1
|
Szallasi A. Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers (Basel) 2024; 16:648. [PMID: 38339399 PMCID: PMC11154559 DOI: 10.3390/cancers16030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic intractable pain affects a large proportion of cancer patients, especially those with metastatic bone disease. Blocking sensory afferents for cancer pain relief represents an attractive alternative to opioids and other drugs acting in the CNS in that sensory nerve blockers are not addictive and do not affect the mental state of the patient. A distinct subpopulation of sensory afferents expresses the capsaicin receptor TRPV1. Intrathecal resiniferatoxin, an ultrapotent capsaicin analog, ablates TRPV1-expressing nerve endings exposed to the cerebrospinal fluid, resulting in permanent analgesia in women with cervical cancer metastasis to the pelvic bone. High-dose capsaicin patches are effective pain killers in patients with chemotherapy-induced peripheral neuropathic pain. However, large gaps remain in our knowledge since the mechanisms by which cancer activates TRPV1 are essentially unknown. Most important, it is not clear whether or not sensory denervation mediated by TRPV1 agonists affects cancer progression. In a murine model of breast cancer, capsaicin desensitization was reported to accelerate progression. By contrast, desensitization mediated by resiniferatoxin was found to block melanoma growth. These observations imply that TRPV1 blockade for pain relief may be indicated for some cancers and contraindicated for others. In this review, we explore the current state of this field and compare the analgesic potential of TRPV1 antagonism and sensory afferent desensitization in cancer patients.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Ni B, Yin Y, Li Z, Wang J, Wang X, Wang K. Crosstalk Between Peripheral Innervation and Pancreatic Ductal Adenocarcinoma. Neurosci Bull 2023; 39:1717-1731. [PMID: 37347365 PMCID: PMC10603023 DOI: 10.1007/s12264-023-01082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy, characterized by late diagnosis, aggressive growth, and therapy resistance, leading to a poor overall prognosis. Emerging evidence shows that the peripheral nerve is an important non-tumor component in the tumor microenvironment that regulates tumor growth and immune escape. The crosstalk between the neuronal system and PDAC has become a hot research topic that may provide novel mechanisms underlying tumor progression and further uncover promising therapeutic targets. In this review, we highlight the mechanisms of perineural invasion and the role of various types of tumor innervation in the progression of PDAC, summarize the potential signaling pathways modulating the neuronal-cancer interaction, and discuss the current and future therapeutic possibilities for this condition.
Collapse
Affiliation(s)
- Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Junjin Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
3
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Romeo I, Brizzi A, Pessina F, Ambrosio FA, Aiello F, Belardo C, Carullo G, Costa G, De Petrocellis L, Frosini M, Luongo L, Maramai S, Paolino M, Moriello AS, Mugnaini C, Scorzelli F, Maione S, Corelli F, Di Marzo V, Alcaro S, Artese A. In Silico-Guided Rational Drug Design and Synthesis of Novel 4-(Thiophen-2-yl)butanamides as Potent and Selective TRPV1 Agonists. J Med Chem 2023; 66:6994-7015. [PMID: 37192374 DOI: 10.1021/acs.jmedchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienza della Salute e della Nutrizione, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carmela Belardo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gabriele Carullo
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Livio Luongo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Epitech Group SpA, Via L. Einaudi 13, 35030 Saccolongo, Padova, Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesco Scorzelli
- Recipharm (Edmond Pharma), Strada Statale dei Giovi 131, 20037 Paderno Dugnano, Milano, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Heart and Lung Research Institute, Department of Medicine, Faculty of Medicine, and Institute of Nutrition and Functional Foods, NUTRISS Center, School of Nutrition, Faculty of Agriculture and Food Science, Université Laval, 2325 Rue de l'Université, Québec, Canada
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Structure-guided peptide engineering of a positive allosteric modulator targeting the outer pore of TRPV1 for long-lasting analgesia. Nat Commun 2023; 14:4. [PMID: 36596769 PMCID: PMC9810691 DOI: 10.1038/s41467-022-34817-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) ion channel is a classic analgesic target, but antagonists of TRPV1 failed in clinical trials due to their side effects like hyperthermia. Here we rationally engineer a peptide s-RhTx as a positive allosteric modulator (PAM) of TRPV1. Patch-clamp recordings demonstrate s-RhTx selectively potentiated TRPV1 activation. s-RhTx also slows down capsaicin-induced desensitization of TRPV1 in the presence of calcium to cause more calcium influx in TRPV1-expressing cells. In addition, our thermodynamic mutant cycle analysis shows that E652 in TRPV1 outer pore specifically interacts with R12 and K22 in s-RhTx. Furthermore, we demonstrate in vivo that s-RhTx exhibits long-lasting analgesic effects in noxious heat hyperalgesia and CFA-induced chronic inflammatory pain by promoting the reversible degeneration of intra-epidermal nerve fiber (IENF) expressing TRPV1 channels in mice, while their body temperature remains unaffected. Our results suggest s-RhTx is an analgesic agent as a PAM of TRPV1.
Collapse
|
6
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Xu L, Zhang H, Wang Y, Lu X, Zhao Z, Ma C, Yang S, Yarov‐Yarovoy V, Tian Y, Zheng J, Yang F. De Novo Design of Peptidic Positive Allosteric Modulators Targeting TRPV1 with Analgesic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101716. [PMID: 34247451 PMCID: PMC8425881 DOI: 10.1002/advs.202101716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Indexed: 05/03/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) ion channel is a nociceptor critically involved in pain sensation. Direct blockade of TRPV1 exhibits significant analgesic effects but also incurs severe side effects such as hyperthermia, causing failures of TRPV1 inhibitors in clinical trials. In order to selectively target TRPV1 channels that are actively involved in pain-sensing, peptidic positive allosteric modulators (PAMs) based on the high-resolution structure of the TRPV1 intracellular ankyrin-repeat like domain are de novo designed. The hotspot centric approach is optimized for protein design; its usage in Rosetta increases the success rate in protein binder design. It is demonstrated experimentally, with a combination of fluorescence resonance energy transfer (FRET) imaging, surface plasmon resonance, and patch-clamp recording, that the designed PAMs bind to TRPV1 with nanomolar affinity and allosterically enhance its response to ligand activation as it is designed. It is further demonstrated that the designed PAM exhibits long-lasting in vivo analgesic effects in rats without changing their body temperature, suggesting that they have potentials for developing into novel analgesics.
Collapse
Affiliation(s)
- Lizhen Xu
- Kidney Disease CenterFirst Affiliated Hospital and Department of BiophysicsZhejiang University School of MedicineHangzhouZhejiang310058China
- Alibaba‐Zhejiang University Joint Research Center of Future Digital HealthcareHangzhouZhejiang310058China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhouZhejiang310027China
| | - Heng Zhang
- Kidney Disease CenterFirst Affiliated Hospital and Department of BiophysicsZhejiang University School of MedicineHangzhouZhejiang310058China
- Alibaba‐Zhejiang University Joint Research Center of Future Digital HealthcareHangzhouZhejiang310058China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhouZhejiang310027China
| | - Yunfei Wang
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Xiancui Lu
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Zhenye Zhao
- Kidney Disease CenterFirst Affiliated Hospital and Department of BiophysicsZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Ma
- Protein facilitySchool of MedicineZhejiang UniversityHangzhouZhejiang310027China
| | - Shilong Yang
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Vladimir Yarov‐Yarovoy
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisSchool of MedicineDavisCA95616USA
| | - Yuhua Tian
- Qingdao University School of PharmacyQingdaoShandong266101China
| | - Jie Zheng
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisSchool of MedicineDavisCA95616USA
| | - Fan Yang
- Kidney Disease CenterFirst Affiliated Hospital and Department of BiophysicsZhejiang University School of MedicineHangzhouZhejiang310058China
- Alibaba‐Zhejiang University Joint Research Center of Future Digital HealthcareHangzhouZhejiang310058China
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhouZhejiang310027China
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisSchool of MedicineDavisCA95616USA
| |
Collapse
|
8
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Singh R, Adhya P, Sharma SS. Redox-sensitive TRP channels: a promising pharmacological target in chemotherapy-induced peripheral neuropathy. Expert Opin Ther Targets 2021; 25:529-545. [PMID: 34289785 DOI: 10.1080/14728222.2021.1956464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Pratik Adhya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
10
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Uchytilova E, Spicarova D, Palecek J. Hypersensitivity Induced by Intrathecal Bradykinin Administration Is Enhanced by N-oleoyldopamine (OLDA) and Prevented by TRPV1 Antagonist. Int J Mol Sci 2021; 22:3712. [PMID: 33918267 PMCID: PMC8038144 DOI: 10.3390/ijms22073712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.
Collapse
Affiliation(s)
- Eva Uchytilova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
- Department of Anaesthesiology, Resuscitation and Critical Care, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| |
Collapse
|
12
|
Varshney V, Osborn J, Chaturvedi R, Shah V, Chakravarthy K. Advances in the interventional management of neuropathic pain. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:187. [PMID: 33569489 PMCID: PMC7867895 DOI: 10.21037/atm-20-6190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management of neuropathic pain, defined as pain as a result of a lesion or disease in the somatosensory nervous system, continues to be researched and explored. As conventional methods demonstrate limited long-term efficacy, there is a significant need to discover therapies that offer both longitudinal and sustained management of this highly prevalent disease, which can be offered through interventional therapies. Tricyclic antidepressants (TCAs), gabapentinoids, lidocaine, serotonin norepinephrine reuptake inhibitors (SNRIs), and capsaicin have been shown to be the most efficacious pharmacologic agents for neuropathic pain relief. With respect to infusion therapies, the use of intravenous (IV) ketamine could be useful for complex regional pain syndrome, fibromyalgia, and traumatic spinal cord injury. Interventional approaches such as lumbar epidurals are a reasonable treatment choice for up to 3 months of pain relief for patients who failed to respond to conservative treatment, with a “B” strength of recommendation and moderate certainty. Neuroablative procedures like pulsed radiofrequency ablation work by delivering electrical field and heat bursts to targeted nerves or tissues without permanently damaging these structures, and have been recently explored for neuropathic pain relief. Alternatively, neuromodulation therapy is now recommended as the fourth line treatment of neuropathic pain after failed pharmacological therapy but prior to low dose opioids. Finally, the intrathecal delivery of various pharmacologic agents, such as quinoxaline-based kappa-opioid receptor agonists, can be utilized for neuropathic pain relief. In this review article, we aim to highlight advances and novel methods of interventional management of neuropathic pain.
Collapse
Affiliation(s)
- Vishal Varshney
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Osborn
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Chaturvedi
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vrajesh Shah
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
13
|
Darmani NA, Henry DA, Zhong W, Chebolu S. Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behav Pharmacol 2020; 31:3-14. [PMID: 31503071 DOI: 10.1097/fbp.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | | | |
Collapse
|
14
|
Nahama A, Ramachandran R, Cisternas AF, Ji H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. MEDICINE IN DRUG DISCOVERY 2020; 5:100033. [PMID: 32292906 PMCID: PMC7147194 DOI: 10.1016/j.medidd.2020.100033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality associated with COVID-19 disease. Many patients will require intensive care with ventilatory support. Despite progress and best efforts, the mortality rates projected remain high. Historical data outlook points towards 80% expected fatality for patients progressing to advanced pulmonary disease, even when hospitalized in the intensive care unit. This is particularly true among the patient population over 65. Novel life-saving strategies are desperately needed to mitigate the high mortality that will be associated with the late stage SARS-CoV-2 viral infection associated with the fatal respiratory distress. We hypothesize that the morbidity, severity of the disease, and underlying physiological events leading to mortality are closely linked to the TRPV1 expressing neuronal system (afferent/efferent neurons) in the lungs. TRPV1 expressing cells are responsible for pain transmission, inflammation and immunomodulation throughout the entire pulmonary system and are modulating the processes associated with localized cytokine release (storm) and overall rapid disease progression. We suggest that therapeutic approaches targeting TRPV1 containing nerve fibers in the lungs will modulate the inflammatory and immune signal activity, leading to reduced mortality and better overall outcomes. We also propose to further explore the use of resiniferatoxin (RTX), an ultra-potent TRPV1 agonist currently in clinical trials for cancer and osteoarthritis pain, as a possible ablating agent of TRPV1 positive pulmonary pathways in patients with advanced COVID-19 disease.
Collapse
Affiliation(s)
- Alexis Nahama
- Sorrento Therapeutics Inc., 4955 Directors’ Place, San Diego, CA, 92121
| | | | | | - Henry Ji
- Sorrento Therapeutics Inc., 4955 Directors’ Place, San Diego, CA, 92121
| |
Collapse
|
15
|
Zhou M, Liu Y, He Y, Xie K, Quan D, Tang Y, Huang H, Huang C. Selective chemical ablation of transient receptor potential vanilloid 1 expressing neurons in the left stellate ganglion protects against ischemia-induced ventricular arrhythmias in dogs. Biomed Pharmacother 2019; 120:109500. [PMID: 31600641 DOI: 10.1016/j.biopha.2019.109500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Findings from prior investigations show that left stellate ganglion (LSG) inhibitory approaches protect the heart from ventricular arrhythmias (VAs) caused by acute myocardial infarction (AMI), which still remain many side effects. Targeted transient receptor potential vanilloid 1/tyrosine hydroxylase (TRPV-1/TH) expressing sympathetic neurons ablation is a novel neuro-ablative strategy. The aim of this investigation was to explore if targeted molecular neuro-ablative strategy by resiniferatoxin (RTX) stellate microinjection could protect against ischemia-induced VAs. METHODS Twenty-four anesthetized beagles were assigned to a control group (n = 12) and RTX group (n = 12) in a random manner. Targeted molecular neuro-ablative was produced by RTX stellate microinjection and DMSO was microinjected into LSG in the same way as control. Plasma norepinephrine (NE) level, heart rate variability (HRV), Tpeak-Tend interval (Tp-Te), LSG neural activity and function, ventricular effective refractory period (ERP), beat-to-beat variability of repolarization (BVR) and ventricular action potential duration (APD) were measured at baseline and 60 min after RTX or DMSO microinjection. AMI model was established by the ligation of left anterior descending coronary artery and 60-minute electrocardiography was continuously recorded for VAs analysis. Subsequently, HRV, Tp-Te, plasma NE level from jugular vein and coronary sinus, LSG neural activity and function, ventricular ERP, ventricular APD, BVR, action potential duration alternans (APDA) cycle length and ventricular fibrillation threshold (VFT) were evaluated after AMI. Finally, tissue collection of LSG was performed for examining the TRPV-1, nerve growth factor (NGF) protein and c-fos protein. RESULTS TRPV-1 was highly expressed in the TH-expressing neurons and RTX injection significantly ablated TRPV-1/TH-positive neurons in LSG. Compared with baseline, RTX stellate microinjection significantly reduced plasma NE level, the sympathetic component of HRV, LSG neural activity and LSG function, shortened Tp-Te, prolonged ventricular ERP and APD, but there were no remarkable differences existed for control group. AMI resulted in the significant raise in plasma NE level from jugular vein and coronary sinus, the sympathetic component of HRV, LSG neural activity and LSG function, the marked prolongation in Tp-Te and BVR, the significant decrease in ERP and APD from ischemia area, and the increase in APDA cycle length in the ischemic region of the control group, which were remarkably attenuated in the RTX group. RTX pretreatment markedly rose the VFT in the RTX group. Furthermore, the AMI-triggered VAs was significantly prevented by RTX injection in the RTX group. RTX microinjection down-regulated significantly TRPV-1, NGF and c-fos expression in the LSG compared with the control group. CONCLUSION Targeted ablation of TRPV-1/TH positive sympathetic neurons induced by RTX stellate microinjection could suppress ischemia-induced cardiac autonomic imbalances and cardiac electrophysiology instability to protect against AMI-induced VAs.
Collapse
Affiliation(s)
- Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Yan He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
16
|
Deer TR, Malinowski M, Varshney V, Pope J. Choice of intrathecal drug in the treatment of neuropathic pain – new research and opinion. Expert Rev Clin Pharmacol 2019; 12:1003-1007. [DOI: 10.1080/17512433.2019.1659724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Timothy R. Deer
- Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | | | - Vishal Varshney
- Pain Medicine, Department of Anesthesiology, University of Calgary, Calgary, AB, Canada
| | - Jason Pope
- Evolve Restorative Center, Santa Rosa, CA, USA
| |
Collapse
|
17
|
Basu P, Tongkhuya SA, Harris TL, Riley AR, Maier C, Granger J, Wojtaszek J, Averitt DL. Euphorbia bicolor ( Euphorbiaceae) Latex Phytochemicals Induce Long-Lasting Non-Opioid Peripheral Analgesia in a Rat Model of Inflammatory Pain. Front Pharmacol 2019; 10:958. [PMID: 31551772 PMCID: PMC6735194 DOI: 10.3389/fphar.2019.00958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
The negative side effects of opioid-based narcotics underscore the search for alternative non-opioid bioactive compounds that act on the peripheral nervous system to avoid central nervous system-mediated side effects. The transient receptor potential V1 ion channel (TRPV1) is a peripheral pain generator activated and sensitized by heat, capsaicin, and a variety of endogenous ligands. TRPV1 contributes to peripheral sensitization and hyperalgesia, in part, via triggering the release of proinflammatory peptides, such as calcitonin gene-related peptide (CGRP), both locally and at the dorsal horn of the spinal cord. Ultrapotent exogenous TRPV1 agonists, such as resiniferatoxin identified in the latex of the exotic Euphorbia resinifera, trigger hyperalgesia followed by long lasting, peripheral analgesia. The present study reports on the analgesic properties of Euphorbia bicolor, a relative of E. resinifera, native to the Southern United States. The study hypothesized that E. bicolor latex extract induces long-lasting, non-opioid peripheral analgesia in a rat model of inflammatory pain. Both inflamed and non-inflamed adult male and female rats were injected with the methanolic extract of E. bicolor latex into the hindpaw and changes in pain behaviors were reassessed at various time points up to 4 weeks. Primary sensory neuron cultures also were treated with the latex extract or vehicle for 15 min followed by stimulation with the TRPV1 agonist capsaicin. Results showed that E. bicolor latex extract evoked significant pain behaviors in both male and female rats at 20 min post-injection and lasting around 1–2 h. At 6 h post-injection, analgesia was observed in male rats that lasted up to 4 weeks, whereas in females the onset of analgesia was delayed to 72 h post-injection. In sensory neurons, latex extract significantly reduced capsaicin-evoked CGRP release. Blocking TRPV1, but not opioid receptors, attenuated the onset of analgesia and capsaicin-induced CGRP release. Latex was analyzed by mass spectrometry and eleven candidate compounds were identified and reported here. These findings indicate that phytochemicals in the E. bicolor latex induce hyperalgesia followed by peripheral, non-opioid analgesia in both male and female rats, which occurs in part via TRPV1 and may provide novel, non-opioid peripheral analgesics that warrant further examination.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - Sirima A Tongkhuya
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - Taylor L Harris
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - Angela R Riley
- American Institute of Toxicology (AIT) Laboratories, A HealthTrackRx Company, Denton, TX, United States
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - John Granger
- American Institute of Toxicology (AIT) Laboratories, A HealthTrackRx Company, Denton, TX, United States
| | - Jennie Wojtaszek
- American Institute of Toxicology (AIT) Laboratories, A HealthTrackRx Company, Denton, TX, United States
| | - Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, TX, United States
| |
Collapse
|
18
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
19
|
Long-term pain relief in canine osteoarthritis by a single intra-articular injection of resiniferatoxin, a potent TRPV1 agonist. Pain 2019; 159:2105-2114. [PMID: 30015705 DOI: 10.1097/j.pain.0000000000001314] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The translational potential of analgesic approaches emerging from basic research can be augmented by client-owned dog trials. We report on a peripheral interventional approach that uses intra-articular injection of the ultrapotent TRPV1 agonist resiniferatoxin (RTX) to produce a selective long-term chemoinactivation of nociceptive primary afferent nerve endings for pain control in naturally occurring canine osteoarthritis. A single injection of 10 µg of RTX, produced suppression of pain, improvement in gait, weight bearing, and improvement in the dog's activities of daily living lasting 4 months or longer. Two to 3 years after the injection, there are no alterations to suggest that removal of inflammatory pain caused accelerated joint degeneration (Charcot joint) in any of the dogs. To amplify the effective use of canine subjects in translational analgesia research, we report a high-quality canine dorsal root ganglion transcriptome. Some targets for analgesia are highly conserved both in protein sequence and level of expression within a target tissue while others diverge substantially from the human. This knowledge is especially important for development of analgesics aimed at peripheral molecular targets and provides a template for informed translational research. The peripheral site of action, long duration of analgesia, apparent safety, and retention of coordination, all resulting from a single dose suggest that intra-articular RTX may be an effective intervention for osteoarthritis pain with few or no side effects and lead to an improved quality of life.
Collapse
|
20
|
Isensee J, Hucho T. High-Content Imaging of Immunofluorescently Labeled TRPV1-Positive Sensory Neurons. Methods Mol Biol 2019; 1987:111-124. [PMID: 31028677 DOI: 10.1007/978-1-4939-9446-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Studying TRP channel expressing nociceptors requires the identification of the respective subpopulations as well as the quantification of dynamic cellular events. However, the heterogeneity of sensory neurons and associated nonneuronal cells demands the analysis of large numbers of cells to reflect the distribution of entire populations. Here we report a detailed workflow how to apply high-content screening (HCS) microscopy to signaling events in TRPV1-positive neurons as well as an approach to use the selective elimination of TRPV1 positive cells from dissociated rat sensory ganglia as base for transcriptomic analysis of TRPV1-positive cells and/or as control for TRPV1 antibody specificity.
Collapse
Affiliation(s)
- Jörg Isensee
- Experimental Anesthesiology and Pain Research, Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tim Hucho
- Experimental Anesthesiology and Pain Research, Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Iadarola MJ, Sapio MR, Wang X, Carrero H, Virata-Theimer ML, Sarnovsky R, Mannes AJ, FitzGerald DJ. Analgesia by Deletion of Spinal Neurokinin 1 Receptor Expressing Neurons Using a Bioengineered Substance P-Pseudomonas Exotoxin Conjugate. Mol Pain 2018; 13:1744806917727657. [PMID: 28814145 PMCID: PMC5574484 DOI: 10.1177/1744806917727657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell deletion approaches to pain directed at either the primary nociceptive afferents or
second-order neurons are highly effective analgesic manipulations. Second-order spinal
neurons expressing the neurokinin 1 (NK1) receptor are required for the perception of many
types of pain. To delete NK1+ neurons for the purpose of pain control, we generated a
toxin–peptide conjugate using DTNB-derivatized (Cys0) substance P (SP) and a
N-terminally truncated Pseudomonas exotoxin (PE35) that retains the endosome-release and
ADP-ribosylation enzymatic domains but with only one free sulfhydryl side chain for
conjugation. This allowed generation of a one-to-one product linked by a disulfide bond
(SP-PE35). In vitro, Chinese hamster ovary cells stably transfected with the NK1 receptor
exhibited specific cytotoxicity when exposed to SP-PE35
(IC50 = 5 × 10−11 M), whereas the conjugate was nontoxic to NK2
and NK3 receptor-bearing cell lines. In vivo studies showed that, after infusion into the
spinal subarachnoid space, the toxin was extremely effective in deleting NK1
receptor-expressing cells from the dorsal horn of the spinal cord. The specific cell
deletion robustly attenuated thermal and mechanical pain sensations and inflammatory
hyperalgesia but did not affect motoric capabilities. NK1 receptor cell deletion and
antinociception occurred without obvious lesion of non–receptor-expressing cells or
apparent reorganization of primary afferent innervation. These data demonstrate the
extraordinary selectivity and broad-spectrum antinociceptive efficacy of this
ligand-directed protein therapeutic acting via receptor-mediated endocytosis. The loss of
multiple pain modalities including heat and mechanical pinch, transduced by different
populations of primary afferents, shows that spinal NK1 receptor-expressing neurons are
critical points of convergence in the nociceptive transmission circuit. We further suggest
that therapeutic end points can be effectively and safely achieved when SP-PE35 is locally
infused, thereby producing a regionally defined analgesia.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | | | - Xunde Wang
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hector Carrero
- Pain and Neurosensory Mechanisms Branch, National Institutes of Dental and Craniofacial
| | - Maria Luisa Virata-Theimer
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Robert Sarnovsky
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - David J FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
22
|
Salas MM, Clifford JL, Hayden JR, Iadarola MJ, Averitt DL. Local Resiniferatoxin Induces Long-Lasting Analgesia in a Rat Model of Full Thickness Thermal Injury. PAIN MEDICINE 2018; 18:2453-2465. [PMID: 27794548 DOI: 10.1093/pm/pnw260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective Opioid-based analgesics are a major component of the lengthy pain management of burn patients, including military service members, but are problematic due to central nervous system-mediated side effects. Peripheral analgesia via targeted ablation of nociceptive nerve endings that express the transient receptor potential vanilloid channel 1 (TRPV1) may provide an improved approach. We hypothesized that local injection of the TRPV1 agonist resiniferatoxin (RTX) would produce long-lasting analgesia in a rat model of pain associated with burn injury. Methods Baseline sensitivities to thermal and mechanical stimuli were measured in male and female Sprague-Dawley rats. Under anesthesia, a 100 °C metal probe was placed on the right hind paw for 30 seconds, and sensitivity was reassessed 72 hours following injury. Rats received RTX (0.25 μg/100 μL; ipl) into the injured hind paw, and sensitivity was reassessed across three weeks. Tissues were collected from a separate group of rats at 24 hours and/or one week post-RTX for pathological analyses of the injured hind paw, dorsal spinal cord c-Fos, and primary afferent neuropeptide immunoreactivity. Results Local RTX reversed burn pain behaviors within 24 hours, which lasted through recovery at three weeks. At one week following RTX, decreased c-Fos and primary afferent neuropeptide immunoreactivities were observed in the dorsal horn, while plantar burn pathology was unaltered. Conclusions These results indicate that local RTX induces long-lasting analgesia in a rat model of pain associated with burn. While opioids are undesirable in trauma patients due to side effects, RTX may provide valuable long-term, nonopioid analgesia for burn patients.
Collapse
Affiliation(s)
- Margaux M Salas
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - John L Clifford
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jessica R Hayden
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| |
Collapse
|
23
|
Moran MM, Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol 2018; 175:2185-2203. [PMID: 28924972 PMCID: PMC5980611 DOI: 10.1111/bph.14044] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 12/12/2022] Open
Abstract
Control of chronic pain is frequently inadequate and/or associated with intolerable adverse effects, prompting a frantic search for new therapeutics and new therapeutic targets. Nearly two decades of preclinical and clinical research supports the involvement of transient receptor potential (TRP) channels in temperature perception, nociception and sensitization. Although there has been considerable excitement around the therapeutic potential of this channel family since the cloning and identification of TRPV1 cation channels as the capsaicin receptor more than 20 years ago, only modulators of a few channels have been tested clinically. TRPV1 channel antagonists have suffered from side effects related to the channel's role in temperature sensation; however, high dose formulations of capsaicin have reached the market and shown therapeutic utility. A number of potent, small molecule antagonists of TRPA1 channels have recently advanced into clinical trials for the treatment of inflammatory and neuropathic pain, and TRPM8 antagonists are following closely behind for cold allodynia. TRPV3, TRPV4, TRPM2 and TRPM3 channels have also been of significant interest. This review discusses the preclinical promise and status of novel analgesic agents that target TRP channels and the challenges that these compounds may face in development and clinical practice. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | - Arpad Szallasi
- Clinical LaboratoriesBaptist Medical CenterJacksonvilleFLUSA
| |
Collapse
|
24
|
Sjögren E, Kullenberg T, Jonzon B, Segerdahl M, Stålberg O, Halldin M, Sundgren-Andersson A. Clinical testing of three novel transient receptor potential cation channel subfamily V member 1 antagonists in a pharmacodynamic intradermal capsaicin model. Eur J Pain 2018; 22:1214-1228. [DOI: 10.1002/ejp.1209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- E. Sjögren
- Department of Pharmacy; Uppsala University; Sweden
| | | | - B. Jonzon
- Medical Products Agency; Uppsala Sweden
| | - M. Segerdahl
- Lundbeck A/S, Valby, Denmark and Karolinska Institute; Stockholm Sweden
| | - O. Stålberg
- Division of Analytical Pharmaceutical Chemistry; Department of Medicinal Chemistry; Uppsala University; Sweden
| | - M.M. Halldin
- AlzeCure Foundation; Karolinska Institute Science Park; Huddinge Sweden
| | | |
Collapse
|
25
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
26
|
Sapio MR, Neubert JK, LaPaglia DM, Maric D, Keller JM, Raithel SJ, Rohrs EL, Anderson EM, Butman JA, Caudle RM, Brown DC, Heiss JD, Mannes AJ, Iadarola MJ. Pain control through selective chemo-axotomy of centrally projecting TRPV1+ sensory neurons. J Clin Invest 2018; 128:1657-1670. [PMID: 29408808 DOI: 10.1172/jci94331] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Abstract
Agonists of the vanilloid receptor transient vanilloid potential 1 (TRPV1) are emerging as highly efficacious nonopioid analgesics in preclinical studies. These drugs selectively lesion TRPV1+ primary sensory afferents, which are responsible for the transmission of many noxious stimulus modalities. Resiniferatoxin (RTX) is a very potent and selective TRPV1 agonist and is a promising candidate for treating many types of pain. Recent work establishing intrathecal application of RTX for the treatment of pain resulting from advanced cancer has demonstrated profound analgesia in client-owned dogs with osteosarcoma. The present study uses transcriptomics and histochemistry to examine the molecular mechanism of RTX action in rats, in clinical canine subjects, and in 1 human subject with advanced cancer treated for pain using intrathecal RTX. In all 3 species, we observe a strong analgesic action, yet this was accompanied by limited transcriptional alterations at the level of the dorsal root ganglion. Functional and neuroanatomical studies demonstrated that intrathecal RTX largely spares susceptible neuronal perikarya, which remain active peripherally but unable to transmit signals to the spinal cord. The results demonstrate that central chemo-axotomy of the TRPV1+ afferents underlies RTX analgesia and refine the neurobiology underlying effective clinical use of TRPV1 agonists for pain control.
Collapse
Affiliation(s)
- Matthew R Sapio
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - John K Neubert
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Danielle M LaPaglia
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, NIH, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jason M Keller
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Stephen J Raithel
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Eric L Rohrs
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ethan M Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - John A Butman
- Clinical Center, Radiology and Imaging Services, NIH, Bethesda, Maryland, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Dorothy C Brown
- Veterinary Clinical Investigations Center, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - John D Heiss
- Surgical Neurology Branch, NIH, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Michael J Iadarola
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Lee YC, Lu SC, Hsieh YL. Establishing a Mouse Model of a Pure Small Fiber Neuropathy with the Ultrapotent Agonist of Transient Receptor Potential Vanilloid Type 1. J Vis Exp 2018. [PMID: 29553496 DOI: 10.3791/56651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Patients with diabetes mellitus (DM) or those experiencing the neurotoxic effects of chemotherapeutic agents may develop sensation disorders due to degeneration and injury of small-diameter sensory neurons, referred to as small fiber neuropathy. Present animal models of small fiber neuropathy affect both large- and small-diameter sensory fibers and thus create a neuropathology too complex to properly assess the effects of injured small-diameter sensory fibers. Therefore, it is necessary to develop an experimental model of pure small fiber neuropathy to adequately examine these issues. This protocol describes an experimental model of small fiber neuropathy specifically affecting small-diameter sensory nerves with resiniferatoxin (RTX), an ultrapotent agonist of transient receptor potential vanilloid type 1 (TRPV1), through a single dose of intraperitoneal injection, referred to as RTX neuropathy. This RTX neuropathy showed pathological manifestations and behavioral abnormalities that mimic the clinical characteristics of patients with small fiber neuropathy, including intraepidermal nerve fiber (IENF) degeneration, specifically injury in small-diameter neurons, and induction of thermal hypoalgesia and mechanical allodynia. This protocol tested three doses of RTX (200, 50, and 10 µg/kg, respectively) and concluded that a critical dose of RTX (50 µg/kg) is required for the development of typical small fiber neuropathy manifestations, and prepared a modified immunostaining procedure to investigate IENF degeneration and neuronal soma injury. The modified procedure is fast, systematic, and economic. Behavioral evaluation of neuropathic pain is critical to reveal the function of small-diameter sensory nerves. The evaluation of mechanical thresholds in experimental rodents is particularly challenging and this protocol describes a customized metal mesh that is suitable for this type of assessment in rodents. In summary, RTX neuropathy is a new and easily established experimental model to evaluate the molecular significance and intervention underlying neuropathic pain for the development of therapeutic agents.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Hospital
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Hospital;
| |
Collapse
|
28
|
Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 2018; 15:021001. [PMID: 29135465 DOI: 10.1088/1478-3975/aa9a6f] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Collapse
Affiliation(s)
- Karen Castillo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile. www.cinv.cl
| | | | | | | | | |
Collapse
|
29
|
Exploring Nonopioid Analgesic Agents for Intrathecal Use. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Leong MS, Copenhaver D. Potent Neurotoxins for Cancer Pain Treatment. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Hockman TM, Cisternas AF, Jones B, Butt MT, Osborn KG, Steinauer JJ, Malkmus SA, Yaksh TL. Target engagement and histopathology of neuraxial resiniferatoxin in dog. Vet Anaesth Analg 2017; 45:212-226. [PMID: 29361418 DOI: 10.1016/j.vaa.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate target engagement of intracisternally (IC) delivered TRPV1 agonist, resiniferatoxin (RTX), as measured by primary afferent and dorsal horn substance P immunoreactivity (sP-IR), histopathology and thermal escape latencies in dogs. STUDY DESIGN Prospective experimental trial. ANIMALS Fourteen adult male Beagle dogs, weighing 10.3-13.2 kg; 11 dogs surviving to scheduled euthanasia. METHODS Anesthetized dogs were randomly assigned to be administered IC RTX (3.6 μg, 0.1 mL kg-1) in a hyperbaric (hRTX, n = 6), normobaric (nRTX, n = 4) vehicle or a hyperbaric vehicle (hVehicle, n = 4). Over 16 days, animals were examined for thoracic and pelvic limb paw thermal withdrawal latencies and neurologic function. Spinal cords, trigeminal ganglia and dorsal root ganglia (DRGs) were assessed for morphologic changes and sP-IR. RESULTS IC RTX in anesthetized dogs resulted in a < 1 hour increase in blood pressure. Acute reactions leading to euthanasia within 8 hours occurred in three dogs (two hRTX, one nRTX). All other animals recovered with normal neurologic, bowel and bladder function. Final groups were: vehicle n = 4, hRTX n = 4 and nRTX n = 3. Animals in nRTX and hRTX showed increases in escape latencies in thoracic paws and, to a lesser extent, in pelvic paws, correlating to a loss of sP-IR in cervical cord with smaller reductions in thoracic and lumbar cord. In animals surviving to euthanasia, thickening of the arachnoid membrane (predominantly in the cervical region) was the most consistent change. This change, present in controls, was interpreted to be vehicle related. There was no evidence of structural changes in brain and spinal cord. CONCLUSIONS AND CLINICAL RELEVANCE IC RTX produced localized loss of spinal and DRG sP with a corresponding thermal analgesia, absent motor impairment or spinal pathology. Loss of three animals emphasizes the need to refine the use of this promising therapeutic modality in managing companion animal pain.
Collapse
Affiliation(s)
- Tyler M Hockman
- University of California, San Diego, Department of Anesthesiology, La Jolla, CA, USA; University of California, San Diego, Animal Care Program, La Jolla, CA, USA
| | - Alvaro F Cisternas
- University of California, San Diego, Department of Anesthesiology, La Jolla, CA, USA
| | - Bryan Jones
- Sorrento Therapeutics/ARK Animal Health, San Diego, CA, USA
| | - Mark T Butt
- Tox Path Specialists (TPS), LLC, Frederick, MD, USA
| | - Kent G Osborn
- University of California, San Diego, Animal Care Program, La Jolla, CA, USA
| | - Joanne J Steinauer
- University of California, San Diego, Department of Anesthesiology, La Jolla, CA, USA
| | - Shelle A Malkmus
- University of California, San Diego, Department of Anesthesiology, La Jolla, CA, USA
| | - Tony L Yaksh
- University of California, San Diego, Department of Anesthesiology, La Jolla, CA, USA.
| |
Collapse
|
32
|
Beale PK, Marsh KJ, Foley WJ, Moore BD. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biol Rev Camb Philos Soc 2017; 93:674-692. [DOI: 10.1111/brv.12364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Phillipa K. Beale
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Karen J. Marsh
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - William J. Foley
- Research School of Biology The Australian National University Canberra Australian Capital Territory 2601 Australia
- Animal Ecology and Conservation University of Hamburg, Martin‐Luther‐King‐Platz 3 20146 Hamburg Germany
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University, Locked bag 1797 Penrith New South Wales 2751 Australia
| |
Collapse
|
33
|
Kang W, Bang-Berthelsen CH, Holm A, Houben AJS, Müller AH, Thymann T, Pociot F, Estivill X, Friedländer MR. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA (NEW YORK, N.Y.) 2017; 23:433-445. [PMID: 28062594 PMCID: PMC5340907 DOI: 10.1261/rna.059725.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake.
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claus Heiner Bang-Berthelsen
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Diabetes Biology, Novo Nordisk, 2760 Måløv, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Anna J S Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Anne Holt Müller
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Flemming Pociot
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Paediatrics, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
34
|
Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, Brillac A, de Verneuil H, Moreau-Gaudry F, Dabernat S. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett 2017; 390:91-102. [PMID: 28089829 DOI: 10.1016/j.canlet.2017.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 01/08/2017] [Indexed: 12/23/2022]
Abstract
Pancreatic adenocarcinoma, highly resistant to all current anti-cancer treatments, necessitates new approaches promoting cell death. We hypothesized that combined actions of several Bioactive Food Components (BFCs) might provide specific lethal effect towards tumor cells, sparing healthy cells. Human tumor pancreatic cell lines were tested in vitro for sensitivity to resveratrol, capsaicin, piceatannol, and sulforaphane cytotoxic effects. Combination of two or three components showed striking synergetic effect with gemcitabine in vitro. Each BFC used alone did not affect pancreatic tumor growth in a preclinical in vivo model, whereas couples of BFCs had anti-tumor activity. In addition, tumor toxicity was similar using gemcitabine alone or a combination of BFCs and two thirds of gemcitabine dose. Moreover, BFCs enhanced fibrotic response as compared to gemcitabine treatment alone. Reactive oxygen species (ROS) and apoptosis increases were observed, while cell cycle was very mildly affected. This study raises the possibility to use BFCs as beneficial food complements in the therapy of pancreatic adenocarcinoma, especially for patients unable to receive full doses of chemotherapy.
Collapse
Affiliation(s)
| | - Evelyne Peuchant
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Etienne Buscail
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | | | | | - Aurélie Bedel
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Aurélia Brillac
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France
| | - Hubert de Verneuil
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Université de Bordeaux, Bordeaux, France; INSERM U1035, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
35
|
Parisi JR, de Andrade ALM, Torres Silva JR, Silva ML. Antiallodynic effect of intrathecal resiniferatoxin on neuropathic pain model of chronic constriction injury. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Urabe D, Asaba T, Inoue M. Asymmetric Total Synthesis of Crotophorbolone: Construction of the 5/7/6-Fused Ring System via an α-Alkoxy Bridgehead Radical Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Brown DC. Resiniferatoxin: The Evolution of the "Molecular Scalpel" for Chronic Pain Relief. Pharmaceuticals (Basel) 2016; 9:ph9030047. [PMID: 27529257 PMCID: PMC5039500 DOI: 10.3390/ph9030047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Control of chronic pain is frequently inadequate or can be associated with debilitating side effects. Ablation of certain nociceptive neurons, while retaining all other sensory modalities and motor function, represents a new therapeutic approach to controlling severe pain while avoiding off-target side effects. transient receptor potential cation channel subfamily V member 1 (TRPV1) is a calcium permeable nonselective cation channel expressed on the peripheral and central terminals of small-diameter sensory neurons. Highly selective chemoablation of TRPV1-containing peripheral nerve endings, or the entire TRPV1-expressing neuron itself, can be used to control chronic pain. Administration of the potent TRPV1 agonist resiniferatoxin (RTX) to neuronal perikarya or nerve terminals induces calcium cytotoxicity and selective lesioning of the TRPV1-expressing nociceptive primary afferent population. This selective neuroablation has been coined "molecular neurosurgery" and has the advantage of sparing motor, proprioceptive, and other somatosensory functions that are so important for coordinated movement, performing activities of daily living, and maintaining quality of life. This review examines the mechanisms and preclinical data underlying the therapeutic use of RTX and examples of such use for the management of chronic pain in clinical veterinary and human pain states.
Collapse
Affiliation(s)
- Dorothy Cimino Brown
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
A randomized, double-blind, positive-controlled, 3-way cross-over human experimental pain study of a TRPV1 antagonist (V116517) in healthy volunteers and comparison with preclinical profile. Pain 2016; 157:2057-2067. [DOI: 10.1097/j.pain.0000000000000610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Hassan AHE, Lee JK, Pae AN, Min SJ, Cho YS. Synthesis of the Tricyclic Ring Structure of Daphnanes via Intramolecular [4 + 3] Cycloaddition/SmI2-Pinacol Coupling. Org Lett 2015; 17:2672-5. [DOI: 10.1021/acs.orglett.5b01054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmed H. E. Hassan
- Center
for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
- Department
of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Jae Kyun Lee
- Center
for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
- Department
of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
| | - Ae Nim Pae
- Center
for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
- Department
of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
| | - Sun-Joon Min
- Center
for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
- Department
of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
| | - Yong Seo Cho
- Center
for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
- Department
of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon, 305-350, Republic of Korea
| |
Collapse
|
40
|
Ma XL, Zhang FX, Dong F, Bao L, Zhang X. Experimental evidence for alleviating nociceptive hypersensitivity by single application of capsaicin. Mol Pain 2015; 11:22. [PMID: 25896608 PMCID: PMC4422461 DOI: 10.1186/s12990-015-0019-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/10/2015] [Indexed: 02/08/2023] Open
Abstract
The single application of high-concentration of capsaicin has been used as an analgesic therapy of persistent pain. However, its effectiveness and underlying mechanisms remain to be further evaluated with experimental approaches. The present study provided evidence showing that the single application of capsaicin dose-dependently alleviated nociceptive hypersensitivity, and reduced the action potential firing in small-diameter neurons of the dorsal root ganglia (DRG) in rats and mice. Pre-treatment with capsaicin reduced formalin-induced acute nocifensive behavior after a brief hyperalgesia in rats and mice. The inhibitory effects of capsaicin were calcium-dependent, and mediated by the capsaicin receptor (transient receptor potential vanilloid type-1). We further found that capsaicin exerted inhibitory effects on the persistent nociceptive hypersensitivity induced by peripheral inflammation and nerve injury. Thus, these results support the long-lasting and inhibitory effects of topical capsaicin on persistent pain, and the clinic use of capsaicin as a pain therapy.
Collapse
Affiliation(s)
- Xiao-Li Ma
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Fang-Xiong Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Fei Dong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
41
|
Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss AW, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 2014; 9:e115731. [PMID: 25551770 PMCID: PMC4281118 DOI: 10.1371/journal.pone.0115731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022] Open
Abstract
Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | - Carsten Wenzel
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
42
|
Sousa-Valente J, Andreou AP, Urban L, Nagy I. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics. Br J Pharmacol 2014; 171:2508-27. [PMID: 24283624 DOI: 10.1111/bph.12532] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators.
Collapse
Affiliation(s)
- J Sousa-Valente
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
43
|
Abstract
![]()
To
date, 28 mammalian transient receptor potential (TRP) channels
have been cloned and characterized. They are grouped into six subfamilies
on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA),
TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML),
TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels
are nonselective cation channels expressed on the cell membrane and
exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception,
taste transduction, temperature sensation, and pheromone signaling)
and homeostatic functions (such as divalent cation flux, hormone release,
and osmoregulation). Significant progress has been made in our understanding
of the specific roles of these TRP channels and their activation mechanisms.
In this Review, the emphasis will be on the activation of TRP channels
by phytochemicals that are claimed to exert health benefits. Recent
findings complement the anecdotal evidence that some of these phytochemicals
have specific receptors and the activation of which is responsible
for the physiological effects. Now, the targets for these phytochemicals
are being unveiled; a specific hypothesis can be proposed and tested
experimentally to infer a scientific validity of the claims of the
health benefits. The broader and pressing issues that have to be addressed
are related to the quantities of the active ingredients in a given
preparation, their bioavailability, metabolism, adverse effects, excretion,
and systemic versus local effects.
Collapse
Affiliation(s)
- Louis S. Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, United States
| |
Collapse
|
44
|
Resiniferatoxin induces death of bladder cancer cells associated with mitochondrial dysfunction and reduces tumor growth in a xenograft mouse model. Chem Biol Interact 2014; 224:128-35. [PMID: 25451591 DOI: 10.1016/j.cbi.2014.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
Abstract
Bladder cancer (BC) is the fifth most common non-cutaneous malignancy and the most common form of BC in Western countries is transitional cell carcinoma. Resiniferatoxin (RTX) has found therapeutic usefulness for the treatment of bladder dysfunction but no data are available on its use as chemotherapeutic agent. The aim of this work is to evaluate the use of RTX as new anti-cancer drug in BC therapy. The effects of RTX on cell viability and cell death were evaluated on T24 and 5637 BC cell lines by MTT assay, cell cycle analysis, Annexin-V/PI staining and agarose gel electrophoresis of DNA. Mitochondrial depolarization and ROS production were assessed by flow cytometry. ADP/ATP ratio was measured by bioluminescence and caspase 3 cleavage by Western blot. For in vivo experiments, athymic nude mice, xenografted with T24 cells, received subcutaneous administrations of RTX. Tumor volumes were measured and immunohistochemistry was performed on tumor sections. Our data demonstrated that RTX influences cell cycle and induces necrotic cell death of BC cells by altering mitochondrial function, leading to depolarization, increase in ADP/ATP ratio and ROS production. Moreover, RTX is able to reduce tumor growth in a xenograft mouse model. Overall, we demonstrated that RTX induces necrotic cell death of BC cells and reduces tumor growth in a xenograft mouse model of BC, suggesting RTX as a new potential anti-cancer drug in BC chemotherapy.
Collapse
|
45
|
Spicarova D, Nerandzic V, Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res 2014; 63:S225-36. [PMID: 24564662 DOI: 10.33549/physiolres.932713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The structure, expression and function of the transient receptor potential vanilloid 1 (TRPV1) receptor were intensively studied since the cloning in 1997 and TRPV1 receptors are now considered to act as transducers and molecular integrators of nociceptive stimuli in the periphery. In contrast, spinal TRPV1 receptors were studied less extensively and their role in pain modulation is still not fully understood. This short review is a follow up on our previous summary in this area (Spicarova and Palecek 2008). The aim was to review preferentially the most recent findings concerning the role of the spinal TRPV1 receptors, published within the last five years. The update is given on the expression and function of the spinal TRPV1 receptors, their activation by endogenous agonists, interaction between the endocannabinoid and endovanillod system and possible role of the spinal TRPV1 receptors in pathological pain states. There is now mounting evidence that TRPV1 receptors may be an important element in modulation of nociceptive information at the spinal cord level and represent an interesting target for analgesic therapy.
Collapse
Affiliation(s)
- D Spicarova
- Department of Functional Morphology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
46
|
Goswami SC, Mishra SK, Maric D, Kaszas K, Gonnella GL, Clokie SJ, Kominsky HD, Gross JR, Keller JM, Mannes AJ, Hoon MA, Iadarola MJ. Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis. THE JOURNAL OF PAIN 2014; 15:1338-1359. [PMID: 25281809 DOI: 10.1016/j.jpain.2014.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.
Collapse
Affiliation(s)
- Samridhi C Goswami
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Santosh K Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Krisztian Kaszas
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Gian Luigi Gonnella
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Samuel J Clokie
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hal D Kominsky
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jacklyn R Gross
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M Keller
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
47
|
|
48
|
Nash MS, Verkuyl JM, Bhalay G. TRPV1 Antagonism: From Research to Clinic. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsaicin receptor, TRPV1, has been one of the most extensively studied molecules in sensory research. Its contribution to the sensation of pain in numerous pre-clinical inflammatory and neuropathic paradigms has been well-established and expression analysis suggests a potential role clinically in pain and bladder conditions. The field has now reached an exciting point in time with the development of a number of high quality TRPV1 antagonist drug candidates and the release of clinical data. What has become apparent from this work is that inhibition of TRPV1 function brings with it the potential liabilities of increased body temperature and altered thermal perception. However, there is cause for optimism because it appears that not all antagonists have the same properties and compounds can be identified that lack significant on-target side-effects whilst retaining efficacy, at least pre-clinically. What is perhaps now more critical to address is the question of how effective the analgesia provided by a TRPV1 antagonist will be. Although tantalizing clinical data showing effects on experimentally-induced pain or pain following molar extraction have been reported, no clear efficacy in a chronic pain condition has yet been demonstrated making it difficult to perform an accurate risk-benefit analysis for TRPV1 antagonists. Here we provide an overview of some of the most advanced clinical candidates and discuss the approaches being taken to avoid the now well established on-target effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Mark S. Nash
- Novartis Institutes for Biomedical Research Forum 1, Novartis Campus CH - 4056 Basel Switzerland
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| | - Gurdip Bhalay
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| |
Collapse
|
49
|
|
50
|
Kunkler PE, Ballard CJ, Pellman JJ, Zhang L, Oxford GS, Hurley JH. Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants. PLoS One 2014; 9:e103086. [PMID: 25077949 PMCID: PMC4117521 DOI: 10.1371/journal.pone.0103086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Carrie Jo Ballard
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jessica Joan Pellman
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joyce Harts Hurley
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|