1
|
Dernovšek J, Goričan T, Gedgaudas M, Zajec Ž, Urbančič D, Jug A, Skok Ž, Sturtzel C, Distel M, Grdadolnik SG, Babu K, Panchamatia A, Stachowski TR, Fischer M, Ilaš J, Zubrienė A, Matulis D, Zidar N, Tomašič T. Hiding in plain sight: Optimizing topoisomerase IIα inhibitors into Hsp90β selective binders. Eur J Med Chem 2024; 280:116934. [PMID: 39388906 DOI: 10.1016/j.ejmech.2024.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Due to their impact on several oncogenic client proteins, the Hsp90 family of chaperones has been widely studied for the development of potential anticancer agents. Although several Hsp90 inhibitors have entered clinical trials, most were unsuccessful because they induced a heat shock response (HSR). This issue can be circumvented by using isoform-selective inhibitors, but the high similarity in the ATP-binding sites between the isoforms presents a challenge. Given that Hsp90 shares a conserved Bergerat fold with bacterial DNA gyrase B and human topoisomerase IIα, we repurposed our ATP-competitive inhibitors of these two proteins for Hsp90 inhibition. We virtually screened a library of in-house inhibitors and identified eleven hits for evaluation of Hsp90 binding. Among these, compound 11 displayed low micromolar affinity for Hsp90 and demonstrated a 12-fold selectivity for Hsp90β over its closest isoform, Hsp90α. Out of 29 prepared analogs, 16 showed a preference for Hsp90β over Hsp90α. Furthermore, eleven of these compounds inhibited the growth of several cancer cell lines in vitro. Notably, compound 24e reduced intracellular levels of Hsp90 client proteins in MCF-7 cells, leading to cell cycle arrest in the G0/G1 phase without inducing HSR. This inhibitor exhibited at least a 27-fold preference for Hsp90β and was selective against topoisomerase IIα, a panel of 22 representative protein kinases, and proved to be non-toxic in a zebrafish larvae toxicology model. Finally, molecular modeling, corroborated by STD NMR studies, and the binding of 24e to the S52A mutant of Hsp90α confirmed that the serine to alanine switch drives the selectivity between the two cytoplasmic isoforms.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Ana Jug
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Kesavan Babu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Ashna Panchamatia
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Timothy R Stachowski
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7 (C319), LT-10257, Vilnius, Lithuania
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Yoon NG, Choi D, Lee JH, Kim SY, Im JY, Yun J, Yang S, Kim T, Kang S, Kang BH. Development of a Fluorescence Probe for High-Throughput Screening of Allosteric Inhibitors Targeting TRAP1. J Med Chem 2024; 67:21421-21437. [PMID: 39568139 DOI: 10.1021/acs.jmedchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone implicated in pro-tumorigenic pathways by regulating the folding of substrate proteins (clients) within cancer cells. Recent research has pinpointed a potentially druggable allosteric site within the client binding site (CBS) of TRAP1, suggesting this site might offer a more effective strategy for developing potent and selective TRAP1 inhibitors. However, the absence of reliable assay systems has hindered quantitative evaluation of inhibitors. In this study, we have developed a fluorescent probe, Rho6TPP, designed to target the CBS. Utilizing fluorescence polarization-based high-throughput screening assays, Rho6TPP exhibits excellent signal-to-noise ratio (>20), Z factor (>0.6), and Z' factor (>0.6). Additionally, it facilitates comparative analysis of existing small molecules and discovery of novel binders. MitoTam, a mitochondria-targeted tamoxifen, emerges as a potent CBS-targeting TRAP1 inhibitor. Our findings highlight the potential of Rho6TPP as a crucial tool for advancing the development of CBS-targeting TRAP1 inhibitors.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Danbi Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hye Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Im
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| | - Jisu Yun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujae Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeeun Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| |
Collapse
|
3
|
Que NLS, Seidler PM, Aw WJ, Chiosis G, Gewirth DT. Selective Inhibition of hsp90 Paralogs: Uncovering the Role of Helix 1 in Grp94-Selective Ligand Binding. Proteins 2024. [PMID: 39473058 DOI: 10.1002/prot.26756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Grp94 is the endoplasmic reticulum paralog of the hsp90 family of chaperones, which have been targeted for therapeutic intervention via their highly conserved ATP binding sites. The design of paralog-selective inhibitors relies on understanding the protein structural elements that drive higher affinity in selective inhibitors. Here, we determined the structures of Grp94 and Hsp90 in complex with the Grp94-selective inhibitor PU-H36, and of Grp94 with the non-selective inhibitor PU-H71. In Grp94, PU-H36 derives its higher affinity by utilizing Site 2, a Grp94-specific side pocket adjoining the ATP binding cavity, but in Hsp90 PU-H36 occupies Site 1, a side pocket that is accessible in all paralogs with which it makes lower affinity interactions. The structure of Grp94 in complex with PU-H71 shows only Site 1 binding. While changes in the conformation of helices 4 and 5 in the N-terminal domain occur when ligands bind to Site 1 of both Hsp90 and Grp94, large conformational shifts that also involve helix 1 are associated with the engagement of the Site 2 pocket in Grp94 only. Site 2 in Hsp90 is blocked and its helix 1 conformation is insensitive to ligand binding. To understand the role of helix 1 in ligand selectivity, we tested the binding of PU-H36 and other Grp94-selective ligands to chimeric Grp94/Hsp90 constructs. These studies show that helix 1 is the major determinant of selectivity for Site 2 targeted ligands and also influences the rate of ATPase activity in Hsp90 paralogs.
Collapse
Affiliation(s)
- Nanette L S Que
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Paul M Seidler
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Wen J Aw
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Daniel T Gewirth
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
4
|
Liang X, Chen R, Wang C, Wang Y, Zhang J. Targeting HSP90 for Cancer Therapy: Current Progress and Emerging Prospects. J Med Chem 2024; 67:15968-15995. [PMID: 39256986 DOI: 10.1021/acs.jmedchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heat shock protein 90 (HSP90), a highly conserved member of the heat shock protein family, regulates various proteins and signaling pathways involved in cancer, making it a promising target for cancer therapy. Traditional HSP90 inhibitors have demonstrated significant antitumor potential in preclinical trials, with over 20 compounds advancing to clinical trials and showing promising results. However, the limited clinical efficacy and shared toxicity of these inhibitors restrict their further clinical use. Encouragingly, developing novel inhibitors using conventional medicinal chemistry approaches─such as selective inhibitors, dual inhibitors, protein-protein interaction inhibitors, and proteolysis-targeting chimeras─is expected to address these challenges. Notably, the selective inhibitor TAS-116 has already been successfully marketed. In this Perspective, we summarize the structure, biological functions, and roles of HSP90 in cancer, analyze the clinical status of HSP90 inhibitors, and highlight the latest advancements in novel strategies, offering insights into their future development.
Collapse
Affiliation(s)
- Xinqi Liang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ruixian Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| |
Collapse
|
5
|
Que NLS, Seidler PM, Aw WJ, Chiosis G, Gewirth DT. Selective inhibition of hsp90 paralogs: Uncovering the role of helix 1 in Grp94-selective ligand binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551342. [PMID: 37577523 PMCID: PMC10418071 DOI: 10.1101/2023.07.31.551342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Grp94 is the endoplasmic reticulum paralog of the hsp90 family of chaperones, which have been targeted for therapeutic intervention via their highly conserved ATP binding sites. The design of paralog-selective inhibitors relies on understanding the protein structural elements that drive higher affinity in selective inhibitors. Here, we determined the structures of Grp94 and Hsp90 in complex with the Grp94-selective inhibitor PU-H36, and of Grp94 with the non-selective inhibitor PU-H71. In Grp94, PU-H36 derives its higher affinity by utilizing Site 2, a Grp94-specific side pocket adjoining the ATP binding cavity, but in Hsp90 PU-H36 occupies Site 1, a side pocket that is accessible in all paralogs with which it makes lower affinity interactions. The structure of Grp94 in complex with PU-H71 shows only Site 1 binding. While changes in the conformation of helices 4 and 5 in the N-terminal domain occur when ligands bind to Site 1 of both Hsp90 and Grp94, large conformational shifts that also involve helix 1 are associated with the engagement of the Site 2 pocket in Grp94 only. Site 2 in Hsp90 is blocked and its helix 1 conformation is insensitive to ligand binding. To understand the role of helix 1 in ligand selectivity, we tested the binding of PU-H36 and other Grp94-selective ligands to chimeric Grp94/Hsp90 constructs. These studies show that helix 1 is the major determinant of selectivity for Site 2 targeted ligands, and also influences the rate of ATPase activity in Hsp90 paralogs.
Collapse
Affiliation(s)
| | - Paul M. Seidler
- Hauptman Woodward Medical Research Institute, Buffalo, NY 14203
| | - Wen J. Aw
- Hauptman Woodward Medical Research Institute, Buffalo, NY 14203
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Daniel T. Gewirth
- Hauptman Woodward Medical Research Institute, Buffalo, NY 14203
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| |
Collapse
|
6
|
Mansfield CR, Quan B, Chirgwin ME, Eduful B, Hughes PF, Neveu G, Sylvester K, Ryan DH, Kafsack BFC, Haystead TAJ, Leahy JW, Fitzgerald MC, Derbyshire ER. Selective targeting of Plasmodium falciparum Hsp90 disrupts the 26S proteasome. Cell Chem Biol 2024; 31:729-742.e13. [PMID: 38492573 PMCID: PMC11031320 DOI: 10.1016/j.chembiol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Baiyi Quan
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Benjamin Eduful
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Gaëlle Neveu
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel H Ryan
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, FL, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Zhao P, Wang C, Sun S, Wang X, Balch WE. Tracing genetic diversity captures the molecular basis of misfolding disease. Nat Commun 2024; 15:3333. [PMID: 38637533 PMCID: PMC11026414 DOI: 10.1038/s41467-024-47520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
8
|
Mattoo S, Gupta A, Chauhan M, Agrawal A, Pore SK. Prospects and challenges of noncoding-RNA-mediated inhibition of heat shock protein 90 for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195006. [PMID: 38218528 DOI: 10.1016/j.bbagrm.2024.195006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Heat Shock Protein 90 (HSP90) is a potential drug target for cancer therapy as it is often dysregulated in several cancers, including lung, breast, pancreatic, and prostate cancers. In cancer, HSP90 fails to maintain the structural and functional integrity of its several client proteins which are involved in the hallmarks of cancer such as cell proliferation, invasion, migration, angiogenesis, and apoptosis. Several small molecule inhibitors of HSP90 have been shown to exhibit anticancer effects in vitro and in vivo animal models. However, a few of them are currently under clinical studies. The status and potential limitations of these inhibitors are discussed here. Studies demonstrate that several noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) regulate HSP90 and its client proteins to modulate cellular processes to exhibit oncogenic or tumor suppressing properties. Over the last decade, miRNAs and lncRNAs have drawn significant interest from the scientific community as therapeutic agents or targets for clinical applications. Here, we discuss the detailed mechanistic regulation of HSP90 and its client proteins by ncRNAs. Moreover, we highlight the significance of these ncRNAs as potential therapeutic agents/targets, and the challenges associated with ncRNA-based therapies. This article aims to provide a holistic view on HSP90-regulating ncRNAs for the development of novel therapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Shria Mattoo
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Abha Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Manvee Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India
| | - Akshi Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201311, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Noida 201311, India.
| |
Collapse
|
9
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Merfeld T, Peng S, Keegan BM, Crowley VM, Brackett CM, Gutierrez A, McCann NR, Reynolds TS, Rhodes MC, Byrd KM, Deng J, Matts RL, Blagg BSJ. Elucidation of novel TRAP1-Selective inhibitors that regulate mitochondrial processes. Eur J Med Chem 2023; 258:115531. [PMID: 37307624 PMCID: PMC10529355 DOI: 10.1016/j.ejmech.2023.115531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Hsp90 isoform-selective inhibitors represent a new paradigm for novel anti-cancer drugs as each of the four isoforms have specific cellular localization, function, and client proteins. The mitochondrial isoform, TRAP1, is the least understood member of the Hsp90 family due to the lack of small molecule tools to study its biological function. Herein, we report novel TRAP1-selective inhibitors used to interrogate TRAP1's biological function along with co-crystal structures of such compounds bound to the N-terminus of TRAP1. Solution of the co-crystal structure allowed for a structure-based approach that resulted in compound 36, which is a 40 nM inhibitor with >250-fold TRAP1 selectivity over Grp94, the isoform with the highest structural similarity to TRAP1 within the N-terminal ATP binding site. Lead compounds 35 and 36 were found to selectively induce TRAP1 client protein degradation without inducing the heat shock response or disrupting Hsp90-cytosolic clients. They were also shown to inhibit OXPHOS, alter cellular metabolism towards glycolysis, disrupt TRAP1 tetramer stability, and disrupt the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Taylor Merfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shuxia Peng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bradley M Keegan
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vincent M Crowley
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher M Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Gutierrez
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathan R McCann
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tyelor S Reynolds
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew C Rhodes
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Katherine M Byrd
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Junpeng Deng
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert L Matts
- Department of Biochemistry & Molecular Biology, Oklahoma State University, NRC 246 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
11
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
AbdElmoniem N, H. Abdallah M, M. Mukhtar R, Moutasim F, Rafie Ahmed A, Edris A, Ibraheem W, Makki AA, M. Elshamly E, Elhag R, Osman W, A. Mothana R, Alzain AA. Identification of Novel Natural Dual HDAC and Hsp90 Inhibitors for Metastatic TNBC Using e-Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Studies. Molecules 2023; 28:1771. [PMID: 36838758 PMCID: PMC9965823 DOI: 10.3390/molecules28041771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the main types of cancer that endangers women's lives. The characteristics of triple-negative breast cancer (TNBC) include a high rate of recurrence and the capacity for metastasis; therefore, new therapies are urgently needed to combat TNBC. Dual targeting HDAC6 and Hsp90 has shown good synergistic effects in treating metastatic TNBC. The goal of this study was to find potential HDAC6 and Hsp90 dual inhibitors. Therefore, several in silico approaches have been used. An e-pharmacophore model generation based on the HDAC6-ligand complex and subsequently a pharmacophore-based virtual screening on 270,450 natural compounds from the ZINC were performed, which resulted in 12,663 compounds that corresponded to the obtained pharmacophoric hypothesis. These compounds were docked into HDAC6 and Hsp90. This resulted in the identification of three compounds with good docking scores and favorable free binding energy against the two targets. The top three compounds, namely ZINC000096116556, ZINC000020761262, and ZINC000217668954, were further subjected to ADME prediction and molecular dynamic simulations, which showed promising results in terms of pharmacokinetic properties and stability. As a result, these three compounds can be considered potential HDAC6 and Hsp90 dual inhibitors and are recommended for experimental evaluation.
Collapse
Affiliation(s)
- Nihal AbdElmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Marwa H. Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Fatima Moutasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Ahmed Rafie Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Alaa Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Walaa Ibraheem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Alaa A. Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Eman M. Elshamly
- Department of Molecular Biotechnology, Hochschule Anhalt, 06846 Dessau-Roßlau, Germany
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A & M University, Tallahassee, FL 32307, USA
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11114, Sudan
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
13
|
Sun H, Wu M, Wang M, Zhang X, Zhu J. The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Front Neurosci 2022; 16:1032607. [DOI: 10.3389/fnins.2022.1032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest tubular reticular organelle spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis maintenance and lipid metabolism, the ER plays a variety of essential roles in eukaryotic cells, with ER molecular chaperones participate in all these processes. In recent years, it has been reported that the abnormal expression of ER chaperones often leads to a variety of neurodevelopmental disorders (NDDs), including abnormal neuronal migration, neuronal morphogenesis, and synaptic function. Neuronal development is a complex and precisely regulated process. Currently, the mechanism by which neural development is regulated at the ER level remains under investigation. Therefore, in this work, we reviewed the recent advances in the roles of ER chaperones in neural development and developmental disorders caused by the deficiency of these molecular chaperones.
Collapse
|
14
|
Stachowski TR, Fischer M. Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots. J Med Chem 2022; 65:13692-13704. [PMID: 35970514 PMCID: PMC9619398 DOI: 10.1021/acs.jmedchem.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein flexibility is important for ligand binding but
often ignored
in drug design. Considering proteins as ensembles rather than static
snapshots creates opportunities to target dynamic proteins that lack
FDA-approved drugs, such as the human chaperone, heat shock protein
90 (Hsp90). Hsp90α accommodates ligands with a dynamic lid domain,
yet no comprehensive analysis relating lid conformations to ligand
properties is available. To date, ∼300 ligand-bound Hsp90α
crystal structures are deposited in the Protein Data Bank, which enables
us to consider ligand binding as a perturbation of the protein conformational
landscape. By estimating binding site volumes, we classified structures
into distinct major and minor lid conformations. Supported by retrospective
docking, each conformation creates unique hotspots that bind chemically
distinguishable ligands. Clustering revealed insightful exceptions
and the impact of crystal packing. Overall, Hsp90α’s
plasticity provides a cautionary tale of overinterpreting individual
crystal structures and motivates an ensemble-based view of drug design.
Collapse
Affiliation(s)
- Timothy R Stachowski
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
15
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Bakar NS, Abd Latiff A, Ismail NM. Neuroprotection by Trans-Resveratrol in Rats With Intracerebral Hemorrhage: Insights into the Role of Adenosine A1 Receptors. J Neuropathol Exp Neurol 2022; 81:596-613. [PMID: 35799401 DOI: 10.1093/jnen/nlac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the neuroprotective effects of trans-resveratrol (RV), this study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in RV-mediated neuroprotection in a rat intracerebral hemorrhage (ICH) model induced by intrastriatal injection of collagenase. Rats were divided into 5 groups: (1) control, (2) sham-operated, (3) ICH pretreated with vehicle, (4) ICH pretreated with RV, and (5) ICH pretreated with RV and the A1R antagonist DPCPX. At 48 hours after ICH, the rats were subjected to neurological testing. Brain tissues were assessed for neuronal density and morphological features using routine and immunohistochemical staining. Expression of tumor necrosis factor-α (TNF-α), caspase-3, and RIPK3 proteins was examined using ELISA. A1R, MAPK P38, Hsp90, TrkB, and BDNF genes were examined using RT-qPCR. RV protected against neurological deficits and neuronal depletion, restored the expression of TNF-α, CASP3, RIPK3, A1R, and Hsp90, and increased BDNF/TrkB. DPCPX abolished the effects of RV on neurological outcomes, neuronal density, CASP3, RIPK3, A1R, Hsp90, and BDNF. These data indicate that the neuroprotection by RV involves A1R and inhibits CASP3-dependent apoptosis and RIPK3-dependent necroptosis in the perihematoma region; this is likely to be mediated by crosstalk between A1R and the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Igor Iezhitsa
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Renu Agarwal
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nor Salmah Bakar
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Azian Abd Latiff
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nafeeza Mohd Ismail
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| |
Collapse
|
16
|
Yang S, Gu Yoon N, Park MA, Yun J, Young Im J, Heon Kang B, Kang S. Triphenylphosphonium Conjugation to a TRAP1 Inhibitor, 2-Amino-6-chloro-7,9-dihydro-8H-purin-8-one Increases Antiproliferative Activity. Bioorg Chem 2022; 126:105856. [DOI: 10.1016/j.bioorg.2022.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
17
|
Wei Q, Ren H, Zhang J, Yao W, Zhao B, Miao J. An Inhibitor of Grp94 Inhibits OxLDL-Induced Autophagy and Apoptosis in VECs and Stabilized Atherosclerotic Plaques. Front Cardiovasc Med 2021; 8:757591. [PMID: 34938782 PMCID: PMC8687133 DOI: 10.3389/fcvm.2021.757591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Oxidized low-density lipoprotein (oxLDL) induces vascular endothelial cell (VEC) injury and atherosclerosis through activating endoplasmic reticulum stress. Expression of glucose-regulated protein 94 (Grp94) is induced by endoplasmic reticulum stress and Grp94 is involved in cardiovascular diseases. This study aimed to determine the role of Grp94 in oxLDL-induced vascular endothelial cell injury and atherosclerosis. Methods and Results: An inhibitor of Grp94, HCP1, was used to investigate the role of Grp94 in oxLDL-induced VEC injury in human umbilical vein endothelial cells and atherosclerosis in apolipoprotein E−/− mice. Results showed that HCP1 inhibited autophagy and apoptosis induced by oxLDL in VECs. And we found that Grp94 might interact with adenosine monophosphate-activated protein kinase (AMPK) and activate its activity. HCP1 inhibited AMPK activity and overexpression of Grp94 blocked the effect of HCP1. Besides, HCP1 activated the activity of mechanistic target of rapamycin complex 1 (mTORC1), co-treatment with AMPK activator acadesine eliminated the effect of HCP1 on mTORC1 activity as well as autophagy. In apolipoprotein E−/− mice, HCP1 suppressed autophagy and apoptosis of atherosclerotic plaque endothelium. In addition, HCP1 increased the content of collagen, smooth muscle cells, and anti-inflammatory macrophages while reducing the activity of MMP-2/9 and pro-inflammatory macrophages in the atherosclerotic lesion. Conclusion: HCP1 inhibited oxLDL-induced VEC injury and promoted the stabilization of atherosclerotic plaque in apoE−/− mice. Grp94 might be a potential therapeutic target in the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qun Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China.,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Wen Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Baoxiang Zhao
- School of Chemistry and Chemical Engineering, Institute of Organic Chemistry, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
18
|
León R, Soto-Delgado J, Montero E, Vargas M. Development of Computational Approaches with a Fragment-Based Drug Design Strategy: In Silico Hsp90 Inhibitors Discovery. Int J Mol Sci 2021; 22:ijms222413226. [PMID: 34948022 PMCID: PMC8706391 DOI: 10.3390/ijms222413226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/21/2023] Open
Abstract
A semi-exhaustive approach and a heuristic search algorithm use a fragment-based drug design (FBDD) strategy for designing new inhibitors in an in silico process. A deconstruction reconstruction process uses a set of known Hsp90 ligands for generating new ones. The deconstruction process consists of cutting off a known ligand in fragments. The reconstruction process consists of coupling fragments to develop a new set of ligands. For evaluating the approaches, we compare the binding energy of the new ligands with the known ligands.
Collapse
Affiliation(s)
- Roberto León
- Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile; (E.M.); (M.V.)
- Correspondence: (R.L.); (J.S.-D.)
| | - Jorge Soto-Delgado
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar 2531015, Chile
- Correspondence: (R.L.); (J.S.-D.)
| | - Elizabeth Montero
- Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile; (E.M.); (M.V.)
| | - Matías Vargas
- Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile; (E.M.); (M.V.)
| |
Collapse
|
19
|
Yoon NG, Lee H, Kim SY, Hu S, Kim D, Yang S, Hong KB, Lee JH, Kang S, Kim BG, Myung K, Lee C, Kang BH. Mitoquinone Inactivates Mitochondrial Chaperone TRAP1 by Blocking the Client Binding Site. J Am Chem Soc 2021; 143:19684-19696. [PMID: 34758612 DOI: 10.1021/jacs.1c07099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat shock protein 90 (Hsp90) family proteins are molecular chaperones that modulate the functions of various substrate proteins (clients) implicated in pro-tumorigenic pathways. In this study, the mitochondria-targeted antioxidant mitoquinone (MitoQ) was identified as a potent inhibitor of mitochondrial Hsp90, known as a tumor necrosis factor receptor-associated protein 1 (TRAP1). Structural analyses revealed an asymmetric bipartite interaction between MitoQ and the previously unrecognized drug binding sites located in the middle domain of TRAP1, believed to be a client binding region. MitoQ effectively competed with TRAP1 clients, and MitoQ treatment facilitated the identification of 103 TRAP1-interacting mitochondrial proteins in cancer cells. MitoQ and its redox-crippled SB-U014/SB-U015 exhibited more potent anticancer activity in vitro and in vivo than previously reported mitochondria-targeted TRAP1 inhibitors. The findings indicate that targeting the client binding site of Hsp90 family proteins offers a novel strategy for the development of potent anticancer drugs.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Darong Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Sujae Yang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
20
|
Xu S, Guo A, Chen NN, Dai W, Yang HA, Xie W, Wang M, You QD, Xu XL. Design and synthesis of Grp94 selective inhibitors based on Phe199 induced fit mechanism and their anti-inflammatory effects. Eur J Med Chem 2021; 223:113604. [PMID: 34174740 DOI: 10.1016/j.ejmech.2021.113604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
Glucose-regulated protein 94 (Grp94), a member of the Heat shock protein 90 (Hsp90) family, is implicated in many human diseases, including cancer, neurodegeneration, inflammatory, and infectious diseases. Here, we describe our effort to design and develop a new series of Grp94 inhibitors based on Phe199 induced fit mechanism. Using an alkynyl-containing inhibitor as a starting point, we developed compound 4, which showed potent inhibitory activity toward Grp94 in a fluorescence polarization-based assay. With improved physicochemical properties and suitable pharmacokinetic properties, compound 4 was advanced into in vivo bioactivity evaluation. In a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis (UC), compound 4 showed anti-inflammatory property and reduced the levels of pro-inflammatory cytokines (TNF-α and IL-6). Together, these findings provide evidence that this approach may be promising for further Grp94 drug development efforts.
Collapse
Affiliation(s)
- Shicheng Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Anping Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Nan-Nan Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huan-Aoyu Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenqin Xie
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengjie Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
22
|
Dekker FA, Rüdiger SGD. The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Front Mol Biosci 2021; 8:697913. [PMID: 34222342 PMCID: PMC8249562 DOI: 10.3389/fmolb.2021.697913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common form of dementia, characterised by intra- and extracellular protein aggregation. In AD, the cellular protein quality control (PQC) system is derailed and fails to prevent the formation of these aggregates. Especially the mitochondrial paralogue of the conserved Hsp90 chaperone class, tumour necrosis factor receptor-associated protein 1 (TRAP1), is strongly downregulated in AD, more than other major PQC factors. Here, we review molecular mechanism and cellular function of TRAP1 and subsequently discuss possible links to AD. TRAP1 is an interesting paradigm for the Hsp90 family, as it chaperones proteins with vital cellular function, despite not being regulated by any of the co-chaperones that drive its cytosolic paralogues. TRAP1 encloses late folding intermediates in a non-active state. Thereby, it is involved in the assembly of the electron transport chain, and it favours the switch from oxidative phosphorylation to glycolysis. Another key function is that it ensures mitochondrial integrity by regulating the mitochondrial pore opening through Cyclophilin D. While it is still unclear whether TRAP1 itself is a driver or a passenger in AD, it might be a guide to identify key factors initiating neurodegeneration.
Collapse
Affiliation(s)
- Françoise A Dekker
- Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Yan P, Patel HJ, Sharma S, Corben A, Wang T, Panchal P, Yang C, Sun W, Araujo TL, Rodina A, Joshi S, Robzyk K, Gandu S, White JR, de Stanchina E, Modi S, Janjigian YY, Hill EG, Liu B, Erdjument-Bromage H, Neubert TA, Que NLS, Li Z, Gewirth DT, Taldone T, Chiosis G. Molecular Stressors Engender Protein Connectivity Dysfunction through Aberrant N-Glycosylation of a Chaperone. Cell Rep 2021; 31:107840. [PMID: 32610141 PMCID: PMC7372946 DOI: 10.1016/j.celrep.2020.107840] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Stresses associated with disease may pathologically remodel the proteome by both increasing interaction strength and altering interaction partners, resulting in proteome-wide connectivity dysfunctions. Chaperones play an important role in these alterations, but how these changes are executed remains largely unknown. Our study unveils a specific N-glycosylation pattern used by a chaperone, Glucose-regulated protein 94 (GRP94), to alter its conformational fitness and stabilize a state most permissive for stable interactions with proteins at the plasma membrane. This "protein assembly mutation' remodels protein networks and properties of the cell. We show in cells, human specimens, and mouse xenografts that proteome connectivity is restorable by inhibition of the N-glycosylated GRP94 variant. In summary, we provide biochemical evidence for stressor-induced chaperone-mediated protein mis-assemblies and demonstrate how these alterations are actionable in disease.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hardik J Patel
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Mount Sinai Hospital, New York, NY 10029, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenghua Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Currently at Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weilin Sun
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thais L Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth Robzyk
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Comparative Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Nanette L S Que
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Marcyk PT, LeBlanc EV, Kuntz DA, Xue A, Ortiz F, Trilles R, Bengtson S, Kenney TM, Huang DS, Robbins N, Williams NS, Krysan DJ, Privé GG, Whitesell L, Cowen LE, Brown LE. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J Med Chem 2021; 64:1139-1169. [PMID: 33444025 PMCID: PMC8493596 DOI: 10.1021/acs.jmedchem.0c01777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.
Collapse
Affiliation(s)
- Paul T. Marcyk
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Douglas A. Kuntz
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Stephen Bengtson
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Tristan M.G. Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, United States
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
25
|
Mishra SJ, Liu W, Beebe K, Banerjee M, Kent CN, Munthali V, Koren J, Taylor JA, Neckers LM, Holzbeierlein J, Blagg BSJ. The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with pan-Hsp90 Inhibition. J Med Chem 2021; 64:1545-1557. [PMID: 33428418 DOI: 10.1021/acs.jmedchem.0c01700] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Sanket J Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Kristin Beebe
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Vitumbiko Munthali
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John Koren
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John A Taylor
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Jeffrey Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
27
|
Zhang Y, Zhang TJ, Li XY, Liang JW, Tu S, Xu HL, Xue WH, Qian XH, Zhang ZH, Zhang X, Meng FH. 2-((1-Phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-azabicyclo[3.2.1]octan-3-one derivatives: Simplification and modification of aconitine scaffold for the discovery of novel anticancer agents. Eur J Med Chem 2020; 210:112988. [PMID: 33189438 DOI: 10.1016/j.ejmech.2020.112988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is a promising target for cancer therapy. Natural product aconitine is a potential Hsp90 inhibitor reported in our previous work. In this study, we designed and synthesized a series of 2-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-azabicyclo[3.2.1]octan-3-one derivatives as potent Hsp90 inhibitors by simplifying and modifying aconitine scaffold. Among these compounds, 14t exhibited an excellent antiproliferative activity against LoVo cells with an IC50 value of 0.02 μM and a significant Hsp90α inhibitory activity with an IC50 value of 0.71 nM. Molecular docking studies provided a rational binding model of 14t in complex with Hsp90α. The following cell cycle and apoptosis assays revealed that compound 14t could arrest cell cycle at G1/S phase and induce cell apoptosis via up-regulation of bax and cleaved-caspase 3 protein expressions while inhibiting the expressions of bcl-2. Moreover, 14t could inhibit cell migration in LoVo and SW620 cell lines. Consistent with in vitro results, 14t significantly repressed tumor growth in the SW620 xenograft mouse model.
Collapse
Affiliation(s)
- Yi Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Xin-Yang Li
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110122, China
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Shun Tu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Hai-Li Xu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Wen-Han Xue
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Xin-Hua Qian
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Zhen-Hao Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Xu Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China.
| |
Collapse
|
28
|
Dutta Gupta S, Pan CH. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int J Biol Macromol 2020; 161:1086-1098. [DOI: 10.1016/j.ijbiomac.2020.06.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
|
29
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
30
|
Hoxie RS, Street TO. Hsp90 chaperones have an energetic hot-spot for binding inhibitors. Protein Sci 2020; 29:2101-2111. [PMID: 32812680 PMCID: PMC7513732 DOI: 10.1002/pro.3933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/16/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Although Hsp90-family chaperones have been extensively targeted with ATP-competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP-binding pocket. A large-scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen-bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle-specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen-bond is pH-dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked-protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen-bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3-6 kcal/mol of stabilization (35-60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93➔Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93➔Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.
Collapse
Affiliation(s)
- Reyal S. Hoxie
- Department of BiochemistryBrandeis UniversityWalthamMassachusettsUSA
| | - Timothy O. Street
- Department of BiochemistryBrandeis UniversityWalthamMassachusettsUSA
| |
Collapse
|
31
|
New insights into molecular chaperone TRAP1 as a feasible target for future cancer treatments. Life Sci 2020; 254:117737. [PMID: 32376268 DOI: 10.1016/j.lfs.2020.117737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), a molecular chaperone, is a major member of the mitochondrial heat shock protein 90 (Hsp90) family. Studies have shown that TRAP1 can prevent hypoxia-induced damage to cardiomyocytes, maintain cardiomyocytes viability and mitochondrial membrane potential, and protect cardiomyocytes. In addition, it can also protect astrocytes from ischemic damage in vitro. In recent years, there have been many new discoveries in tumors. The abnormal expression of TRAP1 is closely related to the occurrence and development of various tumors. TRAP1 protein seems to be a central regulatory protein, involved in the activation of various oncogenic proteins and signaling pathways, and has a balanced function at tumor transformation and the intersection of different metabolic processes. Targeting its chaperone activity and molecular interactions can destroy the metabolism and survival adaptability of tumor cells, paving the way for the development of highly selective mitochondrial anti-tumor drugs. Moreover, the combination of TRAP1 inhibition and current traditional cancer therapies has shown promising applications. These findings have important implications for the diagnosis and treatment of tumors. Therefore, we reviewed the recently identified functions of the molecular chaperone TRAP1 in cancer development and progression, as well as the discovery and recent advances in selective TRAP1 inhibitors as anticancer drug therapies, opening up new attractive prospects for exploring strategies for targeting TRAP1 as a tumor cell target.
Collapse
|
32
|
Taldone T, Wang T, Rodina A, Pillarsetty NVK, Digwal CS, Sharma S, Yan P, Joshi S, Pagare PP, Bolaender A, Roboz GJ, Guzman ML, Chiosis G. A Chemical Biology Approach to the Chaperome in Cancer-HSP90 and Beyond. Cold Spring Harb Perspect Biol 2020; 12:a034116. [PMID: 30936118 PMCID: PMC6773535 DOI: 10.1101/cshperspect.a034116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is often associated with alterations in the chaperome, a collection of chaperones, cochaperones, and other cofactors. Changes in the expression levels of components of the chaperome, in the interaction strength among chaperome components, alterations in chaperome constituency, and in the cellular location of chaperome members, are all hallmarks of cancer. Here we aim to provide an overview on how chemical biology has played a role in deciphering such complexity in the biology of the chaperome in cancer and in other diseases. The focus here is narrow and on pathologic changes in the chaperome executed by enhancing the interaction strength between components of distinct chaperome pathways, specifically between those of HSP90 and HSP70 pathways. We will review chemical tools and chemical probe-based assays, with a focus on HSP90. We will discuss how kinetic binding, not classical equilibrium binding, is most appropriate in the development of drugs and probes for the chaperome in disease. We will then present our view on how chaperome inhibitors may become potential drugs and diagnostics in cancer.
Collapse
Affiliation(s)
- Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | | | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Piyusha P Pagare
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Alexander Bolaender
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, New York 10065
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
33
|
Huang DS, LeBlanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro J, Whitesell L, Cowen LE, Brown LE. Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. J Med Chem 2020; 63:2139-2180. [PMID: 31513387 PMCID: PMC7069776 DOI: 10.1021/acs.jmedchem.9b00826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular chaperone Hsp90, essential in all eukaryotes, plays a multifaceted role in promoting survival, virulence, and drug resistance across diverse pathogenic fungal species. The chaperone is also critically important, however, to the pathogen's human host, preventing the use of known clinical Hsp90 inhibitors in antifungal applications due to concomitant host toxicity issues. With the goal of developing Hsp90 inhibitors with acceptable therapeutic indices for the treatment of invasive fungal infections, we initiated a program to design and synthesize potent inhibitors with selective activity against fungal Hsp90 isoforms over their human counterparts. Building on our previously reported derivatization of resorcylate natural products to produce fungal-selective compounds, we have developed a series of synthetic aminopyrazole-substituted resorcylate amides with broad, potent, and fungal-selective Hsp90 inhibitory activity. Herein we describe the synthesis of this series, as well as biochemical structure-activity relationships driving selectivity for the Hsp90 isoforms expressed by Cryptococcus neoformans and Candida albicans, two pathogenic fungi of major clinical importance.
Collapse
Affiliation(s)
- David S. Huang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Emmanuelle V. LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Damian J. Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| |
Collapse
|
34
|
Shadrack DM, Swai HS, Hassanali A. A computational study on the role of water and conformational fluctuations in Hsp90 in response to inhibitors. J Mol Graph Model 2019; 96:107510. [PMID: 31877402 DOI: 10.1016/j.jmgm.2019.107510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Molecular chaperone Heat Shock Protein 90 (Hsp90) represents an interesting chemotherapeutic target for cancer treatments as it plays a role in cancer proliferation. Thus, continued effort to identify novel inhibitors of this target is an important task. Drug design using computational approach has gained significant attention in recent years. This work aims to propose docking protocols to re-purpose FDA-approved drugs targeting Hsp90. Sensitivity of results to different docking protocols such apo, holo and receptor ensembles (relaxed complex) structures, the role of water and conformational changes of Hsp90, are described. We show that the protein conformation and water have effects on drug binding. Holo relaxed complex receptors ensembles improves the binding energy of ligands to the protein. We also compare and contrast structural stability of three drugs namely: ezetimibe, pitavastatin and vilazodon in the Hsp90 protein. The results obtained serves as a possible basis towards developing Hsp90 inhibitors.
Collapse
Affiliation(s)
- Daniel M Shadrack
- Department of Health and Biomedical Sciences, School of Life Science and Bioengieering, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania; International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy; Department of Chemistry, FaNAS, St John's University of Tanzania, P.O.Box 47, Dodoma, Tanzania.
| | - Hulda S Swai
- Department of Health and Biomedical Sciences, School of Life Science and Bioengieering, The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania
| | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera, 11, 34151, Trieste, Italy.
| |
Collapse
|
35
|
Li L, Wang L, You QD, Xu XL. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem 2019; 63:1798-1822. [DOI: 10.1021/acs.jmedchem.9b00940] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
36
|
Huck JD, Que NL, Sharma S, Taldone T, Chiosis G, Gewirth DT. Structures of Hsp90α and Hsp90β bound to a purine-scaffold inhibitor reveal an exploitable residue for drug selectivity. Proteins 2019; 87:869-877. [PMID: 31141217 PMCID: PMC6718336 DOI: 10.1002/prot.25750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Hsp90α and Hsp90β are implicated in a number of cancers and neurodegenerative disorders but the lack of selective pharmacological probes confounds efforts to identify their individual roles. Here, we analyzed the binding of an Hsp90α-selective PU compound, PU-11-trans, to the two cytosolic paralogs. We determined the co-crystal structures of Hsp90α and Hsp90β bound to PU-11-trans, as well as the structure of the apo Hsp90β NTD. The two inhibitor-bound structures reveal that Ser52, a nonconserved residue in the ATP binding pocket in Hsp90α, provides additional stability to PU-11-trans through a water-mediated hydrogen-bonding network. Mutation of Ser52 to alanine, as found in Hsp90β, alters the dissociation constant of Hsp90α for PU-11-trans to match that of Hsp90β. Our results provide a structural explanation for the binding preference of PU inhibitors for Hsp90α and demonstrate that the single nonconserved residue in the ATP-binding pocket may be exploited for α/β selectivity.
Collapse
Affiliation(s)
- John D. Huck
- Hauptman-Wood ward Medical Research Institute, Buffalo, NY USA
- Department of Structural Biology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY USA
| | | | - Sahil Sharma
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tony Taldone
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gabriela Chiosis
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel T. Gewirth
- Hauptman-Wood ward Medical Research Institute, Buffalo, NY USA
- Department of Structural Biology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY USA
| |
Collapse
|
37
|
Huck JD, Que NLS, Immormino RM, Shrestha L, Taldone T, Chiosis G, Gewirth DT. NECA derivatives exploit the paralog-specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90. J Biol Chem 2019; 294:16010-16019. [PMID: 31501246 DOI: 10.1074/jbc.ra119.009960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/05/2019] [Indexed: 11/06/2022] Open
Abstract
The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90β, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.
Collapse
Affiliation(s)
- John D Huck
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,Department of Structural Biology, University at Buffalo, Buffalo, New York 14203
| | - Nanette L S Que
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203
| | | | - Liza Shrestha
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Tony Taldone
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Gabriela Chiosis
- Memorial Sloan-Kettering Cancer Institute, New York, New York 10021
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203 .,Department of Structural Biology, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
38
|
Different Grp94 components interact transiently with the myocilin olfactomedin domain in vitro to enhance or retard its amyloid aggregation. Sci Rep 2019; 9:12769. [PMID: 31484937 PMCID: PMC6726633 DOI: 10.1038/s41598-019-48751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
The inherited form of open angle glaucoma arises due to a toxic gain-of-function intracellular misfolding event involving a mutated myocilin olfactomedin domain (OLF). Mutant myocilin is recognized by the endoplasmic reticulum (ER)-resident heat shock protein 90 paralog, glucose regulated protein 94 (Grp94), but their co-aggregation precludes mutant myocilin clearance by ER-associated degradation. When the Grp94-mutant myocilin interaction is abrogated by inhibitors or siRNA, mutant myocilin is efficiently degraded. Here we dissected Grp94 into component domains (N, NM, MC) to better understand the molecular factors governing its interaction with OLF. We show that the Grp94 N-terminal nucleotide-binding N domain is responsible for accelerating OLF aggregation in vitro. Upon inhibiting the isolated N domain pharmacologically or removing the Pre-N terminal 57 residues from full-length Grp94, OLF aggregation rates revert to those seen for OLF alone, but only pharmacological inhibition rescues co-aggregation. The Grp94-OLF interaction is below the detection limit of fluorescence polarization measurements, but chemical crosslinking paired with mass spectrometry analyses traps a reproducible interaction between OLF and the Grp94 N domain, as well as between OLF and the Grp94 M domain. The emerging molecular-level picture of quinary interactions between Grp94 and myocilin points to a role for the far N-terminal sequence of the Grp94 N domain and a cleft in the M domain. Our work further supports drug discovery efforts to inhibit these interactions as a strategy to treat myocilin-associated glaucoma.
Collapse
|
39
|
Gómez-Fernández P, Urtasun A, Astobiza I, Mena J, Alloza I, Vandenbroeck K. Pharmacological Targeting of the ER-Resident Chaperones GRP94 or Cyclophilin B Induces Secretion of IL-22 Binding Protein Isoform-1 (IL-22BPi1). Int J Mol Sci 2019; 20:ijms20102440. [PMID: 31108847 PMCID: PMC6566634 DOI: 10.3390/ijms20102440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Ianire Astobiza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
40
|
Low-concentration HCP1 inhibits apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 2019; 511:92-98. [DOI: 10.1016/j.bbrc.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/21/2023]
|
41
|
Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, LeBlanc EV, Nation CS, Hui R, Hutchinson A, Collins C, Chatterjee S, Trilles R, Xie JL, Krysan DJ, Lindquist S, Porco JA, Tatu U, Brown LE, Pizarro J, Cowen LE. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 2019; 10:402. [PMID: 30679438 PMCID: PMC6345968 DOI: 10.1038/s41467-018-08248-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.
Collapse
Affiliation(s)
- Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - David S Huang
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | | | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Catherine S Nation
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Sharanya Chatterjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lauren E Brown
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
42
|
Yang Y, Wang W, Li M, Gao Y, Zhang W, Huang Y, Zhuo W, Yan X, Liu W, Wang F, Chen D, Zhou T. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell Mol Life Sci 2019; 76:381-395. [PMID: 30368549 PMCID: PMC6339671 DOI: 10.1007/s00018-018-2957-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Sister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit cohesin complex. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Yuehong Yang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Wei Wang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Min Li
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Ya Gao
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wen Zhang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yuliang Huang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dingwei Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China.
| | - Tianhua Zhou
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
43
|
Kang J, Young Lee J, Taş İ, More KN, Kim H, Park JH, Chang DJ. Radiosynthesis, biological evaluation and preliminary microPET study of 18F-labeled 5-resorcinolic triazolone derivative based on ganetespib targeting HSP90. Bioorg Med Chem Lett 2018; 28:3658-3664. [DOI: 10.1016/j.bmcl.2018.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
|
44
|
Wang T, Rodina A, Dunphy MP, Corben A, Modi S, Guzman ML, Gewirth DT, Chiosis G. Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 2018; 294:2162-2179. [PMID: 30409908 DOI: 10.1074/jbc.rev118.002811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chaperome is the collection of proteins in the cell that carry out molecular chaperoning functions. Changes in the interaction strength between chaperome proteins lead to an assembly that is functionally and structurally distinct from each constituent member. In this review, we discuss the epichaperome, the cellular network that forms when the chaperome components of distinct chaperome machineries come together as stable, functionally integrated, multimeric complexes. In tumors, maintenance of the epichaperome network is vital for tumor survival, rendering them vulnerable to therapeutic interventions that target critical epichaperome network components. We discuss how the epichaperome empowers an approach for precision medicine cancer trials where a new target, biomarker, and relevant drug candidates can be correlated and integrated. We introduce chemical biology methods to investigate the heterogeneity of the chaperome in a given cellular context. Lastly, we discuss how ligand-protein binding kinetics are more appropriate than equilibrium binding parameters to characterize and unravel chaperome targeting in cancer and to gauge the selectivity of ligands for specific tumor-associated chaperome pools.
Collapse
Affiliation(s)
- Tai Wang
- From the Chemical Biology Program and
| | | | | | - Adriana Corben
- the Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Shanu Modi
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, and
| | - Daniel T Gewirth
- the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203
| | - Gabriela Chiosis
- From the Chemical Biology Program and .,Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
45
|
Jiang F, Guo AP, Xu JC, You QD, Xu XL. Discovery of a Potent Grp94 Selective Inhibitor with Anti-Inflammatory Efficacy in a Mouse Model of Ulcerative Colitis. J Med Chem 2018; 61:9513-9533. [PMID: 30351001 DOI: 10.1021/acs.jmedchem.8b00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the endoplasmic reticulum paralogue of Hsp90, Grp94 chaperones a small set of client proteins associated with some diseases, including cancer, primary open-angle glaucoma, and inflammatory disorders. Grp94-selective inhibition has been a potential therapeutic strategy for these diseases. In this study, inspired by the conclusion that ligand-induced "Phe199 shift" effect is the structural basis of Grp94-selective inhibition, a series of novel Grp94 selective inhibitors incorporating "benzamide" moiety were developed, among which compound 54 manifested the most potent Grp94 inhibitory activity with an IC50 value of 2 nM and over 1000-fold selectivity to Grp94 against Hsp90α. In a DSS-induced mouse model of ulcerative colitis (UC), compound 54 exhibited significant anti-inflammatory efficacy. This work provides a potent Grp94 selective inhibitor as probe compound for the biological study of Grp94 and represents the first study that confirms the potential therapeutic efficacy of Grp94-selective inhibitors against UC.
Collapse
Affiliation(s)
- Fen Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - An-Ping Guo
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Jia-Chen Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
46
|
Olotu F, Adeniji E, Agoni C, Bjij I, Khan S, Elrashedy A, Soliman M. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discov 2018; 13:903-918. [PMID: 30207185 DOI: 10.1080/17460441.2018.1516035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Over the years, not a single HSP inhibitor has progressed into the post-market phase of drug development despite the success recorded in various pre-clinical and clinical studies. The inability of existing drugs to specifically target oncogenic HSPs has majorly accounted for these setbacks. Recent combinatorial strategies that incorporated computer-aided drug design (CADD) techniques are geared towards the development of highly specific HSP inhibitors with increased activities and minimal toxicities. Areas covered: In this review, strategic therapeutic approaches that have recently aided the development of selective HSP inhibitors were highlighted. Also, the significant contributions of CADD techniques over the years were discussed in detail. This article further describes promising computational paradigms and their applications towards the discovery of highly specific inhibitors of oncogenic HSPs. Expert opinion: The recent shift towards highly selective and specific HSP inhibition has shown great promise as evidenced by the development of paralog/isoform-selective HSP drugs. It could be further augmented with computer-aided drug design strategies, which incorporate reliable methods that would greatly enhance the design and optimization of novel inhibitors with improved activities and minimal toxicities.
Collapse
Affiliation(s)
- Fisayo Olotu
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Emmanuel Adeniji
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Clement Agoni
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Imane Bjij
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | - Shama Khan
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| | | | - Mahmoud Soliman
- a Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences , University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|
47
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
48
|
Tritium-labeled agonists as tools for studying adenosine A 2B receptors. Purinergic Signal 2018; 14:223-233. [PMID: 29752618 DOI: 10.1007/s11302-018-9608-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
A selective agonist radioligand for A2B adenosine receptors (A2BARs) is currently not available. Such a tool would be useful for labeling the active conformation of the receptors. Therefore, we prepared BAY 60-6583, a potent and functionally selective A2BAR (partial) agonist, in a tritium-labeled form. Despite extensive efforts, however, we have not been able to establish a radioligand binding assay using [3H]BAY 60-6583. This is probably due to its high non-specific binding and its moderate affinity, which had previously been overestimated based on functional data. As an alternative, we evaluated the non-selective A2BAR agonist [3H]NECA for its potential to label A2BARs. [3H]NECA showed specific, saturable, and reversible binding to membrane preparations of Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells stably expressing human, rat, or mouse A2BARs. In competition binding experiments, the AR agonists 2-chloroadenosine (CADO) and NECA displayed significantly higher affinity when tested versus [3H]NECA than versus the A2B-antagonist radioligand [3H]PSB-603 while structurally diverse AR antagonists showed the opposite effects. Although BAY 60-6583 is an A2BAR agonist, it displayed higher affinity versus [3H]PSB-603 than versus [3H]NECA. These results indicate that nucleoside and non-nucleoside agonists are binding to very different conformations of the A2BAR. In conclusion, [3H]NECA is currently the only useful radioligand for determining the affinity of ligands for an active A2BAR conformation.
Collapse
|
49
|
Huard DJE, Crowley VM, Du Y, Cordova RA, Sun Z, Tomlin MO, Dickey CA, Koren J, Blair L, Fu H, Blagg BSJ, Lieberman RL. Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma. ACS Chem Biol 2018; 13:933-941. [PMID: 29402077 PMCID: PMC6195314 DOI: 10.1021/acschembio.7b01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gain-of-function mutations within the olfactomedin (OLF) domain of myocilin result in its toxic intracellular accumulation and hasten the onset of open-angle glaucoma. The absence of myocilin does not cause disease; therefore, strategies aimed at eliminating myocilin could lead to a successful glaucoma treatment. The endoplasmic reticulum Hsp90 paralog Grp94 accelerates OLF aggregation. Knockdown or pharmacological inhibition of Grp94 in cells facilitates clearance of mutant myocilin via a non-proteasomal pathway. Here, we expanded our support for targeting Grp94 over cytosolic paralogs Hsp90α and Hsp90β. We then developed a high-throughput screening assay to identify new chemical matter capable of disrupting the Grp94/OLF interaction. When applied to a blind, focused library of 17 Hsp90 inhibitors, our miniaturized single-read in vitro thioflavin T -based kinetics aggregation assay exclusively identified compounds that target the chaperone N-terminal nucleotide binding site. In follow up studies, one compound (2) decreased the extent of co-aggregation of Grp94 with OLF in a dose-dependent manner in vitro, and enabled clearance of the aggregation-prone full-length myocilin variant I477N in cells without inducing the heat shock response or causing cytotoxicity. Comparison of the co-crystal structure of compound 2 and another non-selective hit in complex with the N-terminal domain of Grp94 reveals a docking mode tailored to Grp94 and explains its selectivity. A new lead compound has been identified, supporting a targeted chemical biology assay approach to develop a protein degradation-based therapy for myocilin-associated glaucoma by selectively inhibiting Grp94.
Collapse
Affiliation(s)
| | - Vincent M. Crowley
- Emory Chemical Biology Discovery Center, Department of Pharmacology, Emory University
| | - Yuhong Du
- Department of Medicinal Chemistry, The University of Kansas
| | - Ricardo A. Cordova
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Zheying Sun
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Moya O. Tomlin
- School of Chemistry & Biochemistry, Georgia Institute of Technology
| | - Chad A. Dickey
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - John Koren
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Laura Blair
- Byrd Alzheimer Institute, Department of Molecular Medicine, University of South Florida
| | - Haian Fu
- Department of Medicinal Chemistry, The University of Kansas
| | - Brian S. J. Blagg
- Emory Chemical Biology Discovery Center, Department of Pharmacology, Emory University
- Department of Chemistry and Biochemistry, The University of Notre Dame
| | | |
Collapse
|
50
|
Que NLS, Crowley VM, Duerfeldt AS, Zhao J, Kent CN, Blagg BSJ, Gewirth DT. Structure Based Design of a Grp94-Selective Inhibitor: Exploiting a Key Residue in Grp94 To Optimize Paralog-Selective Binding. J Med Chem 2018. [PMID: 29528635 DOI: 10.1021/acs.jmedchem.7b01608] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Grp94 and Hsp90, the ER and cytoplasmic hsp90 paralogs, share a conserved ATP-binding pocket that has been targeted for therapeutics. Paralog-selective inhibitors may lead to drugs with fewer side effects. Here, we analyzed 1 (BnIm), a benzyl imidazole resorcinylic inhibitor, for its mode of binding. The structures of 1 bound to Hsp90 and Grp94 reveal large conformational changes in Grp94 but not Hsp90 that expose site 2, a binding pocket adjacent to the central ATP cavity that is ordinarily blocked. The Grp94:1 structure reveals a flipped pose of the resorcinylic scaffold that inserts into the exposed site 2. We exploited this flipped binding pose to develop a Grp94-selective derivative of 1. Our structural analysis shows that the ability of the ligand to insert its benzyl imidazole substituent into site 1, a different side pocket off the ATP binding cavity, is the key to exposing site 2 in Grp94.
Collapse
Affiliation(s)
- Nanette L S Que
- Hauptman-Woodward Medical Research Institute , Buffalo , New York 14203 , United States
| | - Vincent M Crowley
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Jinbo Zhao
- Department of Medicinal Chemistry , The University of Kansas , Lawrence , Kansas 66045 , United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute , Buffalo , New York 14203 , United States.,Department of Structural Biology , University at Buffalo , Buffalo , New York 14203 , United States
| |
Collapse
|