1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Gupta M, Pazour GJ. Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases. Cytoskeleton (Hoboken) 2024; 81:556-568. [PMID: 38140908 PMCID: PMC11193844 DOI: 10.1002/cm.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
Collapse
Affiliation(s)
- Mohona Gupta
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. Cytoskeleton (Hoboken) 2024; 81:618-638. [PMID: 38715433 PMCID: PMC11540979 DOI: 10.1002/cm.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Pongpratch Puapatanakul
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachel Pudlowski
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey H Miner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, Missouri, USA
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jennifer T Wang
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hani Y Suleiman
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Moe R Mahjoub
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Campo E, Dierna F, Zanghì A, Vecchio M, Salafia S, Foti P, David E, Belfiore G, Lavalle S, Ruggieri M, Polizzi A. Anomalies of Midbrain Hindbrain Development: Midbrain Clefts, Cerebellar Nodular Heterotopia with Overlying Dysgenesis, Cerebellar Foliation Disorder, Pontine Tegmental Cap Dysplasia; Joubert Syndrome; Lhermitte Duclos Syndrome. Diagnosis, Classification and Rehabilitation Hypothesis. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:387-395. [DOI: 10.1055/s-0044-1786789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMidbrain and hindbrain (MBHB) malformations are a rare group of congenital abnormalities that involve the neural structure of the posterior cranial fossa, leading to significant causes of neurodevelopmental dysfunction. Recent advancements in genetic and neuroimaging technologies have significantly enhanced our understanding of these disorders. The integration of these advances has facilitated a systematic classification of these conditions. A basic understanding of MBHB embryology is fundamental in order to understand the malformations occurring in their structures: MBHB neurons are mainly generated in the neuroepithelium, lining the walls of the fourth ventricle. Moreover, the regional specificity of the neural tube is determined by a combination of transcription factors expressed, organizing the fate of the neighboring regions as well. Clinical features of MBHB malformations are typically nonspecific; some patients may be asymptomatic or may develop neurological symptoms including hypotonia, ataxia, abnormal eye movements, decreased visual attention, cranial nerve deficits, cognitive impairment, and psychiatric symptoms. Many malformations have been described. We proposed the description of some of them, reporting their main morphologic aspects, magnetic resonance imaging (MRI) peculiar signs and their clinical presentation. Midbrain clefts, for example, are malformations characterized by median separation in the ventral midbrain which involves a communication with the cerebral aqueduct giving a “keyhole” shape. Pontine tegmental cap dysplasia, instead, is a rare hindbrain malformation responsible for a nonprogressive neurological disorder and is described with hypoplastic flat ventral pons, hypoplasia of the middle cerebellar peduncles, and hypoplasia and malformation of the worm. Joubert syndrome, cerebellar nodular heterotopia, abnormal cerebellar foliation, and Lhermitte–Duclos disease, also called dysplastic cerebellar gangliocytoma, have been described as well in order to provide a general overview on this diagnostic challenge reporting the most recent findings.
Collapse
Affiliation(s)
- Ersilia Campo
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Federica Dierna
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
| | | | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Fang X, Ma M, Rong W, Lian YY, Wu X, Gao Y, Li HP, Sheng X. Exome sequencing confirms the clinical diagnosis of both joubert syndrome and klinefelter syndrome with keratoconus in a han Chinese family. Front Genet 2024; 15:1417584. [PMID: 39076169 PMCID: PMC11284097 DOI: 10.3389/fgene.2024.1417584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Joubert syndrome a rare genetic disorder, is characterized by abnormalities in the development of the central nervous system with "molar signs" on magnetic resonance imaging of the brain and accompanied by cerebellar vermis hypoplasia, ataxia, hypotonia, and developmental delay. Keratoconus (KC) is a kind of genetically predisposed eye disease that causes blindness characterized by a dilated thinning of the central or paracentral cornea conically projected forward, highly irregular astigmatism, and severe visual impairment. Klinefelter syndrome is caused by an extra X chromosome in the cells of male patients, and the main phenotype is tall stature and dysplasia with secondary sex characteristics. This study was intended to identify the genetic etiology and determine the clinical diagnosis of one Han Chinese family with specific clinical manifestations of keratoconus and multiorgan involvement. Methods A comprehensive ocular and related general examination was performed on one patient and his asymptomatic parents and brother. Pathogenic genes were tested by exome sequencing. CNV-seq was used to verify the copy number variation, and peripheral blood was cultured for karyotype analysis. The pathogenicity of the identified variant was determined subject to ACMG guidelines. The Gene Expression Omnibus (GEO) dataset of keratoconus-related genes in the NCBI database was obtained to analyze the differentially expressed genes in corneal tissues of the keratoconus group and the normal control group, and analysis of protein-protein interaction networks (PPI) was performed. Results Proband, a 25-year-old male, had sudden loss of vision in the left eye for 1 week. Best corrected visual acuity (BCVA): 0.5 (-1.00DS/-5.00DC*29°) in the right eye, counting fingers/40 cm in the left eye. Slit-lamp microscopy of the right eye showed mild anterior protrusion of the cornea and thinning of the cone-topped cornea. The left eye showed marked thinning of the central region of the cornea, rounded edema in the form of a cone-like bulge, epithelial bullae, edema and turbidity of the stroma, and bulging of the Descemet's membrane. Cranial magnetic resonance imaging (MRI) revealed changes in the midbrain and cerebellum, with a "molar sign" and a "bat-winged" ventriculus quartus cerebri. General check-up: 168 cm in height, decreased muscle tone in all four limbs, knee jerk elicited, negative Babinski sign, abdominal reflexes elicited, finger-to-nose test positive, intentional tremor evident in both hands, positive Romberg's sign, instability of gait, level I intellectual disability, poor adaptive behavior, communication disorders, teeth all dentures, a peculiar face with blepharophimosis, wide inner canthus distance, mild ptosis, severe positive epicanthus, high palatal arches, exotropia, hypotrichosis of beard and face, inconspicuous prominentia laryngea, and short upper and lower limbs. Exome sequencing detected compound heterozygous frameshift variants M1:c.9279dup:p.His3094Thrfs*18 and M2:c.6515_6522del:p.Lys2172Thrfs*37 in the patient's CPLANE1 gene and the presence of duplication-type CNV on the X chromosome. Sanger sequencing showed that the mother and father carried the M1 and M2 variants, respectively, and the younger brother carried the M2 variant, which was a novel variant. CNV-seq analysis showed the presence of a duplication-type CNV Xp22.33-Xq28 (2757837-156030895) of approximately 155 Mb on the X chromosome of the proband, which was a de novo variant and carried by neither of the parents. The two heterozygous frameshift variants and duplication-type CNV were pathogenic according to the ACMG guidelines. Differential expression analysis of keratoconus-related genes showed that CPLANE1 was upregulated in the corneal tissues of keratoconus patients compared with normal controls, and such a difference was statistically significant (p = 0.000515, <0.05). PPI analysis showed that the CPLANE1-NPHP3 complex protein acted as a bridge between cilia and extracellular matrix tissue. According to the genetic test results and clinical phenotype analysis, the family was finally diagnosed with Joubert syndrome combined with Keratoconus and Klinefelter syndrome. Discussion In this study, we report a proband in a Han Chinese family with both Joubert syndrome and X-linked Klinefelter syndrome as well as keratoconus, and the phenotype spectrum of CPLANE1-Joubert syndrome may be expanded accordingly. Meanwhile, the significance of exome sequencing was emphasized in aiding the clinical diagnosis of complex cases, which is difficult to make.
Collapse
Affiliation(s)
- Xinhe Fang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Meijiao Ma
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yuan-Yuan Lian
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xueli Wu
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Yongying Gao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hui-Ping Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| |
Collapse
|
7
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
8
|
Intas K, Ulusal Okyay G, Ayli MD. A case with Joubert syndrome diagnosed at an advanced age. Med Clin (Barc) 2024; 162:357-358. [PMID: 38123406 DOI: 10.1016/j.medcli.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Kadir Intas
- University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Internal Medicine, Ankara, Turkey.
| | - Gulay Ulusal Okyay
- University of Health Sciences, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Department of Nephrology, Ankara, Turkey
| | - Mehmet Deniz Ayli
- University of Health Sciences, Dışkapı Yıldırım Beyazıt Education and Research Hospital, Department of Nephrology, Ankara, Turkey
| |
Collapse
|
9
|
Madrid NY, Giraldo LJM. Role of gene interactions in the pathophysiology of skeletal dysplasias: A case report in Colombia. J Genet Eng Biotechnol 2024; 22:100350. [PMID: 38494246 PMCID: PMC10860875 DOI: 10.1016/j.jgeb.2023.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/31/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Genome association studies have shown that gene-gene interactions or epistasis play a crucial role in identifying the etiology, prognosis, and treatment response of many complex diseases beyond their main effects. Skeletal dysplasias are a heterogeneous group of congenital bone and cartilage disorders with a genetic and gen-gen interaction etiology. The current classification of skeletal dysplasias distinguishes 461 diseases in 42 groups, and the incidence of all skeletal dysplasias is more than 1 in every 5000 newborns. The objective is to present the case of a patient with four variants that generates gen-gen interactions in the skeletal dysplasia. CASE PRESENTATION A 1-year-old male patient was diagnosed with skeletal dysplasia based on prenatal ultrasound showing micromelia and pyelocalyceal dilation. Postnatal physical examination revealed body disproportion and involvement of other organs and systems. MATERIALS AND METHODS A sequencing study and deletions/duplications analysis were performed for 358 candidate genes associated with skeletal dysplasia. The GeneMANIA interface was used to evaluate the expression network of genes associated with each other for the gen-gen interaction. RESULTS Four pathogenic variants were obtained two heterozygous variants with pathogenic significance in SLC26A, one heterozygous pathogenic variant in CLCN7 and another heterozygous pathogenic variant in CEP120. The GeneMANIA interface reveals 77.64% physical interactions, 8.01% co-expression, 5.37% prediction, 3.63% co-localization, 2.87% genetic interactions, 1.88% route of action, and 0.60% shared protein domains. DISCUSSION AND CONCLUSIONS These results suggest that the interaction between these genes affects the activity of the inorganic anion exchanger, leading to disorganization of collagen fibers, early mineralization, and decreased assembly of fibronectin in the bone extracellular matrix. Identifying gene-gene interactions is a fundamental step in understanding proper cell function and thus understanding the pathophysiology of many complex human diseases, improving diagnosis, and the possibilities of new personalized therapies.
Collapse
Affiliation(s)
- Nathalie Yepes Madrid
- Pediatric Specialization Resident, Universidad Libre Cali, Colombia; Pediatric Research Group (GRINPED), Colombia.
| | - Lina Johanna Moreno Giraldo
- Universidad Libre Cali Sectional, Colombia; Pediatric Research Group (GRINPED), Colombia; Neurogenetic and Metabolic Diseases Research Line, Colombia.
| |
Collapse
|
10
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580708. [PMID: 38405695 PMCID: PMC10889020 DOI: 10.1101/2024.02.16.580708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
|
11
|
Gnanasekaran H, Chandrasekhar SP, Kandeeban S, Periyasamy P, Bhende M, Khetan V, Gupta N, Kabra M, Namboothri S, Sen P, Sripriya S. Mutation profile of Bardet-Biedl syndrome patients from India: Implicative role of multiallelic rare variants and oligogenic inheritance pattern. Clin Genet 2023; 104:443-460. [PMID: 37431782 DOI: 10.1111/cge.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Bardet-Biedl syndrome (BBS), a rare primary form of ciliopathy, with heterogeneous clinical and genetic presentation is characterized by rod cone dystrophy, obesity, polydactyly, urogenital abnormalities, and cognitive impairment. Here, we delineate the genetic profile in a cohort of 108 BBS patients from India by targeted gene sequencing-based approach for a panel of ciliopathy (including BBS) and other inherited retinal disease genes. We report here a higher frequency of BBS10 and BBS1 gene variations. A different spectrum of variations including a putatively novel gene TSPOAP1, for BBS was identified. Increased percentage frequency of digenic variants (36%) in the disease cohort, role of modifiers in familial cases are some of the salient observations in this work. This study appends the knowledge of BBS genetics pertaining to patients from India. We observed a different molecular epidemiology of BBS patients in this study cohort compared to other reports, which emphasizes the need for molecular testing in affected patients.
Collapse
Affiliation(s)
- Harshavardhini Gnanasekaran
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamilnadu, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India
| | - Sathya Priya Chandrasekhar
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamilnadu, India
| | - Suganya Kandeeban
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamilnadu, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India
| | - Porkodi Periyasamy
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamilnadu, India
| | - Muna Bhende
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India
| | - Vikas Khetan
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India
| | - Neerja Gupta
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamilnadu, India
| | - Madhulika Kabra
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamilnadu, India
| | - Sheela Namboothri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamilnadu, India
| | - Sarangapani Sripriya
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamilnadu, India
| |
Collapse
|
12
|
Simonini C, Fröschen EM, Nadal J, Strizek B, Berg C, Geipel A, Gembruch U. Prenatal ultrasound in fetuses with polycystic kidney appearance - expanding the diagnostic algorithm. Arch Gynecol Obstet 2023; 308:1287-1300. [PMID: 36310336 PMCID: PMC10435620 DOI: 10.1007/s00404-022-06814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Report on the diagnosis of prenatally detected fetal kidneys with bilateral polycystic appearance in a single center between 1999 and 2020 with special focus on renal morphology and biometry, amniotic fluid and extrarenal findings and proposal for an diagnostic algorithm. METHODS Retrospective observational study including pregnancies with prenatally detected kidneys with bilateral polycystic appearance (n = 98). Cases and outcomes were compared according to prenatal findings with special focus on renal morphology, amount of amniotic fluid, and presence of extrarenal abnormalities. RESULTS Most frequent diagnoses were autosomal recessive polycystic kidney disease (ARPKD, 53.1%), Meckel-Gruber syndrome (MKS, 17.3%) and autosomal dominant polycystic kidney disease (ADPKD, 8.2%). Other diagnoses included: Joubert-, Jeune-, McKusick-Kaufman- and Bardet-Biedl syndrome, overgrowth syndromes, Mainzer-Saldino syndrome and renal tubular dysgenesis. Renal abnormalities most frequently observed were hyperechogenic parenchyma, kidney enlargement, changes of corticomedullary differentiation and cystic changes of various degree. Oligo- and anhydramnios were mainly seen in ARPKD, RTD and second-trimester MKS. Extrarenal findings included skeletal (35.7%) and cardiac (34.7%) abnormalities as well as abnormalities of the central nervous system (27.6%). CONCLUSION Gestational age at manifestation, kidney size, visibility of cysts, echogenicity, amniotic fluid volume, and the presence of associated extrarenal malformations allow to differentiate between the most frequent underlying diseases presenting with bilateral polycystic kidneys on prenatal ultrasound by following a diagnostic algorithm.
Collapse
Affiliation(s)
- Corinna Simonini
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Eva-Maria Fröschen
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jennifer Nadal
- Department of Medical Biometry, Informatics, and Epidemiology (IMBIE), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christoph Berg
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University of Cologne, Cologne, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
13
|
Dong Y, Zhang K, Yao H, Jia T, Wang J, Zhu D, Xu F, Cheng M, Zhao S, Shi X. Clinical and genetic characteristics of 36 children with Joubert syndrome. Front Pediatr 2023; 11:1102639. [PMID: 37547106 PMCID: PMC10401045 DOI: 10.3389/fped.2023.1102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background and aims Joubert syndrome (JBTS, OMIM # 213300) is a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosing JBTS. It is a clinically and genetically heterogeneous disorder involving mutations in more than 40 ciliopathy-related genes. However, long-term follow-up data are scarce, and further research is needed to determine the abundant phenotypes and genetics of this disorder. The study aimed to summarize clinical manifestations, particular appearance on cranial imaging, genetic data, and prognostic features of patients with JBTS. Methods A retrospective case review of 36 cases of JBTS from May 1986 to December 2021 was performed. Clinical data of JBTS patients with development retardation and molar tooth sign on cranial imaging as the main features were analyzed. Genetic testing was performed according to consent obtained from patients and their families. The Gesell Developmental Scale was used to evaluate the intelligence level before and after treatment. The children were divided into a purely neurological JBTS (pure JBTS) group and JBTS with multi-organ system involvement group and then followed up every 3-6 months. Results We enrolled 18 males and 18 females. Thirty-four (94.44%) cases had developmental delay, one patient (2.78%) had strabismus, and one patient (2.78%) had intermittent dizziness. There was one case co-morbid with Lesch-Nyhan syndrome. Three-quarters of cases had one or more other organ or system involvement, with a greater predilection for vision and hearing impairment. JBTS could also involve the skin. Thirty-one cases (86.11%) showed a typical molar tooth sign, and five cases showed a bat wing sign on cranial imaging. Abnormal video electroencephalogram (VEEG) result was obtained in 7.69% of cases. We found six JBTS-related novel gene loci variants: CPLANE1: c.4189 + 1G > A, c.3101T > C(p.Ile1034Thr), c.3733T > C (p.Cys1245Arg), c.4080G > A(p.Lys1360=); RPGRIP1l: c.1351-11A > G; CEP120: c.214 C > T(p.Arg72Cys). The CHD7 gene may be potentially related to the occurrence of JBTS. Analysis showed that the prognosis of pure JBTS was better than that of JBTS with neurological and non-neurological involvement after the formal rehabilitation treatment (P < 0.05). Of the three children with seizures, two cases had epilepsy with a poor prognosis, and another case had breath-holding spells. Conclusion Our findings indicate that early cranial imaging is helpful for the etiological diagnosis of children with unexplained developmental delay and multiple malformations. Patients with JBTS may have coexisting skin abnormalities. The novel gene loci of CPLANE1, RPGRIP1l, and CEP120 were associated with JBTS in our study and provided significant information to enrich the related genetic data. Future works investigating several aspects of the association between CHD7 gene and JBTS merit further investigation. The prognosis of children with pure JBTS is better than that of children with JBTS with non-neurological involvement.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - He Yao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Pediatric Development and Behavior, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Lee EY, Hughes JW. Rediscovering Primary Cilia in Pancreatic Islets. Diabetes Metab J 2023; 47:454-469. [PMID: 37105527 PMCID: PMC10404530 DOI: 10.4093/dmj.2022.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Primary cilia are microtubule-based sensory and signaling organelles on the surfaces of most eukaryotic cells. Despite their early description by microscopy studies, islet cilia had not been examined in the functional context until recent decades. In pancreatic islets as in other tissues, primary cilia facilitate crucial developmental and signaling pathways in response to extracellular stimuli. Many human developmental and genetic disorders are associated with ciliary dysfunction, some manifesting as obesity and diabetes. Understanding the basis for metabolic diseases in human ciliopathies has been aided by close examination of cilia action in pancreatic islets at cellular and molecular levels. In this article, we review the evidence for ciliary expression on islet cells, known roles of cilia in pancreas development and islet hormone secretion, and summarize metabolic manifestations of human ciliopathy syndromes. We discuss emerging data on primary cilia regulation of islet cell signaling and the structural basis of cilia-mediated cell crosstalk, and offer our interpretation on the role of cilia in glucose homeostasis and human diseases.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jing W. Hughes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
16
|
Zhu T, Shen Y, Sun Z, Han X, Wei X, Li W, Lu C, Cheng T, Zou X, Li H, Cao Z, Gao H, Ma X, Luo M, Sui R. Clinical and Molecular Features of a Chinese Cohort With Syndromic and Nonsyndromic Retinal Dystrophies Related to the CEP290 Gene. Am J Ophthalmol 2023; 248:96-106. [PMID: 36493848 DOI: 10.1016/j.ajo.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To reveal the clinical and genetic features of 54 Chinese pedigrees with syndromic or nonsyndromic retinal dystrophies related to CEP290 and to explore the genotype-phenotype correlation. DESIGN Retrospective cohort study. METHODS Patients diagnosed with nonsyndromic inherited retinal dystrophy (IRD) or syndromic ciliopathy (SCP) were enrolled. We identified 61 patients from 54 families carrying biallelic pathogenic CEP290 variants using next-generation sequencing, Sanger sequencing, and co-segregation validation. Genotype-phenotype correlation was evaluated. RESULTS This study included 37 IRD patients from 32 families and 24 patients with SCP from 22 pedigrees. Four retinal dystrophy phenotypes were confirmed: Leber congenital amaurosis (LCA, 46/61), early-onset severe retinal dystrophy (EOSRD, 4/61), retinitis pigmentosa (RP, 10/61), and cone-rod dystrophy (CORD, 1/61). The SCP phenotypes included Joubert syndrome (JS) (23/24) and Bardet-Biedl syndrome (BBS) (1/24). We detected 73 different CEP290 variants, of which 33 (45.2%) were not previously reported. Two novel copy number variations (CNVs) and 1 novel pathogenic synonymous change were identified. The most recurrent alterations in the IRD and SCP were p.Q123* (6/64, 9.4%) and p.I556Ffs*17 (10/44, 22.7%), respectively. IRD patients carried more stop-gain alleles (25/64, 39.1%), whereas SCP patients carried more frameshift alleles (23/44, 52.3%). CONCLUSIONS LCA was the most common retinal dystrophy phenotype, and JS was the most prevalent syndrome in CEP290 patients; RP/CORD and BBS may be present in early adulthood. The hot spot variants and distribution of genotypes were distinct between IRD and SCP. Our study expands the CEP290 variant spectrum and enhances the current knowledge of CEP290 heterogeneity.
Collapse
Affiliation(s)
- Tian Zhu
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Yue Shen
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Zixi Sun
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xiaoxu Han
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Xing Wei
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Wuyi Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Chao Lu
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Tingting Cheng
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xuan Zou
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Hui Li
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.)
| | - Zongfu Cao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Huafang Gao
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Xu Ma
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China
| | - Minna Luo
- and National Human Genetic Resources Center, National Research Institute for Family Planning (Y.S., C.L., T.C., Z.C., H.G., X.M., M.L.), Beijing, China.
| | - Ruifang Sui
- From the Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (T.Z., Z.S., X.H., X.W., W.L., X.Z., H.L., R.S.).
| |
Collapse
|
17
|
Raina R, Lomanta F, Singh S, Anand A, Kalra R, Enukonda V, Barat O, Pandher D, Sethi SK. Cystic Diseases of the Kidneys: From Bench to Bedside. Indian J Nephrol 2023; 33:83-92. [PMID: 37234435 PMCID: PMC10208543 DOI: 10.4103/ijn.ijn_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 02/25/2023] Open
Abstract
Exploration into the causes of hereditary renal cystic diseases demonstrates a deep-rooted connection with the proteomic components of the cellular organelle cilia. Cilia are essential to the signaling cascades, and their dysfunction has been tied to a range of renal cystic diseases initiating with studies on the oak ridge polycystic kidney (ORPK) mouse model. Here, we delve into renal cystic pathologies that have been tied with ciliary proteosome and highlight the genetics associated with each. The pathologies are grouped based on the mode of inheritance, where inherited causes that result in cystic kidney disease phenotypes include autosomal dominant and autosomal recessive polycystic kidney disease, nephronophthisis (Bardet-Biedl syndrome and Joubert Syndrome), and autosomal dominant tubulointerstitial kidney disease. Alternatively, phakomatoses-, also known as neurocutaneous syndromes, associated cystic kidney diseases include tuberous sclerosis (TS) and Von Hippel-Lindau (VHL) disease. Additionally, we group the pathologies by the mode of inheritance to discuss variations in recommendations for genetic testing for biological relatives of a diagnosed individual.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Francis Lomanta
- Department of Nephrology, Akron Children’s Hospital, Akron, USA
| | - Siddhartha Singh
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Alisha Anand
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Riti Kalra
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vignasiddh Enukonda
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Oren Barat
- College of Medicine, Northeast Ohio Medical University, Rootstown, USA
| | - Davinder Pandher
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Sidharth K Sethi
- Kidney and Renal Transplant Institute, Medanta, The Medicity Hospital, Gurugram, Haryana, India
| |
Collapse
|
18
|
Wang H, Nie W, Wang C, Wang Z, Zheng Y. Novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant in a child patient with Joubert syndrome. Open Life Sci 2023; 18:20220542. [PMID: 36789003 PMCID: PMC9896164 DOI: 10.1515/biol-2022-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 02/04/2023] Open
Abstract
Joubert syndrome (JBTS) is a class of heterogeneous ciliopathy genetically associated with CPLANE1 mutations. The characteristics of clinical phenotypes and CPLANE1 variants were analyzed in a 2-month-old patient. A 2-month-old patient with JBTS was diagnosed after clinical evaluation including family history, physical examination, cerebral MRI, ultrasonography imaging, VEGG, ocular fundus examination, and comprehensive blood and urine testing. Whole exome sequencing (WES) was performed to detect CPLANE1 variants, and Sanger sequencing was used to confirm the variants. This JBTS patient presented with oculomotor apraxia, dysregulation of breathing pattern, and ataxia. MRI revealed poor continuity of cerebelli, batwing appearance, and molar tooth sign. This patient was noted with abnormal hematology, dysregulation of hepatic function, thyroid function, immunity, and renal function, and encephalopathy. CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) variants were noticed in the patient as a pathogenic variant and caused autosomal recessive inheritance. The JBTS patient with mutations in CPLANE1 (c.8948dupT (p.P2984Tfs*7) and c.247G > T (p.G83X)) developed JBTS phenotypes. The novel CPLANE1 c.8948dupT (p.P2984Tfs*7) variant will assist clinicians and geneticists in reaching a precise diagnosis for JBTS.
Collapse
Affiliation(s)
- Huiping Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Wensha Nie
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Chunxia Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Zuohua Wang
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| | - Yuxia Zheng
- Department of Neurology, Kunming Children’s Hospital, Kunming Children’s Hospital Affiliated with Kunming Medical University, No. 288, Qianxing Road, Xishan District, Kunming 650228, China
| |
Collapse
|
19
|
Manti S, Gitto E, Ceravolo I, Mancuso A, Ceravolo A, Salpietro A, Farello G, Chimenz R, Iapadre G, Battaglia F, Cuppari C. A Brief Focus on Joubert Syndrome and Related Acute Complications. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) and related disorders are a group of congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign, a complex midbrain–hindbrain malformation. Moreover, JS may be associated with multiorgan involvement, mainly nephronophthisis, hepatic fibrosis, retinal dystrophy, and other abnormalities with both inter- and intra-familial variability. Therefore, these patients should be followed by both diagnostic protocol and multidisciplinary approach to assess multiorgan involvement. Here, we briefly summarize the possible complications in patients with JS.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Francesco Battaglia
- Department of Biomedical Sciences and Advanced Therapies, Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
20
|
Conti G, Farello G, Ceravolo MD, Fusco M, Cuppari C, Mancuso A, Ceravolo I, David E, Iapadre G, Scorrano G, Fiorile MF, Chimenz R. Joubert Syndrome and Renal Implication. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractTwenty-five to 30% of patients with Joubert syndrome (JS) have renal involvement. Two forms of renal disease (RD) have traditionally been described. The less common form is the Dekaban–Arima syndrome, a JS RD that includes congenital blindness and occasional encephalocele. The other, more common RD is juvenile nephronophthisis (NPHP), that presents a progressive interstitial fibrosis, associated with small cysts at the corticomedullary junction. NPHP is the most frequent genetic cause for end-stage RD in the first three decades of life. Symptoms start at approximately 6 years of age with urine concentrating defects, polydipsia, polyuria, and secondary enuresis.
Collapse
Affiliation(s)
- Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuele David
- Ragnostic Unit, A. O. Papardo, Messina, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
21
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Xionghui Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
22
|
Ullah I, Khan KS, Afridi RU, Shirazi F, Naz I, Ambreen A, Singh M, Asghar MS. Joubert syndrome a rare entity and role of radiology: A case report. Ann Med Surg (Lond) 2022; 79:104113. [PMID: 35860112 PMCID: PMC9289497 DOI: 10.1016/j.amsu.2022.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction and importance Case presentation Clinical discussion Conclusion Joubert syndrome (JS) is rare entity characterized by set of cerebellum and midbrain abnormalities. This case study highlighted a 17-month-old baby presented with typical JS features diagnosed radiologically. The patient was given multivitamins, and the parents were counseled, educated on other supportive therapies.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Pediatrics, Naseer Teaching Hospital, Peshawar, Pakistan
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | | | - Rifayat Ullah Afridi
- Department of Pediatrics, Naseer Teaching Hospital, Peshawar, Pakistan
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Farida Shirazi
- Department of Pediatrics, Naseer Teaching Hospital, Peshawar, Pakistan
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Irum Naz
- Department of Pediatrics, Naseer Teaching Hospital, Peshawar, Pakistan
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Aneela Ambreen
- Department of Pediatrics, Naseer Teaching Hospital, Peshawar, Pakistan
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Manjeet Singh
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Muhammad Sohaib Asghar
- Dow University of Health Sciences, Karachi, Pakistan
- Corresponding author. Department of Internal Medicine, Dow University of Health Sciences–Ojha Campus, B-328 Block 6, Gulshan-e-Iqbal, Karachi, 75300, Pakistan.
| |
Collapse
|
23
|
König JC, Karsay R, Gerß J, Schlingmann KP, Dahmer-Heath M, Telgmann AK, Kollmann S, Ariceta G, Gillion V, Bockenhauer D, Bertholet-Thomas A, Mastrangelo A, Boyer O, Lilien M, Decramer S, Schanstra J, Pohl M, Schild R, Weber S, Hoefele J, Drube J, Cetiner M, Hansen M, Thumfart J, Tönshoff B, Habbig S, Liebau MC, Bald M, Bergmann C, Pennekamp P, Konrad M. Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney Int Rep 2022; 7:2016-2028. [PMID: 36090483 PMCID: PMC9459005 DOI: 10.1016/j.ekir.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3–12.0); NPHP1, 13.5 years (interquartile range 10.5–16.5); NPHP4, 16.0 years (interquartile range 11.0–25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7–28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.
Collapse
|
24
|
Lange KI, Best S, Tsiropoulou S, Berry I, Johnson CA, Blacque OE. Interpreting ciliopathy-associated missense variants of uncertain significance (VUS) in Caenorhabditis elegans. Hum Mol Genet 2022; 31:1574-1587. [PMID: 34964473 PMCID: PMC9122650 DOI: 10.1093/hmg/ddab344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Agarwal BD, Mohapatra S, Singh S, Guduru V, Nayak SR. Neonatal Joubert Syndrome With Renal Involvement and Respiratory Distress. Cureus 2022; 14:e24907. [PMID: 35698700 PMCID: PMC9186261 DOI: 10.7759/cureus.24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Joubert syndrome (JS) is a rare autosomal recessive neurodevelopmental disorder with characteristic clinical presentation of hyperpnea-apnea spells, hypotonia, dysmorphic facies, and nystagmus and imaging features of molar tooth sign and cerebellar vermian hypoplasia-dysplasia. Early diagnosis is needed for timely management and favorable outcome. We present a case of neonatal JS with renal involvement presenting with respiratory distress and highlight the characteristic clinical and imaging findings. On examination, the baby had low set ears, a large protruding tongue, hypertelorism, and a depressed nasal bridge. Ultrasonography (USG) abdomen showed echogenic kidneys with cortical and medullary cysts. Magnetic Resonance Imaging (MRI) brain showed classical molar tooth sign, vermian hypoplasia-dysplasia, and thinning of the corpus callosum.
Collapse
|
26
|
Vázquez-López ME, Silveira-Cancela M, Loidi-Fernández L, Pérez-Gay L, Pena-Gil P, Juberias-Alzueta C, Pérez-Pacín R. [Joubert syndrome and neurofibromatosis type 1]. Rev Neurol 2022; 74:312-313. [PMID: 35484703 PMCID: PMC11502171 DOI: 10.33588/rn.7409.2021446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 06/14/2023]
Affiliation(s)
| | | | - L Loidi-Fernández
- Hospital Clínico Universitario de Santiago, Santiago de Compostela, España
| | - L Pérez-Gay
- Complejo Hospitalario Universitario de Lugo, Lugo, España
| | - P Pena-Gil
- Complejo Hospitalario Universitario de Lugo, Lugo, España
| | | | | |
Collapse
|
27
|
Spahiu L, Behluli E, Grajçevci-Uka V, Liehr T, Temaj G. Joubert syndrome: Molecular basis and treatment. JOURNAL OF MOTHER AND CHILD 2022; 26:118-123. [PMID: 36803942 PMCID: PMC10032320 DOI: 10.34763/jmotherandchild.20222601.d-22-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 02/23/2023]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare genetic autosomal recessive disease characterized by cerebellar vermis hypoplasia, a distinctive malformation of the cerebellum and the so-called "molar tooth sign." Other characteristic features are hypotonia with lateral ataxia, intellectual disability/mental retardation, oculomotor apraxia, retinal dystrophy, abnormalities in the respiratory system, renal cysts, hepatic fibrosis, and skeletal changes. Such pleiotropic characteristics are typical of many disorders involving primary cilium aberrations, providing a significant overlap between JS and other ciliopathies such as nephronophthisis, Meckel syndrome, and Bardet-Biedl syndrome. This review will describe some characteristics of JS associated with changes in 35 genes, and will also address subtypes of JS, clinical diagnosis, and the future of therapeutic developments.
Collapse
Affiliation(s)
- Lidvana Spahiu
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | - Emir Behluli
- Department of Pediatrics, University of Prishtina, Prishtina, Kosovo
| | | | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, Jena, Germany
| | - Gazmend Temaj
- Human Genetics, College UBT, Faculty of Pharmacy Prishtina, PrishtinaKosovo
| |
Collapse
|
28
|
Forsyth R, Parisi MA, Altintas B, Malicdan MC, Vilboux T, Knoll J, Brooks BP, Zein WM, Gahl WA, Toro C, Gunay-Aygun M. Systematic analysis of physical examination characteristics of 94 individuals with Joubert syndrome: Keys to suspecting the diagnosis. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:121-130. [PMID: 35312150 PMCID: PMC9117497 DOI: 10.1002/ajmg.c.31966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022]
Abstract
Joubert syndrome (JS) is a neurodevelopmental disorder characterized by hypotonia and developmental delay, as well as the obligatory molar tooth sign on brain imaging. Since hypotonia and developmental delay are nonspecific features, there must be a high level of clinical suspicion of JS so that the diagnostic brain imaging and/or molecular testing for the >38 genes associated with JS is/are obtained. The goal of this study was to analyze clinical photographs of a cohort of patients with JS to define a list of physical examination features that should prompt investigation for JS. Analysis of photographs from 94 individuals with JS revealed that there is a recognizable pattern of facial features in JS that changes over time as individuals age. Macrocephaly, head tilting even when looking straight ahead, eye movement abnormalities (oculomotor apraxia, nystagmus, strabismus), and ptosis are common in those with JS. Distinctive features in younger children include triangular-shaped open mouth with tongue protrusion; in older children and adults, mandibular prognathia and prominent nasal bridge are common.
Collapse
Affiliation(s)
- RaeLynn Forsyth
- Department of Pediatrics and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa A Parisi
- Intellectual & Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - May Christine Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Thierry Vilboux
- Inova Functional Laboratory, Inova Health System, Fairfax, Virginia, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jasmine Knoll
- Division of Genetics and Genomics, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Camilo Toro
- Undiagnosed Disease Network, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meral Gunay-Aygun
- Department of Pediatrics and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:72-88. [PMID: 35238134 PMCID: PMC9314610 DOI: 10.1002/ajmg.c.31963] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 01/20/2023]
Abstract
Joubert syndrome (JS) is a genetically heterogeneous primary ciliopathy characterized by a pathognomonic cerebellar and brainstem malformation, the “molar tooth sign,” and variable organ involvement. Over 40 causative genes have been identified to date, explaining up to 94% of cases. To date, gene‐phenotype correlates have been delineated only for a handful of genes, directly translating into improved counseling and clinical care. For instance, JS individuals harboring pathogenic variants in TMEM67 have a significantly higher risk of liver fibrosis, while pathogenic variants in NPHP1, RPGRIP1L, and TMEM237 are frequently associated to JS with renal involvement, requiring a closer monitoring of liver parameters, or renal functioning. On the other hand, individuals with causal variants in the CEP290 or AHI1 need a closer surveillance for retinal dystrophy and, in case of CEP290, also for chronic kidney disease. These examples highlight how an accurate description of the range of clinical symptoms associated with defects in each causative gene, including the rare ones, would better address prognosis and help guiding a personalized management. This review proposes to address this issue by assessing the available literature, to confirm known, as well as to propose rare gene‐phenotype correlates in JS.
Collapse
Affiliation(s)
- Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Meyer JR, Krentz AD, Berg RL, Richardson JG, Pomeroy J, Hebbring SJ, Haws RM. Kidney Failure in Bardet-Biedl Syndrome. Clin Genet 2022; 101:429-441. [PMID: 35112343 PMCID: PMC9311438 DOI: 10.1111/cge.14119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore kidney failure (KF) in Bardet–Biedl syndrome (BBS), focusing on high‐risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin‐like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin‐like genes highlighting the value of comprehensive genetic investigation.
Collapse
Affiliation(s)
- Jennifer R Meyer
- University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | - Richard L Berg
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | | | - Jeremy Pomeroy
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Scott J Hebbring
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert M Haws
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA.,Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
31
|
Mandura RA, Arishi NA. Joubert Syndrome Presenting With Oculomotor Apraxia and Motor Developmental Delay: A Case Report From a Neuro-Ophthalmology Clinic in Saudi Arabia. Cureus 2022; 14:e21638. [PMID: 35228979 PMCID: PMC8879619 DOI: 10.7759/cureus.21638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/05/2022] Open
|
32
|
Knoll J, Altintas B, Gahl WA, Parisi M, Gunay-Aygun M. Growth in Joubert syndrome: Growth curves and physical measurements with correlation to genotype and hepatorenal disease in 170 individuals. Am J Med Genet A 2021; 188:847-857. [PMID: 34951506 DOI: 10.1002/ajmg.a.62593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Joubert syndrome (JS) is a genetically heterogenous disorder of nonmotile cilia with a characteristic "molar tooth sign" on axial brain imaging. Clinical features can include developmental delay, kidney failure, liver disease, and retinal dystrophy. Prospective growth and measurement data on 170 individuals with JS were collected, including parental measurements, birth measurements, and serial measures when available. Analysis of growth parameters in the context of hepatorenal disease, genotype, and other features was performed on 100 individuals assessed at the National Institutes of Health Clinical Center. Individuals with JS had shorter stature despite normal growth velocity and were shorter than predicted for mid-parental height. Individuals were lighter in weight, resulting in a normal body mass index (BMI). Head circumference was larger, averaging 1.9 Z-scores above height. At birth, head circumference was proportional to length. Individuals with variants in CPLANE1 had a larger head circumference compared to other genotypes; individuals with evidence of liver disease had lower weight and BMI; and individuals with polydactyly had shorter height. Here we present growth curves and physical measurements for Joubert syndrome based on the largest collection of individuals with this disorder to aid in clinical management and diagnosis.
Collapse
Affiliation(s)
- Jasmine Knoll
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Meral Gunay-Aygun
- Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Rosenberg AGW, Pater MRA, Pellikaan K, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, van Eeghen A, Veen JMC, van der Meulen JJ, van Aalst-van Wieringen N, Hoekstra FME, van der Lely AJ, de Graaff LCG. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of 'Internal Medicine for Rare Genetic Syndromes'. J Clin Med 2021; 10:jcm10225457. [PMID: 34830739 PMCID: PMC8622899 DOI: 10.3390/jcm10225457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Minke R. A. Pater
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh, 5803 DN Venray, The Netherlands;
| | - Agnies van Eeghen
- ‘s Heeren Loo, Care Group, 3818 LA Amersfoort, The Netherlands;
- Department of Pediatrics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - José M. C. Veen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Jiske J. van der Meulen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Nina van Aalst-van Wieringen
- Department of Physical Therapy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Department of Internal Medicine, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENCORE—Dutch Center of Reference for Neurodevelopmental Disorders, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Turner Syndrome, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Disorders of Sex Development, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
34
|
Tian C, Chen J, Ming X, Zeng X, Wang R. A 10-year-old girl with Joubert syndrome and chronic kidney disease and its related complications. Quant Imaging Med Surg 2021; 11:4223-4226. [PMID: 34476203 DOI: 10.21037/qims-20-943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/01/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Chong Tian
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiaxiang Chen
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou University School of Medicine, Guiyang, China
| | - Xing Ming
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
35
|
Romaniello R, Gagliardi C, Desalvo P, Provenzi L, Battini R, Bertini E, Bonati MT, Briguglio M, D'Arrigo S, Dotti MT, Giordano L, Macaluso C, Moroni I, Nuovo S, Santucci M, Signorini S, Stanzial F, Valente EM, Borgatti R. Challenges and resources in adult life with Joubert syndrome: issues from an international classification of functioning (ICF) perspective. Disabil Rehabil 2021; 44:4966-4973. [PMID: 34010585 DOI: 10.1080/09638288.2021.1922516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Joubert Syndrome (JS) is a rare inherited neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation (i.e. the molar tooth sign) and variable organ involvement. The aim of the present study was to describe functional limitations and disabilities in a large sample of adult patients with a diagnosis of JS. METHODS We administered the International Classification of Functioning (ICF) checklist to thirty-six adult Italian patients with JS or their caregivers through telephone calls. RESULTS None-to-mild impairment was documented for basic cognitive and mental functions, whereas severe deficit emerged for higher-order skills and language. A mismatch between individuals' capacity for daily activity and social participation and the actual performance in these fields emerged, suggesting that adults with JS may greatly benefit from external support from the caring environment. Indeed, specific facilitators were highlighted, including communication technologies as well as family members, healthcare professionals and peers support. Mild-to-severe barriers have been identified by adult patients with JS in the domains of services, systems and policies. CONCLUSIONS These findings highlight challenges and barriers for adults with JS in areas of daily functioning that may be improved by investing in rehabilitation care models that embed social support programs and policies into clinical interventions.IMPLICATIONS FOR REHABILITATIONChildren with Joubert Syndrome, a child-onset rare inherited neurodevelopmental condition, are growing up and becoming adults; a life course approach in rehabilitation is needed;There is a substantial lack of information on the long-term adaptive daily functioning of children with a diagnosis of Joubert Syndrome;In this paper, the International Classification of Functioning (ICF) was applied to assess the daily functioning in people with JS;Severe deficits emerged for high-order skills and language, whereas the use of communication technologies and the engagement of family members were highlighted as key facilitators;These findings highlight the need for a change of paradigm in the care model of subjects with JS, with the embedding of social support in rehabilitation programs.
Collapse
Affiliation(s)
- Romina Romaniello
- Scientific Institute IRCCS E. Medea, Child Neuropsychiatry and Neurorehabilitation Unit, Lecco, Italy
| | - Chiara Gagliardi
- Scientific Institute IRCCS E. Medea, Child Neuropsychiatry and Neurorehabilitation Unit, Lecco, Italy
| | - Patrizia Desalvo
- Scientific Institute IRCCS E. Medea, Child Neuropsychiatry and Neurorehabilitation Unit, Lecco, Italy
| | - Livio Provenzi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Bertini
- Department of Neuroscience and Neurorehabilitation, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marilena Briguglio
- Child and Adolescent Neuropsychiatry, University of Messina, Messina, Italy
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS, Istituto Neurologico C. Besta, Milan, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Division, Spedali Civili, Brescia, Italy
| | - Claudio Macaluso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nuovo
- Neurogenetics Unit, IRCCS Fondazione Santa Lucia, Rome.,Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Margherita Santucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine and Cytogenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Shamsudheen MP, Das U, Taduri G, Guditi S, Karthik R, Thakur R. A Case of Joubert Syndrome with Chronic Kidney Disease. Indian J Nephrol 2021; 31:61-63. [PMID: 33994691 PMCID: PMC8101675 DOI: 10.4103/ijn.ijn_287_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 11/04/2022] Open
Abstract
Joubert syndrome is a genetically heterogeneous disorder that belongs to the group of cerebello-oculo-renal syndromes. It is characterised by neurodevelopmental abnormalities and complex midbrain-hindbrain malformation, visible on brain imaging as a molar tooth sign. It is classified as a ciliopathy and has variable renal involvement. Herein, we report a case of a 9-year-old boy with developmental delay, presented as chronic kidney disease and evaluation showed features of Joubert syndrome. Recognition of specific clinical and radiological findings will help in early diagnosis and appropriate care.
Collapse
Affiliation(s)
- M P Shamsudheen
- Department of Nephrology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Uttara Das
- Department of Nephrology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Gangadhar Taduri
- Department of Nephrology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Swarnalatha Guditi
- Department of Nephrology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Raja Karthik
- Department of Nephrology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Rajani Thakur
- Department of Radiodiagnosis, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| |
Collapse
|
37
|
Lazaro-Guevara J, Morales JF, Wright AH, Gunville R, Simeone C, Frodsham SG, Pezzolesi MH, Zaffino CA, Al-Rabadi L, Ramkumar N, Pezzolesi MG. Targeted Next-Generation Sequencing Identifies Pathogenic Variants in Diabetic Kidney Disease. Am J Nephrol 2021; 52:239-249. [PMID: 33774617 PMCID: PMC8653779 DOI: 10.1159/000514578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetes is the most common cause of chronic kidney disease (CKD). For patients with diabetes and CKD, the underlying cause of their kidney disease is often assumed to be a consequence of their diabetes. Without histopathological confirmation, however, the underlying cause of their disease is unclear. Recent studies have shown that next-generation sequencing (NGS) provides a promising avenue toward uncovering and establishing precise genetic diagnoses in various forms of kidney disease. METHODS Here, we set out to investigate the genetic basis of disease in nondiabetic kidney disease (NDKD) and diabetic kidney disease (DKD) patients by performing targeted NGS using a custom panel comprising 345 kidney disease-related genes. RESULTS Our analysis identified rare diagnostic variants based on ACMG-AMP guidelines that were consistent with the clinical diagnosis of 19% of the NDKD patients included in this study. Similarly, 22% of DKD patients were found to carry rare pathogenic/likely pathogenic variants in kidney disease-related genes included on our panel. Genetic variants suggestive of NDKD were detected in 3% of the diabetic patients included in this study. DISCUSSION/CONCLUSION Our findings suggest that rare variants in kidney disease-related genes in a diabetic background may play a role in the pathogenesis of DKD and NDKD in patients with diabetes.
Collapse
Affiliation(s)
- Jose Lazaro-Guevara
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio Fierro Morales
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - A. Hunter Wright
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - River Gunville
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Simeone
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Scott G. Frodsham
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Melissa H. Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Courtney A. Zaffino
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Marcus G. Pezzolesi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
38
|
Any modality of renal replacement therapy can be a treatment option for Joubert syndrome. Sci Rep 2021; 11:462. [PMID: 33432080 PMCID: PMC7801635 DOI: 10.1038/s41598-020-80712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/24/2020] [Indexed: 11/09/2022] Open
Abstract
Joubert syndrome (JS) is an inherited ciliopathy characterized by a distinctive cerebellar and brain stem malformation which is known as the "molar tooth sign" on axial brain images, hypotonia, and developmental delay. Approximately 25-30% of patients with JS have kidney disease and many of them progress to end-stage kidney disease (ESKD). However, there are few reports on the outcomes of renal replacement therapy (RRT) in patients with JS and ESKD. In this study, we clarified the clinical features, treatment, and outcomes of patients with JS who underwent RRT. We retrospectively analyzed the medical records and clinical characteristics of 11 patients with JS who underwent RRT between June 1994 and July 2019. Data are shown as the median (range). Gene analysis was performed in 8 of the 11 cases, and CEP290 mutations were found in four patients, two had TMEM67 mutations, one had a RPGRIP1L mutation, and one patient showed no mutation with the panel exome analysis. Complications in other organs included hydrocephalus in two cases, retinal degeneration in eight cases, coloboma in one case, liver diseases in four cases, and polydactyly in one case. Peritoneal dialysis (PD) was introduced in seven cases, with a median treatment duration of 5.4 (3.4-10.7) years. Hemodialysis was performed using arteriovenous fistula in two cases, and kidney transplantation was performed 9 times in eight cases. Only one of the grafts failed during the observation period of 25.6 (8.2-134.2) months. The glomerular filtration rate at the final observation was 78.1 (41.4-107.7) mL/min/1.73 m2. The median age at the final observation was 13.4 (5.6-25.1) years, and all patients were alive except one who died of hepatic failure while on PD. Any type of RRT modality can be a treatment option for patients with JS and ESKD.
Collapse
|
39
|
Zhang YW, Qu HB, Long N, Leng XY, Liu YQ, Yang Y. A rare mutant of OFD1 gene responsible for Joubert syndrome with significant phenotype variation. Mol Genet Genomics 2020; 296:33-40. [PMID: 32944789 DOI: 10.1007/s00438-020-01726-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023]
Abstract
Joubert syndrome (JBTS), a rare genetic disorder resulted from primary cilium defects or basal-body dysfunction, is characterized by agenesis of cerebellar vermis and abnormal brain stem. Both genotypes and phenotypes of JBTS are highly heterogeneous. The identification of pathogenic gene variation is essential for making a definite diagnosis on JBTS. Here, we found that hypoplasia of cerebellar vermis occurred in three male members in a Chinese family. Then, we performed whole exome sequencing to identify a novel missense mutation c.599T > C (p. L200P) in the OFD1 gene which is the candidate gene of X-linked JBTS (JBST10). The following analysis showed that the variant was absent in the 1000 Genomes, ExAC and the 200 female controls; the position 200 Leucine residue was highly conserved across species; the missense variant was predicted to be deleterious using PolyPhen-2, PROVEAN, SIFT and Mutation Taster. The OFD1 expression was heavily lower in the proband and an induced male fetus compared with a healthy male with a wild-type OFD1 gene. The in vitro expression analysis of transiently transfecting c.599T or c.599C plasmids into HEK-293T cells confirmed that the missense mutation caused OFD1 reduction at the protein level. And further the mutated OFD1 decreased the level of Gli1 protein, a read-out of Sonic hedgehog (SHH) signaling essential for development of central neural system. A known pathogenic variant c.515T > C (p. L172P) showed the similar results. All of these observations suggested that the missense mutation causes the loss function of OFD1, resulting in SHH signaling impairs and brain development abnormality. In addition, the three patients have Dandy-Walker malformation, macrogyria and tetralogy of Fallot, respectively, the latter two of which are firstly found in JBTS10 patients. In conclusion, our findings expand the context of genotype and phenotype in the JBTS10 patients.
Collapse
Affiliation(s)
- Yang-Wei Zhang
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.,Department of Neurology, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hai-Bo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Radiology, Ministry of Education, West China Second University Hospital, Chengdu, 610041, China
| | - Ning Long
- Department of Obstetrics and Gynecology, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Xiang-You Leng
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yun-Qiang Liu
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yuan Yang
- State Key Laboratory of Biotherapy, Department of Medical Genetics, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
40
|
Bhowmick SS, Lang AE. Movement Disorders and Renal Diseases. Mov Disord Clin Pract 2020; 7:763-779. [PMID: 33043074 DOI: 10.1002/mdc3.13005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Movement disorders often emerge from the interplay of complex pathophysiological processes involving the kidneys and the nervous system. Tremor, myoclonus, ataxia, chorea, and parkinsonism can occur in the context of renal dysfunction (azotemia and electrolyte abnormalities) or they can be part of complications of its management (dialysis and renal transplantation). On the other hand, myoglobinuria from rhabdomyolysis in status dystonicus and certain drugs used in the management of movement disorders can cause nephrotoxicity. Distinct from these well-recognized associations, it is important to appreciate that there are several inherited and acquired disorders in which movement abnormalities do not occur as a consequence of renal dysfunction or vice versa but are manifestations of common pathophysiological processes affecting the nervous system and the kidneys. These disorders are the emphasis of this review. Increasing awareness of these conditions among neurologists may help them to identify renal involvement earlier, take timely intervention by anticipating complications and focus on therapies targeting common mechanisms in addition to symptomatic management of movement disorders. Recognition of renal impairment in a patient with complex neurological presentation may narrow down the differentials and aid in reaching a definite diagnosis.
Collapse
Affiliation(s)
- Suvorit S Bhowmick
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| |
Collapse
|
41
|
Liu Q, Wang H, Zhao J, Liu Z, Sun D, Yuan A, Luo G, Wei W, Hou M. Four novel compound heterozygous mutations in C5orf42 gene in patients with pure and mild Joubert syndrome. Int J Dev Neurosci 2020; 80:455-463. [PMID: 32233090 DOI: 10.1002/jdn.10029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Joubert syndrome (JS) is a rare clinically and genetically heterogeneous disease. Using whole or targeted exome sequencing, we identified four novel compound heterozygous mutations in chromosome 5 open reading frame 42 gene (C5orf42), including c.2876C>T (missense mutation) and c.3921+1G>A (splicing mutation), c.2292 -2delA (splicing mutation) and c.4067C>T (missense mutation), c.6997_6998insT (frameshift mutation) and c.8710C>T (nonsense mutation), c.3981G>C (nonsense mutation) and c.230 _233del (frameshift mutation), in four Chinese JS families. They were all inherited from their heterozygosis parents in the autosomal recessive inheritance mode. Pure JS clinical manifestations and mild neuroimaging findings were found in these patients. These verified the previous findings that C5orf42 mutations generally resulted in a purely neurological Joubert phenotype, and neuroimaging findings were mild in JS with C5orf42 mutations. Our report analyzed these C5orf42 mutations-associated phenotypes and neuroimaging findings in JS and updated the genetic variation spectrum of JS caused by C5orf42.These will help clinicians and geneticists reach a more accurate diagnosis for JS.
Collapse
Affiliation(s)
- Qiuyan Liu
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Haiqiao Wang
- Department of Traditional Chinese Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianhui Zhao
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Zhicui Liu
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Dianrong Sun
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Aiyun Yuan
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Guangjin Luo
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| | - Wei Wei
- Kangso Medical Inspection Co., Ltd, Beijing, P.R. China
| | - Mei Hou
- Department of Neurology and Rehabilitation, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
42
|
Nuovo S, Fuiano L, Micalizzi A, Battini R, Bertini E, Borgatti R, Caridi G, D’Arrigo S, Fazzi E, Fischetto R, Ghiggeri GM, Giordano L, Leuzzi V, Romaniello R, Signorini S, Stringini G, Zanni G, Romani M, Valente EM, Emma F. Impaired urinary concentration ability is a sensitive predictor of renal disease progression in Joubert syndrome. Nephrol Dial Transplant 2020; 35:1195-1202. [PMID: 30403813 PMCID: PMC7417010 DOI: 10.1093/ndt/gfy333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Joubert syndrome (JS) is an inherited ciliopathy characterized by a complex midbrain-hindbrain malformation and multiorgan involvement. Renal disease, mainly juvenile nephronophthisis (NPH), was reported in 25-30% patients although only ∼18% had a confirmed diagnosis of chronic kidney disease (CKD). NPH often remains asymptomatic for many years, resulting in delayed diagnosis. The aim of the study was to identify a biomarker able to quantify the risk of progressive CKD in young children with JS. METHODS Renal features were investigated in 93 Italian patients, including biochemical tests, ultrasound and 1-deamino-8D-arginine vasopressin test in children with reduced basal urine osmolality. A subset of patients was followed-up over time. RESULTS At last examination, 27 of 93 subjects (29%) presented with CKD, ranging from isolated urinary concentration defect (UCD) to end-stage renal disease. Both normal and pathological urine osmolality levels remained stable over time, even when obtained at very early ages. Follow-up data showed that the probability of developing CKD can be modelled as a function of the urine osmolality value, exceeding 75% for levels <600 mOsm/kg H2O, and significantly increased in patients with an early diagnosis of isolated UCD. CONCLUSIONS We conclude that the frequency of CKD in JS increases with age and is higher than previously reported. Urine osmolality represents an early sensitive quantitative biomarker of the risk of CKD progression.
Collapse
Affiliation(s)
- Sara Nuovo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Laura Fuiano
- Department of Nephrology and Urology, Unit of Nephrology and Dialysis, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Bertini
- Laboratory of Molecular Medicine, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - Stefano D’Arrigo
- Developmental Neurology Division, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Elisa Fazzi
- Child and Adolescent Neurology and Psychiatry Unit, Children Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rita Fischetto
- Clinical Genetics Unit, Department of Paediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - Lucio Giordano
- Child and Adolescent Neurology and Psychiatry Unit, Children Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sabrina Signorini
- Unit of Child Neurology and Psychiatry, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Gilda Stringini
- Department of Nephrology and Urology, Unit of Nephrology and Dialysis, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Ginevra Zanni
- Laboratory of Molecular Medicine, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marta Romani
- Molecular Genetics Laboratory, Eurofins GENOMA Group, Rome, Italy
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
- Deparment of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Emma
- Department of Nephrology and Urology, Unit of Nephrology and Dialysis, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
43
|
Collard E, Byrne C, Georgiou M, Michaelides M, Dixit A. Joubert syndrome diagnosed renally late. Clin Kidney J 2020; 14:1017-1019. [PMID: 33777383 PMCID: PMC7986455 DOI: 10.1093/ckj/sfaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
Joubert syndrome is a genetically heterogeneous multisystem disorder typically diagnosed in childhood. Nephronophthisis is the most common renal pathology in Joubert syndrome, and renal failure usually occurs in childhood or in young adults. We report a 61-year-old female diagnosed with AHI1-related oculorenal Joubert syndrome, who presented initially with decline in renal function in her 50s. Our report describes exceptionally late presentation of renal disease in Joubert syndrome and highlights the importance of continued renal function monitoring in older adults with Joubert syndrome.
Collapse
Affiliation(s)
- Elizabeth Collard
- School of Medical Education, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine Byrne
- Department of Nephrology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London and Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London and Moorfields Eye Hospital, London, UK
| | - Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
44
|
Bachmann-Gagescu R, Dempsey JC, Bulgheroni S, Chen ML, D'Arrigo S, Glass IA, Heller T, Héon E, Hildebrandt F, Joshi N, Knutzen D, Kroes HY, Mack SH, Nuovo S, Parisi MA, Snow J, Summers AC, Symons JM, Zein WM, Boltshauser E, Sayer JA, Gunay-Aygun M, Valente EM, Doherty D. Healthcare recommendations for Joubert syndrome. Am J Med Genet A 2019; 182:229-249. [PMID: 31710777 DOI: 10.1002/ajmg.a.61399] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.
Collapse
Affiliation(s)
- Ruxandra Bachmann-Gagescu
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maida L Chen
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elise Héon
- Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Nirmal Joshi
- Department of Anesthesia, Deaconess Hospital, Evansville, Indiana.,Anesthesia Dynamics, LLC, Evansville, Indiana
| | - Dana Knutzen
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,The Children's Hospital of San Antonio, San Antonio, Texas
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephen H Mack
- Joubert Syndrome and Related Disorders Foundation, Petaluma, California
| | - Sara Nuovo
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Melissa A Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Angela C Summers
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.,Department of Psychology, Fordham University, Bronx, New York
| | - Jordan M Symons
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Division of Nephrology, Seattle Children's Hospital, Seattle, Washington
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (emeritus), Children's University Hospital, Zürich, Switzerland
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Department of Pediatrics and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Enza Maria Valente
- Neurogenetics Lab, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
45
|
Luo M, Cao L, Cao Z, Ma S, Shen Y, Yang D, Lu C, Lin Z, Liu Z, Yu Y, Cai R, Chen C, Gao H, Wang X, Cao M, Ma X. Whole exome sequencing reveals novel CEP104 mutations in a Chinese patient with Joubert syndrome. Mol Genet Genomic Med 2019; 7:e1004. [PMID: 31625690 PMCID: PMC6900356 DOI: 10.1002/mgg3.1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Joubert syndrome (JS, OMIM: 213300) is a recessive developmental disorder characterized by cerebellar vermis hypoplasia and a distinctive mid‐hindbrain malformation called the “molar tooth sign” on axial magnetic resonance imaging. To date, more than 35 ciliary genes have been identified as the causative genes of JS. Methods Whole exome sequencing was performed to detect the causative gene mutations in a Chinese patient with JS followed by Sanger sequencing. RT‐PCR and Sanger sequencing were used to confirm the abnormal transcript of centrosomal protein 104 (CEP104, OMIM: 616690). Results We identified two novel heterozygous mutations of CEP104 in the proband, which were c.2364+1G>A and c.414delC (p.Asn138Lysfs*11) (GenBank: NM_014704.3) and consistent with the autosomal recessive inheritance mode. Conclusion Our study reported the fourth case of JS patients with CEP104 mutations, which expands the mutation spectrum of CEP104 and elucidates the clinical heterogeneity of JS.
Collapse
Affiliation(s)
- Minna Luo
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Li Cao
- Child Healthcare Department (Child Early Development Center), Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Siyu Ma
- National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Di Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yufei Yu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Ruikun Cai
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Cuixia Chen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Huafang Gao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Xueyan Wang
- Department of Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
46
|
Lodh S. Primary Cilium, An Unsung Hero in Maintaining Functional β-cell Population. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:471-480. [PMID: 31543709 PMCID: PMC6747938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A primary challenge in type 2 diabetes (T2D) is the preservation of a functional population of β-cells, which play a central role in regulating blood glucose levels. Two congenital disorders, Bardet-Biedl syndrome (BBS) and Alström syndrome (ALMS), can serve as useful models to understand how β-cells are normally produced and regenerated. Both are characterized by obesity, loss of β-cells, and defects in primary cilia - the sensory center of cells. Primary cilia are cellular protrusions present in almost every vertebrate cell. This antenna-like organelle plays a crucial role in regulating several signaling pathways that direct proper development, proliferation, and homeostasis. Mutations in genes expressing ciliary proteins or proteins present at or near the base of the cilium lead to disorders, collectively called ciliopathies. BBS and Alström syndrome are such disorders. Though both BBS and Alström patients are obese, their childhood diabetes rates are vastly different, suggesting distinct pathogenesis underlying these two ciliopathies. Clinical studies suggest that BBS patients are protected against early onset diabetes by sustained or enhanced β-cell function. In contrast, Alström patients are more prone to develop diabetes. They have hyperinsulinemia, yet their β-cells fail to sense glucose and to regulate insulin secretion accordingly. These data suggest a potential role for primary cilia in maintaining a functional β-cell population and that defects in cilia or in ciliary proteins impair development and function of β-cells. Identifying the respective roles of primary cilia and ciliary proteins, such as BBS and ALMS1 may shed light on β-cell biology and uncover potentially novel targets for diabetes therapy.
Collapse
Affiliation(s)
- Sukanya Lodh
- To whom all correspondence should be addressed: Sukanya Lodh, Department of Biological sciences, Marquette University, 1428 W. Clybourn St., Milwaukee, WI 53233; Tel: 802-881-6221, Email address:
| |
Collapse
|
47
|
Grochowsky A, Gunay-Aygun M. Clinical characteristics of individual organ system disease in non-motile ciliopathies. TRANSLATIONAL SCIENCE OF RARE DISEASES 2019; 4:1-23. [PMID: 31763176 PMCID: PMC6864414 DOI: 10.3233/trd-190033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-motile ciliopathies (disorders of the primary cilia) include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, as well as multisystem disorders Joubert, Bardet-Biedl, Alström, Meckel-Gruber, oral-facial-digital syndromes, and Jeune chondrodysplasia and other skeletal ciliopathies. Chronic progressive disease of the kidneys, liver, and retina are common features in non-motile ciliopathies. Some ciliopathies also manifest neurological, skeletal, olfactory and auditory defects. Obesity and type 2 diabetes mellitus are characteristic features of Bardet-Biedl and Alström syndromes. Overlapping clinical features and molecular heterogeneity of these ciliopathies render their diagnoses challenging. In this review, we describe the clinical characteristics of individual organ disease for each ciliopathy and provide natural history data on kidney, liver, retinal disease progression and central nervous system function.
Collapse
Affiliation(s)
- Angela Grochowsky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics and The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: The challenges of genetic and phenotypic heterogeneity. ACTA ACUST UNITED AC 2019; 4:25-49. [PMID: 31763177 PMCID: PMC6864416 DOI: 10.3233/trd-190041] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Joubert syndrome (JS; MIM PS213300) is a rare, typically autosomal recessive disorder characterized by cerebellar vermis hypoplasia and a distinctive malformation of the cerebellum and brainstem identified as the “molar tooth sign” on brain MRI. Other universal features include hypotonia with later ataxia and intellectual disability/developmental delay, with additional features consisting of oculomotor apraxia and abnormal respiratory pattern. Notably, other, more variable features include renal cystic disease, typically nephronophthisis, retinal dystrophy, and congenital hepatic fibrosis; skeletal changes such as polydactyly and findings consistent with short-rib skeletal dysplasias are also seen in many subjects. These pleiotropic features are typical of a number of disorders of the primary cilium, and make the identification of causal genes challenging given the significant overlap between JS and other ciliopathy conditions such as nephronophthisis and Meckel, Bardet-Biedl, and COACH syndromes. This review will describe the features of JS, characterize the 35 known genes associated with the condition, and describe some of the genetic conundrums of JS, such as the heterogeneity of founder effects, lack of genotype-phenotype correlations, and role of genetic modifiers. Finally, aspects of JS and related ciliopathies that may pave the way for development of therapeutic interventions, including gene therapy, will be described.
Collapse
Affiliation(s)
- Melissa A Parisi
- Chief, Intellectual & Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
49
|
Fraser AM, Davey MG. TALPID3 in Joubert syndrome and related ciliopathy disorders. Curr Opin Genet Dev 2019; 56:41-48. [DOI: 10.1016/j.gde.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
|
50
|
Nephronophthise und assoziierte Ziliopathien. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Zusammenfassung
Die Nephronophthise ist eine autosomal-rezessive tubulointerstitielle Nierenerkrankung und stellt die häufigste genetische Ursache für ein terminales Nierenversagen im Kindes- und Jugendalter dar. Hauptsymptome sind eine Polyurie und Polydipsie als Zeichen einer Harnkonzentrationsstörung sowie sonographisch hyperechogene Nieren mit verwaschener Mark-Rinden-Differenzierung und gelegentlich auftretenden Zysten. Pathophysiologisch liegt eine Dysfunktion primärer Zilien zugrunde, sodass sie zur Gruppe der Ziliopathien gezählt wird. Die Nephronophthise kann isoliert die Nieren betreffen oder zusammen mit anderen Organmanifestationen Syndrome definieren, wie zum Beispiel das Senior–Løken-Syndrom, das Joubert-Syndrom und viele mehr, welche gesammelt als Nephronophthise-assoziierte Ziliopathien (NPH-RC) bezeichnet werden. Charakteristisch für diese Erkrankungsgruppe sind eine ausgeprägte genetische und phänotypische Variabilität sowie zum Teil erhebliche Überlappungen mit anderen zystischen Nierenerkrankungen, was eine korrekte und frühzeitige Diagnosestellung sowie das Stellen individueller Prognosen im klinischen Alltag erschwert. Kurative Therapie-Ansätze existieren bislang nicht.
Ziel dieser Übersichtsarbeit soll es sein, einen verständlichen Überblick über die Nephronophthise und assoziierte Ziliopathien zu geben und deren pathophysiologische Verbindung zu den anderen zystischen Nierenerkrankungen aufzuzeigen.
Collapse
|