1
|
Wang D, Wu H, Zhang Q, Zhou X, An Y, Zhao A, Chong J, Wang S, Wang F, Yang J, Dai D, Chen H. Optimisation of warfarin-dosing algorithms for Han Chinese patients with CYP2C9*13 variants. Eur J Clin Pharmacol 2023; 79:1315-1320. [PMID: 37458773 DOI: 10.1007/s00228-023-03540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Existing pharmacogenetic algorithms cannot fully explain warfarin dose variability in all patients. CYP2C9*13 is an important allelic variant in the Han Chinese population. However, adjustment of warfarin dosing in CYP2C9*13 variant carriers remains unclear. To the best of our knowledge, this study is the first to assess the effects of adjusting warfarin dosages in Han Chinese patients harbouring CYP2C9*13 variants. METHODS In total, 971 warfarin-treated Han Chinese patients with atrial fibrillation were enrolled in this study. Clinical data were collected, and CYP2C9*2, *3, *13 and VKORC1-1639 G > A variants were genotyped. We quantitatively analysed the effect of CYP2C9*13 on warfarin maintenance dose and provided multiplicative adjustments for CYP2C9*13 using validated pharmacogenetic algorithms. RESULTS Approximately 0.6% of the Han Chinese population carried CYP2C9*13 variant, and the genotype frequency was between those of CYP2C9*2 and CYP2C9*3. The warfarin maintenance doses were significantly reduced in CYP2C9*13 carriers. When CYP2C9*13 variants were not considered, the pharmacogenetic algorithms overestimated warfarin maintenance doses by 1.03-1.16 mg/d on average. The actual warfarin dose in CYP2C9*13 variant carriers was approximately 40% lower than the algorithm-predicted dose. Adjusting the warfarin-dosing algorithm according to the CYP2C9*13 allele could reduce the dose prediction error. CONCLUSION Our study showed that the algorithm-predicted doses should be lowered for CYP2C9*13 carriers. Inclusion of the CYP2C9*13 variant in the warfarin-dosing algorithm tends to predict the warfarin maintenance dose more accurately and improves the efficacy and safety of warfarin administration in Han Chinese patients.
Collapse
Affiliation(s)
- Dongxu Wang
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
- Fuwai Hospital, Arrhythmia Center, Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, 100037, Beijing, China
| | - Hualan Wu
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Qing Zhang
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Xiaoyue Zhou
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Yang An
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Anxu Zhao
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Jia Chong
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Shuanghu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Fang Wang
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Jiefu Yang
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China
| | - Hao Chen
- Cardiovascular Department, Beijing Hospital, National Centre of Gerontology, Beijing, 100730, China.
| |
Collapse
|
2
|
Kim JS, Lee S, Yee J, Park K, Jang EJ, Chang BC, Gwak HS. Novel Gene Polymorphisms for Stable Warfarin Dose in a Korean Population: Genome-Wide Association Study. Biomedicines 2023; 11:2308. [PMID: 37626805 PMCID: PMC10452379 DOI: 10.3390/biomedicines11082308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Warfarin has a narrow therapeutic window and high intra- and inter-individual variability. Considering that many published papers on genotype-guided dosing are derived from European populations, the aim of this study was to investigate novel genetic variants associated with the variability of stable warfarin dose in the Korean population with cardiac valve replacement, using the GWAS approach. This retrospective cohort study was performed from January 1982 to December 2020 at the Severance Cardiovascular Hospital of Yonsei University College of Medicine. GWAS was performed to identify associations between genotypes and the warfarin maintenance dose, by comparing the allele frequency of genetic variants between individuals. Then, the extent of genetic and non-genetic factors on the dose variability was determined by multivariable regression analysis. The study enrolled 214 participants, and the most robust signal cluster was detected on chromosome 16 around VKORC1. Followed by VKORC1, three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) showed an association with stable warfarin dose requirement in univariate analysis. The algorithm was constructed by using multivariable analysis that includes genetic and non-genetic factors, and it could explain 58.5% of the variations in stable warfarin doses. In this variability, VKORC1 rs9934438 and FRAS1 rs4386623 accounted for 33.0% and 9.9%, respectively. This GWAS analysis identified the fact that three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) were associated with stable warfarin doses. Additional research is necessary to validate the results and establish personalized treatment strategies for the Korean population.
Collapse
Affiliation(s)
- Jung Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jeong Yee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Kyemyung Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
| | - Eun Jeong Jang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Byung Chul Chang
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Thoracic and Cardiovascular Surgery, Bundang CHA Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Hye Sun Gwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| |
Collapse
|
3
|
Zhang H, Alarcon C, Cavallari LH, Nutescu E, Carvill GL, Perera MA, Hernandez W. Genomewide Association Study Identifies Copy Number Variants Associated With Warfarin Dose Response and Risk of Venous Thromboembolism in African Americans. Clin Pharmacol Ther 2023; 113:624-633. [PMID: 36507737 PMCID: PMC11238476 DOI: 10.1002/cpt.2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The anticoagulant warfarin is commonly used to control and prevent thrombotic disorders, such as venous thromboembolism (VTE), which disproportionately afflicts African Americans. Despite the importance of copy number variants (CNVs), few studies have focused on characterizing and understanding their role in drug response and disease risk among African Americans. In this study, we conduct the first genome-wide analysis of CNVs to more comprehensively account for the contribution of genetic variation in warfarin dose requirement and VTE risk among African Americans. We used hidden Markov models to detect CNVs from high-throughput single-nucleotide polymorphism arrays for 340 African American participants in the International Warfarin Pharmacogenetics Consortium. We identified 11,570 CNVs resulting in 2,038 copy number variable regions (CNVRs) and found 3 CNVRs associated with warfarin dose requirement and 3 CNVRs associated with VTE risk in African Americans. CNVRs 1q31.2del and 6q14.1del were associated with increased warfarin dose requirement (β = 11.18 and 4.94, respectively; Pemp = < 0.002); CNVR 19p13.31del was associated with decreased warfarin dose requirement (β = -1.41, Pemp = 0.0004); CNVRs (2p22.1del and 5q35.1-q35.2del) were found to be associated with increased risk of VTE (odds ratios (ORs) = 1.88 and 14.9, respectively; Pemp ≤0.02); and CNVR 10q26.12del was associated with a decreased risk of VTE (OR = 0.6; Pemp = 0.05). Modeling of the 10q26.12del in HepG2 cells revealed that this deletion results in decreased fibrinogen gene expression, decreased fibrinogen and WDR11 protein levels, and decreased secretion of fibrinogen into the extracellular matrix. We found robust evidence that CNVRs could contribute to warfarin dose requirement and risk of VTE in African Americans and for 10q26.3del describe a possible pathogenic mechanism.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cristina Alarcon
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Edith Nutescu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Gemma L. Carvill
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minoli A. Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wenndy Hernandez
- Section of Cardiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zhalbinova MR, Rakhimova SE, Kozhamkulov UA, Akilzhanova GA, Kaussova GK, Akilzhanov KR, Pya YV, Lee JH, Bekbossynova MS, Akilzhanova AR. Association of Genetic Polymorphisms with Complications of Implanted LVAD Devices in Patients with Congestive Heart Failure: A Kazakhstani Study. J Pers Med 2022; 12:jpm12050744. [PMID: 35629166 PMCID: PMC9143784 DOI: 10.3390/jpm12050744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
The left ventricular assist device (LVAD) is one of the alternative treatments for heart failure (HF) patients. However, LVAD support is followed by thrombosis, and bleeding complications which are caused by high non-physiologic shear stress and antithrombotic/anticoagulant therapy. A high risk of complications occurs in the presence of the genotype polymorphisms which are involved in the coagulation system, hemostasis function and in the metabolism of the therapy. The aim of the study was to investigate the influence of single-nucleotide polymorphisms (SNP) in HF patients with LVAD complications. We analyzed 21 SNPs in HF patients (n = 98) with/without complications, and healthy controls (n = 95). SNPs rs9934438; rs9923231 in VKORC1, rs5918 in ITGB3 and rs2070959 in UGT1A6 demonstrated significant association with HF patients’ complications (OR (95% CI): 3.96 (1.42–11.02), p = 0.0057), (OR (95% CI): 3.55 (1.28–9.86), p = 0.011), (OR (95% CI): 5.37 (1.79–16.16), p = 0.0056) and OR (95% CI): 4.40 (1.06–18.20), p = 0.044]. Genotype polymorphisms could help to predict complications at pre- and post-LVAD implantation period, which will reduce mortality rate. Our research showed that patients can receive treatment with warfarin and aspirin with a personalized dosage and LVAD complications can be predicted by reference to their genotype polymorphisms in VKORC1, ITGB3 and UGT1A6 genes.
Collapse
Affiliation(s)
- Madina R. Zhalbinova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
- Department of General Biology and Genomics, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan
| | - Saule E. Rakhimova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
| | - Ulan A. Kozhamkulov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
| | - Gulbanu A. Akilzhanova
- Semey Medical University, Pavlodar Branch, Pavlodar 140000, Kazakhstan; (G.A.A.); (K.R.A.)
| | | | - Kenes R. Akilzhanov
- Semey Medical University, Pavlodar Branch, Pavlodar 140000, Kazakhstan; (G.A.A.); (K.R.A.)
| | - Yuriy V. Pya
- National Research Cardiac Surgery Center, Nur-Sultan 010000, Kazakhstan; (Y.V.P.); (M.S.B.)
| | - Joseph H. Lee
- Sergievsky Center, Taub Institute, Columbia University Irving Medical Centerx, 630 W, New York, NY 10032, USA;
| | | | - Ainur R. Akilzhanova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
- Department of General Biology and Genomics, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan
- Correspondence: ; Tel.: +7-7172-706501
| |
Collapse
|
5
|
Tian J, Zhang J, Yang Z, Feng S, Li S, Ren S, Shi J, Hou X, Xue X, Yang B, Xu H, Guo J. Genetic Epidemiology of Medication Safety and Efficacy Related Variants in the Central Han Chinese Population With Whole Genome Sequencing. Front Pharmacol 2022; 12:790832. [PMID: 35280256 PMCID: PMC8906509 DOI: 10.3389/fphar.2021.790832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Medication safety and efficacy-related pharmacogenomic research play a critical role in precision medicine. This study comprehensively analyzed the pharmacogenomic profiles of the central Han Chinese population in the context of medication safety and efficacy and compared them with other global populations. The ultimate goal is to improve medical treatment guidelines. We performed whole-genome sequencing in 487 Han Chinese individuals and investigated the allele frequencies of pharmacogenetic variants in 1,731 drug response-related genes. We identified 2,139 (81.18%) previously reported variants in our population with annotations in the PharmGKB database. The allele frequencies of these 2,139 clinical-related variants were similar to those in other East Asian populations but different from those in other global populations. We predicted the functional effects of nonsynonymous variants in the 1,731 pharmacogenes and identified 1,281 novel and 4,442 previously reported deleterious variants. Of the 1,281 novel deleterious variants, five are common variants with an allele frequency >5%, and the rest are rare variants with an allele frequency <5%. Of the 4,442 known deleterious variants, the allele frequencies were found to differ from those in other populations, of which 146 are common variants. In addition, we found many variants in non-coding regions, the functions of which require further investigation. This study compiled a large amount of data on pharmacogenomic variants in the central Han Chinese population. At the same time, it provides insight into the role of pharmacogenomic variants in clinical medication safety and efficacy.
Collapse
Affiliation(s)
- Junbo Tian
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Shuaisheng Feng
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Shujuan Li
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqi Ren
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinyue Hou
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bei Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Chetot T, Benoit E, Lambert V, Lattard V. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity. Biochem Cell Biol 2022; 100:152-161. [PMID: 35007172 DOI: 10.1139/bcb-2021-0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is the target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and have been suspected to confer resistance to VKA and/or affect its velocity. Nevertheless, the results between studies have been conflicting, the functional characterization of these mutations in a cell system being complex due to the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to globally evaluate the vitamin K cycle in the HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when the VKORC1/VKORC1L1 were knocked out, the K/KO balance decreased significantly due to an accumulation of vitamin KO. On the contrary, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating a limitation of the VKOR activity. This limitation was shown to be due to an insufficient expression of the activation partner of VKORC1, as overexpressing the protein disulfide isomerase (PDI) overcomes the limitation. This study is the first to demonstrate a functional interaction between VKORC1 and the PDI enzyme.
Collapse
Affiliation(s)
| | | | | | - Virginie Lattard
- VetAgro Sup, 88622, USC1233 INRAe-VetAgroSup, Marcy-l'Etoile, France, 69280;
| |
Collapse
|
7
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
8
|
GERDAN V. Akılcı ilaç kullanımı: Varfarin. EGE TIP DERGISI 2021. [DOI: 10.19161/etd.863730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Bargal SA, Kight JN, Augusto de Oliveira F, Shahin MH, Langaee T, Gong Y, Hamadeh IS, Cooper-DeHoff RM, Cavallari LH. Implications of Polymorphisms in the BCKDK and GATA-4 Gene Regions on Stable Warfarin Dose in African Americans. Clin Transl Sci 2020; 14:492-496. [PMID: 33278335 PMCID: PMC7993290 DOI: 10.1111/cts.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022] Open
Abstract
VKORC1 and CYP2C9 genotypes explain less variability in warfarin dose requirements in African Americans compared with Europeans. Variants in BCKDK and GATA-4 gene regions, purported to regulate VKORC1 and CYP2C9 expression, have been shown to play an important role in warfarin dose requirements in Europeans and Asians, respectively. We sought to determine whether rs56314408 near BCKDK or GATA-4 rs2645400 influence warfarin dose requirements in 200 African Americans. Unlike the strong linkage disequilibrium (LD) between rs56314408 and VKORC1 rs9923231 in Europeans, they were not in LD in African Americans. No associations were found on univariate analysis. On multivariable analysis, rs56314408 was associated (P = 0.027) with dose in a regression model excluding VKORC1 rs9923231, and GATA-4 rs2645400 was associated (P = 0.032) with dose in a model excluding CYP2C (CYP2C9*2, *3, *5, *6, *8, and *11, CYP2C rs12777823) variants. Neither variant contributed to dose in the model that included both VKORC1 rs9923231 and CYP2C variants. Our results do not support contributions of the studied variants to warfarin dose requirements in African Americans. However, they illustrate the value of studies in African descent populations, who have low LD in their genome, in teasing out genetic variation underlying drug response associations. They also emphasize the importance of confirming associations in persons of African ancestry.
Collapse
Affiliation(s)
- Salma A Bargal
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jennifer N Kight
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Felipe Augusto de Oliveira
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Mohamed H Shahin
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Taimour Langaee
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Issam S Hamadeh
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Ndadza A, Thomford NE, Mukanganyama S, Wonkam A, Ntsekhe M, Dandara C. The Genetics of Warfarin Dose-Response Variability in Africans: An Expert Perspective on Past, Present, and Future. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:152-166. [PMID: 30883300 DOI: 10.1089/omi.2019.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coumarins such as warfarin are prescribed for prevention and treatment of thromboembolic disorders. Warfarin remains the most widely prescribed and an anticoagulant of choice in Africa. Warfarin use is, however, limited by interindividual variability in pharmacokinetics and a narrow therapeutic index. The difference in patients' pharmacodynamic responses to warfarin has been attributed to genetic variation in warfarin metabolism and molecular targets (e.g., CYP2C9 and VKORC1) and host-environment interactions. This expert review offers a synthesis of human genetics studies in Africans with respect to pharmacogenetics-informed warfarin dosing. We identify areas that need future research attention or could benefit from harnessing existing pharmacogenetics knowledge toward rational and optimal therapeutics with warfarin in African patients. A literature search was conducted until January 2019. A total of 343 articles were retrieved from nine African countries: Botswana, Ethiopia, Egypt, Ghana, Kenya, South Africa, Sudan, Tanzania, and Mozambique. We found 19 studies on genetics of warfarin treatment specifically among Africans. Genes examined included CYP2C9, VKORC1, CYP4F2, APOE, CALU, GGCX, and EPHX1. CYP2C9*2 and *3 alleles were highly frequent among Egyptians, while rare in other African populations. CYP2C9*5, *8, *9, and *11, and VKORC1 Asp36Tyr genetic variants explained warfarin variability in Africans better, compared to CYP2C9*2 and *3. In Africa, there is limited pharmacogenetics data on warfarin. Therefore, future research and funding commitments should be prioritized to ensure safe and effective use of warfarin in Africa. Lessons learned in Africa from the science of pharmacogenetics would inform rational therapeutics in hematology, cardiology, and surgical specialties worldwide.
Collapse
Affiliation(s)
- Arinao Ndadza
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Ambroise Wonkam
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- 3 Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- 1 Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Shah RR. Genotype‐guided warfarin therapy: Still of only questionable value two decades on. J Clin Pharm Ther 2020; 45:547-560. [DOI: 10.1111/jcpt.13127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
|
12
|
Schwarz UI, Gulilat M, Kim RB. The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033027. [PMID: 29844222 DOI: 10.1101/cshperspect.a033027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inherited genetic variations in pharmacogenetic loci are widely acknowledged as important determinants of phenotypic differences in drug response, and may be actionable in the clinic. However, recent studies suggest that a considerable number of novel rare variants in pharmacogenes likely contribute to a still unexplained fraction of the observed interindividual variability. Next-generation sequencing (NGS) represents a rapid, relatively inexpensive, large-scale DNA sequencing technology with potential relevance as a comprehensive pharmacogenetic genotyping platform to identify genetic variation related to drug therapy. However, many obstacles remain before the clinical use of NGS-based test results, including technical challenges, functional interpretation, and strict requirements for diagnostic tests. Advanced computational analyses, high-throughput screening methodologies, and generation of shared resources with cell-based and clinical information will facilitate the integration of NGS data into candidate genotyping approaches, likely enhancing future drug phenotype predictions in patients.
Collapse
Affiliation(s)
- Ute I Schwarz
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5A5, Canada
| | - Markus Gulilat
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5A5, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5A5, Canada
| |
Collapse
|
13
|
Rodrigues-Soares F, Suarez-Kurtz G. Pharmacogenomics research and clinical implementation in Brazil. Basic Clin Pharmacol Toxicol 2019; 124:538-549. [PMID: 30589990 DOI: 10.1111/bcpt.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
We searched PubMed entries and the Lattes database of Brazilian Pharmacogenetics Network investigators, for pharmacogenetic/genomic (PGx) studies in the Brazilian population, focusing on the drugs and genes included in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. Warfarin was the most extensively studied drug in a PGx context: a genomewide association study targeting warfarin stable dose identified significant signals in VKORC1 and CYP2C9, several PGx dosing algorithms were developed based on these and other genes, and the implications of population admixture on extrapolation of dosing recommendations in the CPIC guidelines were examined. A study in renal transplanted patients disclosed association of CYP3A5*6 and CYP3A5*7 with tacrolimus dosing, which led to addition of these variants to CYP3A5*3 in the CPIC tacrolimus guideline. Studies verified predisposition of HIV-positive carriers of UGT1A1*28 to severe atazanavir-induced hyperbilirubinaemia, intolerance to 5-fluorouracyl in gastrointestinal cancer patients with deleterious DPYD variants, failure of HCV-infected carriers of IFNL3 rs12979860 to obtain a sustained viral response to PEG-IFN-α, and hypersensitivity reactions to abacavir in HIV-positive carriers of HLA-B*57:01. No prospective analyses of drug therapy outcomes or cost-effectiveness assessments of PGx-guided therapy were found. In conclusion, the limited adoption of PGx-informed drug prescription in Brazil reflects combination of recognized barriers to PGx implementation worldwide plus factors specific to the Brazilian population. The latter include rarity/absence of genetic variants on which international PGx guidelines are based (eg HLA-B*15.02 for phenytoin and carbamazepine) and the caveat of extrapolating to the admixed Brazilian population, guidelines based on categorical variables, such as continental ancestry (eg warfarin guidelines), "race" or ethnicity.
Collapse
|
14
|
Suarez-Kurtz G, Aklillu E, Saito Y, Somogyi AA. Conference report: pharmacogenomics in special populations at WCP2018. Br J Clin Pharmacol 2019; 85:467-475. [PMID: 30537134 DOI: 10.1111/bcp.13828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The 18th World Congress of Basic and Clinical Pharmacology (WCP2018), coordinated by IUPHAR and hosted by the Japanese Pharmacological Society and the Japanese Society of Clinical Pharmacology and Therapeutics, was held in July 2018 at the Kyoto International Conference Center, in Kyoto, Japan. Having as its main theme 'Pharmacology for the Future: Science, Drug Development and Therapeutics', WCP2018 was attended by over 4500 delegates, representing 78 countries. The present report is an overview of a symposium at WCP2018, entitled Pharmacogenomics in Special Populations, organized by IUPHAR´s Pharmacogenetics/Genomics (PGx) section. The PGx section congregates distinguished scientists from different continents, covering expertise from basic research, to clinical implementation and ethical aspects of PGx, and one of its major activities is the coordination of symposia and workshops to foster exchange of PGx knowledge (https://iuphar.org/sections-subcoms/pharmacogenetics-genomics/). The symposium attracted a large audience to listen to presentations covering various areas of research and clinical adoption of PGx in Oceania, Africa, Latin America and Asia.
Collapse
Affiliation(s)
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Shendre A, Dillon C, Limdi NA. Pharmacogenetics of warfarin dosing in patients of African and European ancestry. Pharmacogenomics 2018; 19:1357-1371. [PMID: 30345882 PMCID: PMC6562764 DOI: 10.2217/pgs-2018-0146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the introduction of direct acting oral anticoagulants, warfarin remains the most commonly prescribed oral anticoagulant. However, warfarin therapy is plagued by the large inter- and intrapatient variability. The variability in dosing fueled research to identify clinical and genetic predictors and develop more accurate dosing algorithms. Observational studies have demonstrated the significant impact of single nucleotide polymorphisms in CYP2C9 and VKORC1 on warfarin dose in patients of European ancestry and African-Americans. This evidence supported the design and conduct of clinical trials to assess whether genotype-guided dosing results in improved anticoagulation control and outcomes. The trial results have shown discordance by race, with pharmacogenetic algorithms improving dose and anticoagulation control among European ancestry patients compared with African-American patients. Herein, we review the evidence from observational and interventional studies, highlight the need for inclusion of minority race groups and propose the need to develop race specific dosing algorithms.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University Purdue University Indianapolis, IN 46202, USA
| | - Chrisly Dillon
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Nita A Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Galvez JM, Restrepo CM, Contreras NC, Alvarado C, Calderón-Ospina CA, Peña N, Cifuentes RA, Duarte D, Laissue P, Fonseca DJ. Creating and validating a warfarin pharmacogenetic dosing algorithm for Colombian patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2018; 11:169-178. [PMID: 30410385 PMCID: PMC6198877 DOI: 10.2147/pgpm.s170515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Warfarin is an oral anticoagulant associated with adverse reaction to drugs due to wide inter- and intra-individual dosage variability. Warfarin dosage has been related to non-genetic and genetic factors. CYP2C9 and VKORC1 gene polymorphisms affect warfarin metabolism and dosage. Due to the central role of populations’ ethnical and genetic origin on warfarin dosage variability, novel algorithms for Latin American subgroups are necessary to establish safe anticoagulation therapy. Patients and methods We genotyped CYP2C9*2 (c.430C > T), CYP2C9*3 (c.1075A > C), CYP4F2 (c.1297G > A), and VKORC1 (−1639 G > A) polymorphisms in 152 Colombian patients who received warfarin. We evaluated the impact on the variability of patients’ warfarin dose requirements. Multiple linear regression analysis, using genetic and non-genetic variables, was used for creating an algorithm for optimal warfarin maintenance dose. Results Median weekly prescribed warfarin dosage was significantly lower in patients having the VKORC1-1639 AA genotype and poor CYP2C9*2/*2,*2/*3 metabolizers than their wild-type counterparts. We found a 2.3-fold increase in mean dose for normal sensitivity patients (wild-type VKORC1/CYP2C9 genotypes) compared to the other groups (moderate and high sensitivity); 31.5% of the patients in our study group had warfarin sensitivity-related genotypes. The estimated regression equation accounted for 44.4% of overall variability in regard to warfarin maintenance dose. The algorithm was validated, giving 45.9% correlation (R2=0.459). Conclusion Our results describe and validate the first algorithm for predicting warfarin maintenance in a Colombian mestizo population and have contributed toward the understanding of pharmacogenetics in a Latin American population subgroup.
Collapse
Affiliation(s)
- Jubby Marcela Galvez
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Carlos Martin Restrepo
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Nora Constanza Contreras
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Clara Alvarado
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Carlos-Alberto Calderón-Ospina
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Nidia Peña
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Ricardo A Cifuentes
- Area of Basic Sciences, College of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Daniela Duarte
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Paul Laissue
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| | - Dora Janeth Fonseca
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia,
| |
Collapse
|
17
|
De T, Park CS, Perera MA. Cardiovascular Pharmacogenomics: Does It Matter If You're Black or White? Annu Rev Pharmacol Toxicol 2018; 59:577-603. [PMID: 30296897 DOI: 10.1146/annurev-pharmtox-010818-021154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Race and ancestry have long been associated with differential risk and outcomes to disease as well as responses to medications. These differences in drug response are multifactorial with some portion associated with genomic variation. The field of pharmacogenomics aims to predict drug response in patients prior to medication administration and to uncover the biological underpinnings of drug response. The field of human genetics has long recognized that genetic variation differs in frequency between ancestral populations, with some single nucleotide polymorphisms found solely in one population. Thus far, most pharmacogenomic studies have focused on individuals of European and East Asian ancestry, resulting in a substantial disparity in the clinical utility of genetic prediction for drug response in US minority populations. In this review, we discuss the genetic factors that underlie variability to drug response and known pharmacogenomic associations and how these differ between populations, with an emphasis on the current knowledge in cardiovascular pharmacogenomics.
Collapse
Affiliation(s)
- Tanima De
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - C Sehwan Park
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
18
|
Sharabiani A, Nutescu EA, Galanter WL, Darabi H. A New Approach towards Minimizing the Risk of Misdosing Warfarin Initiation Doses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:5340845. [PMID: 29861781 PMCID: PMC5971298 DOI: 10.1155/2018/5340845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023]
Abstract
It is a challenge to be able to prescribe the optimal initial dose of warfarin. There have been many studies focused on an efficient strategy to determine the optimal initial dose. Numerous clinical, genetic, and environmental factors affect the warfarin dose response. In practice, it is common that the initial warfarin dose is substantially different from the stable maintenance dose, which may increase the risk of bleeding or thrombosis prior to achieving the stable maintenance dose. In order to minimize the risk of misdosing, despite popular warfarin dose prediction models in the literature which create dose predictions solely based on patients' attributes, we have taken physicians' opinions towards the initial dose into consideration. The initial doses selected by clinicians, along with other standard clinical factors, are used to determine an estimate of the difference between the initial dose and estimated maintenance dose using shrinkage methods. The selected shrinkage method was LASSO (Least Absolute Shrinkage and Selection Operator). The estimated maintenance dose was more accurate than the original initial dose, the dose predicted by a linear model without involving the clinicians initial dose, and the values predicted by the most commonly used model in the literature, the Gage clinical model.
Collapse
Affiliation(s)
- Ashkan Sharabiani
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Edith A. Nutescu
- Department of Pharmacy Systems Outcomes and Policy and Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL, USA
| | - William L. Galanter
- Department of Pharmacy Systems Outcomes and Policy and Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Houshang Darabi
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Limdi NA, Brown TM, Shendre A, Liu N, Hill CE, Beasley TM. Quality of anticoagulation control and hemorrhage risk among African American and European American warfarin users. Pharmacogenet Genomics 2018; 27:347-355. [PMID: 28806200 DOI: 10.1097/fpc.0000000000000298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We evaluated whether percent time in target range (PTTR), risk of over-anticoagulation [international normalized ratio (INR)>4], and risk of hemorrhage differ by race. As PTTR is a strong predictor of hemorrhage risk, we also determined the influence of PTTR on the risk of hemorrhage by race. PARTICIPANTS AND METHODS Among 1326 warfarin users, PTTR was calculated as the percentage of interpolated INR values within the target range of 2.0-3.0. PTTR was also categorized as poor (PTTR<60%), good (60≤PTTR<70%), or excellent (PTTR≥70%) anticoagulation control. Over-anticoagulation was defined as INR more than 4 and major hemorrhages included serious, life-threatening, and fatal bleeding episodes. Logistic regression and survival analyses were carried out to evaluate the association of race with PTTR (≥60 vs. <60) and major hemorrhages, respectively. RESULTS Compared with African Americans, European Americans had higher PTTR (57.6 vs. 49.1%; P<0.0001) and were more likely to attain 60≤PTTR<70% (22.9 vs. 13.1%; P<0.001) or PTTR of at least 70% (26.9 vs. 18.2%; P=0.001). Older (>65 years) patients without venous thromboembolism indication and chronic kidney disease were more likely to attain PTTR of at least 60%. After accounting for clinical and genetic factors, and PTTR, African Americans had a higher risk of hemorrhage [hazard ratio (HR)=1.58; 95% confidence interval (CI): 1.04-2.41; P=0.034]. Patients with 60≤PTTR<70% (HR=0.62; 95% CI: 0.38-1.02; P=0.058) and PTTR of at least 70% (HR=0.27; 95% CI: 0.15-0.49; P<0.001) had a lower risk of hemorrhage compared with those with PTTR less than 60%. CONCLUSION Despite the provision of warfarin management through anticoagulation clinics, African Americans achieve a lower overall PTTR and have a significantly higher risk of hemorrhage. Personalized medicine interventions tailored to African American warfarin users need to be developed.
Collapse
Affiliation(s)
- Nita A Limdi
- aDepartment of Neurology bDepartment of Medicine, Division of Cardiovascular Diseases cDepartment of Epidemiology dDepartment of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA eDepartment of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
20
|
Shendre A, Parmar GM, Dillon C, Beasley TM, Limdi NA. Influence of Age on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy 2018; 38:588-596. [PMID: 29393514 DOI: 10.1002/phar.2089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We assessed the influence of age on warfarin dose, percentage time in target range (PTTR), and risk of major hemorrhage. DESIGN Warfarin users recruited into a large prospective inception cohort study were categorized into three age groups: young (younger than 50 yrs), middle aged (50-70 yrs), and elderly (older than 70 yrs). The influence of age on warfarin dose and PTTR was assessed using regression analysis; risk of major hemorrhage was assessed using proportional hazards analysis. Models were adjusted for demographic, clinical, and genetic factors. SETTING Two outpatient anticoagulation clinics. PARTICIPANTS A total of 1498 anticoagulated patients. OUTCOMES Warfarin dose (mg/day), PTTR, major hemorrhage. RESULTS Of the 1498 patients, 22.8% were young, 44.1% were middle aged, and 33.1% were elderly. After accounting for clinical and genetic factors, compared with young warfarin users, warfarin dose requirements were 10.6% lower among the middle aged and an additional 10.6% lower for the elderly. Compared with young patients, middle-aged and elderly patients spent more time in target international normalized ratio (INR) range (p<0.0001), despite having fewer INR assessments (p<0.0001). Compared with young warfarin users, absolute risk of hemorrhage was marginally higher among the middle aged (p=0.08) and significantly higher among the elderly (p=0.016). Compared with young warfarin users, after adjustment, the relative risk of hemorrhage increased by 31% for each age category (p=0.026). CONCLUSIONS In a real-world setting, despite achieving better anticoagulation control, elderly patients had a higher risk of major hemorrhagic events. As the population ages and the candidacy for oral anticoagulation increases, strategies that mitigate the elevated risk of hemorrhage need to be identified.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Gaurav M Parmar
- Division of Vascular Surgery and Endovascular Therapy, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chrisly Dillon
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Timothy Mark Beasley
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nita A Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Mili FD, Allen T, Wadell PW, Hooper WC, Staercke CD, Bean CJ, Lally C, Austin H, Wenger NK. VKORC1-1639A allele influences warfarin maintenance dosage among Blacks receiving warfarin anticoagulation: a retrospective cohort study. Future Cardiol 2017; 14:15-26. [PMID: 29218998 DOI: 10.2217/fca-2017-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The study objectives were to investigate the association between selected CYP2C9 and VKORC1 single nucleotide polymorphisms with serious bleeding or thrombotic risk, and to estimate mean daily maintenance dose of warfarin and international normalized ratio measurements among Blacks receiving warfarin anticoagulation. METHODS We conducted a retrospective cohort study among 230 Black adults receiving warfarin for a minimum of three consecutive months with a confirmed date of first dosage. RESULTS A lower mean daily maintenance dosage of warfarin was required to maintain an international normalized ratio measurement within the therapeutic range among Blacks with the VKORC1-1639G>A variant alleles ([G/A vs G/G, p = 0.02], [A/A vs G/A, p = 0.008] and [A/A vs G/G, p = 0.001]). CONCLUSION Data indicated that VKORC1-1639A variant allele influenced warfarin daily maintenance dosage among our small, likely admixed Black patient population.
Collapse
Affiliation(s)
- Fatima Donia Mili
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Tenecia Allen
- Emory Heart & Vascular Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paula Weinstein Wadell
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - W Craig Hooper
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Christine De Staercke
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Christopher J Bean
- Hemostasis Laboratory Branch, Division of Blood Disorders, Centers for Disease Control & Prevention, Atlanta, GA 30329, USA
| | - Cathy Lally
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Harland Austin
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Nanette K Wenger
- Emory Heart & Vascular Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Yanik MV, Irvin MR, Beasley TM, Jacobson PA, Julian BA, Limdi NA. Influence of Kidney Transplant Status on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy 2017; 37:1366-1373. [PMID: 28949423 DOI: 10.1002/phar.2032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
STUDY DESIGN To assess whether warfarin dose requirement, anticoagulation control, and risk of hemorrhage differ in kidney transplant recipients (KTRs) compared with patients without kidney transplants (non-KTRs). DESIGN Analysis of data from the Warfarin Pharmacogenetics Cohort, a prospective cohort of first-time warfarin users followed at two anticoagulation clinics. SETTING Two outpatient anticoagulation clinics at two large, academic, tertiary care hospitals. PATIENTS Adults aged 20 years or older starting warfarin for anticoagulation with a therapeutic international normalized ratio (INR) goal of 2-3 who were KTRs (n=65) or non-KTRs (n=1630). MEASUREMENTS AND MAIN RESULTS Warfarin dose requirement, anticoagulation control, and risk of hemorrhage were assessed in each group. KTRs required an approximately 20% lower warfarin dose (4.7 vs 5.6 mg/day, p=0.0005) compared with non-KTRs. Genetic variants had similar effects on dose in both groups. Mean percentage of time in therapeutic range (PTTR) was similar among KTRs and non-KTRs. Although the proportion of patients achieving good anticoagulation control (PTTR ≥ 60%) was low in both groups, it was similar among KTRs and non-KTRs. KTRs had a higher risk of major hemorrhage (hazard ratio 2.1, p=0.0081), but this difference was not statistically significant after controlling for kidney function, clinical, and genetic factors. CONCLUSION KTRs initiating warfarin require lower doses and closer monitoring to optimize anticoagulation therapy. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Megan V Yanik
- Division of Nephrology, Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - T Mark Beasley
- Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamala A Jacobson
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bruce A Julian
- Division of Nephrology, Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nita A Limdi
- Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Li MJ, Zhang J, Liang Q, Xuan C, Wu J, Jiang P, Li W, Zhu Y, Wang P, Fernandez D, Shen Y, Chen Y, Kocher JPA, Yu Y, Sham PC, Wang J, Liu JS, Liu XS. Exploring genetic associations with ceRNA regulation in the human genome. Nucleic Acids Res 2017; 45:5653-5665. [PMID: 28472449 PMCID: PMC5449616 DOI: 10.1093/nar/gkx331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2017] [Indexed: 01/01/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or 'cerQTL', and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.
Collapse
Affiliation(s)
- Mulin Jun Li
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Statistics, Harvard University, Cambridge, MA 02138, USA.,Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jian Zhang
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Liang
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chenghao Xuan
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiexing Wu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Peng Jiang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA 02215, USA
| | - Wei Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA 02215, USA
| | - Yun Zhu
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Panwen Wang
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Daniel Fernandez
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Yujun Shen
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Pierre A Kocher
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ying Yu
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Pak Chung Sham
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.,Department of Psychiatry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Junwen Wang
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA.,Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA 02215, USA
| |
Collapse
|
24
|
Liu N, Irvin MR, Zhi D, Patki A, Beasley TM, Nickerson DA, Hill CE, Chen J, Kimmel SE, Limdi NA. Influence of common and rare genetic variation on warfarin dose among African-Americans and European-Americans using the exome array. Pharmacogenomics 2017; 18:1059-1073. [PMID: 28686080 DOI: 10.2217/pgs-2017-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM We conducted a genome-wide association study using the Illumina Exome Array to identify coding SNPs that may explain additional warfarin dose variability. PATIENTS & METHODS Analysis was performed after adjustment for clinical variables and genetic factors known to influence warfarin dose among 1680 warfarin users (838 European-Americans and 842 African-Americans). Replication was performed in an independent sample. RESULTS We confirmed the influence of known genetic variants on warfarin dose variability. Our study is the first to show the association between rs12772169 and warfarin dose in African-Americans. In addition, genes COX15 and FGF5 showed significant association in European-Americans. CONCLUSION We identified some novel genes/SNPs that underpin warfarin dose response. Further replication is needed to confirm our findings.
Collapse
Affiliation(s)
- Nianjun Liu
- Department of Epidemiology & Biostatistics, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Charles E Hill
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinbo Chen
- Department of Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen E Kimmel
- Department of Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nita A Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Hernandez W, Gamazon ER, Aquino-Michaels K, Smithberger E, O'Brien TJ, Harralson AF, Tuck M, Barbour A, Cavallari LH, Perera MA. Integrated analysis of genetic variation and gene expression reveals novel variant for increased warfarin dose requirement in African Americans. J Thromb Haemost 2017; 15:735-743. [PMID: 28135054 PMCID: PMC5862636 DOI: 10.1111/jth.13639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/26/2022]
Abstract
Essentials Genetic variants controlling gene regulation have not been explored in pharmacogenomics. We tested liver expression quantitative trait loci for association with warfarin dose response. A novel predictor for increased warfarin dose response in African Americans was identified. Precision medicine must take into account population-specific variation in gene regulation. SUMMARY Background Warfarin is commonly used to control and prevent thromboembolic disorders. However, because of warfarin's complex dose-requirement relationship, safe and effective use is challenging. Pharmacogenomics-guided warfarin dosing algorithms that include the well-established VKORC1 and CYP2C9 polymorphisms explain only a small proportion of inter-individual variability in African Americans (AAs). Objectives We aimed to assess whether transcriptomic analyses could be used to identify regulatory variants associated with warfarin dose response in AAs. Patients/Methods We identified a total of 56 expression quantitative trait loci (eQTLs) for CYP2C9, VKORC1 and CALU derived from human livers and evaluated their association with warfarin dose response in two independent AA warfarin patient cohorts. Results We found that rs4889606, a strong cis-eQTL for VKORC1 (log10 Bayes Factor = 12.02), is significantly associated with increased warfarin daily dose requirement (β = 1.1; 95% confidence interval [CI] 0.46 to 1.8) in the discovery cohort (n = 305) and in the replication cohort (β = 1.04; 95% CI 0.33 -1.7; n = 141) after conditioning on relevant covariates and the VKORC1 -1639G>A (rs9923231) variant. Inclusion of rs4889606 genotypes, along with CYP2C9 alleles, rs9923231 genotypes and clinical variables, explained 31% of the inter-patient variability in warfarin dose requirement. We demonstrate different linkage disequilibrium patterns in the region encompassing rs4889606 and rs9923231 between AAs and European Americans, which may explain the increased dose requirement found in AAs. Conclusion Our approach of interrogating eQTLs identified in liver has revealed a novel predictor of warfarin dose response in AAs. Our work highlights the utility of leveraging information from regulatory variants mapped in the liver to uncover novel variants associated with drug response and the importance of population-specific research.
Collapse
Affiliation(s)
- W Hernandez
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - E R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - K Aquino-Michaels
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - E Smithberger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - T J O'Brien
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - A F Harralson
- Department of Medicine, George Washington University, Washington, DC, USA
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Winchester, VA, USA
| | - M Tuck
- Veterans Affairs Medical Center, Washington, DC, USA
| | - A Barbour
- Department of Medicine, George Washington University, Washington, DC, USA
| | - L H Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
26
|
Speculations on vitamin K, VKORC1 genotype and autism. Med Hypotheses 2016; 96:30-33. [DOI: 10.1016/j.mehy.2016.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
|
27
|
Shendre A, Brown TM, Liu N, Hill CE, Beasley TM, Nickerson DA, Limdi NA. Race-Specific Influence of CYP4F2 on Dose and Risk of Hemorrhage Among Warfarin Users. Pharmacotherapy 2016; 36:263-72. [PMID: 26877068 DOI: 10.1002/phar.1717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The p.V433M in cytochrome P450 4F2 (rs2108622, CYP4F2*3) is associated with a higher warfarin dose and lower risk of hemorrhage among European Americans. We evaluate the influence of CYP4F2*3 on warfarin dose, time to target international normalized ratio (INR), and stable dose, proportion of time spent in target range (PTTR), as well as the risk of overanticoagulation and hemorrhage among European and African Americans. DESIGN CYP4F2*3 was genotyped in 1238 patients initiated on warfarin in a prospective inception cohort. Multivariable linear regression was used to assess warfarin dose and PTTR; proportional hazards analysis was performed to evaluate time to target INR and stable dose, overanticoagulation, and hemorrhage. SETTING Two outpatient anticoagulation clinics. PARTICIPANTS A total of 1238 anticoagulated patients. OUTCOMES Warfarin dose (mg/day), time to target INR and stable dose, PTTR, overanticoagulation (INR more than 4), and major hemorrhage. RESULTS Minor allele frequency for the CYP4F2*3 variant was 30.3% among European Americans and 8.4% among African Americans. CYP4F2*3 was associated with higher dose among European Americans but not African Americans. Compared to CYP4F2*1/*1, *1/*3 was associated with a statistically nonsignificant increase in dose (4.5%, p=0.22) and *3/*3 was associated with a statistically significant increase in dose (13.2%, p=0.02). CYP4F2 genotype did not influence time to target INR, time to stable dose, or PTTR in either race group. CYP4F2*3/*3 was associated with a 31% lower risk of over anticoagulation (p=0.06). Incidence of hemorrhage was lower among participants with CYP4F2 *3/*3 compared with *1/*3 or *1/*1 (incidence rate ratio = 0.45, 95% confidence interval 0.14-1.11, p=0.09). After controlling for covariates, CYP4F2 *3/*3 was associated with a 52% lower risk of hemorrhage, although this was not statistically significant (p=0.24). CONCLUSION Possession of CYP4F2*3 variant influences warfarin dose among European Americans but not African Americans. The CYP4F2-dose, CYP4F2-overanticoagulation, and CYP4F2-hemorrhage association follows a recessive pattern with possession of CYP4F2*3/*3 genotype likely demonstrating a protective effect. These findings need further confirmation.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Todd M Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nianjun Liu
- Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles E Hill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - T Mark Beasley
- Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deborah A Nickerson
- Genome Sciences, School of Medicine, University of Washington, Seattle, Washington
| | - Nita A Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Murray JL, Hu P, Shafer DA. Seven novel probe systems for real-time PCR provide absolute single-base discrimination, higher signaling, and generic components. J Mol Diagn 2015; 16:627-38. [PMID: 25307756 DOI: 10.1016/j.jmoldx.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/14/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022] Open
Abstract
We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene.
Collapse
Affiliation(s)
| | - Peixu Hu
- GeneTAG Technology, Inc., Atlanta, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - David A Shafer
- GeneTAG Technology, Inc., Atlanta, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
29
|
Santos PCJL, Marcatto LR, Duarte NE, Gadi Soares RA, Cassaro Strunz CM, Scanavacca M, Krieger JE, Pereira AC. Development of a pharmacogenetic-based warfarin dosing algorithm and its performance in Brazilian patients: highlighting the importance of population-specific calibration. Pharmacogenomics 2015; 16:865-76. [PMID: 26050796 DOI: 10.2217/pgs.15.48] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The main aims of the present study were to develop a pharmacogenetic-based warfarin dosing algorithm and to validate it in a highly admixed population. MATERIALS & METHODS We included two patient cohorts treated with warfarin (first cohort, n = 832; and second cohort, n = 133). RESULTS Our algorithm achieved a determination coefficient of 40% including the variables age, gender, weight, height, self-declared race, amiodarone use, enzyme inducers use, VKORC1 genotypes and predicted phenotypes according to CYP2C9 polymorphisms. CONCLUSION Data suggest that our developed algorithm is more accurate than the IWPC algorithm when the application is focused on patients from the Brazilian population. Population-specific derivation and/or calibration of warfarin dosing algorithms may lead to improved performance compared with general use dosing algorithms currently available. Original submitted 26 November 2014; Revision submitted 9 April 2015.
Collapse
Affiliation(s)
- Paulo Caleb Junior Lima Santos
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, São Paulo, CEP 05403-000, Brazil
| | - Leiliane Rodrigues Marcatto
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, São Paulo, CEP 05403-000, Brazil
| | - Nubia Esteban Duarte
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, São Paulo, CEP 05403-000, Brazil
| | - Renata Alonso Gadi Soares
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, São Paulo, CEP 05403-000, Brazil
| | | | - Maurício Scanavacca
- Clinical Cardiology Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jose Eduardo Krieger
- Laboratory of Genetics & Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Eneas de Carvalho Aguiar, 44 Cerqueira Cesar, São Paulo, CEP 05403-000, Brazil
| | | |
Collapse
|
30
|
Revisiting Warfarin Dosing Using Machine Learning Techniques. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:560108. [PMID: 26146514 PMCID: PMC4471424 DOI: 10.1155/2015/560108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/23/2022]
Abstract
Determining the appropriate dosage of warfarin is an important yet challenging task. Several prediction models have been proposed to estimate a therapeutic dose for patients. The models are either clinical models which contain clinical and demographic variables or pharmacogenetic models which additionally contain the genetic variables. In this paper, a new methodology for warfarin dosing is proposed. The patients are initially classified into two classes. The first class contains patients who require doses of >30 mg/wk and the second class contains patients who require doses of ≤30 mg/wk. This phase is performed using relevance vector machines. In the second phase, the optimal dose for each patient is predicted by two clinical regression models that are customized for each class of patients. The prediction accuracy of the model was 11.6 in terms of root mean squared error (RMSE) and 8.4 in terms of mean absolute error (MAE). This was 15% and 5% lower than IWPC and Gage models (which are the most widely used models in practice), respectively, in terms of RMSE. In addition, the proposed model was compared with fixed-dose approach of 35 mg/wk, and the model proposed by Sharabiani et al. and its outperformance were proved in terms of both MAE and RMSE.
Collapse
|
31
|
Hernandez W, Aquino-Michaels K, Drozda K, Patel S, Jeong Y, Takahashi H, Cavallari LH, Perera MA. Novel single nucleotide polymorphism in CYP2C9 is associated with changes in warfarin clearance and CYP2C9 expression levels in African Americans. Transl Res 2015; 165:651-7. [PMID: 25499099 PMCID: PMC4433569 DOI: 10.1016/j.trsl.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022]
Abstract
Warfarin is a widely used anticoagulant whose active S-enantiomer is primarily metabolized by the CYP2C9 enzyme. The CYP2C9*2 and CYP2C9*3 alleles are associated with lower warfarin dose requirement and decreased enzyme activity. In contrast, we previously identified a novel single-nucleotide polymorphism (SNP) (rs7089580A > T) in CYP2C9 that is associated with higher warfarin dose requirement in African Americans (AAs). In this study, we examine the effect of rs7089580 on warfarin pharmacokinetics and CYP2C9 expression in 63 AA patients and 32 AA liver tissues, respectively. We found oral clearance of S-warfarin to be higher among carriers of the minor rs7089580 allele (T) compared with wild-type homozygotes (3.73 ± 1.46 vs 2.95 ± 1.39 mL/min; P = 0.04). CYP2C9 messenger RNA expression in liver tissue was also higher among A/T and T/T genotypes compared with A/A (P < 0.02). Our findings indicate that rs7089580 is associated with higher S-warfarin clearance and CYP2C9 expression and may help explain the higher dose requirement of warfarin in AAs. Furthermore, rs7089580 is in complete linkage disequilibrium with the promoter SNP rs12251841 in AAs, which may provide a biologically plausible explanation for the observed effect on CYP2C9 expression levels. Given the many clinically relevant substrates of CYP2C9, identifying polymorphisms that affect expression levels and metabolism across ethnicities is essential for individualization of doses with a narrow therapeutic index.
Collapse
Affiliation(s)
- Wenndy Hernandez
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Keston Aquino-Michaels
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Katarzyna Drozda
- Department of Pharmacy Practice, University of Illinois, College of Pharmacy, Chicago, Ill
| | - Shitalban Patel
- Department of Pharmacy Practice, University of Illinois, College of Pharmacy, Chicago, Ill
| | - Young Jeong
- Department of Pharmacy Practice, University of Illinois, College of Pharmacy, Chicago, Ill
| | - Harumi Takahashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Larisa H Cavallari
- Department of Pharmacy Practice, University of Illinois, College of Pharmacy, Chicago, Ill
| | - Minoli A Perera
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Ill.
| |
Collapse
|
32
|
Roth JA, Bradley K, Thummel KE, Veenstra DL, Boudreau D. Alcohol misuse, genetics, and major bleeding among warfarin therapy patients in a community setting. Pharmacoepidemiol Drug Saf 2015; 24:619-27. [PMID: 25858232 PMCID: PMC4478047 DOI: 10.1002/pds.3769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/25/2015] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE Little is known about the impact of alcohol consumption on warfarin safety, or whether demographic, clinical, or genetic factors modify risk of adverse events. We conducted a case-control study to assess the association between screening positive for moderate/severe alcohol misuse and the risk of major bleeding in a community sample of patients using warfarin. METHODS The study sample consisted of 570 adult patients continuously enrolled in Group Heath for at least 2 years and receiving warfarin. The main outcome was major bleeding validated through medical record review. Cases experienced major bleeding, and controls did not experience major bleeding. Exposures were Alcohol Use Disorders Identification Test Consumption Questionnaire (AUDIT-C) scores and report of heavy episodic drinking (≥5 drinks on an occasion). The odds of major bleeding were estimated with multivariate logistic regression models. The overall sample was 55% male, 94% Caucasian, and had a mean age of 70 years. RESULTS Among 265 cases and 305 controls, AUDIT-C scores indicative of moderate/severe alcohol misuse and heavy episodic drinking were associated with increased risk of major bleeding (OR = 2.10, 95% CI = 1.08-4.07; and OR = 2.36, 95% CI = 1.24-4.50, respectively). Stratified analyses demonstrated increased alcohol-related major bleeding risk in patients on warfarin for ≥1 year and in those with a low-dose genotype (CYP2C9*2/*3, VKORC1(1173G>A), CYP4F2*1), but not in other sub-groups evaluated. CONCLUSIONS Alcohol screening questionnaires, potentially coupled with genetic testing, could have clinical utility in selecting patients for warfarin therapy, as well as refining dosing and monitoring practices.
Collapse
Affiliation(s)
- Joshua A. Roth
- Group Health Research Institute, Group Health, Seattle, WA, USA
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kenneth E. Thummel
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - David L. Veenstra
- Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Denise Boudreau
- Group Health Research Institute, Group Health, Seattle, WA, USA
- Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Race influences warfarin dose changes associated with genetic factors. Blood 2015; 126:539-45. [PMID: 26024874 DOI: 10.1182/blood-2015-02-627042] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Warfarin dosing algorithms adjust for race, assigning a fixed effect size to each predictor, thereby attenuating the differential effect by race. Attenuation likely occurs in both race groups but may be more pronounced in the less-represented race group. Therefore, we evaluated whether the effect of clinical (age, body surface area [BSA], chronic kidney disease [CKD], and amiodarone use) and genetic factors (CYP2C9*2, *3, *5, *6, *11, rs12777823, VKORC1, and CYP4F2) on warfarin dose differs by race using regression analyses among 1357 patients enrolled in a prospective cohort study and compared predictive ability of race-combined vs race-stratified models. Differential effect of predictors by race was assessed using predictor-race interactions in race-combined analyses. Warfarin dose was influenced by age, BSA, CKD, amiodarone use, and CYP2C9*3 and VKORC1 variants in both races, by CYP2C9*2 and CYP4F2 variants in European Americans, and by rs12777823 in African Americans. CYP2C9*2 was associated with a lower dose only among European Americans (20.6% vs 3.0%, P < .001) and rs12777823 only among African Americans (12.3% vs 2.3%, P = .006). Although VKORC1 was associated with dose decrease in both races, the proportional decrease was higher among European Americans (28.9% vs 19.9%, P = .003) compared with African Americans. Race-stratified analysis improved dose prediction in both race groups compared with race-combined analysis. We demonstrate that the effect of predictors on warfarin dose differs by race, which may explain divergent findings reported by recent warfarin pharmacogenetic trials. We recommend that warfarin dosing algorithms should be stratified by race rather than adjusted for race.
Collapse
|
34
|
Akinboboye O. Use of oral anticoagulants in African-American and Caucasian patients with atrial fibrillation: is there a treatment disparity? J Multidiscip Healthc 2015; 8:217-28. [PMID: 26056467 PMCID: PMC4445875 DOI: 10.2147/jmdh.s74529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia, and its prevalence is increasing along with aging in the developed world. This review discusses racial differences in the epidemiology and treatment of AF between African-American and Caucasian patients. Additionally, the effect of race on warfarin and novel oral anticoagulant use is discussed, as well as the role that physicians and patients play in achieving optimal treatment outcomes. Despite having a lower prevalence of AF compared with Caucasians, African-Americans suffer disproportionately from stroke and its sequelae. The possible reasons for this paradox include poorer access to health care, lower health literacy, and a higher prevalence of other stroke-risk factors among African-Americans. Consequently, it is important for providers to evaluate the effects of race, health literacy, access to health care, and cultural barriers on the use of anticoagulation in the management of AF. Warfarin-dose requirements vary across racial groups, with African-American patients requiring a higher dose than Caucasians to maintain a therapeutic international normalized ratio; the novel oral anticoagulants (dabigatran, rivaroxaban, and apixaban) seem to differ in this regard, although data are currently limited. Minority racial groups are not proportionally represented in either real-world studies or clinical trials, but as more information becomes available and other social issues are addressed, the treatment disparities between African-American and Caucasian patients should decrease.
Collapse
|
35
|
Shendre A, Beasley TM, Brown TM, Hill CE, Arnett DK, Limdi NA. Influence of regular physical activity on warfarin dose and risk of hemorrhagic complications. Pharmacotherapy 2015; 34:545-54. [PMID: 25032265 DOI: 10.1002/phar.1401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To determine the influence of regular physical activity on stable warfarin dose and risk of major hemorrhage in patients on chronic anticoagulation therapy. DESIGN Regular physical activity (maintained over > 80% of visits) was ascertained by self-report at initiation of warfarin therapy (target international normalized ratio [INR] = 2-3) in 1272 patients, with changes documented at monthly anticoagulation clinic visits in a population-based prospective cohort. Multi-variable linear regression and survival analysis, respectively, were used to assess influence on warfarin and risk of hemorrhage. SETTING Outpatient anticoagulation clinic PARTICIPANTS 1272 anticoagulated patients MEASUREMENT AND MAIN RESULTS There were 683 (53.7%) patients who were regularly physically active (≥ 30 min ≥ 3 times/week). Physically active patients required warfarin doses that were 6.9% higher (p=0.006) than in physically inactive patients after controlling for sociodemographic factors, vitamin K intake, clinical factors, and genetic variations.The overall incidence of major hemorrhagic events was 7.6/100 person-years (p-yrs, 95% confidence interval [CI] 6.4-8.9) in our population. The incidence was lower for physically active patients (5.6/100 p-yrs, 95% CI 4.2-7.2) than in inactive patients (10.3/100 p-yrs, 95% CI 8.2-12.9, p=0.0004). Active patients had a 38% lower risk of hemorrhage (hazard ratio 0.62, 95% CI 0.42-0.98, p=0.03) compared with inactive patients. CONCLUSIONS Regular physical activity is associated with higher warfarin dose requirements and lower risk of hemorrhage. The influence of physical activity on drug response needs to be further explored, and the mechanisms through which it exerts these effects need to be elucidated
Collapse
|
36
|
Limdi NA, Nolin TD, Booth SL, Centi A, Marques MB, Crowley MR, Allon M, Beasley TM. Influence of kidney function on risk of supratherapeutic international normalized ratio-related hemorrhage in warfarin users: a prospective cohort study. Am J Kidney Dis 2014; 65:701-9. [PMID: 25468385 DOI: 10.1053/j.ajkd.2014.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anticoagulation management is difficult in chronic kidney disease, with frequent supratherapeutic international normalized ratios (INRs ≥ 4) increasing hemorrhagic risk. We evaluated whether the interaction of INR and lower estimated glomerular filtration rate (eGFR) increases hemorrhage risk and whether patients with lower eGFRs experience slower anticoagulation reversal. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS Warfarin pharmacogenetics cohort (1,273 long-term warfarin users); warfarin reversal cohort (74 warfarin users admitted with INRs ≥ 4). PREDICTOR eGFR, INR as time-dependent covariate, and their interaction in the pharmacogenetics cohort; eGFR in the reversal cohort. OUTCOMES & MEASUREMENTS In the pharmacogenetics cohort, hemorrhagic (serious, life-threatening, and fatal bleeding) risk was assessed using proportional hazards regression. In the reversal cohort, anticoagulation reversal was assessed from changes in INR, warfarin and metabolite concentrations, clotting factors (II, VII, IX, and X), and PIVKA-II (protein induced by vitamin K absence or antagonist II) levels at presentation and after reversal, using linear regression and path analysis. RESULTS In the pharmacogenetics cohort, 454 (35.7%) had eGFRs < 60 mL/min/1.73 m(2). There were 137 hemorrhages in 119 patients over 1,802 person-years of follow-up (incidence rate, 7.6 [95% CI, 6.4-8.9]/100 person-years). Patients with lower eGFRs had a higher frequency of INR ≥ 4 (P<0.001). Risk of hemorrhage was affected significantly by eGFR-INR interaction. At INR<4, there was no difference in hemorrhage risk by eGFR (all P ≥ 0.4). At INR≥4, patients with eGFRs of 30 to 44 and < 30 mL/min/1.73 m(2) had 2.2-fold (95% CI, 0.8-6.1; P=0.1) and 5.8-fold (95% CI, 2.9-11.4; P<0.001) higher hemorrhage risks, respectively, versus those with eGFRs ≥ 60 mL/min/1.73 m(2). In the reversal cohort, 35 (47%) had eGFRs < 45 mL/min/1.73 m(2). Patients with eGFRs < 45 mL/min/1.73 m(2) experienced slower anticoagulation reversal as assessed by INR (P=0.04) and PIVKA-II level (P=0.008) than those with eGFRs ≥ 45 mL/min/1.73 m(2). LIMITATIONS Limited sample size in the reversal cohort, unavailability of antibiotic use and urine albumin data. CONCLUSIONS Patients with lower eGFRs have differentially higher hemorrhage risk at INR ≥ 4. Moreover, because the INR reversal rate is slower, hemorrhage risk is prolonged.
Collapse
Affiliation(s)
- Nita A Limdi
- Neurology, University of Alabama at Birmingham, Birmingham, AL.
| | - Thomas D Nolin
- Pharmacy and Therapeutics, Jean Mayer USDA Human Nutrition Research Center on Aging, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Sarah L Booth
- Vitamin K Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Amanda Centi
- Vitamin K Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Marisa B Marques
- Pathology, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael R Crowley
- Genetics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Allon
- Division of Nephrology, Medicine, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - T Mark Beasley
- Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
37
|
Carnes CA. What is the role of pharmacogenetics in optimization of warfarin dosing? Trends Cardiovasc Med 2014; 25:42-3. [PMID: 25476743 DOI: 10.1016/j.tcm.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Cynthia A Carnes
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, OH 43210.
| |
Collapse
|
38
|
Adamusiak T, Shimoyama N, Shimoyama M. Next generation phenotyping using the unified medical language system. JMIR Med Inform 2014; 2:e5. [PMID: 25601137 PMCID: PMC4288084 DOI: 10.2196/medinform.3172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background Structured information within patient medical records represents a largely untapped treasure trove of research data. In the United States, privacy issues notwithstanding, this has recently become more accessible thanks to the increasing adoption of electronic health records (EHR) and health care data standards fueled by the Meaningful Use legislation. The other side of the coin is that it is now becoming increasingly more difficult to navigate the profusion of many disparate clinical terminology standards, which often span millions of concepts. Objective The objective of our study was to develop a methodology for integrating large amounts of structured clinical information that is both terminology agnostic and able to capture heterogeneous clinical phenotypes including problems, procedures, medications, and clinical results (such as laboratory tests and clinical observations). In this context, we define phenotyping as the extraction of all clinically relevant features contained in the EHR. Methods The scope of the project was framed by the Common Meaningful Use (MU) Dataset terminology standards; the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), RxNorm, the Logical Observation Identifiers Names and Codes (LOINC), the Current Procedural Terminology (CPT), the Health care Common Procedure Coding System (HCPCS), the International Classification of Diseases Ninth Revision Clinical Modification (ICD-9-CM), and the International Classification of Diseases Tenth Revision Clinical Modification (ICD-10-CM). The Unified Medical Language System (UMLS) was used as a mapping layer among the MU ontologies. An extract, load, and transform approach separated original annotations in the EHR from the mapping process and allowed for continuous updates as the terminologies were updated. Additionally, we integrated all terminologies into a single UMLS derived ontology and further optimized it to make the relatively large concept graph manageable. Results The initial evaluation was performed with simulated data from the Clinical Avatars project using 100,000 virtual patients undergoing a 90 day, genotype guided, warfarin dosing protocol. This dataset was annotated with standard MU terminologies, loaded, and transformed using the UMLS. We have deployed this methodology to scale in our in-house analytics platform using structured EHR data for 7931 patients (12 million clinical observations) treated at the Froedtert Hospital. A demonstration limited to Clinical Avatars data is available on the Internet using the credentials user “jmirdemo” and password “jmirdemo”. Conclusions Despite its inherent complexity, the UMLS can serve as an effective interface terminology for many of the clinical data standards currently used in the health care domain.
Collapse
Affiliation(s)
- Tomasz Adamusiak
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| | | | | |
Collapse
|
39
|
Genetic risk factors for major bleeding in patients treated with warfarin in a community setting. Clin Pharmacol Ther 2014; 95:636-43. [PMID: 24503627 DOI: 10.1038/clpt.2014.26] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/27/2014] [Indexed: 01/07/2023]
Abstract
The influence of warfarin pharmacogenomics on major bleeding risk has been little studied in long-term users and non-specialist care settings. We conducted a case-control study to evaluate associations between CYP2C9*2/*3, VKORC1(1173), and CYP4F2*3 variants and major bleeding among patients treated with warfarin in a community setting. We calculated major bleeding odds ratios, adjusting for race, duration of warfarin use, age, gender, and body mass index. In 265 cases and 305 controls with 3.4 and 3.7 mean years of warfarin use, respectively, CYP4F2*3 was associated with decreased major bleeding risk (odds ratio: 0.62; 95% confidence interval: 0.43-0.91). CYP2C9*2/*3 and VKORC1(1173) had null associations overall, but there was a nonsignificant increase in major bleeding risk in patients with duration <6 months (odds ratio: 1.30; 95% confidence interval: 0.60-2.83; odds ratio: 1.23; 95% confidence interval: 0.57-2.64, respectively). In summary, in the largest study of warfarin pharmacogenomics and major bleeding to date, we found a 38% lower risk in patients with CYP4F2*3, potentially reflecting interaction with warfarin and dietary vitamin K intake and warranting additional evaluation.
Collapse
|
40
|
The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations. J Appl Genet 2014; 55:163-71. [PMID: 24425227 DOI: 10.1007/s13353-013-0189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022]
Abstract
The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.
Collapse
|
41
|
Hernandez W, Gamazon ER, Aquino-Michaels K, Patel S, O'Brien TJ, Harralson AF, Kittles RA, Barbour A, Tuck M, McIntosh SD, Douglas JN, Nicolae D, Cavallari LH, Perera MA. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. THE PHARMACOGENOMICS JOURNAL 2013; 14:223-8. [PMID: 24018621 DOI: 10.1038/tpj.2013.34] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Using a derivation cohort (N=349), we developed the first warfarin dosing algorithm that includes recently discovered polymorphisms in VKORC1 and CYP2C9 associated with warfarin dose requirement in African Americans (AAs). We tested our novel algorithm in an independent cohort of 129 AAs and compared the dose prediction to the International Warfarin Pharmacogenetics Consortium (IWPC) dosing algorithms. Our algorithm explains more of the phenotypic variation (R(2)=0.27) than the IWPC pharmacogenomics (R(2)=0.15) or clinical (R(2)=0.16) algorithms. Among high-dose patients, our algorithm predicted a higher proportion of patients within 20% of stable warfarin dose (45% vs 29% and 2% in the IWPC pharmacogenomics and clinical algorithms, respectively). In contrast to our novel algorithm, a significant inverse correlation between predicted dose and percent West African ancestry was observed for the IWPC pharmacogenomics algorithm among patients requiring ⩾60 mg per week (β=-2.04, P=0.02).
Collapse
Affiliation(s)
- W Hernandez
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - E R Gamazon
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - K Aquino-Michaels
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - S Patel
- Department of Pharmacy, University of Illinois, Chicago, IL, USA
| | - T J O'Brien
- Department of Pharmacology and Physiology, The George Washington University, Washington DC, USA
| | - A F Harralson
- 1] Department of Pharmacology and Physiology, The George Washington University, Washington DC, USA [2] Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, VA, USA
| | - R A Kittles
- Department of Medicine, Institute of Human Genetics, University of Illinois, Chicago, IL, USA
| | - A Barbour
- Department of Medicine, The George Washington University, Washington DC, USA
| | - M Tuck
- Department of Veterans Affairs, Uniformed Services University of the Health Sciences, Washington DC, USA
| | - S D McIntosh
- 1] Department of Medicine, The George Washington University, Washington DC, USA [2] Department of Veterans Affairs, Uniformed Services University of the Health Sciences, Washington DC, USA
| | - J N Douglas
- Department of Veterans Affairs, Uniformed Services University of the Health Sciences, Washington DC, USA
| | - D Nicolae
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - L H Cavallari
- Department of Pharmacy, University of Illinois, Chicago, IL, USA
| | - M A Perera
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
|
43
|
Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, Pluzhnikov A, Crawford DC, Wang J, Liu N, Tatonetti N, Bourgeois S, Takahashi H, Bradford Y, Burkley BM, Desnick RJ, Halperin JL, Khalifa SI, Langaee TY, Lubitz SA, Nutescu EA, Oetjens M, Shahin MH, Patel SR, Sagreiya H, Tector M, Weck KE, Rieder MJ, Scott SA, Wu AHB, Burmester JK, Wadelius M, Deloukas P, Wagner MJ, Mushiroda T, Kubo M, Roden DM, Cox NJ, Altman RB, Klein TE, Nakamura Y, Johnson JA. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013; 382:790-6. [PMID: 23755828 PMCID: PMC3759580 DOI: 10.1016/s0140-6736(13)60681-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. METHODS We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. FINDINGS The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). INTERPRETATION A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. FUNDING National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.
Collapse
Affiliation(s)
- Minoli A Perera
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Larisa H Cavallari
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Nita A Limdi
- Department of Neurology and Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric R Gamazon
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Anuar Konkashbaev
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Roxana Daneshjou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Anna Pluzhnikov
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Jelai Wang
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nianjun Liu
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Stephane Bourgeois
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Harumi Takahashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yukiko Bradford
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Benjamin M Burkley
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Robert J Desnick
- Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Jonathan L Halperin
- The Zena and Michael A Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Sherief I Khalifa
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | - Taimour Y Langaee
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Edith A Nutescu
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Oetjens
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Mohamed H Shahin
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Shitalben R Patel
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Hersh Sagreiya
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Karen E Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Mark J Rieder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stuart A Scott
- Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Alan HB Wu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Michael J Wagner
- School of Pharmacy, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | | | | | - Dan M Roden
- Department of Medicine and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Nancy J Cox
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Teri E Klein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Julie A Johnson
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
- Correspondence to: Prof Julie A Johnson, Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, University of Florida, Box 100486, Gainesville, FL 32610–0486, USA
| |
Collapse
|
44
|
Ramos AS, Seip RL, Rivera-Miranda G, Felici-Giovanini ME, Garcia-Berdecia R, Alejandro-Cowan Y, Kocherla M, Cruz I, Feliu JF, Cadilla CL, Renta JY, Gorowski K, Vergara C, Ruaño G, Duconge J. Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients. Pharmacogenomics 2013; 13:1937-50. [PMID: 23215886 DOI: 10.2217/pgs.12.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. PATIENTS & METHODS A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. RESULTS The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better 'ideal dose' estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R(2) = 51%). CONCLUSION Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients.
Collapse
Affiliation(s)
- Alga S Ramos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Room 420, PO Box 365067, San Juan, PR 00936-5067, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Anton AI, Cerezo-Manchado JJ, Padilla J, Perez-Andreu V, Corral J, Vicente V, Roldan V, Gonzalez-Conejero R. Novel associations of VKORC1 variants with higher acenocoumarol requirements. PLoS One 2013; 8:e64469. [PMID: 23691226 PMCID: PMC3656883 DOI: 10.1371/journal.pone.0064469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 04/16/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Algorithms combining both clinical and genetic data have been developed to improve oral anticoagulant therapy. Three polymorphisms in two genes, VKORC1 and CYP2C9, are the main coumarin dose determinants and no additional polymorphisms of any relevant pharmacogenetic importance have been identified. OBJECTIVES To identify new genetic variations in VKORC1 with relevance for oral anticoagulant therapy. METHODS AND RESULTS 3949 consecutive patients taking acenocoumarol were genotyped for the VKORC1 rs9923231 and CY2C9* polymorphisms. Of these, 145 patients with a dose outside the expected range for the genetic profile determined by these polymorphisms were selected. Clinical factors explained the phenotype in 88 patients. In the remaining 57 patients, all with higher doses than expected, we sequenced the VKORC1 gene and genetic changes were identified in 14 patients. Four patients carried VKORC1 variants previously related to high coumarin doses (L128R, N = 1 and D36Y, N = 3).Three polymorphisms were also detected: rs17878544 (N = 5), rs55894764 (N = 4) and rs7200749 (N = 2) which was in linkage disequilibrium with rs17878544. Finally, 2 patients had lost the rs9923231/rs9934438 linkage. The prevalence of these variations was higher in these patients than in the whole sample. Multivariate linear regression analysis revealed that only D36Y and rs55894764 variants significantly affect the dose, although the improvement in the prediction model is small (from 39% to 40%). CONCLUSION Our strategy identified novel associations of VKORC1 variants with higher acenocoumarol doses albeit with a low effect size. Further studies are necessary to test their influence on the VKORC1 function and the cost/benefit of their inclusion in pharmacogenetic algorithms.
Collapse
Affiliation(s)
- Ana Isabel Anton
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Juan J. Cerezo-Manchado
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Jose Padilla
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Virginia Perez-Andreu
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Javier Corral
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Vanessa Roldan
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
| | - Rocio Gonzalez-Conejero
- Centro Regional de Hemodonación and Morales Meseguer Hospital, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
46
|
Bavisotto LM, Ellis DJ, Milner PG, Combs DL, Irwin I, Canafax DM. Tecarfarin, a Novel Vitamin K Reductase Antagonist, Is Not Affected by CYP2C9 and CYP3A4 Inhibition Following Concomitant Administration of Fluconazole in Healthy Participants. J Clin Pharmacol 2013; 51:561-74. [DOI: 10.1177/0091270010370588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Brehm K, Schack J, Heilmann C, Blanke P, Geissler HJ, Beyersdorf F. Mechanical heart valve recipients: anticoagulation in patients with genetic variations of phenprocoumon metabolism†. Eur J Cardiothorac Surg 2013; 44:309-14; discussion 314-5. [DOI: 10.1093/ejcts/ezt002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
48
|
Suarez-Kurtz G, Botton MR. Pharmacogenomics of warfarin in populations of African descent. Br J Clin Pharmacol 2013; 75:334-46. [PMID: 22676711 PMCID: PMC3579249 DOI: 10.1111/j.1365-2125.2012.04354.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/30/2012] [Indexed: 12/21/2022] Open
Abstract
Warfarin is the most commonly prescribed oral anticoagulant worldwide despite its narrow therapeutic index and the notorious inter- and intra-individual variability in dose required for the target clinical effect. Pharmacogenetic polymorphisms are major determinants of warfarin pharmacokinetic and dynamics and included in several warfarin dosing algorithms. This review focuses on warfarin pharmacogenomics in sub-Saharan peoples, African Americans and admixed Brazilians. These 'Black' populations differ in several aspects, notably their extent of recent admixture with Europeans, a factor which impacts on the frequency distribution of pharmacogenomic polymorphisms relevant to warfarin dose requirement for the target clinical effect. Whereas a small number of polymorphisms in VKORC1 (3673G > A, rs9923231), CYP2C9 (alleles *2 and *3, rs1799853 and rs1057910, respectively) and arguably CYP4F2 (rs2108622), may capture most of the pharmacogenomic influence on warfarin dose variance in White populations, additional polymorphisms in these, and in other, genes (e.g. CALU rs339097) increase the predictive power of pharmacogenetic warfarin dosing algorithms in the Black populations examined. A personalized strategy for initiation of warfarin therapy, allowing for improved safety and cost-effectiveness for populations of African descent must take into account their pharmacogenomic diversity, as well as socio-economical, cultural and medical factors. Accounting for this heterogeneity in algorithms that are 'friendly' enough to be adopted by warfarin prescribers worldwide requires gathering information from trials at different population levels, but demands also a critical appraisal of racial/ethnic labels that are commonly used in the clinical pharmacology literature but do not accurately reflect genetic ancestry and population diversity.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | | |
Collapse
|
49
|
Patillon B, Luisi P, Blanché H, Patin E, Cann HM, Génin E, Sabbagh A. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans. PLoS One 2012; 7:e53049. [PMID: 23285254 PMCID: PMC3532425 DOI: 10.1371/journal.pone.0053049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2012] [Indexed: 12/23/2022] Open
Abstract
VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.
Collapse
Affiliation(s)
- Blandine Patillon
- Inserm UMRS-946, Genetic Variability and Human Diseases, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Cavallari LH, Perera MA. The future of warfarin pharmacogenetics in under-represented minority groups. Future Cardiol 2012; 8:563-76. [PMID: 22871196 DOI: 10.2217/fca.12.31] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genotype-based dosing recommendations are provided in the US FDA-approved warfarin labeling. However, data that informed these recommendations were from predominately Caucasian populations. Studies show that variants contributing to warfarin dose requirements in Caucasians provide similar contributions to dose requirements in US Hispanics, but significantly lesser contributions in African-Americans. Further data demonstrate that variants occurring commonly in individuals of African ancestry, but rarely in other racial groups, significantly influence dose requirements in African-Americans. These data suggest that it is important to consider variants specific for African-Americans when implementing genotype-guided warfarin dosing in this population.
Collapse
Affiliation(s)
- Larisa H Cavallari
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, 833 South Wood Street, Chicago, IL 60612-7230, USA.
| | | |
Collapse
|