1
|
Marcano-García LF, Zaza C, Dalby OPL, Joseph MD, Cappellari MV, Simoncelli S, Aramendía PF. Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy. NANO LETTERS 2024; 24:13834-13842. [PMID: 39432814 PMCID: PMC11528428 DOI: 10.1021/acs.nanolett.4c04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association (Ka) and dissociation (Kd) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Collapse
Affiliation(s)
- Luis F. Marcano-García
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Cecilia Zaza
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
| | - Olivia P. L. Dalby
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Megan D. Joseph
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - M. Victoria Cappellari
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Sabrina Simoncelli
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Pedro F. Aramendía
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Lackner A, Qiu Y, Armanus E, Nicholas A, Macapagal K, Leonidas L, Xu H, McNulty R. Measuring Interactions Between Proteins and Small Molecules or Nucleic Acids. Curr Protoc 2024; 4:e1105. [PMID: 39040024 PMCID: PMC11335060 DOI: 10.1002/cpz1.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Interactions between proteins and small molecules or nucleic acids play a pivotal role in numerous biological processes critical for human health and are fundamental for advancing our understanding of biological systems. Proteins are the workhorses of the cell, executing various functions ranging from catalyzing biochemical reactions to transmitting signals within the body. Small molecules, including drugs and metabolites, can modulate protein activity, thereby impacting cellular processes and disease pathways. Similarly, nucleic acids, such as DNA and RNA, regulate protein synthesis and function through intricate interactions. Understanding these interactions is crucial for drug discovery and development and can shed light on gene regulation, transcriptional control, and RNA processing, providing insights into genetic diseases and developmental disorders. Moreover, studying protein-small molecule and protein-nucleic acid interactions enhances our comprehension of fundamental biological mechanisms. A wide array of methods to study these interactions range in cost, sensitivity, materials usage, throughput, and complexity. Notably in the last decade, new techniques have been developed that enhance our understanding of these interactions. In this review, we aim to summarize the new state-of-the-art methods for detecting interactions between proteins and small molecules or nucleic acids, as well as discuss older methods that still hold value today. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Angela Lackner
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Yanfei Qiu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Emy Armanus
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Alijah Nicholas
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Kahea Macapagal
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Lemuel Leonidas
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Huilin Xu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| | - Reginald McNulty
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
4
|
Corbeski I, Horn V, van der Valk RA, le Paige U, Dame RT, van Ingen H. Microscale Thermophoresis Analysis of Chromatin Interactions. Methods Mol Biol 2024; 2819:357-379. [PMID: 39028515 DOI: 10.1007/978-1-0716-3930-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Velten Horn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- CSL Behring, Hattersheim, Germany
| | - Ramon A van der Valk
- Kavli Institute of NanoScience, Department of Bionanoscience, Faculty of Applied Sciences, TU Delft, Delft, The Netherlands
| | - Ulric le Paige
- Structure and Dynamics of Biomolecules, Department of Chemistry, Ecole Normale Supérieure - Paris Sciences et Lettres, Paris, France
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Jang Y, Lee H, Cho Y, Choi E, Jo S, Sohn HM, Kim BC, Ko YJ, Lim W. An LGR4 agonist activates the GSK‑3β pathway to inhibit RANK‑RANKL signaling during osteoclastogenesis in bone marrow‑derived macrophages. Int J Mol Med 2024; 53:10. [PMID: 38063193 PMCID: PMC10712694 DOI: 10.3892/ijmm.2023.5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The binding between receptor‑activated nuclear factor‑κB (RANK) and the RANK ligand (RANKL) during osteoclast development is an important target for drugs that treat osteoporosis. The leucine‑rich repeat‑containing G‑protein‑coupled receptor 4 (LGR4) acts as a negative regulator of RANK‑RANKL that suppresses canonical RANK signaling during osteoclast differentiation. Therefore, LGR4 agonists may be useful in inhibiting osteoclastogenesis and effectively treating osteoporosis. In the present study, bone marrow‑derived macrophages and a mouse model of RANKL‑induced bone loss were used to investigate the effect of mutant RANKL (MT RANKL), which was previously developed based on the crystal structure of the RANKL complex. In the present study, the binding affinity of wild‑type (WT) RANKL and MT RANKL to RANK and LGR4 was determined using microscale thermophoresis analysis, and the effect of the ligands on the AKT‑glycogen synthase kinase‑3β (GSK‑3β)‑nuclear factor of activated T cells, cytoplasmic, calcineurin‑dependent 1 (NFATc1) signaling cascade was investigated using western blotting and confocal microscopy. In addition, the expression of LGR4 and the colocalization of LGR4 with MT RANKL were analyzed in a mouse model of RANKL‑induced bone loss. The results showed that in osteoclast precursor cells, MT RANKL bound with high affinity to LGR4 and increased GSK‑3β phosphorylation independently of AKT, resulting in the inhibition of NFATc1 nuclear translocation. In the mouse model, MT RANKL colocalized with LGR4 and inhibited bone resorption. These results indicated that MT RANKL may inhibit RANKL‑induced osteoclastogenesis through an LGR4‑dependent pathway and this could be exploited to develop new therapies for osteoporosis.
Collapse
Affiliation(s)
- Yuria Jang
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Premedical Science, Gwangju 61452, Republic of Korea
| | - Hyeonjoon Lee
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Gwangju 61452, Republic of Korea
| | - Yongjin Cho
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Gwangju 61452, Republic of Korea
| | - Eunseo Choi
- Department of Physics, Chosun University, Gwangju 61452, Republic of Korea
| | - Suenghwan Jo
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Gwangju 61452, Republic of Korea
| | - Hong Moon Sohn
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Gwangju 61452, Republic of Korea
| | - Beom Chang Kim
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Premedical Science, Gwangju 61452, Republic of Korea
| | - Young Jong Ko
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Premedical Science, Gwangju 61452, Republic of Korea
| | - Wonbong Lim
- Laboratory of Orthopedic Research, Chosun University Hospital, Gwangju 61452, Republic of Korea
- Department of Premedical Science, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Gwangju 61452, Republic of Korea
| |
Collapse
|
6
|
Simoni EB, Oliveira CC. The Split-Luciferase Complementation Assay to Detect and Quantify Protein-Protein Interactions in Planta. Methods Mol Biol 2024; 2724:247-255. [PMID: 37987911 DOI: 10.1007/978-1-0716-3485-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein-protein interactions play a critical role in plant viral infection and defense responses against pathogens. This protocol provides a detailed and reliable methodology for investigating protein-protein interactions using a luciferase-based complementation assay that includes easy luminescence-based normalization within a single plate. The protocol includes step-by-step procedures, reagent lists, and considerations for data interpretation, ensuring robust and reproducible results. By following this protocol, researchers can advance on understanding of the crucial role of protein-protein interactions in plant viral infection and defense responses to other pathogen attacks.
Collapse
Affiliation(s)
- Eduardo Bassi Simoni
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Célio Cabral Oliveira
- Brazilian Center for Research in Energy and Materials, Brazilian Biorenewables National Laboratory, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Tse SY, Pukkila-Worley R. Protocol to assess receptor-ligand binding in C. elegans using adapted thermal shift assays. STAR Protoc 2023; 4:102477. [PMID: 37527042 PMCID: PMC10415787 DOI: 10.1016/j.xpro.2023.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
The Caenorhabditis elegans genome encodes a greatly expanded number of nuclear hormone receptors, many of which remain orphaned. Here, we present a protocol to assess ligand-receptor binding in C. elegans using an adapted cellular thermal shift assay and isothermal dose response. We describe steps for growing C. elegans and preparing lysates and compounds. We also detail how to perform and quantify these assays. This protocol can be used to study any soluble receptor. For complete details on the use and execution of this protocol, please refer to Peterson et al. (2023).1.
Collapse
Affiliation(s)
- Samantha Y Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
8
|
Nydegger DT, Pujol-Giménez J, Kandasamy P, Vogt B, Hediger MA. Applications of the Microscale Thermophoresis Binding Assay in COVID-19 Research. Viruses 2023; 15:1432. [PMID: 37515120 PMCID: PMC10386446 DOI: 10.3390/v15071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
As the COVID-19 pandemic progresses, new variants of SARS-CoV-2 continue to emerge. This underscores the need to develop optimized tools to study such variants, along with new coronaviruses that may arise in the future. Such tools will also be instrumental in the development of new antiviral drugs. Here, we introduce microscale thermophoresis (MST) as a reliable and versatile tool for coronavirus research, which we demonstrate through three different applications described in this report: (1) binding of the SARS-CoV-2 spike receptor binding domain (RBD) to peptides as a strategy to prevent virus entry, (2) binding of the RBD to the viral receptor ACE2, and (3) binding of the RBD to ACE2 in complex with the amino acid transporter SLC6A20/SIT1 or its allelic variant rs61731475 (p.Ile529Val). Our results demonstrate that MST is a highly precise approach to studying protein-protein and/or protein-ligand interactions in coronavirus research, making it an ideal tool for studying viral variants and developing antiviral agents. Moreover, as shown in our results, a unique advantage of the MST assay over other available binding assays is the ability to measure interactions with membrane proteins in their near-native plasma membrane environment.
Collapse
Affiliation(s)
- Damian T Nydegger
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jonai Pujol-Giménez
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Matthias A Hediger
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Chen J, Luo M, Hands P, Rolland V, Zhang J, Li Z, Outram M, Dodds P, Ayliffe M. A split GAL4 RUBY assay for visual in planta detection of protein-protein interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1209-1226. [PMID: 37323061 DOI: 10.1111/tpj.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023]
Abstract
Protein-protein interactions (PPIs) are a fundamental process in cellular biogenesis. Here we have developed a split GAL4 RUBY assay that enables macroscopically visual PPI detection in plant leaves in real time. Candidate interacting protein partners are fused to specific domains of the yeast GAL4 and herpes simplex virus VP16 transcription factors and transiently expressed in Nicotiana benthamina leaves by Agrobacterium infiltration. PPI, that may be either direct or indirect, results in transcriptional activation of a RUBY reporter gene leading to the production of the highly visual metabolite, betalain, in leaf tissue of living plants. Samples require no processing for in planta visual qualitative assessment, but with very simple processing steps the assay is quantitative. Its accuracy is demonstrated using a series of known interacting protein partners and mutant derivatives including transcription factors, signalling molecules and plant resistance proteins with cognate pathogen effectors. Using this assay, association between the wheat Sr27 stem rust disease resistance protein and corresponding AvrSr27 avirulence effector family produced by the rust pathogen is detected. Interaction is also observed between this resistance protein and the effector encoded by the corresponding avrSr27-3 virulence allele. However, this association appears weaker in the split GAL4 RUBY assay, which coupled with lower avrSr27-3 expression during stem rust infection, likely enables virulent races of the rust pathogen to avoid Sr27-mediated detection.
Collapse
Affiliation(s)
- Jian Chen
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Ming Luo
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Phillip Hands
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Vivien Rolland
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Jianping Zhang
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Zhao Li
- Australian National University, Canberra, Australia, 2601
| | - Megan Outram
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Peter Dodds
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross St, Canberra, Australia, 2601
| |
Collapse
|
10
|
Regnault R, Klupsch F, El-Bouazzati H, Magnez R, Le Biannic R, Leleu-Chavain N, Ahouari H, Vezin H, Millet R, Goossens JF, Thuru X, Bailly C. Novel PD-L1-Targeted Phenyl-Pyrazolone Derivatives with Antioxidant Properties. Molecules 2023; 28:molecules28083491. [PMID: 37110727 PMCID: PMC10144346 DOI: 10.3390/molecules28083491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Orally-active anticancer small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched. Phenyl-pyrazolone derivatives with a high affinity for PD-L1 have been designed and characterized. In addition, the phenyl-pyrazolone unit acts as a scavenger of oxygen free radicals, providing antioxidant effects. The mechanism is known for the drug edaravone (1) which is also an aldehyde-reactive molecule. The present study reports the synthesis and functional characterization of new molecules (2-5) with an improved anti-PD-L1 activity. The leading fluorinated molecule 5 emerges as a potent checkpoint inhibitor, avidly binding to PD-L1, inducing its dimerization, blocking PD-1/PD-L1 signaling mediated by phosphatase SHP-2 and reactivating the proliferation of CTLL-2 cells in the presence of PD-L1. In parallel, the compound maintains a significant antioxidant activity, characterized using electron paramagnetic resonance (EPR)-based free radical scavenging assays with the probes DPPH and DMPO. The aldehyde reactivity of the molecules was investigated using 4-hydroxynonenal (4-HNE), which is a major lipid peroxidation product. The formation of drug-HNE adducts, monitored by high resolution mass spectrometry (HRMS), was clearly identified and compared for each compound. The study leads to the selection of compound 5 and the dichlorophenyl-pyrazolone unit as a scaffold for the design of small molecule PD-L1 inhibitors endowed with antioxidant properties.
Collapse
Affiliation(s)
- Romain Regnault
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hassiba El-Bouazzati
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Romain Magnez
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Raphaël Le Biannic
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Hania Ahouari
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
- FR 2638-IMEC-Institut Michel-Eugène Chevreul, University Lille, F-59655 Lille, France
| | - Hervé Vezin
- LASIRE Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement, F-59655 Villeneuve d'Ascq, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, F-59000 Lille, France
| | - Jean-François Goossens
- ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU Lille, University Lille, F-59000 Lille, France
| | - Xavier Thuru
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
| | - Christian Bailly
- UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Inserm, CNRS, CHU Lille, University Lille, F-59000 Lille, France
- Oncowitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France
| |
Collapse
|
11
|
Wang C, Zhou Q, Wu ST. Scopolin obtained from Smilax china L. against hepatocellular carcinoma by inhibiting glycolysis: A network pharmacology and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115469. [PMID: 35718053 DOI: 10.1016/j.jep.2022.115469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Smilax china L. is a well-known traditional medicinal plant. In China, it is a common anti-cancer drug that has been inherited for thousands of years. Some in vitro and in vivo studies have confirmed its potential lipid-lowering, anti-inflammatory and anti-ovarian cancer effects. However, there is no research on the material basis and mechanism of the rhizome of Smilax china L. against hepatocellular carcinoma. AIM OF THE STUDY To explore the material basis and mechanism of scopolin from Smilax china L. against hepatocellular carcinoma. METHODS The potential targets and active components of Smilax china L. against hepatocellular carcinoma were screened by transcriptomics, network pharmacology and molecular docking. Microscale Thermophoresis (MST) detection was used to verify the affinity of small molecule compounds with potential proteins and protein-protein interaction. The Extract from HepG2 cells was used to measure the expression of glycolysis-related proteins, glucose consumption and lactate production. The expression of apoptosis-related factors and glycolysis-related proteins in vivo was detected by immunohistochemistry. RESULTS The glycolysis-related proteins glucose-6-phosphate isomerase (GPI), glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2) and phosphoglycerate kinase 2 (PGK2) screened by transcriptomics, network pharmacology showed strongly binding with scopolin by molecular docking. MST detection has also verified the affinity of scopolin with GPI and GPD2. It was the first time found that Heat shock protein HSP 90-alpha (Hsp90α) bound strongly to GPI and GPD2 in the worldwide, while scopolin was able to affect the interaction between Hsp90α and GPD2. In vitro and in vivo experiments further demonstrated that scopolin may play an anti-cancer role by affecting the stability of tumor-associated proteins. The results showed that scopolin obtained from Smilax china L. could regulate the expression of GPI, GPD2 and PGK2 and inhibit the interaction of protein-protein, reduce the energy metabolism of tumor tissue, thereby inhibit tumor growth. CONCLUSION Scopolin obtained from Smilax china L. plays the role of anti-hepatocellular carcinoma by regulating the expression of glycolysis proteins GPI, GPD2 and PGK2. Scopolin could affect the interaction between Hsp90α and GPD2 may provide a novel potential treatment direction for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430065, China.
| | - Qin Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Song-Tao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
12
|
El Deeb S, Al-Harrasi A, Khan A, Al-Broumi M, Al-Thani G, Alomairi M, Elumalai P, Sayed RA, Ibrahim AE. Microscale thermophoresis as a powerful growing analytical technique for the investigation of biomolecular interaction and the determination of binding parameters. Methods Appl Fluoresc 2022; 10. [PMID: 35856854 DOI: 10.1088/2050-6120/ac82a6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022]
Abstract
The in vitro panel of technologies to address biomolecular interactions are in play, however microscale thermophoresis is continuously increasing in use to represent a key player in this arena. This review highlights the usefulness of microscale thermophoresis in the determination of molecular and biomolecular affinity interactions. This work reviews the literature from January 2016 to January 2022 about microscale thermophoresis. It gives a summarized overview about both the state-of the art and the development in the field of microscale thermophoresis. The principle of microscale thermophoresis is also described supported with self-created illustrations. Moreover, some recent advances are mentioned that showing application of the technique in investigating biomolecular interactions in different fields. Finally, advantages as well as drawbacks of the technique in comparison with other competing techniques are summarized.
Collapse
Affiliation(s)
- Sami El Deeb
- Technische Universitat Braunschweig, Braunschweig, Braunschweig, Niedersachsen, 38106, GERMANY
| | | | - Ajmal Khan
- University of Nizwa, Nizwa, Nizwa, 616, OMAN
| | | | | | | | | | - Rania A Sayed
- Pharmaceutical analytical chemistry department, Zagazig University, Zagazig, Zagazig, 44519, EGYPT
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry, Port Said University, Port Said, Port Said, 42526, EGYPT
| |
Collapse
|