1
|
Li S, Xiao W, Tong Z, Li L, Zhang Y. The Use of Diffusion Tensor Imaging in the Differentiation and Surgical Planning of Suprasellar Hypothalamic-Opticochiasmatic Glioma and Craniopharyngioma in Children. World Neurosurg 2024:S1878-8750(24)01624-3. [PMID: 39307269 DOI: 10.1016/j.wneu.2024.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Suprasellar hypothalamic-opticochiasmatic glioma (HOCG) and craniopharyngioma (CP) have similar appearances on conventional magnetic resonance imaging (MRI) and are difficult to distinguish. Moreover, these tumors are situated near vital structures like the optic chiasm and hypothalamus, rendering conventional surgery susceptible to significant complications. We mainly discussed the surgical application value and diagnostic value of diffusion tensor imaging (DTI) in HOCG and CP. METHODS The retrospective analysis of 13 cases of HOCG and 16 cases of CP was conducted. All patients underwent conventional MRI and DTI prior to surgery, and were pathologically diagnosed postoperatively. RESULTS Both CP and HOCG appeared as heterogeneous mixed signal masses on conventional MRI. For HOCGs, fiber tractography revealed 2 different growth patterns of the tumor: infiltrative type and inflated type. The surgical approach and risk levels differ between these growth patterns. Additionally, fiber tractography demonstrates significant differences compared to CPs. The surgical approach and extent of resection for all cases of these 2 tumors were guided by DTI. CONCLUSIONS DTI enhances the accuracy of HOCG and CP differentiation. Furthermore, patterns of tractography described in this study assist neurosurgeons in delineating the surgical pathway and tumor resection range without damaging important fiber bundles, thereby avoiding permanent neurological deficits and improving survival quality for patients.
Collapse
Affiliation(s)
- Shuang Li
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics; Chongqing, China
| | - Wenjiao Xiao
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics; Chongqing, China
| | - Zanyong Tong
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics; Chongqing, China
| | - Lusheng Li
- Department of Neurosurgery Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics; Chongqing, China
| | - Yuting Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics; Chongqing, China.
| |
Collapse
|
2
|
Yang Y, Yuan T, Rodriguez Y Baena F, Dini D, Zhan W. Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue. J R Soc Interface 2024; 21:20240378. [PMID: 39353562 PMCID: PMC11444765 DOI: 10.1098/rsif.2024.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED. The results demonstrate the ability of this direct infusion to enhance ISF flow and therefore facilitate drug transport. However, this enhancement is highly anisotropic, subject to the orientation of local axon bundles and is limited within a small region close to the infusion site. Drugs respond in different ways to infusion direction: the results of our simulations show that while some drugs are almost insensitive to infusion direction, this strongly affects other compounds in terms of isotropy of drug distribution from the catheter. These findings can serve as a reference for planning treatments using CED.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Tayebi M, Kwon E, Maller J, McGeown J, Scadeng M, Qiao M, Wang A, Nielsen P, Fernandez J, Holdsworth S, Shim V. Integration of diffusion tensor imaging parameters with mesh morphing for in-depth analysis of brain white matter fibre tracts. Brain Commun 2024; 6:fcae027. [PMID: 38638147 PMCID: PMC11024816 DOI: 10.1093/braincomms/fcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 04/20/2024] Open
Abstract
Averaging is commonly used for data reduction/aggregation to analyse high-dimensional MRI data, but this often leads to information loss. To address this issue, we developed a novel technique that integrates diffusion tensor metrics along the whole volume of the fibre bundle using a 3D mesh-morphing technique coupled with principal component analysis for delineating case and control groups. Brain diffusion tensor MRI scans of high school rugby union players (n = 30, age 16-18) were acquired on a 3 T MRI before and after the sports season. A non-contact sport athlete cohort with matching demographics (n = 12) was also scanned. The utility of the new method in detecting differences in diffusion tensor metrics of the right corticospinal tract between contact and non-contact sport athletes was explored. The first step was to run automated tractography on each subject's native space. A template model of the right corticospinal tract was generated and morphed into each subject's native shape and space, matching individual geometry and diffusion metric distributions with minimal information loss. The common dimension of the 20 480 diffusion metrics allowed further data aggregation using principal component analysis to cluster the case and control groups as well as visualization of diffusion metric statistics (mean, ±2 SD). Our approach of analysing the whole volume of white matter tracts led to a clear delineation between the rugby and control cohort, which was not possible with the traditional averaging method. Moreover, our approach accounts for the individual subject's variations in diffusion tensor metrics to visualize group differences in quantitative MR data. This approach may benefit future prediction models based on other quantitative MRI methods.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
| | - Eryn Kwon
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
| | | | - Josh McGeown
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
| | - Miriam Scadeng
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Miao Qiao
- Department of Computer Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Poul Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1010, New Zealand
- Mātai Medical Research Institute, Gisborne, 4010, New Zealand
| |
Collapse
|
5
|
Correia R, Corrêa D, Doring T, Theodoro C, Correia A, Coelho V, Dib JG, Marchiori E, Alves Leon SV, Rueda Lopes FC. Severity of white matter microstructural damage in a Brazilian relapsing-remitting multiple sclerosis cohort: A possible window to optimize treatment. Neuroradiol J 2024; 37:60-67. [PMID: 37915211 PMCID: PMC10863572 DOI: 10.1177/19714009231212372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an important cause of acquired neurological disability in young adults, characterized by multicentric inflammation, demyelination, and axonal damage. OBJECTIVE The objective is to investigate white matter (WM) damage progression in a Brazilian MS patient cohort, using diffusion tensor imaging (DTI) post-processed by tract-based spatial statistics (TBSS). METHODS DTI scans were acquired from 76 MS patients and 37 sex-and-age matched controls. Patients were divided into three groups based on disease duration. DTI was performed along 30 non-collinear directions by using a 1.5T imager. For TBSS analysis, the WM skeleton was created, and a 5000 permutation-based inference with a threshold of p < .05 was used, to enable the identification of abnormalities in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). RESULTS Decreased FA and increased RD, MD, and AD were seen in patients compared to controls and a decreased FA and increased MD and RD were seen, predominantly after the first 5 years of disease, when compared between groups. CONCLUSION Progressive WM deterioration is seen over time with a more prominent pattern after 5 years of disease onset, providing evidence that the early years might be a window to optimize treatment and prevent disability.
Collapse
Affiliation(s)
- Rafael Correia
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
| | - Diogo Corrêa
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
| | - Thomas Doring
- Department of Radiology, Clinicas de Diagnóstico por Imagem (CDPI), Rio de Janeiro – RJ, Brazil
| | - Carmem Theodoro
- Department of Gastroenterology, Federal Fluminense University, Niterói – RJ, Brazil
| | - Aline Correia
- Department of Internal Medicine, University of Fortaleza, Fortaleza – CE, Brazil
| | - Valeria Coelho
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - João Gabriel Dib
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - Edson Marchiori
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de janeiro – RJ, Brazil
| | - Soniza V Alves Leon
- Department of Neurology, Federal University of Rio de Janeiro(UFRJ), Rio de Janeiro – RJ, Brazil
| | - Fernanda C Rueda Lopes
- Department of Radiology, Federal Fluminense University (UFF), Niterói – RJ, Brazil
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de janeiro – RJ, Brazil
| |
Collapse
|
6
|
Adil D, Duerden EG, Eagleson R, de Ribaupierre S. Structural Alterations of the Corpus Callosum in Children With Infantile Hydrocephalus. J Child Neurol 2024; 39:66-76. [PMID: 38387869 PMCID: PMC11083734 DOI: 10.1177/08830738241231343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
This study investigates structural alterations of the corpus callosum in children diagnosed with infantile hydrocephalus. We aim to assess both macrostructural (volume) and microstructural (diffusion tensor imaging metrics) facets of the corpus callosum, providing insights into the nature and extent of alterations associated with this condition. Eighteen patients with infantile hydrocephalus (mean age = 9 years) and 18 age- and sex-matched typically developing healthy children participated in the study. Structural magnetic resonance imaging and diffusion tensor imaging were used to assess corpus callosum volume and microstructure, respectively. Our findings reveal significant alterations in corpus callosum volume, particularly in the posterior area, as well as distinct microstructural disparities, notably pronounced in these same segments. These results highlight the intricate interplay between macrostructural and microstructural aspects in understanding the impact of infantile hydrocephalus. Examining these structural alterations provides an understanding into the mechanisms underlying the effects of infantile hydrocephalus on corpus callosum integrity, given its pivotal role in interhemispheric communication. This knowledge offers a more nuanced perspective on neurologic disorders and underscores the significance of investigating the corpus callosum's health in such contexts.
Collapse
Affiliation(s)
- Derya Adil
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Emma G. Duerden
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Electrical and Computer Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Karmakar DK, Badhe PV, Mhatre P, Shrivastava S, Sultan M, Shankar G, Tekriwal K, Moharkar S. Utility of Diffusion Tensor Imaging in Assessing Corticospinal Tracts for the Management of Brain Tumors: A Cross-Sectional Observational Study. Cureus 2023; 15:e47811. [PMID: 38021806 PMCID: PMC10679788 DOI: 10.7759/cureus.47811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Intra-axial brain tumors are a significant health problem and present several diagnostic and treatment challenges. Conventional magnetic resonance imaging (MRI) has posed several limitations, such as the inability to delineate the detailed anatomy of fibers in structures like the brainstem and the inability to accurately judge the extent of tumor infiltration. Diffusion tensor imaging (DTI), based on the concepts of isotropic and anisotropic diffusion, is capable of visualizing and segmenting white fiber bundles in high detail and providing crucial information about tumor boundaries, extent, neighboring tracts, and more. This information can be very useful in initial non-invasive diagnosis, preoperative tumor grading, biopsy planning, surgical planning, and prognosis. Methods and materials This is a cross-sectional observational study in a tertiary care setup, conducted over a one-year period. The study was performed in Seth Gordhandas Sunderdas Medical College (Seth G.S. Medical College) and King Edward VII Memorial Hospital (K.E.M. Hospital), a tertiary care hospital located in Mumbai, India. Fiber tractography was performed and was used to visualize the corticospinal tracts passing through the length of the brainstem. Changes in the degree of infiltration, destruction, and displacement of the corticospinal tracts were observed carefully. Adult patients who were diagnosed with brain tumors, willing to participate in the study, and capable of providing written informed consent prior to study registration were included. The DTI findings along with information from other investigations were used to decide the best course of management for each case. Results The study included 30 participants with a mean age of 46.0 ± 17.1 years, 63.3% and 37.7% being male and female, respectively. According to the lesion's location, the pons was found to be the most often affected area in 23.33% of cases, followed by the temporo-parietal region (13.3%) and the frontal region (13.3%). These lesions had heterogenous enhancement in 63.3% of the instances and homogeneous enhancement in 36.7% of the cases, according to a contrast study. According to their consistency, the lesions were further divided into two categories: solid lesions, which were present in 66.7% of instances, and cystic lesions, which were present in 90% of cases. Results from the diffusion tensor technique revealed that infiltration accounted for 40.0% of cases, displacement for 76.7%, and loss of white fiber tracts for 20.0%. DTI findings were significantly associated with the type of planned management and with the presence of post-management neurological deficit. Conclusion DTI played a complementary role in the assessment of tumors and can be used to improve surgical planning and therapeutic decision making. Preservation of corticospinal tracts is vital to prevent motor impairment. Availability of qualitative data with the depiction of corticospinal tracts in a three-dimensional projection and their relation with the brain tumors by DTI greatly helps in preoperative decision making and surgical approach.
Collapse
Affiliation(s)
- Deepmala K Karmakar
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | - Padma V Badhe
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | - Pauras Mhatre
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | - Shashwat Shrivastava
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | | | - Gautham Shankar
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | - Khushboo Tekriwal
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| | - Swapnil Moharkar
- Radiology, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, IND
| |
Collapse
|
8
|
van 't Westende C, Steggerda SJ, Jansen L, van den Berg-Huysmans AA, van de Pol LA, Wiggers-de Bruine FT, Stam CJ, Peeters-Scholte CMPCD. Combining advanced MRI and EEG techniques better explains long-term motor outcome after very preterm birth. Pediatr Res 2022; 91:1874-1881. [PMID: 34031571 DOI: 10.1038/s41390-021-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Preterm born children are at high risk for adverse motor neurodevelopment. The aim of this study was to establish the relationship between motor outcome and advanced magnetic resonance imaging (MRI) and electroencephalography (EEG) measures. METHODS In a prospective cohort study of 64 very preterm born children, the motor outcome was assessed at 9.83 (SD 0.70) years. Volumetric MRI, diffusion tensor imaging (DTI), and EEG were acquired at 10.85 (SD 0.49) years. We investigated associations between motor outcome and brain volumes (white matter, deep gray matter, cerebellum, and ventricles), white matter integrity (fractional anisotropy and mean, axial and radial diffusivity), and brain activity (upper alpha (A2) functional connectivity and relative A2 power). The independence of associations with motor outcome was investigated with a final model. For each technique, the measure with the strongest association was selected to avoid multicollinearity. RESULTS Ventricular volume, radial diffusivity, mean diffusivity, relative A2 power, and A2 functional connectivity were significantly correlated to motor outcome. The final model showed that ventricular volume and relative A2 power were independently associated with motor outcome (B = -9.42 × 10-5, p = 0.027 and B = 28.9, p = 0.007, respectively). CONCLUSIONS This study suggests that a lasting interplay exists between brain structure and function that might underlie motor outcome at school age. IMPACT This is the first study that investigates the relationships between motor outcome and brain volumes, DTI, and brain function in preterm born children at school age. Ventricular volume and relative upper alpha power on EEG have an independent relation with motor outcome in preterm born children at school age. This suggests that there is a lasting interplay between structure and function that underlies adverse motor outcome.
Collapse
Affiliation(s)
- Charlotte van 't Westende
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands. .,Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sylke J Steggerda
- Department of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisette Jansen
- Department of Psychology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laura A van de Pol
- Department of Child Neurology, Amsterdam University Medical Centers, AMC Site, Amsterdam, The Netherlands
| | | | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam University Medical Centers, VUmc Site, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Wang Y, Deng K, Sun Y, Huang X, Dai Y, Chen W, Hu X, Jiang R. Preserved microstructural integrity of the corticospinal tract in patients with glioma-induced motor epilepsy: a study using mean apparent propagator magnetic resonance imaging. Quant Imaging Med Surg 2022; 12:1415-1427. [PMID: 35111635 DOI: 10.21037/qims-21-679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND To compare the microstructural integrity of the corticospinal tract (CST) between glioma patients with motor epilepsy and without epilepsy using mean apparent propagator magnetic resonance imaging (MAP-MRI). METHODS A total of 26 patients with glioma adjacent to the CST pathway (10 with motor epilepsy and 16 without epilepsy) and 13 matched healthy controls underwent brain structural and diffusion MRI. The morphological characteristics of the CST (tract volume, tract number, and average length) were extracted, and diffusion parameter values including mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probabilities (RTAP), return-to-plane probabilities (RTPP), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) along the CST were evaluated. The CST features were compared between healthy and affected sides and the relative CST features were compared across the three groups of participants. A receiver operating characteristic (ROC) curve was plotted to assess the performance of each relative CST characteristic for glioma-induced CST changes. RESULTS For patients without epilepsy, the tract number, tract volume, FA, RD, MSD, QIV, and RTAP changed significantly on the affected CST side compared with those on the healthy CST side (P=0.002, 0.002, 0.030 0.017, 0.039, 0.044, and 0.002, respectively). In contrast, for patients with motor epilepsy, no significant difference was found between the affected and healthy side in almost all CST features except RTPP (P=0.028). Compared with patients with motor epilepsy, the relative tract number, tract volume, AD, and RTAP were significantly lower (P=0.027, 0.018, 0.040, and 0.027, respectively) in patients without epilepsy, and their areas under the curve (AUCs) were 0.763, 0.781, 0.744, and 0.763, respectively. No significant difference was found between patients with motor epilepsy and matched healthy controls. CONCLUSIONS The MAP-MRI is a promising approach for evaluating CST changes. It provides additional information reflecting the microstructural complexity of the CST and demonstrates the preserved microstructural integrity of the CST in glioma patients with motor epilepsy.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yifan Sun
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinming Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weitao Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Fil JE, Joung S, Hauser J, Rytz A, Hayes CA, Dilger RN. Influence of Dietary Polar Lipid Supplementation on Memory and Longitudinal Brain Development. Nutrients 2021; 13:2486. [PMID: 34444644 PMCID: PMC8398977 DOI: 10.3390/nu13082486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
Polar lipids, which are found in human milk, serve essential functions within biological membranes, hence their importance in brain development and cognition. Therefore, we aimed to evaluate the longitudinal effects on brain macrostructural and microstructural development and recognition memory of early-life polar lipid supplementation using the translational pig model. Twenty-eight intact (i.e., not castrated) male pigs were provided either a control diet (n = 14) or the control diet supplemented with polar lipids (n = 14) from postnatal day 2 until postnatal week 4. After postnatal week 4, all animals were provided the same nutritionally-adequate diets until postnatal week 24. Pigs underwent magnetic resonance imaging at 8 longitudinal time-points to model brain macrostructural and microstructural developmental trajectories. The novel object recognition task was implemented at postnatal weeks 4 and 8 to evaluate recognition memory. Subtle differences were observed between groups in hippocampal absolute brain volumes and fractional anisotropy, and no differences in myelin water fraction developmental patterns were noted. Behavioral outcomes did not differ in recognition memory, and only minimal differences were observed in exploratory behaviors. Our findings suggest that early-life dietary supplementation of polar lipids has limited effect on brain developmental patterns, object recognition memory, and exploratory behaviors.
Collapse
Affiliation(s)
- Joanne E. Fil
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Sangyun Joung
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Jonas Hauser
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Andreas Rytz
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Courtney A. Hayes
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61801, USA;
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Liu G, Gao Y, Liu Y, Guo Y, Yan Z, Ou Z, Zhong L, Xie C, Zeng J, Zhang W, Peng K, Lv Q. Machine Learning for Predicting Individual Severity of Blepharospasm Using Diffusion Tensor Imaging. Front Neurosci 2021; 15:670475. [PMID: 34054417 PMCID: PMC8155629 DOI: 10.3389/fnins.2021.670475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Accumulating diffusion tensor imaging (DTI) evidence suggests that white matter abnormalities evaluated by local diffusion homogeneity (LDH) or fractional anisotropy (FA) occur in patients with blepharospasm (BSP), both of which are significantly correlated with disease severity. However, whether the individual severity of BSP can be identified using these DTI metrics remains unknown. We aimed to investigate whether a combination of machine learning techniques and LDH or FA can accurately identify the individual severity of BSP. Forty-one patients with BSP were assessed using the Jankovic Rating Scale and DTI. The patients were assigned to non-functionally and functionally limited groups according to their Jankovic Rating Scale scores. A machine learning scheme consisting of beam search and support vector machines was designed to identify non-functionally versus functionally limited outcomes, with the input features being LDH or FA in 68 white matter regions. The proposed machine learning scheme with LDH or FA yielded an overall accuracy of 88.67 versus 85.19% in identifying non-functionally limited versus functionally limited outcomes. The scheme also identified a sensitivity of 91.40 versus 85.87% in correctly identifying functionally limited outcomes, a specificity of 83.33 versus 83.67% in accurately identifying non-functionally limited outcomes, and an area under the curve of 93.7 versus 91.3%. These findings suggest that a combination of LDH or FA measurements and a sophisticated machine learning scheme can accurately and reliably identify the individual disease severity in patients with BSP.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yanan Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yaomin Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chuanmiao Xie
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qingwen Lv
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Jiang R, Hu X, Deng K, Jiang S, Chen W, Zhang Z. Neurite orientation dispersion and density imaging in evaluation of high-grade glioma-induced corticospinal tract injury. Eur J Radiol 2021; 140:109750. [PMID: 33991969 DOI: 10.1016/j.ejrad.2021.109750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the application of neurite orientation dispersion and density imaging (NODDI) to brain glioma-induced corticospinal tract (CST) injury. MATERIAL AND METHODS Twenty-four patients with high-grade glioma (HGG) in or adjacent to the CST pathway and 12 matched healthy subjects underwent structural and diffusion MRI. The CSTs were reconstructed on the both sides. The CST features including morphological features (track number, average track length and track volume) and the diffusion parameter values including fractional anisotraphy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic or free water volume fraction (ISOVF) and orientation dispersion index (ODI) along the CST were calculated. The CST features were compared between the affected and healthy side for HGG patients and between the left and right side for healthy subjects. The relative CST features were compared across the healthy subjects, patients with motor weakness and patients with normal muscle strength. Receiver operating characteristic (ROC) curve was applied to evaluate the performance of each relative CST characteristic for HGG-induced CST changes. RESULTS Compared with the CST features on the healthy side, the track number, track volume and FA along the CST changed significantly on the affected side for HGG patients (p < 0.05 for all), whereas MD and ICVF changed significantly on the affected side only for HGG patients with motor weakness (p = 0.012 for both). In patients with motor weakness, the relative MD was significantly higher (p < 0.001), whereas the relative FA and ICVF was significantly lower (p = 0.002 and <0.001) than those in patients with normal muscle strength. The relative ICVF had a similar area under curve (AUC) to that of MD (AUC=0.953 and 0.969). Compared with the relative CST features in the healthy subjects, only the relative ICVF was significantly lower in HGG patients with normal muscle strength (p = 0.012). CONCLUSIONS NODDI seems to be useful in reflecting the HGG infiltration to CST, and can evaluate the CST destruction with a performance similar to DTI by providing additional information about neurite density for HGG-induced CST injury.
Collapse
Affiliation(s)
- Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shaofan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weitao Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhongshuai Zhang
- MR Scientific Marketing, Siemens Healthcare, Shanghai, 201318, China
| |
Collapse
|
13
|
Brahimaj BC, Kochanski RB, Pearce JJ, Guryildirim M, Gerard CS, Kocak M, Sani S, Byrne RW. Structural and Functional Imaging in Glioma Management. Neurosurgery 2021; 88:211-221. [PMID: 33313852 DOI: 10.1093/neuros/nyaa360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of glioma surgery is maximal safe resection in order to provide optimal tumor control and survival benefit to the patient. There are multiple imaging modalities beyond traditional contrast-enhanced magnetic resonance imaging (MRI) that have been incorporated into the preoperative workup of patients presenting with gliomas. The aim of these imaging modalities is to identify cortical and subcortical areas of eloquence, and their relationship to the lesion. In this article, multiple modalities are described with an emphasis on the underlying technology, clinical utilization, advantages, and disadvantages of each. functional MRI and its role in identifying hemispheric dominance and areas of language and motor are discussed. The nuances of magnetoencephalography and transcranial magnetic stimulation in localization of eloquent cortex are examined, as well as the role of diffusion tensor imaging in defining normal white matter tracts in glioma surgery. Lastly, we highlight the role of stimulated Raman spectroscopy in intraoperative histopathological diagnosis of tissue to guide tumor resection. Tumors may shift the normal arrangement of functional anatomy in the brain; thus, utilization of multiple modalities may be helpful in operative planning and patient counseling for successful surgery.
Collapse
Affiliation(s)
- Bledi C Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Melike Guryildirim
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland
| | - Carter S Gerard
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Richard W Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
14
|
Wade RG, Teh I, Andersson G, Yeh FC, Wiberg M, Bourke G. Fractional anisotropy thresholding for deterministic tractography of the roots of the brachial plexus. Sci Rep 2021; 11:80. [PMID: 33420207 PMCID: PMC7794285 DOI: 10.1038/s41598-020-79840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/07/2020] [Indexed: 02/03/2023] Open
Abstract
Diffusion tensor imaging (DTI) metrics, such as the fractional anisotropy (FA) and estimates of diffusivity are sensitive to the microstructure of peripheral nerves and may be displayed as tractograms. However, the ideal conditions for tractography of the roots of the brachial plexus are unclear, which represents the rationale for this study. Ten healthy adults were scanned using a Siemens Prisma (3T) and single-shot echo-planar imaging (b-value 0/1000 s/mm2, 64 directions, 2.5 mm3 with 4 averages; repeated in opposing phase encoding directions). Susceptibility correction and tractography were performed in DSI Studio by two independent raters. The effect of FA thresholding at increments of 0.01 (from 0.04 to 0.10) were tested. The mean FA varied between subjects by 2% (95% CI 1%, 3%). FA thresholds of 0.04, 0.05 and 0.06 all propagated 96% of tracts representing the roots; thresholding at 0.07 yielded 4% fewer tracts (p = 0.2), 0.08 yielded 11% fewer tracts (p = 0.008), 0.09 yielded 15% fewer tracts (p = 0.001) and 0.1 yielded 20% fewer tracts (p < 0.001). There was < 0.1% inter-rater variability in the measured FA and 99% agreement for tractography (κ = 0.92, p < 0.001). The fractional anisotropy thresholds required to generate tractograms of the roots of the brachial plexus appears to be lower than those used in the brain. We provide estimates of the probability of generating true tracts for each spinal nerve root of the brachial plexus, at different fractional anisotropy thresholds.
Collapse
Affiliation(s)
- Ryckie G Wade
- Academic Plastic Surgery Office, Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, LS1 3EX, UK. .,Faculty of Medicine and Health Sciences, University of Leeds, Leeds, UK.
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gustav Andersson
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Faculty of Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Faculty of Medicine, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Grainne Bourke
- Academic Plastic Surgery Office, Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, LS1 3EX, UK.,Faculty of Medicine and Health Sciences, University of Leeds, Leeds, UK.,Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Faculty of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Jiang R, Jiang S, Song S, Wei X, Deng K, Zhang Z, Xue Y. Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma. Korean J Radiol 2020; 22:759-769. [PMID: 33289364 PMCID: PMC8076836 DOI: 10.3348/kjr.2020.0949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/25/2020] [Accepted: 08/09/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To evaluate the application of laplacian-regularized mean apparent propagator (MAPL)-MRI to brain glioma-induced corticospinal tract (CST) injury. MATERIALS AND METHODS This study included 20 patients with glioma adjacent to the CST pathway who had undergone structural and diffusion MRI. The entire CSTs of the affected and healthy sides were reconstructed, and the peritumoral CSTs were manually segmented. The morphological characteristics of the CST (track number, average length, volume, displacement of the affected CST) were examined and the diffusion parameter values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probabilities (RTAP), and return-to-plane probabilities (RTPP) along the entire and peritumoral CSTs, were calculated. The entire and peritumoral CST characteristics of the affected and healthy sides as well as those relative CST characteristics of the patients with motor weakness and normal motor function were compared. RESULTS The track number, volume, MD, RD, MSD, QIV, RTAP, RTOP, and RTPP of the entire and peritumoral CSTs changed significantly for the affected side, whereas the AD and FA changed significantly only in the peritumoral CST (p < 0.05). In patients with motor weakness, the relative MSD of the entire CST, QIV of the entire and peritumoral CSTs, and the AD, MD, RD of the peritumoral CST were significantly higher, whereas the RTPP of the entire and peritumoral CSTs and the RTOP of the peritumoral CST were significantly lower than those in patients with normal motor function (p < 0.05 for all). In contrast, no significant changes were found in the CST morphological characteristics, FA, or RTAP (p > 0.05 for all). CONCLUSION MAPL-MRI is an effective approach for evaluating microstructural changes after CST injury. Its sensitivity may improve when using the peritumoral CST features.
Collapse
Affiliation(s)
- Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shaofan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqiang Wei
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
16
|
Diffusion Tensor Imaging and Tractography Utilized in the Resection of a Midbrain Cavernous Malformation. Ochsner J 2020; 20:303-306. [PMID: 33071664 PMCID: PMC7529128 DOI: 10.31486/toj.19.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Diffusion tensor imaging (DTI) is a magnetic resonance–based imaging technique that can provide important information about the underlying structure and integrity of the white matter in the brain. Tractography, a DTI postprocessing technique, can provide a detailed model of individual white matter fiber tracts. Knowledge of these tracts may be beneficial in the surgical planning and execution for neurosurgical patients. Case Report: We review the basic principles behind DTI and present an illustrative case in which DTI was used to delineate the relationship of eloquent white matter tracts to a cavernous malformation in a patient undergoing resection. Conclusion: The use of DTI during preoperative planning allows the neurosurgeon to understand if a lesion is disrupting, infiltrating, or altering the course of local white matter tracts. With the combined use of DTI and intraoperative neuronavigation, the neurosurgeon can better identify and avoid white matter tracts, not only in the local area of resection but also during approach to the lesion, thereby reducing the risk of damage to vital cortical pathways and subsequent functional impairment.
Collapse
|
17
|
Guerrero M, Veuthey C, Del Sol M, Ottone NE. Dissection of white matter association fasciculi in bovine (Bos taurus), pig (Sus scrofa domesticus) and rabbit (Oryctolagus cuniculus) brains. Anat Histol Embryol 2020; 49:550-562. [PMID: 32281688 DOI: 10.1111/ahe.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022]
Abstract
The cerebral fasciculi (association, commissural and projection) pass through the cerebral white matter in organized groups connecting regions, hemispheres, gyri, areas and brain lobes to each other. The study can be done in vivo through diffusion tensor imaging (DTI) but presenting some technical problems. The post-mortem study by dissection allows to have a clearer view of its location, path and connections. In this work, we dissect, identify and compare the fasciculi of association of the white matter of the dorsolateral face of bovine hemispheres (Bos taurus), pig hemispheres (Sus scrofa domesticus) and rabbit hemispheres (Oryctolagus cuniculus), applying the Klingler´s technique. In 30 cerebral hemispheres (10 of each species, five right and five left), we applied the Klingler technique to identify and isolate the occipitofrontal fasciculus, uncinate fasciculus, inferior longitudinal fasciculus and superior longitudinal fasciculus; we established its location by fixing landmarks, and determined the difference in its length and width between the right and left hemispheres as well as between species using the statistical tests of t-student and one-way ANOVA. We identify the gyri, sulci and fasciculi of the dorsolateral surface of the cerebral hemispheres of the three species. We found statistically significant differences in several fasciculi between species principally in the occipitofrontal fasciculus. The preparation of the brains through the modified Klingler technique allowed a successful identification of the fascicules of association of the dorsolateral face of the cerebral hemispheres and the empowerment of these animal models for future research work in this field.
Collapse
Affiliation(s)
- Marco Guerrero
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Chair of Anatomy, Faculty of Medical Sciences, Universidad Central del Ecuador, Quito, Ecuador
| | - Carlos Veuthey
- Laboratory of Plastination and Anatomical Techniques, Research Centre in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Mariano Del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Nicolas E Ottone
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Laboratory of Plastination and Anatomical Techniques, Research Centre in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Retinal neurodegeneration in patients with end-stage renal disease assessed by spectral-domain optical coherence tomography. Sci Rep 2020; 10:5255. [PMID: 32210247 PMCID: PMC7093533 DOI: 10.1038/s41598-020-61308-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/04/2020] [Indexed: 11/08/2022] Open
Abstract
Spectral-domain optical coherence tomography (SD-OCT) represents a reliable tool for retinal layer volume and thickness measurement. The aim of this study was to evaluate retinal changes indicating neurodegenerative processes in patients with end-stage renal disease (ESRD) compared to healthy controls. This was a cross-sectional, single-center study comprising 32 ESRD patients and 38 controls. Sectoral retinal nerve fiber layer (RNFL) thickness and retinal layer volumes were obtained by SD-OCT. Age- and gender-adjusted retinal layer volumes such as total retinal volume (p = 0.037), ganglion cell layer volume (GCL, p = 0.003), ganglion cell layer - inner plexiform layer volume (GCL-IPL, p = 0.005) and inner retinal layer volume (IRL, p = 0.042) of the right eye were lower in ESRD patients. Inner plexiform layer volume of both eyes (IPL, right eye: p = 0.017; left eye: 0.044) was reduced, as was RNFL thickness in the temporal superior sector (right eye: p = 0.016). A subgroup analysis excluding patients with diabetes revealed that GCL (p = 0.014) and GCL-IPL volume of the right eye (p = 0.024) and temporal superior sector of the RNFL scan (p = 0.021) in ESRD patients were still significantly thinner. We observed a decrease in several retinal layer volumes and temporal RNFL thickness indicative of retinal neurodegenerative processes in patients with ESRD.
Collapse
|
19
|
Zhan W, Rodriguez Y Baena F, Dini D. Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. Drug Deliv 2020; 26:773-781. [PMID: 31357890 PMCID: PMC6711026 DOI: 10.1080/10717544.2019.1639844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although convection-enhanced delivery (CED) can successfully facilitate a bypass of the blood brain barrier, its treatment efficacy remains highly limited in clinic. This can be partially attributed to the brain anisotropic characteristics that lead to the difficulties in controlling the drug spatial distribution. Here, the responses of six different drugs to the tissue anisotropy are examined through a parametric study performed using a multiphysics model, which considers interstitial fluid flow, tissue deformation and interlinked drug transport processes in CED. The delivery outcomes are evaluated in terms of the penetration depth and delivery volume for effective therapy. Simulation results demonstrate that the effective penetration depth in a given direction can be improved with the increase of the corresponding component of anisotropic characteristics. The anisotropic tissue permeability could only reshape the drug distribution in space but has limited contribution to the total effective delivery volume. On the other hand, drugs respond in different ways to the anisotropic diffusivity. The large delivery volumes of fluorouracil, carmustine, cisplatin and doxorubicin could be achieved in relatively isotropic tissue, while paclitaxel and methotrexate are able to cover enlarged regions into anisotropic tissues. Results obtained from this study serve as a guide for the design of CED treatments.
Collapse
Affiliation(s)
- Wenbo Zhan
- a Department of Mechanical Engineering, Imperial College London , London , UK
| | | | - Daniele Dini
- a Department of Mechanical Engineering, Imperial College London , London , UK
| |
Collapse
|
20
|
Brugulat-Serrat A, Salvadó G, Operto G, Cacciaglia R, Sudre CH, Grau-Rivera O, Suárez-Calvet M, Falcon C, Sánchez-Benavides G, Gramunt N, Minguillon C, Fauria K, Barkhof F, Molinuevo JL, Gispert JD. White matter hyperintensities mediate gray matter volume and processing speed relationship in cognitively unimpaired participants. Hum Brain Mapp 2019; 41:1309-1322. [PMID: 31778002 PMCID: PMC7267988 DOI: 10.1002/hbm.24877] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
White matter hyperintensities (WMH) have been extensively associated with cognitive impairment and reductions in gray matter volume (GMv) independently. This study explored whether WMH lesion volume mediates the relationship between cerebral patterns of GMv and cognition in 521 (mean age 57.7 years) cognitively unimpaired middle‐aged individuals. Episodic memory (EM) was measured with the Memory Binding Test and executive functions (EF) using five WAIS‐IV subtests. WMH were automatically determined from T2 and FLAIR sequences and characterized using diffusion‐weighted imaging (DWI) parameters. WMH volume was entered as a mediator in a voxel‐wise mediation analysis relating GMv and cognitive performance (with both EM and EF composites and the individual tests independently). The mediation model was corrected by age, sex, education, number of Apolipoprotein E (APOE)‐ε4 alleles and total intracranial volume. We found that even at very low levels of WMH burden in the cohort (median volume of 3.2 mL), higher WMH lesion volume was significantly associated with a widespread pattern of lower GMv in temporal, frontal, and cerebellar areas. WMH mediated the relationship between GMv and EF, mainly driven by processing speed, but not EM. DWI parameters in these lesions were compatible with incipient demyelination and axonal loss. These findings lead to the reflection on the relevance of the control of cardiovascular risk factors in middle‐aged individuals as a valuable preventive strategy to reduce or delay cognitive decline.
Collapse
Affiliation(s)
- Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Dementia Research Centre, UCL, London, UK.,Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, UK
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Frederik Barkhof
- Centre for Medical Imaging Computing, Faculty of Engineering, University College London, London, UK.,Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherland
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan D Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
21
|
Marami B, Scherrer B, Khan S, Afacan O, Prabhu SP, Sahin M, Warfield SK, Gholipour A. Motion-robust diffusion compartment imaging using simultaneous multi-slice acquisition. Magn Reson Med 2019; 81:3314-3329. [PMID: 30443929 PMCID: PMC6414287 DOI: 10.1002/mrm.27613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To achieve motion-robust diffusion compartment imaging (DCI) in near continuously moving subjects based on simultaneous multi-slice, diffusion-weighted brain MRI. METHODS Simultaneous multi-slice (SMS) acquisition enables fast and dense sampling of k- and q-space. We propose to achieve motion-robust DCI via slice-level motion correction by exploiting the rigid coupling between simultaneously acquired slices. This coupling provides 3D coverage of the anatomy that substantially constraints the slice-to-volume alignment problem. This is incorporated into an explicit model of motion dynamics that handles continuous and large subject motion in robust DCI reconstruction. RESULTS We applied the proposed technique, called Motion Tracking based on Simultanous Multislice Registration (MT-SMR) to multi b-value SMS diffusion-weighted brain MRI of healthy volunteers and motion-corrupted scans of 20 pediatric subjects. Quantitative and qualitative evaluation based on fractional anisotropy in unidirectional fiber regions, and DCI in crossing-fiber regions show robust reconstruction in the presence of motion. CONCLUSION The proposed approach has the potential to extend routine use of SMS DCI in very challenging populations, such as young children, newborns, and non-cooperative patients.
Collapse
Affiliation(s)
- Bahram Marami
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Icahn School of Medicine at Mount Sinai New York, New York
| | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Shadab Khan
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Tachibana A, Tachibana Y, Kershaw J, Sano H, Fukushi M, Obata T. Comparison of Glass Capillary Plates and Polyethylene Fiber Bundles as Phantoms to Assess the Quality of Diffusion Tensor Imaging. Magn Reson Med Sci 2018; 17:251-258. [PMID: 29212957 PMCID: PMC6039775 DOI: 10.2463/mrms.mp.2017-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose: The purpose of this study was to evaluate the suitability of two phantoms, one made of capillary plates and the other polyethylene fibers, for assessing the quality of diffusion tensor imaging (DTI). Methods: The first phantom was a stack of glass capillary plates with many parallel micropores (CP). The second phantom was a bundle of polyethylene fiber Dyneema held together with a thermal shrinkage tube (Dy). High resolution multi-shot echo planar imaging (EPI) DTI acquisitions were performed at b-values of 0 and 1000 s/mm2 and diffusion-times (Tdiff) of 37.7 and 97.7 ms on a preclinical 7T MRI scanner. Thirty diffusion-encoding directions were used. The data were used to calculate the fractional anisotropy (FA), mean diffusivity (MD), and angular dispersion (AD). Further acquisitions were performed at b-values from 0 to 8000 s/mm2 in 14 steps with the diffusion gradient applied parallel (axial) and perpendicular (radial) to the Z direction. On the other hand, the data acquired with a 3T MRI scanner were used to confirm that measurements on a clinical machine are consistent with the 7T MRI results. Results: The dependence of FA, MD and AD on Tdiff was smaller for the Dy than for the CPs. The b-value-dependent signal attenuations in the axial direction at Tdiff = 37.7 and 97.7 ms were similar for both phantoms. In the radial direction, Dy demonstrated similar b-value attenuation to that of in vivo tissue for both Tdiffs, but the attenuation for the CPs was affected by the change in Tdiff. Parameter estimates were similar for 3T and 7T MRI. Conclusion: The characteristics of the CP indicate that it can be used as a restricted-diffusion dominant phantom, while the characteristics of the Dy suggest that it can be used as a hindered-diffusion dominant phantom. Dy may be more suitable than CP for DTI quality control.
Collapse
Affiliation(s)
- Atsushi Tachibana
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University.,Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Yasuhiko Tachibana
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Jeff Kershaw
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Hiromi Sano
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Masahiro Fukushi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
23
|
Hys M, Skoczeń N, Soroka E, Olajossy M. Structural and functional changes in the central nervous system in the course of anorexia nervosa. CURRENT PROBLEMS OF PSYCHIATRY 2018. [DOI: 10.1515/cpp-2017-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
New achievements within structural and functional imaging of central nervous system offer a basis for better understanding of the mechanisms underlying many mental disorders. In everyday clinical practice, we encounter many difficulties in the therapy of eating disorders. They are caused by a complex psychopathological picture, varied grounds of the problems experienced by patients, often poor motivation for active participation in the treatment process, difficulties in communication between patients and therapeutic staff, and various biological conditions of eating disorders. In this paper, the latest reports on new concepts and methods of diagnosis and treatment of anorexia nervosa have been analyzed. The selection of the analyzed publications was based on the criteria taking into account the time of publication, the size of research cohorts, as well as the experience of research teams in the field of nutritional disorders, confirmed by the number of works and their citations. The work aims to spread current information on anorexia nervosa neurobiology that would allow for determining the brain regions involved in the regulation of food intake, and consequently that may be a potential place where neurobiochemical processes responsible for eating disorders occur. In addition, using modern methods of structural imaging, the authors want to show some of the morphometric variations, particularly within white matter, occurring in patients suffering from anorexia nervosa, as well as those evaluated with magnetoencephalography of processes associated with the neuronal processing of information related to food intake. For example as regards anorexia nervosa, it was possible to localize the areas associated with eating disorders and broaden our knowledge about the changes in these areas that cause and accompany the illness. The described in this paper research studies using diffusion MRI fiber tractography showed the presence of changes in the white matter pathways of the brain, especially in the corpus callosum, which indicate a reduced content of myelin. These changes probably reflect malnutrition, and directly represent the effect of lipid deficiency. This leads to a weakening of the structure, and even cell death. In addition, there are more and more reports that show the normal volume of brain cells in patients with long-term remission of anorexia. It was also shown that in patients in remission stage there are functional changes within the amygdala in response to a task not related symptomatologically with anorexia nervosa. The appearing in the scientific literature data stating that in patients with anorexia nervosa there is a reduced density of GFAP + cells of the hippocampus and increased expression of vimentin and nestin, is also worth noting.
Collapse
Affiliation(s)
- Michał Hys
- I Clinic of Anaesthesiology and Intensive Therapy with Clinical Paediatric Department , Medical University of Lublin
| | - Nikodem Skoczeń
- II Department of Psychiatry and Psychiatric Rehabilitation , Medical University of Lublin
| | - Ewelina Soroka
- II Department of Psychiatry and Psychiatric Rehabilitation , Medical University of Lublin
| | - Marcin Olajossy
- II Department of Psychiatry and Psychiatric Rehabilitation , Medical University of Lublin
| |
Collapse
|
24
|
Evaluation of Cerebral White Matter in Prelingually Deaf Children Using Diffusion Tensor Imaging. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6795397. [PMID: 29511689 PMCID: PMC5817214 DOI: 10.1155/2018/6795397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/09/2018] [Indexed: 11/22/2022]
Abstract
This study compared white matter development in prelingually deaf and normal-hearing children using a tract-based spatial statistics (TBSS) method. Diffusion tensor imaging (DTI) was performed in 21 prelingually deaf (DEAF group) and 20 normal-hearing (HEAR group) subjects aged from 1.7 to 7.7 years. Using TBSS, we evaluated the regions of significant difference in fractional anisotropy (FA) between the groups. Correlations between FA values and age in each group were also analyzed using voxel-wise correlation analyses on the TBSS skeleton. Lower FA values of the white matter tract of Heschl's gyrus, the inferior frontooccipital fasciculus, the uncinate fasciculus, the superior longitudinal fasciculus, and the forceps major were evident in the DEAF group compared with those in the HEAR group below 4 years of age, while the difference was not significant in older subjects. We also found that age-related development of the white matter tracts may continue until 8 years of age in deaf children. These results imply that development of the cerebral white matter tracts is delayed in prelingually deaf children.
Collapse
|
25
|
Huang H, Lu J, Wu J, Ding Z, Chen S, Duan L, Cui J, Chen F, Kang D, Qi L, Qiu W, Lee SW, Qiu S, Shen D, Zang YF, Zhang H. Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis. Sci Rep 2018; 8:1223. [PMID: 29352123 PMCID: PMC5775317 DOI: 10.1038/s41598-017-18453-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Accurate delineation of gliomas from the surrounding normal brain areas helps maximize tumor resection and improves outcome. Blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) has been routinely adopted for presurgical mapping of the surrounding functional areas. For completely utilizing such imaging data, here we show the feasibility of using presurgical fMRI for tumor delineation. In particular, we introduce a novel method dedicated to tumor detection based on independent component analysis (ICA) of resting-state fMRI (rs-fMRI) with automatic tumor component identification. Multi-center rs-fMRI data of 32 glioma patients from three centers, plus the additional proof-of-concept data of 28 patients from the fourth center with non-brain musculoskeletal tumors, are fed into individual ICA with different total number of components (TNCs). The best-fitted tumor-related components derived from the optimized TNCs setting are automatically determined based on a new template-matching algorithm. The success rates are 100%, 100% and 93.75% for glioma tissue detection for the three centers, respectively, and 85.19% for musculoskeletal tumor detection. We propose that the high success rate could come from the previously overlooked ability of BOLD rs-fMRI in characterizing the abnormal vascularization, vasomotion and perfusion caused by tumors. Our findings suggest an additional usage of the rs-fMRI for comprehensive presurgical assessment.
Collapse
Affiliation(s)
- Huiyuan Huang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhongxiang Ding
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Shuda Chen
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Lisha Duan
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jianling Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Fuyong Chen
- Department of Neurosurgery, No.1 Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Dezhi Kang
- Department of Neurosurgery, No.1 Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Le Qi
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Wusi Qiu
- Department of Neurosurgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Seong-Whan Lee
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - ShiJun Qiu
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China
| | - Han Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China.
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Huang H, Lu J, Wu J, Ding Z, Chen S, Duan L, Cui J, Chen F, Kang D, Qi L, Qiu W, Lee SW, Qiu S, Shen D, Zang YF, Zhang H. Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis. Sci Rep 2018; 8:1223. [PMID: 29352123 DOI: 10.1038/s41598-017-18453-0.pmid: 29352123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/12/2017] [Indexed: 10/27/2024] Open
Abstract
Accurate delineation of gliomas from the surrounding normal brain areas helps maximize tumor resection and improves outcome. Blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) has been routinely adopted for presurgical mapping of the surrounding functional areas. For completely utilizing such imaging data, here we show the feasibility of using presurgical fMRI for tumor delineation. In particular, we introduce a novel method dedicated to tumor detection based on independent component analysis (ICA) of resting-state fMRI (rs-fMRI) with automatic tumor component identification. Multi-center rs-fMRI data of 32 glioma patients from three centers, plus the additional proof-of-concept data of 28 patients from the fourth center with non-brain musculoskeletal tumors, are fed into individual ICA with different total number of components (TNCs). The best-fitted tumor-related components derived from the optimized TNCs setting are automatically determined based on a new template-matching algorithm. The success rates are 100%, 100% and 93.75% for glioma tissue detection for the three centers, respectively, and 85.19% for musculoskeletal tumor detection. We propose that the high success rate could come from the previously overlooked ability of BOLD rs-fMRI in characterizing the abnormal vascularization, vasomotion and perfusion caused by tumors. Our findings suggest an additional usage of the rs-fMRI for comprehensive presurgical assessment.
Collapse
Affiliation(s)
- Huiyuan Huang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhongxiang Ding
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Shuda Chen
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Lisha Duan
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jianling Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Fuyong Chen
- Department of Neurosurgery, No.1 Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Dezhi Kang
- Department of Neurosurgery, No.1 Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Le Qi
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Wusi Qiu
- Department of Neurosurgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Seong-Whan Lee
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - ShiJun Qiu
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China
| | - Han Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, 310015, China.
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Abstract
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Collapse
Affiliation(s)
- Daniel L Marks
- Department of Electrical and Computer Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States of America
| | | | | |
Collapse
|
28
|
Seitz J, Sawyer KS, Papadimitriou G, Oscar-Berman M, Ng I, Kubicki A, Mouradian P, Ruiz SM, Kubicki M, Harris GJ, Makris N. Alcoholism and sexual dimorphism in the middle longitudinal fascicle: a pilot study. Brain Imaging Behav 2017; 11:1006-1017. [PMID: 27448160 PMCID: PMC5253343 DOI: 10.1007/s11682-016-9579-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholism can lead to a complex mixture of cognitive and emotional deficits associated with abnormalities in fronto-cortico-striatal-limbic brain circuitries. Given the broad variety of neurobehavioral symptoms, one would also expect alterations of postrolandic neocortical systems. Thus, we used diffusion tensor imaging (DTI) to study the integrity of the middle longitudinal fascicle (MdLF), a major postrolandic association white matter tract that extends from the superior temporal gyrus to the parietal and occipital lobes, in individuals with a history of chronic alcohol abuse. DTI data were acquired on a 3 Tesla scanner in 30 abstinent alcoholics (AL; 9 men) and 25 nonalcoholic controls (NC; 8 men). The MdLF was determined using DTI-based tractography. Volume of the tract, fractional anisotropy (FA), radial (RD), and axial (AD) diffusivity, were compared between AL and NC, with sex and hemispheric laterality as independent variables. The association of DTI measures with neuropsychological performance was evaluated. Men showed bilateral reduction of MdLF volume and abnormal diffusion measurements of the left MdLF. Analyses also indicated that the left MdLF diffusion measurements in AL men were negatively associated with Verbal IQ and verbal fluency test scores. Abstinent alcoholic men display macrostructural abnormalities in the MdLF bilaterally, indicating an overall white matter deficit. Additionally, microstructural deficits of the left MdLF suggest more specific alterations associated with verbal skills in men.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kayle S Sawyer
- Behavioral Neuroscience and Departments of Psychiatry and Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - George Papadimitriou
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Marlene Oscar-Berman
- Behavioral Neuroscience and Departments of Psychiatry and Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Isaac Ng
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Antoni Kubicki
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Palig Mouradian
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Susan M Ruiz
- Behavioral Neuroscience and Departments of Psychiatry and Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon J Harris
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Radiology Computer Aided Diagnostics Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
29
|
Zong F, Ancelet LR, Hermans IF, Galvosas P. Determining mean fractional anisotropy using DDCOSY: preliminary results in biological tissues. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:498-507. [PMID: 27487091 DOI: 10.1002/mrc.4492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Complex materials are ubiquitous in science, engineering and nature. One important parameter for characterising their morphology is the degree of anisotropy. Magnetic resonance imaging offers non-invasive methods for quantitative measurements of the materials anisotropy, most commonly via diffusion tensor imaging and the subsequent extraction of the spatially resolved fractional anisotropy (FA) value. Here, we propose an alternative way of determining the FA as a sample average for cases where spatially resolved methods are not needed or not applicable. It is based on a particular diffusion-diffusion correlation spectroscopy protocol, allowing for the extraction of the mean (i.e. sample averaged) FA value. We demonstrate that mean FA values obtained from three anisotropic biological tissues are consistent with those extracted using diffusion tensor imaging. Moreover, we show that differences of mean FA values in healthy and tumour-bearing mouse brains allow to distinguish these tissue types. We anticipate that the proposed method will be beneficial in the wider context of medical and material science. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fangrong Zong
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lindsay R Ancelet
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
30
|
Pirimoglu B, Sade R, Ogul H, Kantarci M, Eren S, Levent A. How Can New Imaging Modalities Help in the Practice of Radiology? Eurasian J Med 2017; 48:213-221. [PMID: 28149149 DOI: 10.5152/eajm.2016.0260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this article was to provide an up-to-date review on the spectrum of new imaging applications in the practice of radiology. New imaging techniques have been developed with the objective of obtaining structural and functional analyses of different body systems. Recently, new imaging modalities have aroused the interest of many researchers who are studying the applicability of these modalities in the evaluation of different organs and diseases. In this review article, we present the efficiency and utilization of current imaging modalities in daily radiological practice.
Collapse
Affiliation(s)
- Berhan Pirimoglu
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Recep Sade
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Hayri Ogul
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Mecit Kantarci
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Suat Eren
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Akın Levent
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
31
|
Konishi Y, Satoh H, Kuroiwa Y, Kusaka M, Yamashita A, Asada Y, Asanuma T. Application of fiber tractography and diffusion tensor imaging to evaluate spinal cord diseases in dogs. J Vet Med Sci 2016; 79:418-424. [PMID: 28025450 PMCID: PMC5326951 DOI: 10.1292/jvms.16-0504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fiber tractography is a technique capable of depicting the three-dimensional structure
and connectivity of nerve fibers using serial magnetic resonance diffusion tensor imaging
(DTI). To establish fiber tractography and DTI methods in veterinary clinical medicine, we
evaluated fiber tractography and DTI parameters: apparent diffusion coefficient (ADC)
values and fractional anisotropy (FA) values, in various spinal cord diseases. Spinal cord
DTI was examined in 28 dogs with spinal cord diseases. The ADC and FA values were measured
at lesion sites and cranial normal sites on spinal cords, and both values of lesion sites
were compared with normal sites. In thoracolumbar intervertebral disk herniation (IVDH)
cases, depending on their neurologic grades, fiber tractography indicated rupture of fiber
trajectories, loss of neuronal bundles and disorder of fiber directions. In these cases,
the average ADC values at lesion sites significantly decreased compared with normal sites
(P=0.016). In the progressive myelomalacia case, the average ADC and FA
values of hyperintense swollen regions in T2WI decreased compared to both values in other
disease cases. Finally, in the meningioma case, the continuity of fiber trajectories
improved after the administration of an anticancer agent. This study suggests that fiber
tractography and DTI are useful in the diagnosis and prognosis of veterinary spinal cord
diseases.
Collapse
Affiliation(s)
- Yuko Konishi
- Laboratory of Veterinary Clinical Radiology, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
33
|
Mitsuda M, Suzuki Y, Kunimatsu A, Kasahara A, Watanabe Y, Ino K, Yano K, Ohtomo K. Feasibility of Diffusion Tensor Imaging at 1.5T Using Multi-Band Echo Planar Acquisition. Magn Reson Med Sci 2016; 16:169-175. [PMID: 27599585 PMCID: PMC5600077 DOI: 10.2463/mrms.tn.2015-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We report that diffusion tensor imaging (DTI) and tractography (DTT) of the pyramidal tracts using multi-band (MB) EPI could be a useful tool with a 1.5T MRI. We compared images using single-band EPI (SB-EPI) and MB-EPI. MB-EPI could reduce the scanning time by about 40%. We demonstrated that it is comparable between image qualities of SB-EPI and MB-EPI using tract-specific analysis and dice coefficients. Therefore, MB-EPI can promote high-speed DTI and DTT in clinical applications.
Collapse
Affiliation(s)
- Minoru Mitsuda
- Department of Radiological Technology, The University of Tokyo Hospital
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kimura M, da Cruz LCH. Multiparametric MR Imaging in the Assessment of Brain Tumors. Magn Reson Imaging Clin N Am 2016; 24:87-122. [PMID: 26613877 DOI: 10.1016/j.mric.2015.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Functional MR imaging methods make possible the quantification of dynamic physiologic processes that occur in the brain. Moreover, the use of these advanced imaging techniques in the setting of oncologic treatment of the brain is widely accepted and has found worldwide routine clinical use.
Collapse
Affiliation(s)
- Margareth Kimura
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), Centro Médico Barrashopping, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil.
| | - L Celso Hygino da Cruz
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), IRM Ressonância Magnética, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil
| |
Collapse
|
35
|
Mori H, Masutani Y, Abe O, Aoki S, Hayashi N, Masumoto T, Yoshikawa T, Yamada H, Ohtomo K. Visualization of Central Nervous System Nerve Communications Using Diffusion Tensor Imaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/197140090401700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diffusion tensor imaging (DTI) is a magnetic resonance (MR) technique used to analyze diffusion anisotropy of the central nervous system (CNS) and can demonstrate subtle white matter anatomy. In particular, tractography is expected to be a unique, non-invasive tool to provide more pertinent insights into brain structure and orientation not accessible with conventional MRI. Data collection was performed in a normal volunteer on a 1.5-T MRI system using several techniques including six axis single-shot echo planar imaging (EPI), over six axis EPI, and periodically rotated overlapping parallel lines with enhanced reconstruction techniques. Tractography was generated by a continuous tracking method with our original software, Volume-One (for viewing volumetric image data) and VizDT-II (for analysis of DTI data). Using these data, estimated tracts were generated in arcuate fibers of cerebrum, cingulum, superior longitudinal fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, corpus callosum, fornix, anterior thalamic radiation, central thalamic radiation, thalamo-parietal fibers, optic radiation, superior cerebellar peduncle, middle cerebellar peduncle, inferior cerebellar peduncle and intrinsic commissure paths of the hipoccampous. DTI including tractography allows differentiation between complex white matter tracts. The information regarding the detailed relationship may be useful for diagnosis of the location and extent of brain lesions, and preoperative planning.
Collapse
Affiliation(s)
- H. Mori
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - Y. Masutani
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - O. Abe
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - S. Aoki
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - N. Hayashi
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - T. Masumoto
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - T. Yoshikawa
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - H. Yamada
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| | - K. Ohtomo
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo; Japan
| |
Collapse
|
36
|
Ulmer JL, Salvan CV, Mueller WM, Krouwer HG, Stroe GO, Aralasmak A, Prost RW. The Role of Diffusion Tensor Imaging in Establishing the Proximity of Tumor Borders to Functional Brain Systems: Implications for Preoperative Risk Assessments and Postoperative Outcomes. Technol Cancer Res Treat 2016; 3:567-76. [PMID: 15560714 DOI: 10.1177/153303460400300606] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diffusion Tensor Imaging (DTI) is a new MRI imaging technique sensitive to directional movements of water molecules, induced by tissue barriers. This provides a new form of contrast that allows the identification of functional white matter tracts within the brain, and has been proposed as a technique suitable for presurgical planning in brain tumor patients. Resection of primary brain tumors improves survival, functional performance, and the effectiveness of adjuvant therapies, provided that surgically-induced neurological deficits can be avoided. Diffusion Tensor Imaging (DTI) has the potential to establish spatial relationships between eloquent white matter and tumor borders, provide information essential to preoperative planning, and improve the accuracy of surgical risk assessments preoperatively. We present our experience in a series of 28 brain tumor patients where the integration of functional magnetic resonance imaging (fMRI) and DTI data was used to determine key anatomic spatial relationships preoperatively. Twice as many functional systems were localized to within 5 mm of tumor borders when DTI and fMRI were utilized for preoperative planning, compared to that afforded by fMRI alone. Our results show that the combined use of fMRI and DTI can provide a better estimation of the proximity of tumor borders to eloquent brain systems sub-serving language, speech, vision, motor and premotor functions. Additionally, a low regional complication rate (4%) observed in our series suggests that preoperative planning with these combined techniques may improve surgical outcomes compared to that previously reported in the literature. Larger studies specifically designed to establish the accuracy and predictive value of DTI in brain tumor patients are warranted to substantiate our preliminary observations.
Collapse
Affiliation(s)
- John L Ulmer
- Division of Neuroradiology, Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee DH, Lee DW, Han BS. Symmetrical Location Characteristics of Corticospinal Tract Associated With Hand Movement in the Human Brain: A Probabilistic Diffusion Tensor Tractography. Medicine (Baltimore) 2016; 95:e3317. [PMID: 27082576 PMCID: PMC4839820 DOI: 10.1097/md.0000000000003317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study is to elucidate the symmetrical characteristics of corticospinal tract (CST) related with hand movement in bilateral hemispheres using probabilistic fiber tracking method. Seventeen subjects were participated in this study. Fiber tracking was performed with 2 regions of interest, hand activated functional magnetic resonance imaging (fMRI) results and pontomedullary junction in each cerebral hemisphere. Each subject's extracted fiber tract was normalized with a brain template. To measure the symmetrical distributions of the CST related with hand movement, the laterality and anteriority indices were defined in upper corona radiata (CR), lower CR, and posterior limb of internal capsule. The measured laterality and anteriority indices between the hemispheres in each different brain location showed no significant differences with P < 0.05. There were significant differences in the measured indices among 3 different brain locations in each cerebral hemisphere with P < 0.001. Our results clearly showed that the hand CST had symmetric structures in bilateral hemispheres. The probabilistic fiber tracking with fMRI approach demonstrated that the hand CST can be successfully extracted regardless of crossing fiber problem. Our analytical approaches and results seem to be helpful for providing the database of CST somatotopy to neurologists and clinical researches.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- From the Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine (D-HL, D-WL), Baltimore, MD and Department of Radiological Science, College of Health Science (B-SH), Yonsei University, Wonju, Republic of Korea
| | | | | |
Collapse
|
38
|
Astrocytoma simultaneously present with Meningioma-a report of two cases and review of the literature. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Sahin N, Selouan R, Markowitz CE, Melhem ER, Bilello M. Limbic pathway lesions in patients with multiple sclerosis. Acta Radiol 2016; 57:341-7. [PMID: 25852192 DOI: 10.1177/0284185115578689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/18/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a well-known demyelinating disease to cause cognitive dysfunction. The limbic system, relevant to memory, can be easily overlooked in conventional magnetic resonance imaging (MRI). PURPOSE To investigate the distribution and frequency of demyelinating lesions affecting white matter connections of the limbic system based on localization with diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) color maps compared to three-dimensional T2-weighted (T2W) and FLAIR volumes in MS patients. MATERIAL AND METHODS One hundred and fifty patients with a known diagnosis of MS were identified for this Health Insurance Portability and Accountability (HIPAA)-compliant retrospective cross-sectional study. DTI-derived FA color maps, co-registered to T2W and FLAIR images, were analyzed for lesions affecting the three white matter tracts of the limbic system including cingulum, fornix, and mammilothalamic tracts by two investigators. The approximate location of the lesions on FLAIR was always confirmed on the co-registered DTI-derived FA color maps. RESULTS Of the 150 patients analyzed, 14.6% had cingulum lesions, 2.6% had fornix lesions, and 2.6% had mammilothalamic tract lesions; 21.3% of patients had at least one of the three tracts affected. CONCLUSION A relatively high frequency of lesions involving the limbic tracts may explain memory deficits and emotional dysfunction commonly experienced by patients with MS. The combined information from T2W, FLAIR, and DTI-derived FA color map allowed for more accurate localization of lesions affecting the major white matter tracts of the limbic system.
Collapse
Affiliation(s)
- Neslin Sahin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Sifa University School of Medicine, İzmir, Turkey
| | - Roger Selouan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Clyde E Markowitz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Bilello
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Massaro AN, Evangelou I, Brown J, Fatemi A, Vezina G, McCarter R, Glass P, Limperopoulos C. Neonatal neurobehavior after therapeutic hypothermia for hypoxic ischemic encephalopathy. Early Hum Dev 2015; 91:593-9. [PMID: 26246138 PMCID: PMC4575646 DOI: 10.1016/j.earlhumdev.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Perinatal hypoxic ischemic encephalopathy (HIE) is a major cause of neurodevelopmental impairment including cerebral palsy and intellectual disability. Brain magnetic resonance imaging is the gold standard for acute assessment of cerebral injury in HIE. Limited data are available regarding the significance of clinically manifested neurobehavioral impairments in the neonatal period. AIM To evaluate brain structure-function relationships in newborns with HIE using diffusion tensor imaging (DTI) and the NICU Network Neurobehavioral Scale (NNNS). STUDY DESIGN Prospective observational study with secondary longitudinal component. SUBJECTS Forty-five newborns (62% male) with HIE referred for therapeutic hypothermia who underwent MRI and neurobehavioral assessment prior to discharge. OUTCOME MEASURES DTI was performed at median age of 8 days (range 5-16) and NNNS at median 12 days of life (range 5-20, postmenstrual age 40±2 weeks). Developmental assessment with the Bayley Scales of Infant Development-II was performed at median age of 21.6 months (range 20.8-30.6). RESULTS Significant associations were observed between DTI corticospinal tract integrity and NNNS neuromotor performance in HIE newborns. Neonatal neuromotor performance was also related to later early childhood motor outcomes. CONCLUSIONS NNNS performed after therapeutic hypothermia in newborns with HIE can identify neuromotor abnormalities that are related to microstructural brain injury in the corticospinal tract and later motor outcomes in early childhood. These data support the NNNS as a valid early functional assessment of perinatal brain injury.
Collapse
Affiliation(s)
- An N. Massaro
- Department of Neonatology, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States,Corresponding Author: An N. Massaro, MD, Assistant Professor of Pediatrics, The George Washington University School of Medicine, Department of Neonatology, Children’s National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, Phone (202) 476-5225, Fax (202) 476-3459,
| | - Iordanis Evangelou
- Department of Diagnostic Imaging and Radiology, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States,Department of Radiology, The George Washington University School of Medicine, Washington, DC, United States
| | - Judy Brown
- Department of Psychology & Behavioral Health, Children’s National Health Systems, Washington, DC, United States
| | - Ali Fatemi
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gilbert Vezina
- Department of Diagnostic Imaging and Radiology, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States,Department of Radiology, The George Washington University School of Medicine, Washington, DC, United States
| | - Robert McCarter
- Department of Biostatistics & Informatics, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States,Department of Epidemiology & Biostatistics, The George Washington University School of Medicine, Washington, DC, United States
| | - Penny Glass
- Department of Psychology & Behavioral Health, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States
| | - Catherine Limperopoulos
- Department of Diagnostic Imaging and Radiology, Children’s National Health Systems, Washington, DC, United States,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
41
|
Paldino MJ, Hedges K, Golriz F. The Arcuate Fasciculus and Language Development in a Cohort of Pediatric Patients with Malformations of Cortical Development. AJNR Am J Neuroradiol 2015; 37:169-75. [PMID: 26381551 DOI: 10.3174/ajnr.a4461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/12/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Patients with epilepsy and malformations of cortical development have a high prevalence of language deficits. The purpose of this study was to investigate whether the status of the arcuate fasciculus at diffusion tractography could provide a clinically meaningful marker of language function in patients with cortical malformations. MATERIALS AND METHODS Thirty-seven patients 3-18 years of age who had DTI performed at 3T and language evaluation by a pediatric neurologist were retrospectively identified. Twenty-two age-matched children without any neurologic, language, or MR imaging abnormalities who had identical DTI performed for an indication of headache were selected as a control cohort. The arcuate fasciculi were constructed and segmented by deterministic tractography for all subjects. RESULTS Twenty-one patients had intact language; 11 had mild-to-moderate and 5, profound language impairment. All patients with normal language and all control subjects had an identifiable left arcuate. The left arcuate was absent in 11 patients; all 11 were language-impaired. Failure to identify the left arcuate was strongly associated with some degree of language impairment (P < .001). Sensitivity, specificity, and positive predictive value for language dysfunction were 65%, 100%, and 100%, respectively. The absence of the arcuate bilaterally was associated with complete failure to develop oral language (P < .015). CONCLUSIONS Failure to identify the left arcuate fasciculus at diffusion tractography was a highly specific marker of language dysfunction in a cohort of pediatric patients with malformations of cortical development. Failure to identify the arcuate fasciculus on either side was associated with failure to develop oral language.
Collapse
Affiliation(s)
- M J Paldino
- From the Department of Radiology (M.J.P., K.H.), Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - K Hedges
- From the Department of Radiology (M.J.P., K.H.), Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - F Golriz
- Department of Radiology (F.G.), Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
42
|
Kim KH, Kim YH, Kim MS, Park CH, Lee A, Chang WH. Prediction of Motor Recovery Using Diffusion Tensor Tractography in Supratentorial Stroke Patients With Severe Motor Involvement. Ann Rehabil Med 2015; 39:570-6. [PMID: 26361593 PMCID: PMC4564704 DOI: 10.5535/arm.2015.39.4.570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/03/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate whether early stage diffusion tensor tractography (DTT) values predict motor function at 3 months after onset in supratentorial stroke patients with severe motor involvement. METHODS A retrospective study design was used to analyze medical records and neuroimaging data of 49 supratentorial stroke patients with severe motor involvement. Diffusion tensor imaging was assessed within 3 weeks after stroke in all patients. Three-dimensional tractography of the ipsilateral corticospinal tract (CST) was performed using the fiber assignment of the continuous tracking algorithm. The two-step DTT analysis was used. The first step was classification according to ipsilateral CST visualization. The second step was a quantitative analysis of the visible-CST group parameters. Motor function was assessed at 2 weeks and at 3 months after stroke. Comparative and correlation analyses were performed between DTT-derived measures and motor assessment scores. RESULTS Motor function of the upper extremity at 3 months after stroke was significantly higher in the visible-CST group than that in the nonvisible-CST group (p<0.05). Early stage fractional anisotropy was of DTT correlated significantly with upper extremity motor function at 3 months after stroke in the visible-CST group (p<0.05). CONCLUSION These results demonstrate that early DTT-derived measures predict motor recovery in the upper extremity at 3 months after onset in supratentorial stroke patients with severe motor involvement.
Collapse
Affiliation(s)
- Kang Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. ; Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Su Kim
- Department of Rehabilitation Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Chang-Hyun Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ahee Lee
- Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Love S, Miners JS. White matter hypoperfusion and damage in dementia: post-mortem assessment. Brain Pathol 2015; 25:99-107. [PMID: 25521180 DOI: 10.1111/bpa.12223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023] Open
Abstract
Neuroimaging has revealed a range of white matter abnormalities that are common in dementia, some that predict cognitive decline. The abnormalities may result from structural diseases of the cerebral vasculature, such as arteriolosclerosis and amyloid angiopathy, but can also be caused by nonstructural vascular abnormalities (eg, of vascular contractility or permeability), neurovascular instability or extracranial cardiac or vascular disease. Conventional histopathological assessment of the white matter has tended to conflate morphological vascular abnormalities with changes that reflect altered interstitial fluid dynamics or white matter ischemic damage, even though the latter may be of extracranial or nonstructural etiology. However, histopathology is being supplemented by biochemical approaches, including the measurement of proteins involved in the molecular responses to brain ischemia, myelin proteins differentially susceptible to ischemic damage, vessel-associated proteins that allow rapid measurement of microvessel density, markers of blood-brain barrier dysfunction and axonal injury, and mediators of white matter damage. By combining neuroimaging with histopathology and biochemical analysis, we can provide reproducible, quantitative data on the severity of white matter damage, and information on its etiology and pathogenesis. Together these have the potential to inform and improve treatment, particularly in forms of dementia to which white matter hypoperfusion makes a significant contribution.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Learning and Research Level 2, Southmead Hospital, Bristol, UK
| | | |
Collapse
|
44
|
Tiwari V, Solanki V, Tiwari M. In-vivoandin-vitrotechniques used to investigate Alzheimer's disease. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1044129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Lilja Y, Ljungberg M, Starck G, Malmgren K, Rydenhag B, Nilsson DT. Tractography of Meyer's loop for temporal lobe resection—validation by prediction of postoperative visual field outcome. Acta Neurochir (Wien) 2015; 157:947-56; discussion 956. [PMID: 25845549 DOI: 10.1007/s00701-015-2403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Postoperative visual field defects are common after temporal lobe resection because of injury to the most anterior part of the optic radiation, Meyer's loop. Diffusion tensor tractography is a promising technique for visualizing the optic radiation preoperatively. The aim of this study was to assess the anatomical accuracy of Meyer's loop, visualized by the two most common tractography methods—deterministic (DTG) and probabilistic tractography (PTG)—in patients who had undergone temporal lobe resection. METHODS Eight patients with temporal lobe resection for temporal lobe pathology were included. Perimetry and diffusion tensor imaging were performed pre- and postoperatively. Two independent operators analyzed the distance between the temporal pole and Meyer's loop (TP-ML) using DTG and PTG. Results were compared to each other, to data from previously published dissection studies and to postoperative perimetry results. For the latter, Spearman's rank correlation coefficient (r(s)) was used. RESULTS Median preoperative TP-ML distances for nonoperated sides were 42 and 35 mm, as determined by DTG and PTG, respectively. TP-ML assessed with PTG was a closer match to dissection studies. Intraclass correlation coefficients were 0.4 for DTG and 0.7 for PTG. Difference between preoperative TP-ML (by DTG and PTG, respectively) and resection length could predict the degree of postoperative visual field defects (DTG: r(s) = -0.86, p < 0.05; PTG: r(s) = -0.76, p < 0.05). CONCLUSION Both DTG and PTG could predict the degree of visual field defects. However, PTG was superior to DTG in terms of reproducibility and anatomical accuracy. PTG is thus a strong candidate for presurgical planning of temporal lobe resection that aims to minimize injury to Meyer's loop.
Collapse
|
46
|
MASSARO ANN, EVANGELOU IORDANIS, FATEMI ALI, VEZINA GILBERT, MCCARTER ROBERT, GLASS PENNY, LIMPEROPOULOS CATHERINE. White matter tract integrity and developmental outcome in newborn infants with hypoxic-ischemic encephalopathy treated with hypothermia. Dev Med Child Neurol 2015; 57:441-8. [PMID: 25492527 PMCID: PMC4543365 DOI: 10.1111/dmcn.12646] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 12/01/2022]
Abstract
AIM To determine whether corpus callosum (CC) and corticospinal tract (CST) diffusion tensor imaging (DTI) measures relate to developmental outcome in encephalopathic newborn infants after therapeutic hypothermia. METHOD Encephalopathic newborn infants enrolled in a longitudinal study underwent DTI after hypothermia. Parametric maps were generated for fractional anisotropy, mean, radial, and axial diffusivity. CC and CST were segmented by DTI-based tractography. Multiple regression models were used to examine the association of DTI measures with Bayley-II Mental (MDI) and Psychomotor Developmental Index (PDI) at 15 months and 21 months of age. RESULTS Fifty-two infants (males n=32, females n=20) underwent DTI at median age of 8 days. Two were excluded because of poor magnetic resonance imaging quality. Outcomes were assessed in 42/50 (84%) children at 15 months and 35/50 (70%) at 21 months. Lower CC and CST fractional anisotropy were associated with lower MDI and PDI respectively, even after controlling for gestational age, birth weight, sex, and socio-economic status. There was also a direct relationship between CC axial diffusivity and MDI, while CST radial diffusivity was inversely related to PDI. INTERPRETATION In encephalopathic newborn infants, impaired microstructural organization of the CC and CST predicts poorer cognitive and motor performance respectively. Tractography provides a reliable method for early assessment of perinatal brain injury.
Collapse
Affiliation(s)
- ANN MASSARO
- Department of Neonatology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - IORDANIS EVANGELOU
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - ALI FATEMI
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - GILBERT VEZINA
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC,Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - ROBERT MCCARTER
- Department of Biostatistics & Informatics, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC,Department of Epidemiology & Biostatistics, The George Washington University School of Medicine, Washington, DC, USA
| | - PENNY GLASS
- Department of Psychiatry & Behavioral Sciences, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - CATHERINE LIMPEROPOULOS
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
47
|
Lilja Y, Nilsson DT. Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery. Quant Imaging Med Surg 2015; 5:288-99. [PMID: 25853086 DOI: 10.3978/j.issn.2223-4292.2015.01.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/22/2015] [Indexed: 11/14/2022]
Abstract
Diffusion tensor imaging (DTI) tractography (TG) can visualize Meyer's loop (ML), providing important information for the epilepsy surgery team, both for preoperative counseling and to reduce the frequency of visual field defects after temporal lobe resection (TLR). This review highlights significant steps in the TG process, specifically the processing of raw data including choice of TG algorithm and the interpretation and validation of results. A lack of standardization of TG of the optic radiation makes study comparisons challenging. We discuss results showing differences between studies and uncertainties large enough to be of clinical relevance and present implications of this technique for temporal lobe epilepsy surgery. Recent studies in temporal lobe epilepsy patients, employing TG intraoperatively, show promising results in reduction of visual field defects, with maintained seizure reduction.
Collapse
Affiliation(s)
- Ylva Lilja
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel T Nilsson
- 1 Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; 2 Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
48
|
Li K, Sun Z, Han Y, Gao L, Yuan L, Zeng D. Fractional anisotropy alterations in individuals born preterm: a diffusion tensor imaging meta-analysis. Dev Med Child Neurol 2015; 57:328-38. [PMID: 25358534 DOI: 10.1111/dmcn.12618] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
AIM This meta-analysis explored cerebral microstructural changes in individuals born preterm using fractional anisotropy from diffusion tensor imaging. METHOD We used the activation likelihood estimate (ALE) method for the meta-analysis to locate anatomical regions with white matter abnormalities in a group of individuals born preterm and in term-born comparison participants. A statistical analysis of fractional anisotropy was conducted to quantitatively explore the extent of fractional anisotropy changes in the three subregions of the corpus callosum in the preterm group. RESULTS ALE analysis identified 11 regions of decreased fractional anisotropy and four regions of increased fractional anisotropy. Analysis of the corpus callosum revealed the largest decrease in fractional anisotropy in the splenium (standardized mean difference [SMD]=-0.75, 95% confidence interval [CI] -0.93 to -0.57), followed by the body (SMD=-0.73, 95% CI -1.13 to -0.32) and the genu (SMD=-0.65, 95% CI -0.97 to -0.33). INTERPRETATION Significant changes in fractional anisotropy in individuals born preterm reflect white matter abnormalities from childhood to young adulthood, and the mechanism of fractional anisotropy alterations in preterm infants may vary during different stages of white matter development. Furthermore, the variability of fractional anisotropy between studies can primarily be attributed to the age of the individuals at scanning and to the field strength of magnetic resonance scanners.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | | | | |
Collapse
|
49
|
Zhu L, Guo G. An improved fiber tracking algorithm based on fiber assignment using the continuous tracking algorithm and two-tensor model. Neural Regen Res 2015; 7:1667-74. [PMID: 25657708 PMCID: PMC4308771 DOI: 10.3969/j.issn.1673-5374.2012.21.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/23/2012] [Indexed: 11/18/2022] Open
Abstract
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. This method should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.
Collapse
Affiliation(s)
- Liuhong Zhu
- Department of Radiology, Xiamen Second Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361021, Fujian Province, China
| | - Gang Guo
- Department of Radiology, Xiamen Second Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361021, Fujian Province, China
| |
Collapse
|
50
|
Leone A, Rigante D, Amato DZ, Casale R, Pedone L, Magarelli N, Colosimo C. Spinal involvement in mucopolysaccharidoses: a review. Childs Nerv Syst 2015; 31:203-12. [PMID: 25358811 DOI: 10.1007/s00381-014-2578-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mucopolysaccharidoses (MPS) represent a group of inheritable lysosomal storage diseases caused by mutations in the genes coding for enzymes involved in catabolism of different glycosaminoglycans (GAGs). They are clinically heterogeneous multisystemic diseases, often involving the spine. Bony abnormalities of the spine included in the so-called dysostosis multiplex and GAG deposits in the dura mater and supporting ligaments can result in spinal cord compression, which can lead to compressive myelopathy. Spinal involvement is a major cause of morbidity and mortality in some MPS (e.g., MPS IVA, VI, and I), and early radiological diagnosis is critical in preventing or arresting neurological deterioration and loss of function. DISCUSSION Management of MPS, however, requires a multidisciplinary approach because of the multiorgan nature of the disease. Indeed in order to appreciate the relevance and nuances of each other's specialty, radiologists and clinicians need to have a background of common knowledge, rather than a merely compartmentalized point of view. In the interest of the management of spinal involvement in MPS, this review article aims on one hand to provide radiologists with important clinical knowledge and on the other hand to equip clinicians with relevant radiological semiotics.
Collapse
Affiliation(s)
- Antonio Leone
- Department of Radiological Sciences, Catholic University, School of Medicine, Largo A. Gemelli, 1-00168, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|