples from 90 AD subjects, 37 stable mild cognitive impaired (MCI) subjects, 39 MCI subjects converting to AD within a year and 69 controls at baseline and one year follow up. We used linear mixed effects models to identify proteins changing significantly over one year with the rate of cognitive decline, which was quantified as the reduction in Mini Mental State Examination (MMSE) scores. Additionally, we investigated proteins changing differently across disease groups and during the conversion from MCI to AD. We found that levels of proteins belonging to the complement cascade increase significantly in fast declining AD patients. Longitudinal changes in the complement cascade might be a surrogate biomarker for disease progression. We also found that members of the cytokine-cytokine receptor interaction pathway change during AD when compared to healthy aging subjects.
Collapse
Affiliation(s)
- Martina Sattlecker
- Kings College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Mizanur Khondoker
- Kings College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Petroula Proitsi
- Kings College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University, Thessaloniki, Greece
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Simon Lovestone
- Kings College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Richard Jb Dobson
- Kings College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Lu P, Zheng DC, Fang C, Huang JM, Ke WJ, Wang LY, Zeng WY, Zheng HP, Yang B. Cytokines in cerebrospinal fluid of neurosyphilis patients: Identification of Urokinase plasminogen activator using antibody microarrays. J Neuroimmunol 2015; 293:39-44. [PMID: 27049560 DOI: 10.1016/j.jneuroim.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022]
Abstract
Little is known regarding protein responses to syphilis infection in cerebrospinal fluid (CSF) of patients presenting with neurosyphilis. Protein and antibody arrays offer a new opportunity to gain insights into global protein expression profiles in these patients. Here we obtained CSF samples from 46 syphilis patients, 25 of which diagnosed as having central nervous system involvement based on clinical and laboratory findings. The CSF samples were then analyzed using a RayBioH L-Series 507 Antibody Array system designed to simultaneously analyze 507 specific cytokines. The results indicated that 41 molecules showed higher levels in patients with neurosyphilis in comparison with patients without neural involvement. For validation by single target ELISA, we selected five of them (MIP-1a, I-TAC/CXCL11, Urokinase plasminogen activator [uPA], and Oncostatin M) because they have previously been found to be involved in central nervous system (CNS) disorders. The ELISA tests confirmed that uPA levels were significantly higher in the CSF of neurosyphilis patients (109.1±7.88pg/ml) versus patients without CNS involvement (63.86±4.53pg/ml, p<0.0001). There was also a clear correlation between CSF uPA levels and CSF protein levels (p=0.0128) as well as CSF-VDRL titers (p=0.0074) used to diagnose neurosyphilis. No significant difference between the two groups of patients, however, was found in uPA levels in the serum, suggesting specific activation of the inflammatory system in the CNS but not the periphery in neurosyphilis patients. We conclude that measurements of uPA levels in CSF may be an additional parameter for diagnosing neurosyphilis.
Collapse
Affiliation(s)
- Ping Lu
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Dao-Cheng Zheng
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Chang Fang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Mei Huang
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Wu-Jian Ke
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Liu-Yuan Wang
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Wei-Ying Zeng
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - He-Ping Zheng
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China
| | - Bin Yang
- Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou 510091, China.
| |
Collapse
|
26
|
Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol 2015; 54:42-52. [PMID: 26541482 DOI: 10.1016/j.semcdb.2015.10.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
Abstract
When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes.
Collapse
Affiliation(s)
- Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
- MD/PhD Program, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
27
|
Marciniak E, Faivre E, Dutar P, Alves Pires C, Demeyer D, Caillierez R, Laloux C, Buée L, Blum D, Humez S. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 2015; 5:15862. [PMID: 26511387 PMCID: PMC4625372 DOI: 10.1038/srep15862] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/05/2015] [Indexed: 11/20/2022] Open
Abstract
Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.
Collapse
Affiliation(s)
- Elodie Marciniak
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Emilie Faivre
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, UMR_S 894, Faculté de Médecine, Université Paris Descartes, 75014, Paris
| | - Claire Alves Pires
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Dominique Demeyer
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Raphaëlle Caillierez
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Charlotte Laloux
- Université de Lille, F-59000 Lille, France
- SFR DN2M, 59000 Lille France
| | - Luc Buée
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - David Blum
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| | - Sandrine Humez
- Université de Lille, F-59000 Lille, France
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille France
- CHU-Lille, F-59000 Lille France
| |
Collapse
|
28
|
Abstract
The failing human heart is a bustling network of intra- and inter-cellular signals and related processes attempting to coordinate a repair mechanism for the injured or diseased myocardium. While our understanding of signaling by mode of cytokines is well understood on a systemic level, we are only now coming to elucidate the role of cytokines in cardiac self-regulation. An increasing number of studies are showing now that cardiomyocytes themselves have not only the ability but also the mandate to produce signals, and play direct roles in how these signals are interpreted. One of the families of cytokines employed by distressed cardiac tissue are chemokines. By regulating the movement of pro-inflammatory cell types to sites of injury, we see now how the myocardium responds to stress. Herein we review the participation of these inflammatory mediators and explore the delicate balance between their protective roles and damaging functions.
Collapse
Affiliation(s)
- Andrew A Jarrah
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, 1 Gustave L Levy Place, Box 1030, New York, NY 10029, USA
| | | |
Collapse
|
29
|
Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord 2014; 169:15-20. [PMID: 25128861 DOI: 10.1016/j.jad.2014.07.032] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/10/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Determining etiological factors and reviewing advances in diagnostic modalities sensitive and specific to Major Depressive Disorder (MDD) is of importance in its evaluation and treatment. The inflammatory hypothesis is one of the most prevalent topics concerning MDD and may provide insight into the pathogenesis of depression, development of biomarkers, and ultimately production of more effective depression therapies. METHOD We reviewed several studies to evaluate contemporary concepts concerning proinflammatory cytokines and their relationship to various depressive disorders, the use of anti-inflammatory therapies in MDD treatment, and the application of neuroimaging in conjunction with cytokine profiles from both plasma and CSF as possible diagnostic tools. RESULTS Proinflammatory cytokines in both plasma and CSF have been found to influence the progression and severity of depressive disorders in different populations. Studies have shown elevated serum levels of IL-1, IL-6, TNF-α, CRP, and MCP-1 in depressed patients, but have presented mixed results with IL-8 serum levels, and with IL-6 and MCP-1 CSF levels. Anti-inflammatory treatment of MDD may have adjuvant properties with current depression medications. MRI and NIRS neuroimaging confirm neurological abnormalities in the presence of elevated proinflammatory cytokines in depressed or stressed patients. LIMITATIONS Heterogeneity of MDD and limited CSF cytokine research complicate the study of MDD pathogenesis. CONCLUSION There is significant evidence that inflammatory processes influence the development and progression of MDD. Future studies with larger arrays of cytokine profiles aided by neuroimaging may provide more sensitive and specific modes of diagnostics in determining MDD etiology and provide guidance in individual therapies.
Collapse
Affiliation(s)
- Juan Joseph Young
- Geriatric Psychiatry Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Davide Bruno
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
30
|
Gruol DL, Vo K, Bray JG. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci 2014; 8:234. [PMID: 25177271 PMCID: PMC4132577 DOI: 10.3389/fncel.2014.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Emerging research has identified that neuroimmune factors are produced by cells of the central nervous system (CNS) and play critical roles as regulators of CNS function, directors of neurodevelopment and responders to pathological processes. A wide range of neuroimmune factors are produced by CNS cells, primarily the glial cells, but the role of specific neuroimmune factors and their glial cell sources in CNS biology and pathology have yet to be fully elucidated. We have used transgenic mice that express elevated levels of a specific neuroimmune factor, the cytokine IL-6 or the chemokine CCL2, through genetic modification of astrocyte expression to identify targets of astrocyte produced IL-6 or CCL2 at the protein level. We found that in non-transgenic mice constitutive expression of IL-6 and CCL2 occurs in the two CNS regions studied, the hippocampus and cerebellum, as measured by ELISA. In the CCL2 transgenic mice elevated levels of CCL2 were evident in the hippocampus and cerebellum, whereas in the IL-6 transgenic mice, elevated levels of IL-6 were only evident in the cerebellum. Western blot analysis of the cellular and synaptic proteins in the hippocampus and cerebellum of the transgenic mice showed that the elevated levels of CCL2 or IL-6 resulted in alterations in the levels of specific proteins and that these actions differed for the two neuroimmune factors and for the two brain regions. These results are consistent with cell specific profiles of action for IL-6 and CCL2, actions that may be an important aspect of their respective roles in CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Khanh Vo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Jennifer G Bray
- Department of Biology, University of Wisconsin-Stevens Point Stevens Point, WI, USA
| |
Collapse
|
31
|
Sapienza A, Réaux-Le Goazigo A, Rostène W, Mélik-Parsadaniantz S. [Chemokines and attraction of myeloid cells in peripheral neuropathic pains]. Biol Aujourdhui 2014; 208:31-44. [PMID: 24948017 DOI: 10.1051/jbio/20140011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 12/24/2022]
Abstract
Chronic neuropathic pain has become a real social issue, due to the difficulty of its treatment and by the major impairment to quality of life that it causes in every day behavior. Understanding neurobiological basis and pathophysiological causes of diverse painful syndromes constantly evolves and reports the complexity of its mechanisms. Unfortunately this complexity makes it difficult to discover effective treatments against chronic pain syndromes, in particular as regards peripheral neuropathic pains. Recent studies reveal that, during chronic peripheral neuropathy, inflammatory mediators (in particular chemokines), besides their implications in the modulation of nociceptive messages and central neuroinflammatory mechanisms, play a critical role in the orchestration of the immune response induced by a peripheral nerve lesion. In this review, after a brief introduction about chemokines and their role in neuromodulation of the nociceptive message, we will attempt to define their functions and implications in the immune response associated to peripheral neuropathies. Thus, perfectly understanding the molecular and cellular communications between the nervous system and the immune system will be useful for the future development of novel and innovative therapeutic strategies against these highly disabling pathologies.
Collapse
|
32
|
Kong LL, Wang ZY, Han N, Zhuang XM, Wang ZZ, Li H, Chen NH. Neutralization of chemokine-like factor 1, a novel C-C chemokine, protects against focal cerebral ischemia by inhibiting neutrophil infiltration via MAPK pathways in rats. J Neuroinflammation 2014; 11:112. [PMID: 24946684 PMCID: PMC4080607 DOI: 10.1186/1742-2094-11-112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/06/2014] [Indexed: 01/04/2023] Open
Abstract
Background Inflammation plays a key role in the pathophysiology of ischemic stroke. Some proinflammatory mediators, such as cytokines and chemokines, are produced in stroke. Chemokine-like factor 1 (CKLF1), as a novel C-C chemokine, displays chemotactic activities in a wide spectrum of leukocytes and plays an important role in brain development. In previous studies, we have found that the expression of CKLF1 increased in rats after focal cerebral ischemia and treatment with the CKLF1 antagonist C19 peptide decreased the infarct size and water content. However, the role of CKLF1 in stroke is still unclear. The objective of the present study was to ascertain the possible roles and mechanism of CKLF1 in ischemic brain injury by applying anti-CKLF1 antibody. Methods Male Sprague–Dawley rats were subjected to one-hour middle cerebral artery occlusion. Antibody to CKLF1 was applied to the right cerebral ventricle immediately after reperfusion; infarct volume and neurological score were measured at 24 and 72 hours after cerebral ischemia. RT-PCR, Western blotting and ELISA were utilized to characterize the expression of adhesion molecules, inflammatory factors and MAPK signal pathways. Immunohistochemical staining and myeloperoxidase activity was used to determine the extent of neutrophil infiltration. Results Treatment with anti-CKLF1 antibody significantly decreased neurological score and infarct volume in a dose-dependent manner at 24 and 72 hours after cerebral ischemia. Administration with anti-CKLF1 antibody lowered the level of inflammatory factors TNF-α, IL-1β, MIP-2 and IL-8, the expression of adhesion molecules ICAM-1 and VCAM-1 in a dose-dependent manner. The results of immunohistochemical staining and detection of MPO activity indicated that anti-CKLF1 antibody inhibited neutrophil infiltration. Further studies suggested MAPK pathways associated with neutrophil infiltration in cerebral ischemia. Conclusions Selective inhibition of CKLF1 activity significantly protects against ischemia/reperfusion injury by decreasing production of inflammatory mediators and expression of adhesion molecules, thereby reducing neutrophils recruitment to the ischemic area, possibly via inhibiting MAPK pathways. Therefore, CKLF1 may be a novel target for the treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Li
- The Key Lab of Drug Metabolism and Pharmacokinetics, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | | |
Collapse
|
33
|
Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 2014; 8:65. [PMID: 24639628 PMCID: PMC3944789 DOI: 10.3389/fncel.2014.00065] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor 1 alpha has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G protein-coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus 1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and γ-aminobutyric acid (GABA). It can also act post-synaptically by activating a G protein activated inward rectifier K+ (GIRK), a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated Ca2+ currents. In addition, it has been recently evidenced that there are several cross-talks between the CXCL12/CXCR4–7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids, and cannabinoids). Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Centre National de la Recherche Scientifique/Université Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
34
|
|
35
|
Sun W, Liu J, Huan Y, Zhang C. Intracranial injection of recombinant stromal-derived factor-1 alpha (SDF-1α) attenuates traumatic brain injury in rats. Inflamm Res 2013; 63:287-97. [PMID: 24352531 DOI: 10.1007/s00011-013-0699-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/01/2013] [Accepted: 12/08/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate the role of stromal-derived factor-1 alpha (SDF-1α) in a secondary brain injury after traumatic brain injury (TBI) in rats, and to further elucidate its underlying regulatory mechanisms. MATERIALS AND METHODS Male Sprague-Dawley rats underwent TBI for 30 min, and then received intracranial injections of recombinant SDF-1α, SDF-1α antibody, or saline as a vehicle control. At 24 h after TBI, brain tissues from the experimental animals were subjected to histology, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and western blot analyses. RESULTS TBI-induced brain edema and blood-brain barrier disruption were ameliorated by post-injury injections of SDF-1α. TBI-induced neuronal degradation and apoptosis, accompanied by increased cleaved caspase-3, cleaved PARP and Bax, and decreased Bcl-2 were found to be attenuated by SDF-1α injection. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) levels decreased in SDF-1α treated animals after TBI. SDF-1α repressed inflammatory responses by inhibiting the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. However, neutralizing the effect of SDF-1α with its antibody abolished these therapeutic alterations in TBI animals. Importantly, SDF-1α attenuated the brain lesion by affecting the ERK and NF-κB signaling pathways after mechanical head trauma in rats. CONCLUSIONS SDF-1α ameliorates mechanical trauma-induced pathological changes via its anti-apoptotic and anti-inflammatory action in the brain.
Collapse
Affiliation(s)
- Weifeng Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Hicks DJ, Núñez A, Banyard AC, Williams A, Ortiz-Pelaez A, Fooks AR, Johnson N. Differential chemokine responses in the murine brain following lyssavirus infection. J Comp Pathol 2013; 149:446-62. [PMID: 23746482 DOI: 10.1016/j.jcpa.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/20/2013] [Accepted: 04/06/2013] [Indexed: 12/17/2022]
Abstract
The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates.
Collapse
Affiliation(s)
- D J Hicks
- Pathology Unit, Department of Specialist Scientific Support, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Lu M, Hu G. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies. Clin Exp Pharmacol Physiol 2013; 39:577-85. [PMID: 22126374 DOI: 10.1111/j.1440-1681.2011.05650.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the aetiology of PD has not been clarified as yet, it is believed that ageing, diet, diabetes and adiposity are associated with PD. 2. Type 2 diabetes and lipid abnormalities share multiple common pathophysiological mechanisms with PD. In particular, inflammation plays a critical role in the destruction of both pancreatic islet β-cells and dopaminergic neurons in the substantia nigra. Emerging evidence indicates that dysfunctions of energy metabolism evoke metabolic inflammation, which differs to the narrow concept of inflammation, participating in systemic pathological processes such as neurodegenerative disease and diabetes. 3. The brain is considered an immunologically privileged organ, free from immune reactions, because it is protected by the blood-brain barrier (BBB). However, studies have shown that there is gradual impairment of neurovascular function with ageing and in neurodegenerative disorders, resulting in abnormal states, including increased BBB permeability. Consequently, harmful elements that would not normally be able to cross the BBB, such as pro-inflammatory factors, reactive oxygen species and neurotoxins, infiltrate into the brain, triggering neural injury. 4. Currently, the drugs available for the treatment of PD only ameliorate the symptoms of the disease. Therapeutic strategies aimed at stopping or modifying disease progression are still being sought. Most recent studies suggest that both central and peripheral inflammation may be dysregulated in PD. Therefore, therapeutic strategies aimed at modulating systemic inflammatory reactions or energy metabolism may represent a goal in neuroprotection in PD.
Collapse
Affiliation(s)
- Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
38
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
39
|
Bromander S, Anckarsäter R, Kristiansson M, Blennow K, Zetterberg H, Anckarsäter H, Wass CE. Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study. J Neuroinflammation 2012; 9:242. [PMID: 23095517 PMCID: PMC3545842 DOI: 10.1186/1742-2094-9-242] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/05/2012] [Indexed: 11/10/2022] Open
Abstract
Background Surgery launches an inflammatory reaction in the body, as seen through increased peripheral levels of cytokines and cortisol. However, less is known about perioperative inflammatory changes in the central nervous system (CNS). Our aim was to compare inflammatory markers in serum and cerebrospinal fluid (CSF) before and after surgery and evaluate their association with measures of blood–brain barrier (BBB) integrity. Methods Thirty-five patients undergoing knee arthroplastic surgery with spinal anesthesia had CSF and serum samples drawn before, after and on the morning following surgery. Cytokines and albumin in serum and CSF and cortisol in CSF were assessed at all three points. Results Cytokines and cortisol were significantly increased in serum and CSF after surgery (Ps <0.01) and CSF increases were greater than in serum. Ten individuals had an increased cytokine response and significantly higher CSF/serum albumin ratios (Ps <0.01), five of whom had albumin ratios in the pathological range (>11.8). Serum and CSF levels of cytokines were unrelated, but there were strong correlations between CSF IL-2, IL-10 and IL-13, and albumin ratios (Ps <0.05) following surgery. Conclusion Cytokine increases in the CNS were substantially greater than in serum, indicating that the CNS inflammatory system is activated during peripheral surgery and may be regulated separately from that in the peripheral body. CSF cytokine increase may indicate sensitivity to trauma and is linked to BBB macromolecular permeability.
Collapse
Affiliation(s)
- Sara Bromander
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lu IN, Chiang BL, Lou KL, Huang PT, Yao CCJ, Wang JS, Lin LD, Jeng JH, Chang BE. Cloning, expression and characterization of CCL21 and CCL25 chemokines in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:203-214. [PMID: 22842207 DOI: 10.1016/j.dci.2012.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Chemokines are a large group of proteins implicated in migration, activation, and differentiation of leukocytes. They are well-surveyed in mammals, but less is known in lower vertebrates about their spatiotemporal expressions and functions. From an evolutionary point of view, comparative analyses may provide some fundamental insights into these molecules. In mammals, CCL21 and CCL25 are crucial for thymocyte homing. Herein, we identified and cloned the zebrafish orthologues of CCL21 and CCL25, and analyzed their expression in embryos and adult fish by in situ hybridization. We found that CCL21 was expressed in the craniofacial region, pharynx, and blood vessels in embryos. In adult fish, CCL21 transcripts were located in the kidney, spinal cord, and blood cells. In contrast, expression of CCL25 was only detected in the thymus primordia in embryos. In adult fish, transcripts of CCL25 were maintained in the thymus, and they were also found in the brain and oocytes. Furthermore, we performed an antisense oligonucleotide experiment to evaluate the biological function of CCL25. Results showed that the recruitment of thymocytes was impeded by morpholino-mediated knockdown of CCL25, suggesting that CCL25 is essential for colonization of T-cells in the thymus in early development. Together, our results demonstrate the basic profiles of two CCL chemokines in zebrafish. The tissue-specific expression patterns may pave the way for further genetic dissection in this model organism.
Collapse
Affiliation(s)
- I-Na Lu
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reaux-Le Goazigo A, Rivat C, Kitabgi P, Pohl M, Melik Parsadaniantz S. Cellular and subcellular localization of CXCL12 and CXCR4 in rat nociceptive structures: physiological relevance. Eur J Neurosci 2012; 36:2619-31. [PMID: 22694179 DOI: 10.1111/j.1460-9568.2012.08179.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Initial studies implicated the chemokine CXC motif ligand 12 (CXCL12) and its cognate CXC motif receptor 4 (CXCR4) in pain modulation. However, there has been no description of the distribution, transport and axonal sorting of CXCL12 and CXCR4 in rat nociceptive structures, and their direct participation in nociception modulation has not been demonstrated. Here, we report that acute intrathecal administration of CXCL12 induced mechanical hypersensitivity in naive rats. This effect was prevented by a CXCR4-neutralizing antibody. To determine the morphological basis of this behavioural response, we used light and electron microscopic immunohistochemistry to map CXCL12- and CXCR4-immunoreactive elements in dorsal root ganglia, lumbar spinal cord, sciatic nerve and skin. Light microscopy analysis revealed CXCL12 and CXCR4 immunoreactivity in calcitonin gene related peptide-containing peptidergic primary sensory neurons, which were both conveyed to central and peripheral sensory nerve terminals. Electron microscopy clearly demonstrated CXCL12 and CXCR4 immunoreactivity in primary sensory nerve terminals in the dorsal horn; both were sorted into small clear vesicles and large dense-core vesicles. This suggests that CXCL12 and CXCR4 are trafficked from nerve cell bodies to the dorsal horn. Double immunogold labelling for CXCL12 and calcitonin gene related peptide revealed partial vesicular colocalization in axonal terminals. We report, for the first time, that CXCR4 receptors are mainly located on the neuronal plasma membrane, where they are present at pre-synaptic and post-synaptic sites of central terminals. Receptor inactivation experiments, behavioural studies and morphological analyses provide strong evidence that the CXCL12/CXCR4 system is involved in modulation of nociceptive signalling.
Collapse
Affiliation(s)
- Annabelle Reaux-Le Goazigo
- Centre de recherche de l'Institut Cerveau Moelle (CrICM), UMR S 975 INSERM-UMR 7225 CNRS-UPMC, Université Pierre et Marie Curie, Faculty of Medicine Pitié Salpêtrière, 91 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | |
Collapse
|
42
|
Wang ZZ, Zhang Y, Yuan YH, Chen NH. Developmental expression of chemokine-like factor 1, a novel member of chemokines family, in postnatal rat cerebral cortex. Neurosci Lett 2012; 519:51-5. [PMID: 22587964 DOI: 10.1016/j.neulet.2012.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Chemokine-like factor 1 (CKLF1) has been implicated to induce the migration of neuroblastoma cells and is abundant in fetal brain but scarce in adult brain. Given the importance of neural cell migration in brain development, it is possible that the chemotaxis of CKLF1 is required during brain development. Therefore, it is essential to know the detailed expression profiles of CKLF1 during brain development first. However, the developmental expression patterns of CKLF1 still remain unclear. We aimed to investigate the temporal and spatial expressions of CKLF1 during cerebral cortex postnatal development in rats. By reverse-transcription PCR/immunoblotting at multiple time points, the mRNA/protein expressions of CKLF1 were in abundance at birth, then decreased progressively within the next two weeks and almost disappeared in adulthood. By immunohistochemistry staining, an obvious expression of CKLF1 was observed in the cerebral cortex, hippocampus, olfactory bulb, some specific nuclei and commissural fibers. Concluding, the temporal expression pattern of CKLF1 was coincident with the postnatal developmental stages and the spatial locations of CKLF1 were some destinations of neural cell migration or regions where myelination normally occurs during cerebrum postnatal development.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | |
Collapse
|
43
|
Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. REVISTA BRASILEIRA DE PSIQUIATRIA 2012. [DOI: 10.1016/s1516-4446(12)70013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Grassi-Oliveira R, Brieztke E, Teixeira A, Pezzi JC, Zanini M, Lopes RP, Bauer ME. Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34:71-5. [DOI: 10.1590/s1516-44462012000100013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 09/19/2011] [Indexed: 12/12/2022]
|
45
|
C19, a C-terminal peptide of chemokine-like factor 1, protects the brain against focal brain ischemia in rats. Neurosci Lett 2012; 508:13-6. [DOI: 10.1016/j.neulet.2011.11.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 11/22/2022]
|
46
|
Expression of chemokine-like factor 1 after focal cerebral ischemia in the rat. Neurosci Lett 2011; 505:14-8. [PMID: 21964493 DOI: 10.1016/j.neulet.2011.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022]
|
47
|
Down-regulation of chemokine Ccl5 gene expression in the NTS of SHR may be pro-hypertensive. J Hypertens 2011; 29:732-40. [PMID: 21358418 DOI: 10.1097/hjh.0b013e328344224d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Recent studies have demonstrated that pro-inflammatory molecules such as junctional adhesion molecules-1 are highly expressed in the nucleus tractus solitarii (NTS) of the spontaneously hypertensive rat (SHR), compared to normotensive rats (Wistar-Kyoto rats: WKY), suggesting that the NTS of SHR may exhibit an abnormal inflammatory state. In the present study, we tested whether gene expression of inflammatory markers such as cytokines and chemokines is altered in the NTS of SHR and whether this contributes to the hypertensive phenotype in the SHR. METHODS We have performed RT Profiler PCR arrays in the NTS of SHR and WKY, which were designed to specifically target major cytokines/chemokines and their receptors. To validate PCR array results quantitative RT-PCR was performed. Microinjection studies using anesthetized rats were also carried out to examine whether validated inflammatory molecules exhibit functional roles on cardiovascular regulation at the level of the NTS. RESULTS Five inter-related transcripts were identified to be differentially expressed between the NTS of SHR and WKY. They include chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3. All of them were down-regulated in the NTS of SHR compared to WKY. Moreover, we found that the protein Ccl5 microinjected into the NTS significantly decreased baseline arterial pressure and that the response was greater in the SHR compared to the WKY (-33.2±3.2 vs. -8.8±1.6 mmHg, P<0.001), demonstrating that its down-regulation in the NTS may contribute to hypertension in the SHR. CONCLUSION We suggest that gene expression of specific chemokines may be down-regulated to protect further inflammatory reactions in the NTS of SHR at the expense of arterial hypertension.
Collapse
|
48
|
Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol 2011; 178:422-8. [PMID: 21601658 DOI: 10.1016/j.resp.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 02/07/2023]
Abstract
Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that primary hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1, were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat: SHR) compared to normotensive Wistar Kyoto (WKY) rats. We have also shown endogenous leukocyte accumulation inside capillaries within the NTS of SHR but not WKY rats. Despite the inflammatory state in the NTS of SHR, transcripts of some inflammatory molecules such as chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3 were down-regulated in the NTS of SHR compared to WKY rats. This may be compensatory to avoid further strong inflammatory activity. More importantly, we found that down-regulation of Ccl5 in the NTS of SHR may be pro-hypertensive since microinjection of Ccl5 into the NTS of SHR decreased arterial pressure but was less effective in WKY rats. Leukocyte accumulation of the NTS microvasculature may also induce an increase in vascular resistance and hypoperfusion within the NTS; the latter may trigger release of pro-inflammatory molecules which via paracrine signaling may affect central neural cardiovascular activity conducive to neurogenic hypertension. All told, we suggest that vascular inflammation within the brainstem contributes to neurogenic hypertension by multiple pathways.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan.
| | | | | | | | | |
Collapse
|
49
|
Machado A, Herrera AJ, Venero JL, Santiago M, De Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J. Peripheral inflammation increases the damage in animal models of nigrostriatal dopaminergic neurodegeneration: possible implication in Parkinson's disease incidence. PARKINSONS DISEASE 2011; 2011:393769. [PMID: 21603178 PMCID: PMC3096050 DOI: 10.4061/2011/393769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/21/2011] [Indexed: 12/26/2022]
Abstract
Inflammatory processes described in Parkinson's disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.
Collapse
Affiliation(s)
- A Machado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fil D, Borysiewicz E, Konat GW. A broad upregulation of cerebral chemokine genes by peripherally-generated inflammatory mediators. Metab Brain Dis 2011; 26:49-59. [PMID: 21258854 DOI: 10.1007/s11011-010-9231-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022]
Abstract
Previously, we have shown that peripheral challenge of mice with double stranded RNA (dsRNA), a viral mimic, evokes global upregulation of cerebral inflammatory genes and, particularly, genes encoding chemokines. Because chemokine networks are potent modulators of brain function, the present study was undertaken to comprehensively characterize the cerebral response of chemokine ligand and receptor genes to peripheral immune system stimulation. Briefly, C57BL/6 mice were intraperitoneally injected with 12 mg/kg of polyinosinic-polycytidylic acid (PIC) and the expression of 39 mouse chemokine ligand and 20 receptor genes was monitored in the cerebellum by real time quantitative RT-PCR within 24 h. Almost half of the ligand genes featured either transient or sustained upregulation from several- to several thousand-fold. Five CXC type genes, i.e., Cxcl9, Cxcl11, Cxcl10, Cxcl2 and Cxcl1, were the most robustly upregulated, and were followed by six CC type genes, i.e., Ccl2, Ccl7, Ccl5, Ccl12, Ccl4 and Ccl11. Seven genes showed moderate upregulation, whereas the remaining genes were unresponsive. Six receptor genes, i.e., Cxcr2, Ccr7, Cxcr5, Ccr6, Ccr1 and Ccr5, featured a several-fold upregulation. Similar chemokine gene response was observed in the forebrain and brainstem. This upregulation of chemokine genes could be induced in naïve mice by transfer of blood plasma from PIC-challenged mice. Employing oligodeoxynucleotide-labeled PIC we further showed that intraperitoneally injected PIC was not transferred to the blood. In conclusion, peripheral PIC challenge elicits a broad upregulation of cerebral chemokine genes, and this upregulation is mediated by blood-borne agents.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, 4052 HSN, P.O. Box 9128, Morgantown, WV 26506-9128, USA
| | | | | |
Collapse
|