1
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
2
|
Chin EZ, Chang WJ, Tan HY, Liew SY, Lau YL, Ng YL, Nafiah MA, Kurz T, Tan SP. Synthesis and biological evaluation of hydantoin derivatives as potent antiplasmodial agents. Bioorg Med Chem Lett 2024; 103:129701. [PMID: 38484804 DOI: 10.1016/j.bmcl.2024.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 μM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.
Collapse
Affiliation(s)
- Ee-Zhen Chin
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000 Kuala Lumpur, Malaysia
| | - Wei-Jin Chang
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000 Kuala Lumpur, Malaysia
| | - Hui-Yin Tan
- Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53300 Kuala Lumpur, Malaysia
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Ling Ng
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany
| | - Siow-Ping Tan
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000 Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
4
|
Chepngetich J, Muriithi B, Gachie B, Thiong'o K, Jepkorir M, Gathirwa J, Kimani F, Mwitari P, Kiboi D. Amodiaquine drug pressure selects nonsynonymous mutations in pantothenate kinase 1, diacylglycerol kinase, and phosphatidylinositol-4 kinase in Plasmodium berghei ANKA. OPEN RESEARCH AFRICA 2023; 5:28. [PMID: 38915420 PMCID: PMC11195610 DOI: 10.12688/openresafrica.13436.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 06/26/2024]
Abstract
Background Lumefantrine (LM), piperaquine (PQ), and amodiaquine (AQ), the long-acting components of the artemisinin-based combination therapies (ACTs), are a cornerstone of malaria treatment in Africa. Studies have shown that PQ, AQ, and LM resistance may arise independently of predicted modes of action. Protein kinases have emerged as mediators of drug action and efficacy in malaria parasites; however, the link between top druggable Plasmodium kinases with LM, PQ, and AQ resistance remains unclear. Using LM, PQ, or AQ-resistant Plasmodium berghei parasites, we have evaluated the association of choline kinase (CK), pantothenate kinase 1 (PANK1), diacylglycerol kinase (DAGK), and phosphatidylinositol-4 kinase (PI4Kβ), and calcium-dependent protein kinase 1 (CDPK1) with LM, PQ, and AQ resistance in Plasmodium berghei ANKA. Methods We used in silico bioinformatics tools to identify ligand-binding motifs, active sites, and sequence conservation across the different parasites. We then used PCR and sequencing analysis to probe for single nucleotide polymorphisms (SNPs) within the predicted functional motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1. Using qPCR analysis, we measured the mRNA amount of PANK1, DAGK, and PI4Kβ at trophozoites and schizonts stages. Results We reveal sequence conservation and unique ligand-binding motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1 across malaria species. DAGK, PANK1, and PI4Kβ possessed nonsynonymous mutations; surprisingly, the mutations only occurred in the AQr parasites. PANK1 acquired Asn394His, while DAGK contained K270R and K292R mutations. PI4Kβ had Asp366Asn, Ser1367Arg, Tyr1394Asn and Asp1423Asn. We show downregulation of PANK1, DAGK, and PI4Kβ in the trophozoites but upregulation at the schizonts stages in the AQr parasites. Conclusions The selective acquisition of the mutations and the differential gene expression in AQ-resistant parasites may signify proteins under AQ pressure. The role of the mutations in the resistant parasites and their impact on drug responses require investigations using reverse genetics techniques in malaria parasites.
Collapse
Affiliation(s)
- Jean Chepngetich
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, 62000, 00200, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Brenda Muriithi
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000, 00200, Kenya
| | - Beatrice Gachie
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, 62000, 00200, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Kevin Thiong'o
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Mercy Jepkorir
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, 54840, 00200, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000, 00200, Kenya
| |
Collapse
|
5
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
6
|
Guillon J, Cohen A, Boudot C, Monic S, Savrimoutou S, Moreau S, Albenque-Rubio S, Lafon-Schmaltz C, Dassonville-Klimpt A, Mergny JL, Ronga L, Bernabeu de Maria M, Lamarche J, Lago CD, Largy E, Gabelica V, Moukha S, Dozolme P, Agnamey P, Azas N, Mullié C, Courtioux B, Sonnet P. Design, Synthesis, and Antiprotozoal Evaluation of New Promising 2,9- Bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline Derivatives, a Potential Alternative Scaffold to Drug Efflux. Pathogens 2022; 11:1339. [PMID: 36422591 PMCID: PMC9699089 DOI: 10.3390/pathogens11111339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2023] Open
Abstract
A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and μM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 μM. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.
Collapse
Affiliation(s)
- Jean Guillon
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Anita Cohen
- Faculty of Pharmacy, University of Aix-Marseille, IRD, AP-HM, SSA, VITROME, F-13005 Marseille, France
| | - Clotilde Boudot
- Faculty of Pharmacy, Institute of Neuroepidemiology and Tropical Neurology, University of Limoges, INSERM U1094, F-87025 Limoges, France
| | - Sarah Monic
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Solène Savrimoutou
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Stéphane Moreau
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Sandra Albenque-Rubio
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Camille Lafon-Schmaltz
- Faculty of Pharmacy, University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Alexandra Dassonville-Klimpt
- Faculty of Pharmacy, Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, UFR de Pharmacie, University of Picardie Jules Verne, F-80037Amiens, France
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Institut Polytechnique de Paris, Ecole Polytechnique, CNRS, INSERM, F- 91128 Palaiseau, France
| | - Luisa Ronga
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, F-64012 Pau, France
| | | | - Jeremy Lamarche
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, F-64012 Pau, France
| | - Cristina Dal Lago
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Eric Largy
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Valérie Gabelica
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Serge Moukha
- Centre de Recherche Cardio-thoracique de Bordeaux (CRCTB), UMR U1045 INSERM, PTIB-Hôpital Xavier Arnozan, F-33600 Pessac, France
- INRAE Bordeaux Aquitaine, F- 33140 Villenave-d’Ornon, France
| | - Pascale Dozolme
- Centre de Recherche Cardio-thoracique de Bordeaux (CRCTB), UMR U1045 INSERM, PTIB-Hôpital Xavier Arnozan, F-33600 Pessac, France
- INRAE Bordeaux Aquitaine, F- 33140 Villenave-d’Ornon, France
| | - Patrice Agnamey
- Faculty of Pharmacy, Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, UFR de Pharmacie, University of Picardie Jules Verne, F-80037Amiens, France
| | - Nadine Azas
- Faculty of Pharmacy, University of Aix-Marseille, IRD, AP-HM, SSA, VITROME, F-13005 Marseille, France
| | - Catherine Mullié
- Faculty of Pharmacy, Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, UFR de Pharmacie, University of Picardie Jules Verne, F-80037Amiens, France
| | - Bertrand Courtioux
- Faculty of Pharmacy, Institute of Neuroepidemiology and Tropical Neurology, University of Limoges, INSERM U1094, F-87025 Limoges, France
| | - Pascal Sonnet
- Faculty of Pharmacy, Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, UFR de Pharmacie, University of Picardie Jules Verne, F-80037Amiens, France
| |
Collapse
|
7
|
KARAKAYA İ. Synthesis and characterization of azobenzene derived from 8-aminoquinoline in aqueous media. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Graciano IA, de Carvalho AS, de Carvalho da Silva F, Ferreira VF. 1,2,3-Triazole- and Quinoline-Based Hybrids with Potent Antiplasmodial Activity. Med Chem 2021; 18:521-535. [PMID: 34758718 DOI: 10.2174/1573406418666211110143041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. OBJECTIVE This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. METHOD We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. RESULTS The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. CONCLUSION Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.
Collapse
Affiliation(s)
- Isabela A Graciano
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói, RJ. Brazil
| |
Collapse
|
9
|
Bandyopadhyay D, Thirupathi A, Radhakrishnan D, Panigrahi A, Peruncheralathan S. Triflic acid-mediated N-heteroannulation of β-anilino-β-(methylthio)acrylonitriles: a facile synthesis of 4-amino-2-(methylthio)quinolines. Org Biomol Chem 2021; 19:8544-8553. [PMID: 34550145 DOI: 10.1039/d1ob01151k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various functionalised 4-amino-2-(methylthio)quinolines are synthesised through triflic acid-mediated N-heteroannulation of α-functionalized-β-anilino-β-(methylthio)acrylonitriles for the first time. The N-heteroannulation process is highly chemoselective and has mild reaction conditions. However, this process fails in the absence of the β-methylthio group in the acrylonitriles. In addition, a new double N-heteroannulation process is demonstrated to synthesise indolo[3,2-c]quinolines from non-heterocyclic precursors. Natural product isocryptolepine is synthesised in four steps from an acyclic precursor.
Collapse
Affiliation(s)
- Debashruti Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Adyasha Panigrahi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| |
Collapse
|
10
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
11
|
Tiwari V, Joshi P, Yadav K, Sharma A, Chowdhury S, Manhas A, Kumar N, Tripathi R, Haq W. Synthesis and Antimalarial Activity of 4-Methylaminoquinoline Compounds against Drug-Resistant Parasite. ACS OMEGA 2021; 6:12984-12994. [PMID: 34056449 PMCID: PMC8158791 DOI: 10.1021/acsomega.0c06053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 05/26/2023]
Abstract
A series of novel 4-aminoquinoline analogues bearing a methyl group at 4-aminoquinoline moiety were synthesized via a new and robust synthetic route comprising in situ tert-butoxycarbonyl (Boc) deprotection-methylation cascade resulting in the corresponding N-methylated secondary amine using Red-Al and an efficient microwave-assisted strategy for the fusion of N-methylated secondary amine with 4-chloroquinoline nucleus to access the series of novel 4-N-methylaminoquinoline analogues. The new series of compounds were evaluated for their antimalarial activity in in vitro and in vivo models. Among 21 tested compounds, 9a-i have shown a half-maximal inhibitory concentration (IC50) value less than 0.5 μM (i.e., <500 nM) against both chloroquine-sensitive strain 3D7 and chloroquine-resistant strain K1 of Plasmodium falciparum with acceptable cytotoxicity. Based on the in vitro antimalarial activity, selected compounds were screened for their in vivo antimalarial activity against Plasmodium yoelii nigeriensis (a multidrug-resistant) parasite in Swiss mice. Most of the compounds have shown significant inhibition on day 4 post infection at the oral dose of 100 mg/kg. Compound 9a has shown 100% parasite inhibition on day 4, and out of five treated mice, two were cured till the end of the experiment. The present study suggests that 4-methylamino substitution is well tolerated for the antiplasmodial activity with reduced toxicity and therefore will be highly useful for the discovery of a new antimalarial agent against drug-resistant malaria.
Collapse
Affiliation(s)
- Vinay
Shankar Tiwari
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Prince Joshi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanchan Yadav
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anamika Sharma
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sushobhan Chowdhury
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Ashan Manhas
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niti Kumar
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renu Tripathi
- Division
of Molecular Parasitology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Wahajul Haq
- Medicinal
and Process Chemistry Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Altalhi TA, Alswat K, Alsanie WF, Ibrahim MM, Aldalbahi A, El-Sheshtawy HS. Chloroquine and hydroxychloroquine inhibitors for COVID-19 sialic acid cellular receptor: Structure, hirshfeld atomic charge analysis and solvent effect. J Mol Struct 2021; 1228:129459. [PMID: 33082599 PMCID: PMC7558245 DOI: 10.1016/j.molstruc.2020.129459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
COVID-19, the pandemic disease recently discovered in Wuhan (China), severely spread and affected both social and economic activity all over the world. Attempts to find an effective vaccine are challenging, time-consuming though interminable. Hence, re-proposing effective drugs is reliable and effective alternative. Taking into account the genome similarity of COVID-19 with SARS-CoV, drugs with safety profiles could be fast solution. Clinical trials encouraged the use of Chloroquine and Hydroxychloroquine for COVID-19 inhibition. One of the possible inhibition pathways is the competitive binding with the angiotension-converting enzyme-2 (ACE-2), in particular with the cellular Sialic acid (Neu5Ac). Here, we investigate the possible binding mechanism of ClQ and ClQOH with sialic acid both in the gas phase and in water using density functional theory (DFT). We investigated the binding of the neutral, monoprotonated and diprotonated ClQs and ClQOHs to sialic acid to simulate the pH effect on the cellular receptor binding. DFT results reveals that monoprotonated ClQ+ and ClQOH+, which account for more than 66% in the solution, possess high reactivity and binding towards sialic acid. The Neu5Ac-ClQ and the analogues Neu5Ac-ClQOH adducts were stabilized in water than in the gas phase. The molecular complexes stabilize by strong hydrogen bonding and π - π stacking forces. In addition, proton-transfer in Neu5Ac-ClQOH+ provides more stabilizing power and cellular recognition binding forces. These results shed light on possible recognition mechanism and help future breakthroughs for COVID-19 inhibitors.
Collapse
Affiliation(s)
- Tariq A. Altalhi
- Department of Chemistry, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia,Corresponding authors
| | - Khaled Alswat
- Department of internal medicine, Collage of medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratories Science, Collage of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Chemistry, Collage of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia,Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamdy S. El-Sheshtawy
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt,Corresponding authors
| |
Collapse
|
13
|
Jiranek I, Barek J. The use of non-traditional carbon film electrode based on microcrystalline natural graphite – polystyrene composite film for amperometric determination of 5-aminoquinoline using flow injection analysis minimising electrode fouling. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, Cunha AC, Ferreira VF, da Silva FDC. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg Chem 2021; 106:104488. [PMID: 33261844 PMCID: PMC7676325 DOI: 10.1016/j.bioorg.2020.104488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| | - Luana S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Carolina G S Lima
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda C S Boechat
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
15
|
Mezeiova E, Soukup O, Korabecny J. Huprines — an insight into the synthesis and biological properties. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Plasmodium falciparum Knockout for the GPCR-Like PfSR25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules 2020; 10:biom10081197. [PMID: 32824696 PMCID: PMC7465636 DOI: 10.3390/biom10081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023] Open
Abstract
The search for new compounds with antimalarial activity is urgent, as resistance to ones in the classical drug, has already been described in more than one continent. Compounds derived from 1,2,3-triazoles are effective against parasites and bacteria. Here, we evaluated the potential antimalarial activity against the human malaria parasite Plasmodium falciparum in a culture of fifty-four triazole compounds derived from 1H-and 2H-1,2,3-triazole. We identified thirty-one compounds with potential antimalarial activity at concentrations in the micromolar order (µM) and IC50 values ranging from 2.80 µM (9) to 29.27 µM (21). Then, we selected some of these compounds to perform the same tests on the PfSR25- strain (knockout for P. falciparum G-protein coupled receptor-like, SR25). Our experiences with the PfSR25- strain showed that both compounds with higher antimalarial activity for the 3D7 strain and those with less activity resulted in lower IC50 values for the knockout strain. The cytotoxicity of the compounds was evaluated in human renal embryonic cells (HEK 293), using MTT assays. This demonstrated that the compounds with the highest activity (9, 13, 19, 22, 24, 29), showed no toxicity at the tested concentrations.
Collapse
|
17
|
Mbaba M, Dingle LMK, Swart T, Cash D, Laming D, de la Mare JA, Taylor D, Hoppe HC, Biot C, Edkins AL, Khanye SD. The in Vitro Antiplasmodial and Antiproliferative Activity of New Ferrocene-Based α-Aminocresols Targeting Hemozoin Inhibition and DNA Interaction. Chembiochem 2020; 21:2643-2658. [PMID: 32307798 DOI: 10.1002/cbic.202000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 01/30/2023]
Abstract
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Faculty of Medicine, Division of Clinical Pharmacology, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576 UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
18
|
Guillon J, Cohen A, Boudot C, Valle A, Milano V, Das RN, Guédin A, Moreau S, Ronga L, Savrimoutou S, Demourgues M, Reviriego E, Rubio S, Ferriez S, Agnamey P, Pauc C, Moukha S, Dozolme P, Nascimento SD, Laumaillé P, Bouchut A, Azas N, Mergny JL, Mullié C, Sonnet P, Courtioux B. Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. J Enzyme Inhib Med Chem 2020; 35:432-459. [PMID: 31899980 PMCID: PMC6968685 DOI: 10.1080/14756366.2019.1706502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.
Collapse
Affiliation(s)
- Jean Guillon
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Anita Cohen
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, Marseille, France
| | - Clotilde Boudot
- INSERM U1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, Université de Limoges, Limoges, France
| | - Alessandra Valle
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Vittoria Milano
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Rabindra Nath Das
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Aurore Guédin
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Stéphane Moreau
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Luisa Ronga
- PREM UMR5254 - UPPA/CNRS, Technopole Hélioparc, Université de Pau, Pau, France
| | - Solène Savrimoutou
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Maxime Demourgues
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Elodie Reviriego
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Sandra Rubio
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Sandie Ferriez
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Patrice Agnamey
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Cécile Pauc
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Serge Moukha
- Université de Bordeaux, Laboratoire de Toxicologie et d'Hygiène Appliquée - INRA, UFR des Sciences Pharmaceutiques, Bordeaux, France
| | - Pascale Dozolme
- Université de Bordeaux, Laboratoire de Toxicologie et d'Hygiène Appliquée - INRA, UFR des Sciences Pharmaceutiques, Bordeaux, France
| | - Sophie Da Nascimento
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Pierre Laumaillé
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Anne Bouchut
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Nadine Azas
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, Marseille, France
| | - Jean-Louis Mergny
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France.,Institut Curie, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, Université Paris-Saclay, Orsay, France.,Institute of Biophysics of the CAS, Brno, Czech Republic
| | - Catherine Mullié
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Pascal Sonnet
- UFR de Pharmacie, AGIR (Agents Infectieux, Résistance et chimiothérapie), Université de Picardie Jules Verne, Amiens,France
| | - Bertrand Courtioux
- INSERM U1094, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, Université de Limoges, Limoges, France
| |
Collapse
|
19
|
Lane TR, Massey C, Comer JE, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Negl Trop Dis 2019; 13:e0007890. [PMID: 31751347 PMCID: PMC6894882 DOI: 10.1371/journal.pntd.0007890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM—1.14 μM against EBOV in HeLa cells). Range-finding studies in mice directed us to a single 75 mg/kg i.p. dose 1 hr after infection which resulted in 100% survival and statistically significantly reduced viremia at study day 3 from a lethal challenge with mouse-adapted EBOV (maEBOV). Further, an EBOV window study suggested we could dose pyronaridine 2 or 24 hrs post-exposure to result in similar efficacy. Analysis of cytokine and chemokine panels suggests that pyronaridine may act as an immunomodulator during an EBOV infection. Our studies with pyronaridine clearly demonstrate potential utility for its repurposing as an antiviral against EBOV and merits further study in larger animal models with the added benefit of already being used as a treatment against malaria. To date there is no approved drug for Ebola Virus infection. Our approach has been to assess drugs that are already approved for other uses in various countries. Using computational models, we have previously identified three such drugs and demonstrated their activity against the Ebola virus in vitro. We now report on the in vitro absorption, metabolism, distribution, excretion and pharmacokinetic properties of one of these molecules, namely the antimalarial pyronaridine. We justify efficacy testing in the mouse model of ebola infection. We also demonstrate that a single dose of this drug is 100% effective against the virus. This study provides important preclinical evaluation of this already approved drug and justifies its selection for larger animal efficacy studies.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
| | - Christopher Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Joel S. Freundlich
- Departments of Pharmacology, Physiology, and Neuroscience & Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University–New Jersey Medical School, NJ, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | | | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
20
|
Çapcı A, Lorion MM, Wang H, Simon N, Leidenberger M, Borges Silva MC, Moreira DRM, Zhu Y, Meng Y, Chen JY, Lee YM, Friedrich O, Kappes B, Wang J, Ackermann L, Tsogoeva SB. Artemisinin–(Iso)quinoline Hybrids by C−H Activation and Click Chemistry: Combating Multidrug‐Resistant Malaria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Hui Wang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Nina Simon
- Institute of Medical Biotechnology Friedrich-Alexander University of Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology Friedrich-Alexander University of Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | | | | | - Yongping Zhu
- Artemisinin Research Center, and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Jia Yun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yew Mun Lee
- Department of Biological Sciences National University of Singapore 117600 Singapore Singapore
| | - Oliver Friedrich
- Institute of Medical Biotechnology Friedrich-Alexander University of Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology Friedrich-Alexander University of Erlangen-Nürnberg Paul-Gordon-Straße 3 91052 Erlangen Germany
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
- Shenzhen People's Hospital Shenzhen 518020 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Germany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91054 Erlangen Germany
| |
Collapse
|
21
|
Çapcı A, Lorion MM, Wang H, Simon N, Leidenberger M, Borges Silva MC, Moreira DRM, Zhu Y, Meng Y, Chen JY, Lee YM, Friedrich O, Kappes B, Wang J, Ackermann L, Tsogoeva SB. Artemisinin-(Iso)quinoline Hybrids by C-H Activation and Click Chemistry: Combating Multidrug-Resistant Malaria. Angew Chem Int Ed Engl 2019; 58:13066-13079. [PMID: 31290221 DOI: 10.1002/anie.201907224] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 12/21/2022]
Abstract
A substantial challenge worldwide is emergent drug resistance in malaria parasites against approved drugs, such as chloroquine (CQ). To address these unsolved CQ resistance issues, only rare examples of artemisinin (ART)-based hybrids have been reported. Moreover, protein targets of such hybrids have not been identified yet, and the reason for the superior efficacy of these hybrids is still not known. Herein, we report the synthesis of novel ART-isoquinoline and ART-quinoline hybrids showing highly improved potencies against CQ-resistant and multidrug-resistant P. falciparum strains (EC50 (Dd2) down to 1.0 nm; EC50 (K1) down to 0.78 nm) compared to CQ (EC50 (Dd2)=165.3 nm; EC50 (K1)=302.8 nm) and strongly suppressing parasitemia in experimental malaria. These new compounds are easily accessible by step-economic C-H activation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. Through chemical proteomics, putatively hybrid-binding protein targets of the ART-quinolines were successfully identified in addition to known targets of quinoline and artemisinin alone, suggesting that the hybrids act through multiple modes of action to overcome resistance.
Collapse
Affiliation(s)
- Aysun Çapcı
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91054, Erlangen, Germany
| | - Mélanie M Lorion
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Hui Wang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Nina Simon
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | | | | | - Yongping Zhu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia Yun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yew Mun Lee
- Department of Biological Sciences, National University of Singapore, 117600, Singapore, Singapore
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052, Erlangen, Germany
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91054, Erlangen, Germany
| |
Collapse
|
22
|
Ivermectin Impairs the Development of Sexual and Asexual Stages of Plasmodium falciparum In Vitro. Antimicrob Agents Chemother 2019; 63:AAC.00085-19. [PMID: 31109978 DOI: 10.1128/aac.00085-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Ivermectin is the drug of choice for many parasitic infections, with more than one billion doses being distributed in onchocerciasis programs. The drug has been put into focus recently by the malaria community because of its potential to kill blood-sucking mosquitoes, thereby reducing malaria transmission. However, the activity of ivermectin against the malaria parasite itself has been only partly investigated. This study aimed to investigate the in vitro activity of ivermectin against asexual and sexual stages of Plasmodium falciparum Both asexual and late-stage gametocytes were incubated with ivermectin and control drugs in vitro The growth-inhibiting effects were assessed for asexual stages of different Plasmodium falciparum laboratory strains and culture-adapted clinical isolates using the histidine-rich protein 2 enzyme-linked immunosorbent assay technique. The effect against stage IV/V gametocytes was evaluated based on ATP quantification. Ivermectin showed activities at nanomolar concentrations against asexual stages (50% inhibitory concentration of ∼100 nM) and stage IV/V gametocytes (500 nM) of P. falciparum Stage-specific assays suggested that ivermectin arrests the parasite cycle at the trophozoite stage. Ivermectin might add a feature to its "wonder drug" properties with activity against asexual stages of the malaria parasite Plasmodium falciparum The observed activities might be difficult to reach with current regimens but will be more relevant with future high-dose regimens under investigation. Further studies should be performed to confirm these results in vitro and in vivo.
Collapse
|
23
|
Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, limited manpower, high research cost coupled with high failure rate during preclinical and clinical studies might militate against the pursuit of this mission. These limitations may be overcome with cheminformatic techniques. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of cheminformatics techniques (including molecular diversity analysis, quantitative-structure activity/property relationships and Machine learning) to natural products with in vitro and in vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.
Collapse
|
24
|
Preparation and biological evaluation of quinoline amines as anticancer agents and its molecular docking. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Synthesis, Biological Evaluation, and Molecular Modeling Studies of Chiral Chloroquine Analogues as Antimalarial Agents. Antimicrob Agents Chemother 2018; 62:AAC.02347-17. [PMID: 30224532 DOI: 10.1128/aac.02347-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
In a focused exploration, we designed, synthesized, and biologically evaluated chiral conjugated new chloroquine (CQ) analogues with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity (in vitro 50% inhibitory concentration, 56.98 nM for strain 3D7 and 97.76 nM for strain K1; selectivity index in vivo [up to at a dose of 12.5 mg/kg of body weight], 3,510) as a new lead antimalarial agent. Other compounds (compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c) also showed moderate activity against a CQ-sensitive strain (3D7) and superior activity against a CQ-resistant strain (K1) of Plasmodium falciparum Furthermore, we carried out docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of all in-house data sets (168 molecules) of chiral CQ analogues to explain the structure-activity relationships (SAR). Our new findings specify the significance of the H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against the 3D7 strain indicated the favorable and unfavorable sites of CQ analogues for incorporating steric, hydrophobic, and electropositive groups to improve the antimalarial activity.
Collapse
|
26
|
|
27
|
Lawrenson AS, Cooper DL, O'Neill PM, Berry NG. Study of the antimalarial activity of 4-aminoquinoline compounds against chloroquine-sensitive and chloroquine-resistant parasite strains. J Mol Model 2018; 24:237. [PMID: 30120591 PMCID: PMC6097041 DOI: 10.1007/s00894-018-3755-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/20/2018] [Indexed: 11/14/2022]
Abstract
This study is concerned with identifying features of 4-aminoquinoline scaffolds that can help pinpoint characteristics that enhance activity against chloroquine-resistant parasites. Statistically valid predictive models are reported for a series of 4-aminoquinoline analogues that are active against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Quantitative structure activity relationship techniques, based on statistical and machine learning methods such as multiple linear regression and partial least squares, were used with a novel pruning method for the selection of descriptors to develop robust models for both strains. Inspection of the dominant descriptors supports the hypothesis that chemical features that enable accumulation in the food vacuole of the parasite are key determinants of activity against both strains. The hydrophilic properties of the compounds were found to be crucial in predicting activity against the chloroquine-sensitive NF54 parasite strain, but not in the case of the chloroquine-resistant K1 strain, in line with previous studies. Additionally, the models suggest that ‘softer’ compounds tend to have improved activity for both strains than do ‘harder’ ones. The internally and externally validated models reported here should also prove useful in the future screening of potential antimalarial compounds for targeting chloroquine-resistant strains. Predictive models reveal linear relationships for activity of 4-aminoquinoline analogues active against chloroquine-sensitive strains of Plasmodium falciparum ![]()
Collapse
Affiliation(s)
| | - David L Cooper
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
28
|
Ndung'u L, Langat B, Magiri E, Ng'ang'a J, Irungu B, Nzila A, Kiboi D. Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters. Wellcome Open Res 2018; 2:44. [PMID: 29946569 PMCID: PMC5998014 DOI: 10.12688/wellcomeopenres.11768.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED 90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED 90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca 2+/H + antiporter. Conclusions: Selection of amodiaquine resistance yielded stable "multidrug-resistant'' parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.
Collapse
Affiliation(s)
- Loise Ndung'u
- PAUSTI, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.,KEMRI- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, 00200, Kenya
| | - Benard Langat
- Department of Nursing and Nutritional Sciences, University of Kabianga, Kericho, 20200, Kenya
| | - Esther Magiri
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Joseph Ng'ang'a
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Beatrice Irungu
- KEMRI- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, 00200, Kenya
| | - Alexis Nzila
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dharan, 31261, Saudi Arabia
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.,West Africa Centre for Cell Biology and Infectious Pathogens, University of Ghana, Accra, 54 Legon, Ghana.,Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, 80108, Kenya
| |
Collapse
|
29
|
Guillon J, Cohen A, Das RN, Boudot C, Gueddouda NM, Moreau S, Ronga L, Savrimoutou S, Basmaciyan L, Tisnerat C, Mestanier S, Rubio S, Amaziane S, Dassonville-Klimpt A, Azas N, Courtioux B, Mergny JL, Mullié C, Sonnet P. Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem Biol Drug Des 2018; 91:974-995. [PMID: 29266861 DOI: 10.1111/cbdd.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
A series of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives was synthesized, and the compounds were screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the μm range. The in vitro cytotoxicity of these molecules was assessed by incubation with human HepG2 cells; for some derivatives, cytotoxicity was observed at significantly higher concentrations than antiparasitic activity. The 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline 1h was identified as the most potent antimalarial candidate with ratios of cytotoxic-to-antiparasitic activities of 107 and 39 against a chloroquine-sensitive and a chloroquine-resistant strain of P. falciparum, respectively. As the telomeres of the parasite P. falciparum are the likely target of this compound, we investigated stabilization of the Plasmodium telomeric G-quadruplexes by our phenanthroline derivatives through a FRET melting assay. The ligands 1f and 1m were noticed to be more specific for FPf8T with higher stabilization for FPf8T than for the human F21T sequence.
Collapse
Affiliation(s)
- Jean Guillon
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Anita Cohen
- Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, Aix-Marseille University, Marseille, France
| | - Rabindra Nath Das
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Clotilde Boudot
- INSERM U1094, Tropical Neuroepidemiology, Limoges, France.,Institute of Neuroepidemiology and Tropical Neurology, Université de Limoges, Limoges, France
| | - Nassima Meriem Gueddouda
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Stéphane Moreau
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Luisa Ronga
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Solène Savrimoutou
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Louise Basmaciyan
- Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, Aix-Marseille University, Marseille, France
| | - Camille Tisnerat
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Sacha Mestanier
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Sandra Rubio
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Sophia Amaziane
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Alexandra Dassonville-Klimpt
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Nadine Azas
- Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, Aix-Marseille University, Marseille, France
| | - Bertrand Courtioux
- INSERM U1094, Tropical Neuroepidemiology, Limoges, France.,Institute of Neuroepidemiology and Tropical Neurology, Université de Limoges, Limoges, France
| | - Jean-Louis Mergny
- INSERM U1212, UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France.,Institute of Biophysics of the CAS, v.v.i., Brno, Czech Republic
| | - Catherine Mullié
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
30
|
Ndung'u L, Langat B, Magiri E, Ng'ang'a J, Irungu B, Nzila A, Kiboi D. Amodiaquine resistance in Plasmodium berghei is associated with PbCRT His95Pro mutation, loss of chloroquine, artemisinin and primaquine sensitivity, and high transcript levels of key transporters. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11768.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca2+/H+ antiporter. Conclusions: Selection of amodiaquine resistance yielded stable “multidrug-resistant’’ parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.
Collapse
|
31
|
Guillon J, Cohen A, Gueddouda NM, Das RN, Moreau S, Ronga L, Savrimoutou S, Basmaciyan L, Monnier A, Monget M, Rubio S, Garnerin T, Azas N, Mergny JL, Mullié C, Sonnet P. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J Enzyme Inhib Med Chem 2017; 32:547-563. [PMID: 28114821 PMCID: PMC6445168 DOI: 10.1080/14756366.2016.1268608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure–activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.
Collapse
Affiliation(s)
- Jean Guillon
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Anita Cohen
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Nassima Meriem Gueddouda
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Rabindra Nath Das
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Stéphane Moreau
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Luisa Ronga
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Solène Savrimoutou
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Louise Basmaciyan
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Alix Monnier
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Myriam Monget
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Sandra Rubio
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Timothée Garnerin
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| | - Nadine Azas
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Jean-Louis Mergny
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Catherine Mullié
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| | - Pascal Sonnet
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| |
Collapse
|
32
|
Synthesis and Evaluation of Chirally Defined Side Chain Variants of 7-Chloro-4-Aminoquinoline To Overcome Drug Resistance in Malaria Chemotherapy. Antimicrob Agents Chemother 2017; 61:AAC.01152-16. [PMID: 27956423 DOI: 10.1128/aac.01152-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022] Open
Abstract
A novel 4-aminoquinoline derivative [(S)-7-chloro-N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate] exhibiting curative activity against chloroquine-resistant malaria parasites has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed structure-activity relationship (SAR) studies has good solid-state properties and promising activity against in vitro and in vivo experimental malaria models. The in vitro absorption, distribution, metabolism, and excretion (ADME) parameters indicate a favorable drug-like profile.
Collapse
|
33
|
Kljun J, Turel I. β-Diketones as Scaffolds for Anticancer Drug Design - From Organic Building Blocks to Natural Products and Metallodrug Components. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| |
Collapse
|
34
|
Ajamian F, Wu Y, Ebeling C, Ilarraza R, Odemuyiwa SO, Moqbel R, Adamko DJ. Respiratory syncytial virus induces indoleamine 2,3-dioxygenase activity: a potential novel role in the development of allergic disease. Clin Exp Allergy 2015; 45:644-59. [PMID: 25627660 DOI: 10.1111/cea.12498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/03/2014] [Accepted: 12/21/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Infants that develop severe bronchiolitis due to respiratory syncytial virus (RSV) are at increased risk of developing asthma later in life. We investigated a potential immunological mechanism for the association between RSV and the development of allergic inflammation. The enzyme indoleamine 2,3-dioxygenase (IDO) has been reported to induce selective apoptosis of T helper 1 (Th1) cells and contributed to Th2-biased immune responses. OBJECTIVE To determine whether RSV infection in vitro could induce IDO expression and bioactivity in human dendritic cells, leading to a Th2-biased immune response. METHODS Human peripheral blood monocytes from healthy adult donors were isolated, differentiated to dendritic cells (moDC), in vitro. We studied RSV infection and mechanisms of IDO activation in moDC with subsequent effect on T-bet expression. RESULTS We found that moDC were infected by RSV and that this induced IDO activation. RSV-induced IDO activity was inhibited by palivizumab, UV inactivation, TL4R inhibition, and ribavirin. However, blocking endosomal TLR function with chloroquine did not inhibit IDO activity. Selective inhibitors suggested that RSV-induced IDO activity was dependent on the retinoic acid-inducible gene-I (RIG-I) related pathway via NF-κB and p38 MAPK. Coculture of RSV-infected moDC with activated T cells, in a transwell system, suppressed expression of T-bet (a Th1-associated factor) but not GATA3 (a Th2 regulator). Inhibition of IDO activity with the competitive inhibitor, 1-methyl tryptophan, blocked the effect on T-bet expression. CONCLUSION AND CLINICAL RELEVANCE Our data show for the first time that RSV can induce the expression and bioactivity of IDO in human moDC, in a virus replication-dependant fashion. We suggest that RSV activation of IDO could be a potential mechanism for the development of allergic diseases.
Collapse
Affiliation(s)
- F Ajamian
- Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
In vitro antiplasmodial activity of triazole-linked chloroquinoline derivatives synthesized from 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine. Bioorg Med Chem 2015; 23:4163-4171. [DOI: 10.1016/j.bmc.2015.06.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 11/19/2022]
|
36
|
Senthil Kumar G, Ali MA, Choon TS, Rajendra Prasad KJ. Palladium-catalyzed regioselective aerobic oxidative cyclization via C–H activation in chloroquine analogues: synthesis and cytotoxic study. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1474-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Affiliation(s)
- David S Barnett
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| |
Collapse
|
38
|
Cross RM, Flanigan DL, Monastyrskyi A, LaCrue AN, Sáenz FE, Maignan JR, Mutka TS, White KL, Shackleford DM, Bathurst I, Fronczek FR, Wojtas L, Guida WC, Charman SA, Burrows JN, Kyle DE, Manetsch R. Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium. J Med Chem 2014; 57:8860-79. [PMID: 25148516 PMCID: PMC4234439 DOI: 10.1021/jm500942v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The continued proliferation
of malaria throughout temperate and
tropical regions of the world has promoted a push for more efficacious
treatments to combat the disease. Unfortunately, more recent remedies
such as artemisinin combination therapies have been rendered less
effective due to developing parasite resistance, and new drugs are
required that target the parasite in the liver to support the disease
elimination efforts. Research was initiated to revisit antimalarials
developed in the 1940s and 1960s that were deemed unsuitable for use
as therapeutic agents as a result of poor understanding of both physicochemical
properties and parasitology. Structure–activity and structure–property
relationship studies were conducted to generate a set of compounds
with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with
a variety of phenyl moieties possessing various properties. Extensive
physicochemical evaluation of the quinolone series was carried out
to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67,
which possessed low-nanomolar EC50 values against W2 and
TM90-C2B as well as improved microsomal stability. Additionally, in
vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were
efficacious for the reduction of parasitemia at >99% after 6 days.
Collapse
Affiliation(s)
- R Matthew Cross
- Department of Chemistry, University of South Florida , CHE 205, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Njoroge M, Njuguna NM, Mutai P, Ongarora DSB, Smith PW, Chibale K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem Rev 2014; 114:11138-63. [PMID: 25014712 DOI: 10.1021/cr500098f] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Paul W Smith
- Novartis Institute for Tropical Diseases , Singapore 138670, Singapore
| | | |
Collapse
|
40
|
Hubin TJ, Amoyaw PNA, Roewe KD, Simpson NC, Maples RD, Carder Freeman TN, Cain AN, Le JG, Archibald SJ, Khan SI, Tekwani BL, Khan MOF. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg Med Chem 2014; 22:3239-44. [PMID: 24857776 PMCID: PMC4119818 DOI: 10.1016/j.bmc.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022]
Abstract
Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development.
Collapse
Affiliation(s)
- Timothy J. Hubin
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Prince N. -A. Amoyaw
- College of Pharmacy, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Kimberly D. Roewe
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Natalie C. Simpson
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Randall D. Maples
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - TaRynn N. Carder Freeman
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Amy N. Cain
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Justin G. Le
- Department of Chemistry, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Stephen J. Archibald
- Department of Chemistry, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX
| | - Shabana I. Khan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
| | - Babu L. Tekwani
- National Center for Natural Products Research, University of Mississippi, University, MS 38677
| | - M. O. Faruk Khan
- College of Pharmacy, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| |
Collapse
|
41
|
Carrasco MP, Newton AS, Gonçalves L, Góis A, Machado M, Gut J, Nogueira F, Hänscheid T, Guedes RC, dos Santos DJVA, Rosenthal PJ, Moreira R. Probing the aurone scaffold against Plasmodium falciparum: design, synthesis and antimalarial activity. Eur J Med Chem 2014; 80:523-34. [PMID: 24813880 DOI: 10.1016/j.ejmech.2014.04.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022]
Abstract
A library comprising 44 diversely substituted aurones derivatives was synthesized by straightforward aldol condensation reactions of benzofuranones and the appropriately substituted benzaldehydes. Microwave enhanced synthesis using palladium catalyzed protocols was introduced as a powerful strategy for extending the chemical space around the aurone scaffold. Additionally, Mannich-base derivatives, containing a 7-aminomethyl-6-hydroxy substitution pattern at ring A, were also prepared. Screening against the chloroquine resistant Plasmodium falciparum W2 strain identified novel aurones with IC50 values in the low micromolar range. The most potent compounds contained a basic moiety, with the ability to accumulate in acidic digestive vacuole of the malaria parasite. However, none of those aurones revealed significant activity against hemozoin formation and falcipain-2, two validated targets expressed during the blood stage of P. falciparum infection and functional in digestive vacuole of the parasite. Overall, this study highlight (i) the usefulness of aurones as platforms for synthetic procedures using palladium catalyzed protocols to rapidly deliver lead compounds for further optimization and (ii) the potential of novel aurone derivatives as promising antimalarial compounds.
Collapse
Affiliation(s)
- Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Ana S Newton
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Lídia Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Ana Góis
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Marta Machado
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, CA 94143, USA
| | - Fátima Nogueira
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Thomas Hänscheid
- Unidade de Microbiologia Molecular e Infecção, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita C Guedes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Daniel J V A dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, CA 94143, USA
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal.
| |
Collapse
|
42
|
Inam A, Siddiqui SM, Macedo TS, Moreira DRM, Leite ACL, Soares MBP, Azam A. Design, synthesis and biological evaluation of 3-[4-(7-chloro-quinolin-4-yl)-piperazin-1-yl]-propionic acid hydrazones as antiprotozoal agents. Eur J Med Chem 2014; 75:67-76. [DOI: 10.1016/j.ejmech.2014.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 12/20/2022]
|
43
|
Thakur A, Khan SI, Rawat DS. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Adv 2014. [DOI: 10.1039/c4ra02276a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperazine linked 4-aminoquinoline-pyrimidine hybrids were synthesized and evaluated for in vitro antimalarial activity against W2 and D6 strains of plasmodium falciparum.
Collapse
Affiliation(s)
- Anuj Thakur
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Shabana I. Khan
- National Center for Natural Products Research
- School of Pharmacy
- University of Mississippi
- , USA
| | - Diwan S. Rawat
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|
44
|
Madrid PB, Chopra S, Manger ID, Gilfillan L, Keepers TR, Shurtleff AC, Green CE, Iyer LV, Dilks HH, Davey RA, Kolokoltsov AA, Carrion R, Patterson JL, Bavari S, Panchal RG, Warren TK, Wells JB, Moos WH, Burke RL, Tanga MJ. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One 2013; 8:e60579. [PMID: 23577127 PMCID: PMC3618516 DOI: 10.1371/journal.pone.0060579] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.
Collapse
Affiliation(s)
- Peter B Madrid
- Center for Infectious Disease and Biodefense Research, SRI International, Menlo Park, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Calderón F, Wilson DM, Gamo FJ. Antimalarial drug discovery: recent progress and future directions. PROGRESS IN MEDICINAL CHEMISTRY 2013; 52:97-151. [PMID: 23384667 DOI: 10.1016/b978-0-444-62652-3.00003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Félix Calderón
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Spain
| | | | | |
Collapse
|
46
|
Staderini M, Cabezas N, Bolognesi ML, Menéndez JC. Solvent- and chromatography-free amination of π-deficient nitrogen heterocycles under microwave irradiation. A fast, efficient and green route to 9-aminoacridines, 4-aminoquinolines and 4-aminoquinazolines and its application to the synthesis of the drugs amsacrine and bistacrine. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Synthesis, characterization and antimalarial activity of quinoline–pyrimidine hybrids. Bioorg Med Chem 2013; 21:269-77. [DOI: 10.1016/j.bmc.2012.10.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/09/2012] [Accepted: 10/18/2012] [Indexed: 11/24/2022]
|
48
|
|
49
|
Gemma S, Camodeca C, Brindisi M, Brogi S, Kukreja G, Kunjir S, Gabellieri E, Lucantoni L, Habluetzel A, Taramelli D, Basilico N, Gualdani R, Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Martin RE, Summers RL, Lamponi S, Savini L, Fiorini I, Valoti M, Novellino E, Campiani G, Butini S. Mimicking the Intramolecular Hydrogen Bond: Synthesis, Biological Evaluation, and Molecular Modeling of Benzoxazines and Quinazolines as Potential Antimalarial Agents. J Med Chem 2012; 55:10387-404. [DOI: 10.1021/jm300831b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Gemma
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Caterina Camodeca
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Margherita Brindisi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Simone Brogi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Gagan Kukreja
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Sanil Kunjir
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Emanuele Gabellieri
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Leonardo Lucantoni
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Scuola di Scienze del Farmaco
e dei Prodotti della Salute, Università di Camerino, 62032
Camerino (MC), Italy
| | - Annette Habluetzel
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Scuola di Scienze del Farmaco
e dei Prodotti della Salute, Università di Camerino, 62032
Camerino (MC), Italy
| | - Donatella Taramelli
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Nicoletta Basilico
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Roberta Gualdani
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Gianluca Bartolommei
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Maria Rosa Moncelli
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Rowena E. Martin
- Research School of Biology,
The Australian National University, Canberra ACT 0200, Australia
| | - Robert L. Summers
- Research School of Biology,
The Australian National University, Canberra ACT 0200, Australia
| | - Stefania Lamponi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Luisa Savini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Isabella Fiorini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Massimo Valoti
- Dipartimento di Neuroscienze,
University of Siena, via A. Moro 2, Siena, Italy
| | - Ettore Novellino
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- Dipartimento di Chimica Farmaceutica
e Tossicologica, University of Naples Federico II, Via D. Montesano
49, 80131 Naples, Italy
| | - Giuseppe Campiani
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Stefania Butini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| |
Collapse
|
50
|
Khan T, van Brummelen AC, Parkinson CJ, Hoppe HC. ATP and luciferase assays to determine the rate of drug action in in vitro cultures of Plasmodium falciparum. Malar J 2012; 11:369. [PMID: 23134617 PMCID: PMC3505462 DOI: 10.1186/1475-2875-11-369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Knowledge of the rate of action of compounds against cultured malaria parasites is required to determine the optimal time-points for drug mode of action studies, as well as to predict likely in vivo parasite clearance rates in order to select optimal hit compounds for further development. In this study, changes in parasite ATP levels and transgenic luciferase reporter activity were explored as means to detect drug-induced stress in cultured parasites. Methods In vitro cultures of Plasmodium falciparum 3D7 wild-type or firefly luciferase-expressing parasites were incubated with a panel of six anti-malarial compounds for 10 hours and parasite ATP levels or luciferase activity determined at two-hour intervals using luminescence-based reagents. For comparative purposes, parasite morphology changes were evaluated by light microscopy, as well as the extent to which parasites recover after 48 hours from a six-hour drug treatment using a parasite lactate dehydrogenase assay. Results Changes in parasite ATP levels displayed three phenotypes: mild or no change (chloroquine, DFMO); 2–4 fold increase (mefloquine, artemisinin); severe depletion (ritonavir, gramicidin). The respective phenotypes and the rate at which they manifested correlated closely with the extent to which parasites recovered from a six-hour drug treatment (with the exception of chloroquine) and the appearance and severity of morphological changes observed by light microscopy. Luciferase activity decreased profoundly in parasites treated with mefloquine, artemisinin and ritonavir (34-67% decrease in 2 hours), while chloroquine and DFMO produced only mild changes over 10 hours. Gramicidin yielded intermediate decreases in luciferase activity. Conclusions ATP levels and luciferase activity respond rapidly to incubation with anti-malarial drugs and provide quantitative read-outs to detect the appearance and magnitude of drug-induced stress in cultured parasites. The correlation between the observed changes and irreversible parasite toxicity is not yet sufficiently clear to predict clinical clearance rates, but may be useful for ranking compounds against each other and standard drugs vis-à-vis rate of action and for determining early time-points for drug mode of action studies.
Collapse
Affiliation(s)
- Tasmiyah Khan
- CSIR Biosciences, PO Box 365, Pretoria 0001, South Africa
| | | | | | | |
Collapse
|