1
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Li M, Hou Y, Zhou Y, Yang Z, Zhao H, Jian T, Yu Q, Zeng F, Liu X, Zhang Z, Zhao YG. LLPS of FXR proteins drives replication organelle clustering for β-coronaviral proliferation. J Cell Biol 2024; 223:e202309140. [PMID: 38587486 PMCID: PMC11001562 DOI: 10.1083/jcb.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
β-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.
Collapse
Affiliation(s)
- Meng Li
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yali Hou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zhenni Yang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Tao Jian
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, P.R. China
| | - Qianxi Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Xiaotian Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yan G. Zhao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, P.R. China
| |
Collapse
|
3
|
Brogna C, Bisaccia DR, Costanzo V, Lettieri G, Montano L, Viduto V, Fabrowski M, Cristoni S, Prisco M, Piscopo M. Who Is the Intermediate Host of RNA Viruses? A Study Focusing on SARS-CoV-2 and Poliovirus. Microorganisms 2024; 12:643. [PMID: 38674588 PMCID: PMC11051822 DOI: 10.3390/microorganisms12040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy;
| | | | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, 00185 Rome, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
| | - Mark Fabrowski
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
- British Polio Fellowship, Watford WD25 8HR, UK
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| |
Collapse
|
4
|
Chaudhary S, Yadav RP, Kumar S, Yadav SC. Ultrastructural study confirms the formation of single and heterotypic syncytial cells in bronchoalveolar fluids of COVID-19 patients. Virol J 2023; 20:97. [PMID: 37208729 PMCID: PMC10198030 DOI: 10.1186/s12985-023-02062-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND SARS-CoV-2 was reported to induce cell fusions to form multinuclear syncytia that might facilitate viral replication, dissemination, immune evasion, and inflammatory responses. In this study, we have reported the types of cells involved in syncytia formation at different stages of COVID-19 disease through electron microscopy. METHODS Bronchoalveolar fluids from the mild (n = 8, SpO2 > 95%, no hypoxia, within 2-8 days of infection), moderate (n = 8, SpO2 90% to ≤ 93% on room air, respiratory rate ≥ 24/min, breathlessness, within 9-16 days of infection), and severe (n = 8, SpO2 < 90%, respiratory rate > 30/min, external oxygen support, after 17th days of infection) COVID-19 patients were examined by PAP (cell type identification), immunofluorescence (for the level of viral infection), scanning (SEM), and transmission (TEM) electron microscopy to identify the syncytia. RESULTS Immunofluorescence studies (S protein-specific antibodies) from each syncytium indicate a very high infection level. We could not find any syncytial cells in mildly infected patients. However, identical (neutrophils or type 2 pneumocytes) and heterotypic (neutrophils-monocytes) plasma membrane initial fusion (indicating initiation of fusion) was observed under TEM in moderately infected patients. Fully matured large-size (20-100 μm) syncytial cells were found in severe acute respiratory distress syndrome (ARDS-like) patients of neutrophils, monocytes, and macrophage origin under SEM. CONCLUSIONS This ultrastructural study on the syncytial cells from COVID-19 patients sheds light on the disease's stages and types of cells involved in the syncytia formations. Syncytia formation was first induced in type II pneumocytes by homotypic fusion and later with haematopoetic cells (monocyte and neutrophils) by heterotypic fusion in the moderate stage (9-16 days) of the disease. Matured syncytia were reported in the late phase of the disease and formed large giant cells of 20 to 100 μm.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Ravi P Yadav
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Shailendra Kumar
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhash Chandra Yadav
- Electron Microscope Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
5
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Senehi NL, Ykema MR, Sun R, Verduzco R, Stadler LB, Tao YJ, Alvarez PJJ. Protein-imprinted particles for coronavirus capture from solution. J Sep Sci 2022; 45:4318-4326. [PMID: 36168868 PMCID: PMC9538460 DOI: 10.1002/jssc.202200543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022]
Abstract
Molecular imprinting is a promising strategy to selectively adsorb viruses, but it requires discerning and validating epitopes that serve as effective imprinting templates. In this work, glycoprotein-imprinted particles were synthesized for coronavirus capture. Adsorption was maximized at pH 6 (the glycoprotein isoelectric point) where the glycoprotein-imprinted particles outperformed non-imprinted particles, adsorbing 4.96 × 106 ± 3.33 × 103 versus 3.54 × 106 ± 1.39 × 106 median tissue culture infectious dose/mg of the target coronavirus, human coronavirus - organ culture 43, within the first 30 min (p = 0.012). During competitive adsorption, with pH adjustment (pH 6), the glycoprotein-imprinted particles adsorbed more target virus than non-target coronavirus (human coronavirus - Netherland 63) with 2.34 versus 1.94 log removal in 90 min (p < 0.01). In contrast, the non-imprinted particles showed no significant difference in target versus non-target virus removal. Electrostatic potential calculation shows that the human coronavirus - organ culture 43 glycoprotein has positively charged pockets at pH 6, which may facilitate adsorption at lower pH values. Therefore, tuning the target virus glycoprotein charge via pH adjustment enhanced adsorption by minimizing repulsive electrostatic interactions with the particles. Overall, these results highlight the effective use of glycoprotein-imprinted particles for coronavirus capture and discern the merits and limitations of glycoprotein imprinting for the capture of enveloped viruses.
Collapse
Affiliation(s)
- Naomi L. Senehi
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | | | - Ruonan Sun
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | - Rafael Verduzco
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTexasUSA
| | - Lauren B. Stadler
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | - Yizhi J. Tao
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
7
|
Yang Y, Murray J, Haverstick J, Tripp RA, Zhao Y. Silver nanotriangle array based LSPR sensor for rapid coronavirus detection. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 359:131604. [PMID: 35221531 PMCID: PMC8857771 DOI: 10.1016/j.snb.2022.131604] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 05/06/2023]
Abstract
A rapid, portable, and cost-effective method to detect the infection of SARS-CoV-2 is fundamental toward mitigating the current COVID-19 pandemic. Herein, a human angiotensin-converting enzyme 2 protein (ACE2) functionalized silver nanotriangle (AgNT) array localized surface plasmon resonance (LSPR) sensor is developed for rapid coronavirus detection, which is validated by SARS-CoV-2 spike RBD protein and CoV NL63 virus with high sensitivity and specificity. A linear shift of the LSPR wavelength versus the logarithm of the concentration of the spike RBD protein and CoV NL63 is observed. The limits of detection for the spike RBD protein, CoV NL63 in buffer and untreated saliva are determined to be 0.83 pM, 391 PFU/mL, and 625 PFU/mL, respectively, while the detection time is found to be less than 20 min. Thus, the AgNT array optical sensor could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - James Haverstick
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Rajah MM, Bernier A, Buchrieser J, Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol 2022; 434:167280. [PMID: 34606831 PMCID: PMC8485708 DOI: 10.1016/j.jmb.2021.167280] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France. https://twitter.com/MaaranRajah
| | - Annie Bernier
- Institut Curie, INSERM U932, Paris, France. https://twitter.com/nini_bernier
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France. https://twitter.com/JBuchrieser
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
9
|
Galkin SO, Anisenko AN, Shadrina OA, Gottikh MB. Genetic Engineering Systems to Study Human Viral Pathogens from the Coronaviridae Family. Mol Biol 2022; 56:72-89. [PMID: 35194246 PMCID: PMC8853348 DOI: 10.1134/s0026893322010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022]
Abstract
The COVID-19 pandemic caused by the previously unknown SARS-CoV-2 Betacoronavirus made it extremely important to develop simple and safe cellular systems which allow manipulation of the viral genome and high-throughput screening of its potential inhibitors. In this review, we made an attempt at summarizing the currently existing data on genetic engineering systems used to study not only SARS-CoV-2, but also other viruses from the Coronaviridae family. In addition, the review covers the basic knowledge about the structure and the life cycle of coronaviruses.
Collapse
Affiliation(s)
- S. O. Galkin
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. N. Anisenko
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - O. A. Shadrina
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - M. B. Gottikh
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Ávila-Pérez G, Rejas MT, Chichón FJ, Guerra M, Fernández JJ, Rodríguez D. Architecture of torovirus replicative organelles. Mol Microbiol 2021; 117:837-850. [PMID: 34967475 DOI: 10.1111/mmi.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1). Here, we used serial sectioning and electron tomography to characterize the architecture of torovirus replication organelles, and to learn about their biogenesis and dynamics during the infection. The formation of a RVN in BEV infected cells was confirmed, where the outer membranes of the DMVs are interconnected with each other and with the ER. Paired or zippered ER membranes connected with the DMVs were also observed, and likely represent early structures that evolve to give rise to DMVs. Also, paired membranes forming small spherule-like invaginations were observed at late time post-infection. Although resembling in size, the tomographic analysis show that these structures are clearly different from the true spherules described previously for coronaviruses. Hence, BEV shows important similarities, but also some differences, in the architecture of the replication organelles with other nidoviruses.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - María Teresa Rejas
- Servicio de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Francisco Javier Chichón
- Servicio de Criomicroscopía Electrónica (cryoEM-CSIC) and Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049, Madrid, Spain
| | - Milagros Guerra
- Servicio de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - José Jesús Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), CINN-CSIC, Av Hospital Universitario s/n, 33011, Oviedo, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
11
|
Stackhouse CA, Yan S, Wang L, Kisslinger K, Tappero R, Head AR, Tallman KR, Takeuchi ES, Bock DC, Takeuchi KJ, Marschilok AC. Characterization of Materials Used as Face Coverings for Respiratory Protection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47996-48008. [PMID: 34582689 DOI: 10.1021/acsami.1c11200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.
Collapse
Affiliation(s)
- Chavis A Stackhouse
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shan Yan
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Killian R Tallman
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Esther S Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
| | - Kenneth J Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
12
|
Movaqar A, Yaghoubi A, Rezaee SAR, Jamehdar SA, Soleimanpour S. Coronaviruses construct an interconnection way with ERAD and autophagy. Future Microbiol 2021; 16:1135-1151. [PMID: 34468179 PMCID: PMC8412035 DOI: 10.2217/fmb-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses quickly became a pandemic or epidemic, affecting large numbers of humans, due to their structural features and also because of their impacts on intracellular communications. The knowledge of the intracellular mechanism of virus distribution could help understand the coronavirus's proper effects on different pathways that lead to the infections. They protect themselves from recognition and damage the infected cell by using an enclosed membrane through hijacking the autophagy and endoplasmic reticulum-associated protein degradation pathways. The present study is a comprehensive review of the coronavirus strategy in upregulating the communication network of autophagy and endoplasmic reticulum-associated protein degradation.
Collapse
Affiliation(s)
- Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SA Rahim Rezaee
- Inflammation & Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid A Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Nardacci R, Colavita F, Castilletti C, Lapa D, Matusali G, Meschi S, Del Nonno F, Colombo D, Capobianchi MR, Zumla A, Ippolito G, Piacentini M, Falasca L. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis 2021; 12:263. [PMID: 33712574 PMCID: PMC7952828 DOI: 10.1038/s41419-021-03527-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
The pathogenesis of SARS-CoV-2 remains to be completely understood, and detailed SARS-CoV-2 cellular cytopathic effects requires definition. We performed a comparative ultrastructural study of SARS-CoV-1 and SARS-CoV-2 infection in Vero E6 cells and in lungs from deceased COVID-19 patients. SARS-CoV-2 induces rapid death associated with profound ultrastructural changes in Vero cells. Type II pneumocytes in lung tissue showed prominent altered features with numerous vacuoles and swollen mitochondria with presence of abundant lipid droplets. The accumulation of lipids was the most striking finding we observed in SARS-CoV-2 infected cells, both in vitro and in the lungs of patients, suggesting that lipids can be involved in SARS-CoV-2 pathogenesis. Considering that in most cases, COVID-19 patients show alteration of blood cholesterol and lipoprotein homeostasis, our findings highlight a peculiar important topic that can suggest new approaches for pharmacological treatment to contrast the pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Giuseppe Ippolito
- Scientific Direction; National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Mauro Piacentini
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Alshebri MS, Alshouimi RA, Alhumidi HA, Alshaya AI. Neurological Complications of SARS-CoV, MERS-CoV, and COVID-19. ACTA ACUST UNITED AC 2020; 2:2037-2047. [PMID: 33083695 PMCID: PMC7565215 DOI: 10.1007/s42399-020-00589-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
This review provides an overview of studies and case reports of neurological and neuromuscular complications associated with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and coronavirus disease 2019 (COVID-19) and describes the possible mechanisms of viral transmission to the central nervous system (CNS). Coronavirus family has shown central and peripheral nervous system tropism in multiple retrospective studies and case reports from different parts of the world. To date, the reported cases of neurological and neuromuscular complications associated with coronaviruses, especially COVID-19, are increasing. Neurological and neuromuscular symptoms and complications ranging from headache and anosmia to more severe encephalitis and stroke have been reported in many studies. However, the neurotropism mechanism of coronaviruses is still not clear and the evidence of central nervous system (CNS) involvement is limited despite the number of studies that attempted to illustrate the possible CNS invasion mechanisms. The reported neurological complications of coronaviruses are summarized in this article.
Collapse
Affiliation(s)
- Munirah Saad Alshebri
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Hadeel Aqeel Alhumidi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman I Alshaya
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
|
16
|
Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye F, Huang B, Zhao L, Wang H, Zhou W, Deng Y, Mao L, Su C, Qiang G, Jiang T, Zhao J, Wu G, Song J, Tan W. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun 2020; 11:3910. [PMID: 32764693 PMCID: PMC7413383 DOI: 10.1038/s41467-020-17796-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
SARS-CoV-2, a β-coronavirus, has rapidly spread across the world, highlighting its high transmissibility, but the underlying morphogenesis and pathogenesis remain poorly understood. Here, we characterize the replication dynamics, cell tropism and morphogenesis of SARS-CoV-2 in organotypic human airway epithelial (HAE) cultures. SARS-CoV-2 replicates efficiently and infects both ciliated and secretory cells in HAE cultures. In comparison, HCoV-NL63 replicates to lower titers and is only detected in ciliated cells. SARS-CoV-2 shows a similar morphogenetic process as other coronaviruses but causes plaque-like cytopathic effects in HAE cultures. Cell fusion, apoptosis, destruction of epithelium integrity, cilium shrinking and beaded changes are observed in the plaque regions. Taken together, our results provide important insights into SARS-CoV-2 cell tropism, replication and morphogenesis.
Collapse
Affiliation(s)
- Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 101149, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Yinghua East Road No. 2, Chaoyang District, 100029, Beijing, China
| | - Wen Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Huijuan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Weimin Zhou
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Longfei Mao
- Suzhou Institute of Systems Medicine, 215123, Suzhou, Jiangsu, China
| | - Chongyu Su
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 101149, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Yinghua East Road No. 2, Chaoyang District, 100029, Beijing, China
| | - Taijiao Jiang
- Suzhou Institute of Systems Medicine, 215123, Suzhou, Jiangsu, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Jingdong Song
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China.
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.
| |
Collapse
|
17
|
Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon 2020; 6:e04743. [PMID: 32835122 PMCID: PMC7430346 DOI: 10.1016/j.heliyon.2020.e04743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) late December 2019 in Wuhan, China, marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The constant spillover of coronaviruses from natural hosts to humans has been linked to human activities and other factors. The seriousness of this infection and the lack of effective, licensed countermeasures clearly underscore the need of more detailed and comprehensive understanding of coronavirus molecular biology. Coronaviruses are large, enveloped viruses with a positive sense single-stranded RNA genome. Currently, coronaviruses are recognized as one of the most rapidly evolving viruses due to their high genomic nucleotide substitution rates and recombination. At the molecular level, the coronaviruses employ complex strategies to successfully accomplish genome expression, virus particle assembly and virion progeny release. As the health threats from coronaviruses are constant and long-term, understanding the molecular biology of coronaviruses and controlling their spread has significant implications for global health and economic stability. This review is intended to provide an overview of our current basic knowledge of the molecular biology of coronaviruses, which is important as basic knowledge for the development of coronavirus countermeasures.
Collapse
Affiliation(s)
- I. Made Artika
- Biosafety Level 3 Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, 16680, Indonesia
| | - Aghnianditya Kresno Dewantari
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| | - Ageng Wiyatno
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
| |
Collapse
|
18
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
19
|
Kim JM, Chung YS, Jo HJ, Lee NJ, Kim MS, Woo SH, Park S, Kim JW, Kim HM, Han MG. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspect 2020; 11:3-7. [PMID: 32149036 PMCID: PMC7045880 DOI: 10.24171/j.phrp.2020.11.1.02] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives Following reports of patients with unexplained pneumonia at the end of December 2019 in Wuhan, China, the causative agent was identified as coronavirus (SARS-CoV-2), and the 2019 novel coronavirus disease was named COVID-19 by the World Health Organization. Putative patients with COVID-19 have been identified in South Korea, and attempts have been made to isolate the pathogen from these patients. Methods Upper and lower respiratory tract secretion samples from putative patients with COVID-19 were inoculated onto cells to isolate the virus. Full genome sequencing and electron microscopy were used to identify the virus. Results The virus replicated in Vero cells and cytopathic effects were observed. Full genome sequencing showed that the virus genome exhibited sequence homology of more than 99.9% with SARS-CoV-2 which was isolated from patients from other countries, for instance China. Sequence homology of SARS-CoV-2 with SARS-CoV, and MERS-CoV was 77.5% and 50%, respectively. Coronavirus-specific morphology was observed by electron microscopy in virus-infected Vero cells. Conclusion SARS-CoV-2 was isolated from putative patients with unexplained pneumonia and intermittent coughing and fever. The isolated virus was named BetaCoV/Korea/KCDC03/2020.
Collapse
Affiliation(s)
- Jeong-Min Kim
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Yoon-Seok Chung
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Hye Jun Jo
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Nam-Joo Lee
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Mi Seon Kim
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Sang Hee Woo
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Sehee Park
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jee Woong Kim
- Division of Biosafety Evaluation and Control, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Heui Man Kim
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Myung-Guk Han
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
20
|
Qin P, Du EZ, Luo WT, Yang YL, Zhang YQ, Wang B, Huang YW. Characteristics of the Life Cycle of Porcine Deltacoronavirus (PDCoV) In Vitro: Replication Kinetics, Cellular Ultrastructure and Virion Morphology, and Evidence of Inducing Autophagy. Viruses 2019; 11:v11050455. [PMID: 31109068 PMCID: PMC6563515 DOI: 10.3390/v11050455] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes severe diarrhea and vomiting in affected piglets. The aim of this study was to establish the basic, in vitro characteristics of the life cycle such as replication kinetics, cellular ultrastructure, virion morphology, and induction of autophagy of PDCoV. Time-course analysis of viral subgenomic and genomic RNA loads and infectious titers indicated that one replication cycle of PDCoV takes 5 to 6 h. Electron microscopy showed that PDCoV infection induced the membrane rearrangements with double-membrane vesicles and large virion-containing vacuoles. The convoluted membranes structures described in alpha- and beta-coronavirus were not observed. PDCoV infection also increased the number of autophagosome-like vesicles in the cytoplasm of cells, and the autophagy response was detected by LC3 I/II and p62 Western blot analysis. For the first time, this study presents the picture of the PDCoV infection cycle, which is crucial to help elucidate the molecular mechanism of deltacoronavirus replication.
Collapse
Affiliation(s)
- Pan Qin
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - En-Zhong Du
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- YEBIO Bioengineering Co., Ltd. of Qingdao, Qingdao 266114, China.
| | - Wen-Ting Luo
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Le Yang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yu-Qi Zhang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Wang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS One 2019; 14:e0214646. [PMID: 30921418 PMCID: PMC6438514 DOI: 10.1371/journal.pone.0214646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is a widely distributed pathogen responsible for acute upper and lower respiratory infections of varying severity. Previously, we reported that N-sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) efficiently inhibit replication of the influenza virus in vitro and ex vivo. Here, we show a dose dependent inhibition of hMPV infection by NSPAHs in LLC-MK2 cells. The results showed strong antiviral properties of NSPAHs. While the activity of NSPAHs is comparable to those of carrageenans, they show better physicochemical properties and may be delivered at high concentrations. The functional assays showed that tested polymers block hMPV release from infected cells and, consequently, constrain virus spread. Moreover, further studies on viruses utilizing different egress mechanisms suggest that observed antiviral effect depend on selective inhibition of viruses budding from the cell surface.
Collapse
|
22
|
Rappe JCF, de Wilde A, Di H, Müller C, Stalder H, V'kovski P, Snijder E, Brinton MA, Ziebuhr J, Ruggli N, Thiel V. Antiviral activity of K22 against members of the order Nidovirales. Virus Res 2018; 246:28-34. [PMID: 29337162 PMCID: PMC7114538 DOI: 10.1016/j.virusres.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/31/2023]
Abstract
Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 μM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.
Collapse
Affiliation(s)
- Julie Christiane Françoise Rappe
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Adriaan de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Han Di
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Philip V'kovski
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Eric Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margo A Brinton
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Nicolas Ruggli
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Volker Thiel
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| |
Collapse
|
23
|
Chen M, Aoki-Utsubo C, Kameoka M, Deng L, Terada Y, Kamitani W, Sato K, Koyanagi Y, Hijikata M, Shindo K, Noda T, Kohara M, Hotta H. Broad-spectrum antiviral agents: secreted phospholipase A 2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Sci Rep 2017; 7:15931. [PMID: 29162867 PMCID: PMC5698466 DOI: 10.1038/s41598-017-16130-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV), dengue virus (DENV) and Japanese encephalitis virus (JEV) belong to the family Flaviviridae. Their viral particles have the envelope composed of viral proteins and a lipid bilayer acquired from budding through the endoplasmic reticulum (ER). The phospholipid content of the ER membrane differs from that of the plasma membrane (PM). The phospholipase A2 (PLA2) superfamily consists of a large number of members that specifically catalyse the hydrolysis of phospholipids at a particular position. Here we show that the CM-II isoform of secreted PLA2 obtained from Naja mossambica mossambica snake venom (CM-II-sPLA2) possesses potent virucidal (neutralising) activity against HCV, DENV and JEV, with 50% inhibitory concentrations (IC50) of 0.036, 0.31 and 1.34 ng/ml, respectively. In contrast, the IC50 values of CM-II-sPLA2 against viruses that bud through the PM (Sindbis virus, influenza virus and Sendai virus) or trans-Golgi network (TGN) (herpes simplex virus) were >10,000 ng/ml. Moreover, the 50% cytotoxic (CC50) and haemolytic (HC50) concentrations of CM-II-sPLA2 were >10,000 ng/ml, implying that CM-II-sPLA2 did not significantly damage the PM. These results suggest that CM-II-sPLA2 and its derivatives are good candidates for the development of broad-spectrum antiviral drugs that target viral envelope lipid bilayers derived from the ER membrane.
Collapse
Affiliation(s)
- Ming Chen
- Department of Vaccine and Drug Development, Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Chie Aoki-Utsubo
- Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, 654-0147, Japan
| | - Masanori Kameoka
- Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, 654-0147, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, Saitama, 322-0012, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Makoto Hijikata
- Laboratory of Tumour Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Keiko Shindo
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Michinori Kohara
- Infectious Disease Regulation Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hak Hotta
- Department of Vaccine and Drug Development, Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan.
| |
Collapse
|
24
|
Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. mBio 2017; 8:mBio.01658-17. [PMID: 29162711 PMCID: PMC5698553 DOI: 10.1128/mbio.01658-17] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp’s) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation. The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp’s) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.
Collapse
|
25
|
Zhou X, Cong Y, Veenendaal T, Klumperman J, Shi D, Mari M, Reggiori F. Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection. Viruses 2017; 9:v9090251. [PMID: 28872588 PMCID: PMC5618017 DOI: 10.3390/v9090251] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) belonging to the α-CoV genus and it causes high mortality in infected sucking piglets, resulting in substantial losses in the farming industry. CoV trigger a drastic reorganization of host cell membranes to promote their replication and egression, but a detailed description of the intracellular remodeling induced by PEDV is still missing. In this study, we examined qualitatively and quantitatively, using electron microscopy, the intracellular membrane reorganization induced by PEDV over the course of an infection. With our ultrastructural approach, we reveal that, as most of CoV, PEDV initially forms double-membrane vesicles (DMVs) and convoluted membranes (CMs), which probably serve as replication/transcription platforms. Interestingly, we also found that viral particles start to form almost simultaneously in both the endoplasmic reticulum and the large virion-containing vacuoles (LVCVs), which are compartments originating from the Golgi, confirming that α-CoV assemble indistinguishably in two different organelles of the secretory pathway. Moreover, PEDV virons appear to have an immature and a mature form, similar to another α-CoV the transmissible gastroenteritis coronavirus (TGEV). Altogether, our study underlies the similarities and differences between the lifecycle of α-CoV and that of viruses belonging to other CoV subfamilies.
Collapse
Affiliation(s)
- Xingdong Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Yingying Cong
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Tineke Veenendaal
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Dongfang Shi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
26
|
Ávila-Pérez G, Rejas MT, Rodríguez D. Ultrastructural characterization of membranous torovirus replication factories. Cell Microbiol 2016; 18:1691-1708. [PMID: 27218226 PMCID: PMC7162420 DOI: 10.1111/cmi.12620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022]
Abstract
Plus‐stranded RNA viruses replicate in the cytosol of infected cells, in membrane‐bound replication complexes containing the replicase proteins, the viral RNA and host proteins. The formation of the replication and transcription complexes (RTCs) through the rearrangement of cellular membranes is currently being actively studied for viruses belonging to different viral families. In this work, we identified double‐membrane vesicles (DMVs) in the cytoplasm of cells infected with the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae family, Nidovirales order). Using confocal microscopy and transmission electron microscopy, we observed a close relationship between the RTCs and the DMVs of BEV. The examination of BEV‐infected cells revealed that the replicase proteins colocalize with each other and with newly synthesized RNA and are associated to the membrane rearrangement induced by BEV. However, the double‐stranded RNA, an intermediate of viral replication, is exclusively limited to the interior of DMVs. Our results with BEV resemble those obtained with other related viruses in the Nidovirales order, thus providing new evidence to support the idea that nidoviruses share a common replicative structure based on the DMV arranged clusters.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049, Madrid, Spain
| | - María Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
27
|
Maier HJ, Neuman BW, Bickerton E, Keep SM, Alrashedi H, Hall R, Britton P. Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity. Sci Rep 2016; 6:27126. [PMID: 27255716 PMCID: PMC4891661 DOI: 10.1038/srep27126] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts.
Collapse
Affiliation(s)
| | - Benjamin W. Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| | | | | | - Hasan Alrashedi
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| | - Ross Hall
- The Pirbright Institute, Pirbright, Surrey, UK
| | | |
Collapse
|
28
|
van der Hoeven B, Oudshoorn D, Koster AJ, Snijder EJ, Kikkert M, Bárcena M. Biogenesis and architecture of arterivirus replication organelles. Virus Res 2016; 220:70-90. [PMID: 27071852 PMCID: PMC7111217 DOI: 10.1016/j.virusres.2016.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Arterivirus RNA synthesis presumably is associated with double-membrane vesicles (DMVs). Putative intermediates in DMV formation were detected in infected cells. Arterivirus-induced DMVs form a highly interconnected reticulovesicular network (RVN). Expression of the nsp2-3 replicase polyprotein fragment induces a comparable RVN. Nsp2-7 expression results in smaller DMVs, closer in size to DMVs found in infection.
All eukaryotic positive-stranded RNA (+RNA) viruses appropriate host cell membranes and transform them into replication organelles, specialized micro-environments that are thought to support viral RNA synthesis. Arteriviruses (order Nidovirales) belong to the subset of +RNA viruses that induce double-membrane vesicles (DMVs), similar to the structures induced by e.g. coronaviruses, picornaviruses and hepatitis C virus. In the last years, electron tomography has revealed substantial differences between the structures induced by these different virus groups. Arterivirus-induced DMVs appear to be closed compartments that are continuous with endoplasmic reticulum membranes, thus forming an extensive reticulovesicular network (RVN) of intriguing complexity. This RVN is remarkably similar to that described for the distantly related coronaviruses (also order Nidovirales) and sets them apart from other DMV-inducing viruses analysed to date. We review here the current knowledge and open questions on arterivirus replication organelles and discuss them in the light of the latest studies on other DMV-inducing viruses, particularly coronaviruses. Using the equine arteritis virus (EAV) model system and electron tomography, we present new data regarding the biogenesis of arterivirus-induced DMVs and uncover numerous putative intermediates in DMV formation. We generated cell lines that can be induced to express specific EAV replicase proteins and showed that DMVs induced by the transmembrane proteins nsp2 and nsp3 form an RVN and are comparable in topology and architecture to those formed during viral infection. Co-expression of the third EAV transmembrane protein (nsp5), expressed as part of a self-cleaving polypeptide that mimics viral polyprotein processing in infected cells, led to the formation of DMVs whose size was more homogenous and closer to what is observed upon EAV infection, suggesting a regulatory role for nsp5 in modulating membrane curvature and DMV formation.
Collapse
Affiliation(s)
- Barbara van der Hoeven
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diede Oudshoorn
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Montserrat Bárcena
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
29
|
Sultani M, Mokhtari Azad T, Eshragian M, Shadab A, Naseri M, Eilami O, Yavarian J. Multiplex SYBR Green Real-Time PCR Assay for Detection of Respiratory Viruses. Jundishapur J Microbiol 2015; 8:e19041. [PMID: 26468358 PMCID: PMC4601230 DOI: 10.5812/jjm.19041v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022] Open
Abstract
Background: It is often difficult for a physician to distinguish between viral and bacterial causes of respiratory infections and this may result in overuse of antibiotics. In many cases of community-acquired respiratory infections, clinicians treat patients empirically. The development of molecular methods for direct detection of viruses has been progressed recently. Objectives: The objective of this study was recognizing the panel of respiratory RNA viruses by multiplex SYBR Green real-time polymerase chain reaction (PCR). Materials and Methods: Randomized 172 influenza-negative respiratory specimens of all age groups of hospitalized patients were collected. After RNA extraction, cDNA was synthesized. Three SYBR Green multiplex real-time PCR assays were developed for simultaneous detection of 12 respiratory RNA viruses. Each set of multiplex methods detected four viruses, the first set: respiratory syncytial virus, human metapneumovirus, rhinovirus, enterovirus; the second set: parainfluenza viruses 1 - 4 (PIV1-4); the third set: coronaviruses NL63, 229E, severe acute respiratory syndrome (SARS), and OC43. Results: Application of the multiplex SYBR Green real-time PCR in clinical samples from 172 patients in a one-year study resulted in detection of 19 (11.04%) PIV3, 9 (5.23%) PIV4, and 1 (0.58%) coronavirus NL63. All the positive samples were detected during December to March (2011 - 2012). Conclusions: Multiplex SYBR Green real-time PCR is a rapid and relatively inexpensive method for detection of respiratory viruses.
Collapse
Affiliation(s)
- Mozhdeh Sultani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mohammadreza Eshragian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Azadeh Shadab
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Naseri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Owrang Eilami
- Department of Infectious Disease, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jila Yavarian, Virology Department, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188962343, Fax: +98-2188962343, E-mail:
| |
Collapse
|
30
|
Neuman BW, Angelini MM, Buchmeier MJ. Does form meet function in the coronavirus replicative organelle? Trends Microbiol 2014; 22:642-7. [PMID: 25037114 PMCID: PMC7127430 DOI: 10.1016/j.tim.2014.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022]
Abstract
If we use the analogy of a virus as a living entity, then the replicative organelle is the part of the body where its metabolic and reproductive activities are concentrated. Recent studies have illuminated the intricately complex replicative organelles of coronaviruses, a group that includes the largest known RNA virus genomes. This review takes a virus-centric look at the coronavirus replication transcription complex organelle in the context of the wider world of positive sense RNA viruses, examining how the mechanisms of protein expression and function act to produce the factories that power the viral replication cycle.
Collapse
Affiliation(s)
- Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK.
| | - Megan M Angelini
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA; Department of Medicine, Division of Infectious Disease, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
31
|
How the double spherules of infectious bronchitis virus impact our understanding of RNA virus replicative organelles. mBio 2013; 4:e00987-13. [PMID: 24345746 PMCID: PMC3870251 DOI: 10.1128/mbio.00987-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct “replication factories” inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology.
Collapse
|
32
|
Lednicky JA, Waltzek TB, McGeehan E, Loeb JC, Hamilton SB, Luetke MC. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol J 2013; 10:213. [PMID: 23805916 PMCID: PMC3716658 DOI: 10.1186/1743-422x-10-213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022] Open
Abstract
Background Cryopreserved primary human renal proximal tubule epithelial cells (RPTEC) were obtained from a commercial supplier for studies of Simian virus 40 (SV40). Within twelve hrs after cell cultures were initiated, cytoplasmic vacuoles appeared in many of the RPTEC. The RPTEC henceforth deteriorated rapidly. Since SV40 induces the formation of cytoplasmic vacuoles, this batch of RPTEC was rejected for the SV40 study. Nevertheless, we sought the likely cause(s) of the deterioration of the RPTEC as part of our technology development efforts. Methods Adventitious viruses in the RPTEC were isolated and/or detected and identified by isolation in various indicator cell lines, observation of cytopathology, an immunoflurorescence assay, electron microscopy, PCR, and sequencing. Results Cytomegalovirus (CMV) was detected in some RPTEC by cytology, an immunofluorescence assay, and PCR. Human Herpesvirus 6B was detected by PCR of DNA extracted from the RPTEC, but was not isolated. Human coronavirus NL63 was isolated and identified by RT-PCR and sequencing, and its replication in a fresh batch of RPTEC and another type of primary human kidney cells was confirmed. Conclusions At least 3 different adventitious viruses were present in the batch of contaminated RPTEC. Whereas we are unable to determine whether the original RPTEC were pre-infected prior to their separation from other kidney cells, or had gotten contaminated with HCoV-NL63 from an ill laboratory worker during their preparation for commercial sale, our findings are a reminder that human-derived biologicals should always be considered as potential sources of infectious agents. Importantly, HCoV-NL63 replicates to high titers in some primary human kidney cells.
Collapse
Affiliation(s)
- John A Lednicky
- Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Box 100188, Gainesville, FL 32610-0188, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Golda A, Malek N, Dudek B, Zeglen S, Wojarski J, Ochman M, Kucewicz E, Zembala M, Potempa J, Pyrc K. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. J Gen Virol 2011; 92:1358-1368. [PMID: 21325482 PMCID: PMC3168281 DOI: 10.1099/vir.0.028381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/14/2011] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms of augmented bacterial pathogenicity in post-viral infections is the first step in the development of an effective therapy. This study assessed the effect of human coronavirus NL63 (HCoV-NL63) on the adherence of bacterial pathogens associated with respiratory tract illnesses. It was shown that HCoV-NL63 infection resulted in an increased adherence of Streptococcus pneumoniae to virus-infected cell lines and fully differentiated primary human airway epithelium cultures. The enhanced binding of bacteria correlated with an increased expression level of the platelet-activating factor receptor (PAF-R), but detailed evaluation of the bacterium-PAF-R interaction revealed a limited relevance of this process.
Collapse
Affiliation(s)
- Anna Golda
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Natalia Malek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Bartosz Dudek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Jacek Wojarski
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Ewa Kucewicz
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Marian Zembala
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- University of Louisville School of Dentistry, Department of Oral Health and Rehabilitation, 501 South Preston St, Louisville, KY 40202, USA
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|