1
|
Rostamzadeh F, Joukar S, Yeganeh-Hajahmadi M. The role of Klotho and sirtuins in sleep-related cardiovascular diseases: a review study. NPJ AGING 2024; 10:43. [PMID: 39358364 PMCID: PMC11447243 DOI: 10.1038/s41514-024-00165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
The prevalence of sleep disorders has been reported from 1.6% to 56.0%, worldwide. Sleep deprivation causes cardiovascular diseases (CVDs) including atherosclerosis, vascular aging, hypertension, heart dysfunction, reduced heart rate variability, and cardiac arrhythmia. Reduced tissue oxygen causes various CVDs by activating pro-inflammatory factors and increasing oxidative stress. Sleep disorders are more important and prevalent in older people and cause more severe cardiovascular complications. On the other hand, the reduction of Klotho level, an age-dependent protein whose expression decreases with age, is associated with age-related diseases. Sirtuins, class III histone deacetylases, also are among the essential factors in postponing cellular aging and increasing the lifespan of organisms, and they do this by regulating different pathways in the cell. Sirtuins and Klotho play an important role in the pathophysiology of CVDS and both have anti-oxidative stress and anti-inflammatory activity. Studies have shown that the levels of Klotho and sirtuins are altered in sleep disorders. In this article, alterations of Klotho and sirtuins in sleep disorders and in the development of sleep-related CVDs were reviewed and the possible signaling pathways were discussed. The inclusion criteria were studies with keywords of different types of sleep disorders and CVDs, klotho, SIRT1-7, and sirtuins in PubMed, Scopus, Embase، Science Direct، Web of Sciences and Google Scholar by the end of 2023. The studies revealed there is a bidirectional relationship between sleep disorders and the serum and tissue levels of Klotho and sirtuins and sleep related-CVDs.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Yeganeh-Hajahmadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Milovanova LY, Nezhdanov KS, Milovanova SY, Lebedeva MV, Beketov VD, Volkov AV, Kamyshova ES, Suvorov AY, Moiseev SV. α-Klotho is associated with cardiovascular and all-cause mortality in patients with stage 3b and 4 chronic kidney disease (CKD): a long-term prospective cohort study. J Nephrol 2024:10.1007/s40620-024-02069-5. [PMID: 39223354 DOI: 10.1007/s40620-024-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND α-Klotho deficiency may increase cardiovascular risks and worsen survival. We evaluated the association of α-Klotho with cardiovascular and all-cause mortality in pre-dialysis chronic kidney disease (CKD) patients. METHODS In this prospective study, 75 non-diabetic CKD stage 3b-4 patients were followed-up for a median of 8 years. Primary and secondary outcomes were all-cause and cardiovascular mortality, respectively. Human soluble α-Klotho ELISA Assay (IBL-Takara 27,998-96Well), Human Fibroblast Growth Factor-23 ELISA Assay (intact FGF23, Merck Millipore MILLENZ FGF23-32 K), and Human Sclerostin ELISA kits (Biomedica, Vienna, BI-20492) were used to measure serum α-Klotho, FGF23 and sclerostin levels in the certified laboratory at the Sechenov University according to the manufacturers' protocols. All patients underwent echocardiography to evaluate left ventricular mass index (LVMI), left ventricular ejection fraction by Simpson method, and cardiac (valve) calcification score by a semi-quantitative point scale. Lateral abdominal radiography by Kauppila method was used to estimate calcification of the abdominal aorta. Cox multivariate regression and receiver-operating characteristic curve (ROC)-analysis were used to evaluate risk factors for death and their cut-off values. RESULTS Primary and secondary endpoints were reached in 15 (20%) and 9 (12%) patients, respectively. Median α-Klotho levels in deceased and surviving patients were 344 and 484 pg/ml, respectively (p = 0.002). In a multivariate Cox regression model, baseline α-Klotho levels (HR 0.99, 95% CI 0.98-1.00, p = 0.023), aortic calcification (HR 1.18, 95% CI 1.02-1.36, p = 0.029) and left ventricular mass index (LVMI) (HR 1.04, 95% CI 1.00-1.08, p = 0.033) were associated with the primary endpoint, whereas α-Klotho (HR 0.99, 95% CI 0.98-1.00, p = 0.029), aortic calcification (HR 1.23, 95% CI 1.07-1.42, p = 0.003) and LVMI (HR 1.04, 95% CI 1.00-1.08, p = 0.021) were associated with the secondary endpoint. α-Klotho levels had the highest area under the curve (AUC) by ROC analysis, that is, 0.766 (95% CI 0.70-0.82) for the primary endpoint and 0.842 (95% CI 0.79-0.90) for the secondary endpoint with cut-off values of 412 pg/ml (HR 3.06, 95% CI 1.36-6.89, p = 0.007) and 368 pg/ml (HR 4.84, 95% CI 1.59-14.73, p = 0.005), respectively. CONCLUSION In pre-dialysis CKD patients, α-Klotho levels are associated with all-cause and cardiovascular mortality and may be considered an early prognostic marker.
Collapse
Affiliation(s)
- Ludmila Yu Milovanova
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation.
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation.
| | - Kirill S Nezhdanov
- Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russian Federation
- Department of Internal Diseases, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Svetlana Yu Milovanova
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Marina V Lebedeva
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Vladimir D Beketov
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Alexey V Volkov
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Elena S Kamyshova
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Aleksandr Yu Suvorov
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Department of Internal, Occupational Diseases and Rheumatology, Sechenov University, Moscow, Russian Federation
| | - Sergey V Moiseev
- Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya st., Moscow, 119991, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russian Federation
- Sechenov University, Moscow, Russian Federation
- Department of Internal Medicine, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Mendoza-Carrera F, Farías-Basulto A, Gómez-García EF, Rizo de la Torre LDC, Cueto-Manzano AM, Cortés-Sanabria L, Pérez-Coria M, Vázquez-Rivera GE. Association of KLOTHO gene variants with metabolic and renal function parameters in Mexican patients living with type 2 diabetes. J Diabetes Metab Disord 2024; 23:1125-1131. [PMID: 38932797 PMCID: PMC11196432 DOI: 10.1007/s40200-024-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 06/28/2024]
Abstract
Objective Type 2 diabetes (T2D) and high blood pressure are the main causes of chronic kidney disease (CKD) in adulthood. Both metabolic and oxidative stresses driven by hyperglycemia as well as genetic factors have been suggested as pathogenic causes of renal failure. Some single nucleotide variants (SNVs) on gene coding KLOTHO (KL) have been implicated in several clinical scenarios including hypertension, diabetes, and cardiovascular disease. The aim of this study was to analyze the association of rs1207568 (-395G > A), rs953614 (+ 1062T > G) and rs564481 (+ 1818 C > T) SNVs with metabolic and renal function parameters in Mexican patients living with type 2 diabetes. Methods A cross-sectional study was conducted in 637 Mexican patients with T2D, and/or hypertension without previous diagnosis of CKD. Anthropometric, metabolic, and renal function parameters were determined. Patients were genotyped for rs1207568, rs953614 and rs564481 SNVs and associations under a dominant genetic model were analyzed by logistic regression. Results For rs9536314, G-allele showed to be protective for hypo-HDL-C, albuminuria, and CKD. Carriers of minor allele of rs564481 had low odds for high glucose levels. No differences in genotype nor allele frequencies between the patients and the reference population were observed. Conclusion In Mexican patients living with type 2 diabetes, KL variant rs9536314 was found associated with low odds of hypo-HDL cholesterol, albuminuria and presence of CKD. Meanwhile the consensus of soluble KLOTHO measurement is reached, genetic variants in the KL gene could be considered as genetic markers for CKD susceptibility in patients at high-risk of vascular complications.
Collapse
Affiliation(s)
- Francisco Mendoza-Carrera
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada # 800, Col. Independencia, 44340 Guadalajara, Jalisco Mexico
| | | | | | - Lourdes del Carmen Rizo de la Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada # 800, Col. Independencia, 44340 Guadalajara, Jalisco Mexico
| | - Alfonso Martin Cueto-Manzano
- Unidad de Investigación Biomédica 02, Hospital de Especialidades, Centro Médico Nacional de Occidente, IMSS, Guadalajara, Mexico
| | - Laura Cortés-Sanabria
- Unidad de Investigación Biomédica 02, Hospital de Especialidades, Centro Médico Nacional de Occidente, IMSS, Guadalajara, Mexico
| | - Mariana Pérez-Coria
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada # 800, Col. Independencia, 44340 Guadalajara, Jalisco Mexico
| | - Gloria Elizabeth Vázquez-Rivera
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada # 800, Col. Independencia, 44340 Guadalajara, Jalisco Mexico
| |
Collapse
|
4
|
Nishimoto M, Griffin KA, Wynne BM, Fujita T. Salt-Sensitive Hypertension and the Kidney. Hypertension 2024; 81:1206-1217. [PMID: 38545804 DOI: 10.1161/hypertensionaha.123.21369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Salt-sensitive hypertension (SS-HT) is characterized by blood pressure elevation in response to high dietary salt intake and is considered to increase the risk of cardiovascular and renal morbidity. Although the mechanisms responsible for SS-HT are complex, the kidneys are known to play a central role in the development of SS-HT and the salt sensitivity of blood pressure (SSBP). Moreover, several factors influence renal function and SSBP, including the renin-angiotensin-aldosterone system, sympathetic nervous system, obesity, and aging. A phenotypic characteristic of SSBP is aberrant activation of the renin-angiotensin system and sympathetic nervous system in response to excessive salt intake. SSBP is also accompanied by a blunted increase in renal blood flow after salt loading, resulting in sodium retention and SS-HT. Obesity is associated with inappropriate activation of the aldosterone mineralocorticoid receptor pathway and renal sympathetic nervous system in response to excessive salt, and mineralocorticoid receptor antagonists and renal denervation attenuate sodium retention and inhibit salt-induced blood pressure elevation in obese dogs and humans. SSBP increases with age, which has been attributed to impaired renal sodium handling and a decline in renal function, even in the absence of kidney disease. Aging-associated changes in renal hemodynamics are accompanied by significant alterations in renal hormone levels and renal sodium handling, resulting in SS-HT. In this review, we focus mainly on the contribution of renal function to the development of SS-HT.
Collapse
Affiliation(s)
- Mitsuhiro Nishimoto
- Department of Internal Medicine, Division of Nephrology & Hypertension, International University of Health and Welfare Mita Hospital, Tokyo, Japan (M.N.)
| | - Karen A Griffin
- Department of Medicine, Renal Disease & Hypertension, Loyola University, Chicago, IL (K.A.G.)
- Veteran's Administration, Nephrology, Edward Hines Jr. VA Hospital (K.A.G.)
| | - Brandi M Wynne
- Department of Internal Medicine, Nephrology & Hypertension, Department of Nutrition and Integrative Physiology, and Immunology, Inflammation and Infectious Disease Initiative (B.M.W.), University of Utah, Salt Lake City
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science & Technology, The University of Tokyo, Japan (T.F.)
| |
Collapse
|
5
|
Rivoira MA, Peralta López ME, Areco V, Díaz de Barboza G, Dionisi MP, Tolosa de Talamoni N. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem 2024:10.1007/s11010-024-04982-6. [PMID: 38581553 DOI: 10.1007/s11010-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Elena Peralta López
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Vanessa Areco
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Paula Dionisi
- Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
6
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
7
|
Vázquez-Lorente H, De-la-O A, Carneiro-Barrera A, Molina-Hidalgo C, Castillo MJ, Amaro-Gahete FJ. Physical exercise improves memory in sedentary middle-aged adults: Are these exercise-induced benefits associated with S-Klotho and 1,25-dihydroxivitamin D? The FIT-AGEING randomized controlled trial. Scand J Med Sci Sports 2024; 34:e14519. [PMID: 37823465 DOI: 10.1111/sms.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
We aimed to investigate the effect of three types of exercise interventions on memory (i.e., immediate memory (IM), long-term memory (LTM), and recognition). We also investigated whether exercise-induced changes in circulating S-Klotho and 1,25-dihydroxivitamin D (1,25(OH)2 D) levels were related to those observed in memory in healthy middle-aged sedentary adults. A 12-week randomized controlled trial was performed with a parallel-group design. Seventy-four participants (45-65 years old: 53% women) were randomly assigned to (1) no exercise (control) group, (2) concurrent training based on the international physical activity recommendations (PAR) group, (3) high-intensity interval training (HIIT) group, or (4) HIIT plus whole-body electromyostimulation (HIIT-EMS) group. Memory outcomes were assessed using the Wechsler Memory Scale-third edition. S-Klotho plasma levels were determined according to a solid-phase sandwich enzyme-linked immunosorbent assay kit while 1,25(OH)2 D plasma levels were measured using a DiaSorin-Liaison immunochemiluminometric analyzer. IM-Verbal Paired Associates (IM-VPA) and IM-Logical Memory (IM-LM) were improved in both the HIIT and HIIT-EMS groups compared with the control group (all p ≤ 0.045). Exercise-induced changes in S-Klotho plasma levels were positively associated with those observed in IM, LTM, and recognition (all p ≤ 0.007), whereas exercise-induced changes in 1,25(OH)2 D plasma levels were directly related to changes in IM and LTM (all p ≤ 0.048). In conclusion, a 12-week HIIT intervention with or without WB-EMS seems to be the most effective exercise program to improve IM. The significant and positive associations between exercise-induced changes in S-Klotho and 1,25(OH)2 D levels with those observed in memory outcomes suggest that these factors may be potentially related to exercise-induced improvements of memory in middle-aged adults.
Collapse
Affiliation(s)
| | - Alejandro De-la-O
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
| |
Collapse
|
8
|
He S, Li M, Sun Y, Pan D, Zhou C, Lan H. Effects of limited enzymatic hydrolysis and polysaccharide addition on the physicochemical properties of emulsions stabilized with duck myofibrillar protein under low-salt conditions. Food Chem 2024; 430:137053. [PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
Collapse
Affiliation(s)
- Shufeng He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Mengmeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
9
|
Aung K, Ream-Winnick S, Lane M, Akinlusi I, Shi T, Htay T. Sodium Homeostasis and Hypertension. Curr Cardiol Rep 2023; 25:1123-1129. [PMID: 37578690 DOI: 10.1007/s11886-023-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the relationship between sodium homeostasis and hypertension, including emerging concepts of factors outside cardiovascular and renal systems influencing sodium homeostasis and hypertension. RECENT FINDINGS Recent studies support the dose-response association between higher sodium and lower potassium intakes and a higher cardiovascular risk in addition to the dose-response relationship between sodium restriction and blood pressure lowering. The growing body of evidence suggests the role of genetic determinants, immune system, and gut microbiota in sodium homeostasis and hypertension. Although higher sodium and lower potassium intakes increase cardiovascular risk, salt restriction is beneficial only to a certain limit. The immune system contributes to hypertension through pro-inflammatory effects. Sodium can affect the gut microbiome and induce pro-inflammatory and immune responses that contribute to salt-sensitive hypertension.
Collapse
Affiliation(s)
- KoKo Aung
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA.
| | - Sarah Ream-Winnick
- Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Mariela Lane
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Idris Akinlusi
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Ted Shi
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| | - Thwe Htay
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Dr, El Paso, TX, 79905, USA
| |
Collapse
|
10
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Katayama IA, Huang Y, Garza AE, Brooks DL, Williams JS, Nascimento MM, Heimann JC, Pojoga LH. Longitudinal changes in blood pressure are preceded by changes in albuminuria and accelerated by increasing dietary sodium intake. Exp Gerontol 2023; 173:112114. [PMID: 36738979 PMCID: PMC10965150 DOI: 10.1016/j.exger.2023.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dietary sodium is a well-known risk factor for cardiovascular and renal disease; however, direct evidence of the longitudinal changes that occur with aging, and the influence of dietary sodium on the age-associated alterations are scarce. METHODS C57BL/6 mice were maintained for 13 months on a low (LS, 0.02 % Na+), normal (NS, 0.3 % Na+) or high (HS, 1.6 % Na+) salt diet. We assessed 1) the longitudinal trajectories for two markers of cardiovascular and renal dysfunction (blood pressure (BP) and albuminuria), as well as hormonal changes, and 2) end-of-study cardiac and renal parameters. RESULTS The effect of aging on BP and kidney damage did not reach significance levels in the LS group; however, relative to baseline, there were significant increases in these parameters for animals maintained on NS and HS diets, starting as early as month 7 and month 5, respectively. Furthermore, changes in albuminuria preceded the changes in BP relative to baseline, irrespective of the diet. Circulating aldosterone and plasma renin activity displayed the expected decreasing trends with age and dietary sodium loading. As compared to LS - higher dietary sodium consumption associated with increasing trends in left ventricular mass and volume indices, consistent with an eccentric dilated phenotype. Functional and molecular markers of kidney dysfunction displayed similar trends with increasing long-term sodium levels: higher renovascular resistance, increased glomerular volumes, as well as higher levels of renal angiotensin II type 1 and mineralocorticoid receptors, and lower renal Klotho levels. CONCLUSION Our study provides a timeline for the development of cardiorenal dysfunction with aging, and documents that increasing dietary salt accelerates the age-induced phenotypes. In addition, we propose albuminuria as a prognostic biomarker for the future development of hypertension. Last, we identified functional and molecular markers of renal dysfunction that associate with long-term dietary salt loading.
Collapse
Affiliation(s)
- Isis Akemi Katayama
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Yuefei Huang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danielle L Brooks
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana M Nascimento
- Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Joel C Heimann
- Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Chang K, Li Y, Qin Z, Zhang Z, Wang L, Yang Q, Su B. Association between Serum Soluble α-Klotho and Urinary Albumin Excretion in Middle-Aged and Older US Adults: NHANES 2007-2016. J Clin Med 2023; 12:jcm12020637. [PMID: 36675565 PMCID: PMC9863467 DOI: 10.3390/jcm12020637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background: Preclinical and clinical studies on the anti-aging effect of α-Klotho are emerging. Urinary albumin excretion (UAE) is a well-known biomarker of kidney injury and generalized damage in the cardiovascular system. However, the potential relationship between α-Klotho and UAE is limited and controversial. This study aimed to quantify this relationship in the general middle-aged and elderly population from the National Health and Nutrition Survey (NHANES) 2007-2016. (2) Methods: Serum α-Klotho was measured by enzyme-linked immunosorbent assay. UAE was assessed by the albumin-to-creatinine ratio (ACR). After adjusting for several confounding variables, the relationship between α-Klotho and ACR was analyzed by weighted multivariable logistic regression, subgroup analysis, and interaction tests. A generalized additive model (GAM) with smooth functions using the two-piecewise linear regression model was used to examine the potential nonlinear relationship between α-Klotho and ACR. (3) Results: Among 13,584 participants aged 40-79 years, we observed an independent and significant negative correlation between α-Klotho and ACR (β = -12.22; 95% CI, -23.91, -0.53, p = 0.0448) by multivariable logistic regression analysis, especially in those with age ≥ 60 years, pulse pressure (PP) ≥ 60 mmHg, hypertension or diabetes. We further discovered the nonlinear relationship between α-Klotho and ACR by GAM, revealing the first negative and then positive correlations with an inflection point of 9.91 pg/mL between α-Klotho and ACR. (4) Conclusions: A dose-response relationship between α-Klotho and ACR was demonstrated, and the negative correlation therein indicated that α-Klotho has potential as a serum marker and prophylactic or therapeutic agent despite its metabolic and effective mechanisms needing to be further explored.
Collapse
Affiliation(s)
- Kaixi Chang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Zheng Qin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Zhuyun Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Qinbo Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- Med+ Biomaterial Institute of West China Hospital, West China School of Medicine of Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Hypertension and cardiomyopathy associated with chronic kidney disease: epidemiology, pathogenesis and treatment considerations. J Hum Hypertens 2023; 37:1-19. [PMID: 36138105 PMCID: PMC9831930 DOI: 10.1038/s41371-022-00751-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease (CKD) is a complex condition with a prevalence of 10-15% worldwide. An inverse-graded relationship exists between cardiovascular events and mortality with kidney function which is independent of age, sex, and other risk factors. The proportion of deaths due to heart failure and sudden cardiac death increase with progression of chronic kidney disease with relatively fewer deaths from atheromatous, vasculo-occlusive processes. This phenomenon can largely be explained by the increased prevalence of CKD-associated cardiomyopathy with worsening kidney function. The key features of CKD-associated cardiomyopathy are increased left ventricular mass and left ventricular hypertrophy, diastolic and systolic left ventricular dysfunction, and profound cardiac fibrosis on histology. While these features have predominantly been described in patients with advanced kidney disease on dialysis treatment, patients with only mild to moderate renal impairment already exhibit structural and functional changes consistent with CKD-associated cardiomyopathy. In this review we discuss the key drivers of CKD-associated cardiomyopathy and the key role of hypertension in its pathogenesis. We also evaluate existing, as well as developing therapies in the treatment of CKD-associated cardiomyopathy.
Collapse
|
14
|
Kang ZL, Kong LH, Hu ZL, Li YP, Ma HJ. Effect of sodium bicarbonate and sodium chloride on protein conformation and gel properties of pork myofibrillar protein. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Chao X, Jiang Z, Zhong G, Huang R. Identification of biomarkers, pathways and potential therapeutic agents for salt-sensitive hypertension using RNA-seq. Front Cardiovasc Med 2022; 9:963744. [PMID: 36035920 PMCID: PMC9399395 DOI: 10.3389/fcvm.2022.963744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Salt-sensitive hypertension (SSH) is a common type of essential hypertension in China. In recent years, although an increasing number of researches have focused on SSH, few studies have been researched on patients with SSH. The objective of this study was to explore the genes and pathways linked with SSH using RNA-sequencing (RNA-seq). Materials and methods We used RNA-seq to analyze the transcriptome of peripheral blood mononuclear cells (PBMCs) of five SSH patients and five SRH patients. Next, we analyzed the differentially expressed genes (DEGs) using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Set Enrichment (GSEA) enrichment analysis. Then, Cytoscape was used to construct the protein-protein interaction (PPI) network and the hub genes. Finally, CMAP analysis found that several small molecular compounds could reverse the altered DEGs. Results A total of 431 DEGs were found in the PBMC samples, including 294 up-regulated and 137 down-regulated genes. Functional enrichment analysis found significant enrichment in immune-related associations such as inflammation, chemokine, and cytokine-cytokine receptor interaction. The hub genes of the two modules were IL-6, IL-1A, CCL2, CCL3L3, and BUB1. In addition, we identified two small molecular compounds (iopromide and iloprost) that potentially interacted with DEGs. Conclusion This study suggests some potential biomarkers for the diagnosis of SSH. It provides new insights into SSH diagnosis and possible future clinical treatment.
Collapse
Affiliation(s)
- Xiaoying Chao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Division of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Guoqiang Zhong,
| | - Rongjie Huang
- Division of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Rongjie Huang,
| |
Collapse
|
17
|
Inverse salt sensitivity: an independent risk factor for cardiovascular damage in essential hypertension. J Hypertens 2022; 40:1504-1512. [PMID: 35881450 DOI: 10.1097/hjh.0000000000003174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Salt sensitivity is a powerful risk factor for cardiovascular (CV) disease and mortality in both normotensive and hypertensive patients. We investigated the predictive value of the salt sensitivity phenotype in the development of CV events and hypertensive target organ damage (TOD) among essential hypertensive patients. METHODS Eight hundred forty-four naive hypertensive patients were recruited and underwent an acute saline test during which blood pressure (BP) displayed either no substantial variation (salt-resistant, SR individuals), an increase (salt-sensitive, SS), or a paradoxical decrease (inverse salt-sensitive, ISS). Sixty-one patients with the longest monitored follow-up (median 16 years) for blood pressure and organ damage were selected for the present study. A clinical score for TOD development based on the severity and the age of onset was set up by considering hypertensive heart disease, cerebrovascular damage, microalbuminuria, and vascular events. RESULTS CV events were significantly higher among SS and ISS than in SR patients. The relative risk of developing CV events was 12.67 times higher in SS than SR and 5.94 times higher in ISS than SR patients. The development of moderate to severe TOD was 10-fold higher in SS and over 15-fold higher in ISS than in SR patients. Among the three phenotypes, changes in plasma endogenous ouabain were linked with the blood pressure effects of saline. CONCLUSIONS Salt sensitivity and inverse salt sensitivity appear to be equivalent risk factors for CV events. The response to an acute saline test is predictive of CV damage for newly identified ISS individuals.
Collapse
|
18
|
Hu JW, Shi T, Mu JJ. Association of Genetic Variants of Klotho with BP Responses to Dietary Sodium or Potassium Intervention and Long-Term BP Progression. Kidney Blood Press Res 2021; 47:94-102. [PMID: 34856559 DOI: 10.1159/000519839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Klotho (KL) plays pivotal roles in the progression of salt-sensitive hypertension. Salt-sensitive hypertension was associated with KL genotypes. We aimed to explore the association of common genetic variants of KL with individual blood pressure (BP) responses to sodium and potassium through a dietary intervention study as well as long-term BP progression. METHODS We conducted family-based dietary interventions among 344 participants from 126 families in rural villages of northern China in 2004. Subjects sequentially underwent a baseline diet, a low-salt diet (51.3 mmol/day Na), a high-salt diet (307.8 mmol/day Na), and a high-salt + potassium supplementation diet (307.8 mmol/day Na + 60 mmol/day K). After dietary intervention, we followed up with these participants in 2009 and 2012. The associations between 6 single-nucleotide polymorphisms (SNPs) of KL and phenotypes were analyzed through a linear mixed-effects model. RESULTS SNPs rs211247 and rs1207568 were positively correlated with the BP response to high-salt diet in the dominant model after adjusting for confounders (β = 1.670 and 2.163, p = 0.032 and 0.005, respectively). BPs rs526906 and rs525014 were in a haplotype block. Block rs526906-rs525014 was positively correlated with diastolic BP response to potassium and potassium sensitivity in the additive model (β = 0.845, p = 0.032). In addition, regression analysis indicated that rs211247 was associated with long-term systolic BP alterations after 8 years of follow-up in the recessive model (β = 20.47, p = 0.032). CONCLUSIONS Common variants of the KL gene might modify individual BP sensitivity to sodium or potassium and influence the long-term progression of BP, suggesting a potential role in the development of salt-sensitive hypertension. Thus, KL may be a new early intervention target for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jia-Wen Hu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Tao Shi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| |
Collapse
|
19
|
Drew DA, Katz R, Kritchevsky S, Ix JH, Shlipak MG, Newman AB, Hoofnagle AN, Fried LF, Sarnak M, Gutiérrez OM, Semba RD, Neyra JA. Soluble Klotho and Incident Hypertension. Clin J Am Soc Nephrol 2021; 16:1502-1511. [PMID: 34556498 PMCID: PMC8498995 DOI: 10.2215/cjn.05020421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Hypertension is associated with significant morbidity and mortality despite effective antihypertensive therapies. Soluble klotho is a circulating protein that in preclinical studies is protective against the development of hypertension. There are limited studies of klotho and blood pressure in humans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Within the Health, Aging, and Body Composition Study, a cohort of well-functioning older adults, soluble klotho was measured in serum. We evaluated the cross-sectional and longitudinal association between klotho and blood pressure, prevalent hypertension, incident hypertension, and BP trajectories. Analyses were adjusted for demographics, cardiovascular disease and kidney disease risk factors, and measures of mineral metabolism including calcium, phosphate, parathyroid hormone, 25(OH) vitamin D, and fibroblast growth factor 23. RESULTS The median klotho concentration was 630 pg/ml (478-816, 25th to 75th percentile). Within the cohort, 2093 (76%) of 2774 participants had prevalent hypertension and 476 (70%) of the remaining 681 developed incident hypertension. There was no association between klotho and prevalent hypertension or baseline systolic BP, but higher klotho was associated with higher baseline diastolic BP (fully adjusted β=0.92 mmHg, 95% confidence interval, 0.24 to 1.60 mmHg, higher per two-fold higher klotho). Higher baseline serum klotho levels were significantly associated with a lower rate of incident hypertension (fully adjusted hazard ratio, 0.80; 95% confidence interval, 0.69 to 0.93 for every two-fold higher klotho). Higher klotho was also associated with lower subsequent systolic BP and diastolic BP (-0.16, 95% confidence interval, -0.31 to -0.01, mmHg lower systolic BP per year and -0.10, 95% confidence interval, -0.18 to -0.02, mmHg lower diastolic BP per year, for each two-fold higher klotho). CONCLUSIONS Higher klotho is associated with higher baseline diastolic but not systolic BP, a lower risk of incident hypertension, and lower BP trajectories during follow-up.
Collapse
Affiliation(s)
- David A. Drew
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - Ronit Katz
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Stephen Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joachim H. Ix
- Division of Nephrology-Hypertension, University of California San Diego School of Medicine, San Diego, California
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, San Francisco, California,Kidney Health Research Collaborative, University of California San Francisco, San Francisco, California
| | - Anne B. Newman
- Kidney Health Research Collaborative, University of California San Francisco, San Francisco, California
| | | | - Linda F. Fried
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark Sarnak
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - Orlando M. Gutiérrez
- Medicine - Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard D. Semba
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Javier A. Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas,The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas,Division of Nephrology, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
20
|
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 2021; 36:3007-3022. [PMID: 33230698 PMCID: PMC7682775 DOI: 10.1007/s00467-020-04843-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are increasingly recognized in pediatric patients and represent risk factors for cardiovascular morbidity and mortality later in life. In CKD, enhanced tubular sodium reabsorption is a leading cause of HTN due to augmented extracellular fluid volume expansion. The renin-angiotensin-aldosterone system (RAAS) upregulates various tubular sodium cotransporters that are also targets of the hormone fibroblast growth factor 23 (FGF23) and its co-receptor Klotho. FGF23 inhibits the activation of 1,25-dihydroxyvitamin D that is a potent suppressor of renin biosynthesis. Here we review the complex interactions and disturbances of the FGF23-Klotho axis, vitamin D, and the RAAS relevant to blood pressure regulation and discuss the therapeutic strategies aimed at mitigating their pathophysiologic contributions to HTN.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
21
|
Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 2021; 17:350-363. [PMID: 33627838 DOI: 10.1038/s41581-021-00399-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Medicine, Shinshu University, Matsumoto, Japan. .,Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
22
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
23
|
Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, Ortiz A. Role of Klotho in the Development of Essential Hypertension. Hypertension 2021; 77:740-750. [PMID: 33423524 DOI: 10.1161/hypertensionaha.120.16635] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Klotho has antiaging properties, and serum levels decrease with physiological aging and aging-related diseases, such as hypertension, cardiovascular, and chronic kidney disease. Klotho deficiency in mice results in accelerated aging and cardiovascular injury, whereas Klotho supplementation slows down the progression of aging-related diseases. The pleiotropic functions of Klotho include, but are not limited to, inhibition of insulin/IGF-1 (insulin-like growth factor 1) and WNT (wingless-related integration site) signaling pathways, suppression of oxidative stress and aldosterone secretion, regulation of calcium-phosphate homeostasis, and modulation of autophagy with inhibition of apoptosis, fibrosis, and cell senescence. Accumulating evidence shows an interconnection between Klotho deficiency and hypertension, and Klotho gene polymorphisms are associated with hypertension in humans. In this review, we critically review the current understanding of the role of Klotho in the development of essential hypertension and the most important underlying pathways involved, such as the FGF23 (fibroblast growth factor 23)/Klotho axis, aldosterone, Wnt5a/RhoA, and SIRT1 (Sirtuin1). Based on this critical review, we suggest avenues for further research.
Collapse
Affiliation(s)
- Mehmet Kanbay
- From the Division of Nephrology, Department of Medicine (M.K.), Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine (A.D.), Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta Turkey (B.A.)
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Laura Tapoi
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Carina Ureche
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania (A.C., L.T., C.U.)
| | - Alberto Ortiz
- Cardiovascular Diseases Institute, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania (A.O.)
- IIS-Fundacion Jimenez Diaz, Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Spain (A.O.)
| |
Collapse
|
24
|
Li YP, Kang ZL, Sukmanov V, Ma HJ. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing. Meat Sci 2021; 176:108471. [PMID: 33647630 DOI: 10.1016/j.meatsci.2021.108471] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
This paper studies the effects of soy protein isolate (SPI; 0, 2% and 4%; Weight/Weight) on texture, rheological property, sulfhydryl groups, and the water distribution state of low-salt (1% NaCl) pork myofibrillar protein systems under high pressure processing (HPP, 200 MPa, 10 min). The L⁎ value, cooking yield, hardness, total and reactive sulfhydryl, surface hydrophobicity, and the G' value at 80 °C of pork myofibrillar protein increased significantly (P < 0.05) when SPI was added; however, the springiness, cohesiveness, and chewiness of gels with 4% SPI were lower than of gels with 2% SPI. The rheological findings indicated that the thermal stability of the myofibrillar protein increased when SPI was added. The initial relaxation time of T2b, T21, and T22 decreased when SPI increased; meanwhile, the peak ratio of P21 increased significantly (P < 0.05), implying that water had lower mobility. Overall, the 2% SPI could enhance gel characteristics and water-holding capacity of pork myofibrillar protein under 200 MPa.
Collapse
Affiliation(s)
- Yan-Ping Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Food Technologies Faculty of Sumy National Agrarian University, Sumy, Ukraine
| | - Zhuang-Li Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
| | - Valerii Sukmanov
- Food Technologies Faculty of Sumy National Agrarian University, Sumy, Ukraine
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| |
Collapse
|
25
|
Kawarazaki W, Mizuno R, Nishimoto M, Ayuzawa N, Hirohama D, Ueda K, Kawakami-Mori F, Oba S, Marumo T, Fujita T. Salt causes aging-associated hypertension via vascular Wnt5a under Klotho deficiency. J Clin Invest 2021; 130:4152-4166. [PMID: 32597829 DOI: 10.1172/jci134431] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a high prevalence of hypertension due to elevated susceptibility of BP to dietary salt, but its mechanism is unknown. Serum levels of Klotho, an anti-aging factor, decline with age. We found that high salt (HS) increased BP in aged mice and young heterozygous Klotho-knockout mice and was associated with increased vascular expression of Wnt5a and p-MYPT1, which indicate RhoA activity. Not only the Wnt inhibitor LGK974 and the Wnt5a antagonist Box5 but Klotho supplementation inhibits HS-induced BP elevation, similarly to the Rho kinase inhibitor fasudil, associated with reduced p-MYPT1 expression in both groups of mice. In cultured vascular smooth muscle cells, Wnt5a and angiotensin II (Ang II) increased p-MYPT1 expression but knockdown of Wnt5a with siRNA abolished Ang II-induced upregulation of p-MYPT1, indicating that Wnt5a is indispensable for Ang II-induced Rho/ROCK activation. Notably, Klotho inhibited Wnt5a- and Ang II-induced upregulation of p-MYPT1. Consistently, Klotho supplementation ameliorated HS-induced augmentation of reduced renal blood flow (RBF) response to intra-arterial infusion of Ang II and the thromboxane A2 analog U46619, which activated RhoA in both groups of mice and were associated with the inhibition of BP elevation, suggesting that abnormal response of RBF to Ang II contributes to HS-induced BP elevation. Thus, Klotho deficiency underlies aging-associated salt-sensitive hypertension through vascular non-canonical Wnt5a/RhoA activation.
Collapse
Affiliation(s)
- Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Risuke Mizuno
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan.,Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Fumiko Kawakami-Mori
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shigeyoshi Oba
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan.,Shinshu University School of Medicine and.,Research Center for Social Systems, Shinshu University, Matsumoto, Nagano, Japan
| |
Collapse
|
26
|
Liang WY, Wang LH, Wei JH, Li QL, Li QY, Liang Q, Hu NQ, Li LH. No significant association of serum klotho concentration with blood pressure and pulse wave velocity in a Chinese population. Sci Rep 2021; 11:2374. [PMID: 33504927 PMCID: PMC7840754 DOI: 10.1038/s41598-021-82258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
Klotho, an important anti-aging protein, may be related to elevated blood pressure (BP) and arterial stiffness. We aimed to investigate associations between the serum klotho concentration and peripheral/central BP and arterial stiffness based on the carotid–femoral pulse wave velocity (cfPWV) in a Chinese population. We invited all inhabitants aged ≥ 18 years in two Dali communities for participation. The SphygmoCor system was used to record radial arterial waveforms. Aortic waveforms were derived using a generalized transfer function. The central BP was assessed by calibrating the brachial BP, which was measured using an oscillometric device. The serum klotho concentration was measured using an enzyme-linked immunosorbent assay and logarithmically transformed. Of the 716 participants (mean age: 51.9 ± 12.6 years), 467 (65.2%) were women. The median serum klotho concentration was 381.8 pg/mL. The serum klotho concentration did not significantly differ between patients with and without hypertension (P > 0.05) and between those with and without arterial stiffness (cfPWV ≥ 10 m/s) (P > 0.05). After adjusting for confounders, the serum klotho concentration was not significantly associated with the peripheral or central BP (P > 0.05) and cfPWV (P > 0.05). Our data indicated that the serum klotho concentration was not associated with BP or cfPWV in the general Chinese population.
Collapse
Affiliation(s)
- Wan-Ying Liang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Li-Hong Wang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Jian-Hang Wei
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Qing-Lu Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Qi-Yan Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Quan Liang
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Nai-Qing Hu
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China
| | - Li-Hua Li
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
27
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Lanzani C, Citterio L, Vezzoli G. Klotho: a link between cardiovascular and non-cardiovascular mortality. Clin Kidney J 2020; 13:926-932. [PMID: 33391735 PMCID: PMC7769552 DOI: 10.1093/ckj/sfaa100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Klotho is a membrane-bound protein acting as an obligatory coreceptor for fibroblast growth factor 23 (FGF23) in the kidney and parathyroid glands. The extracellular portion of its molecule may be cleaved and released into the blood and produces multiple endocrine effects. Klotho exerts anti-inflammatory and antioxidative activities that may explain its ageing suppression effects evidenced in mice; it also modulates mineral metabolism and FGF23 activities and limits their negative impact on cardiovascular system. Clinical studies have found that circulating Klotho is associated with myocardial hypertrophy, coronary artery disease and stroke and may also be involved in the pathogenesis of salt-sensitive hypertension with a mechanism sustained by inflammatory cytokines. As a consequence, patients maintaining high serum levels of Klotho not only show decreased cardiovascular mortality but also non-cardiovascular mortality. Klotho genetic polymorphisms may influence these clinical relationships and predict cardiovascular risk; rs9536314 was the polymorphism most frequently involved in these associations. These findings suggest that Klotho and its genetic polymorphisms may represent a bridge between inflammation, salt sensitivity, hypertension and mortality. This may be particularly relevant in patients with chronic kidney disease who have decreased Klotho levels in tissues and blood.
Collapse
Affiliation(s)
- Chiara Lanzani
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Vezzoli
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|