1
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Li Y, Cheng S, Shi H, Yuan R, Gao C, Wang Y, Zhang Z, Deng Z, Huang J. 3D embedded bioprinting of large-scale intestine with complex structural organization and blood capillaries. Biofabrication 2024; 16:045001. [PMID: 38914075 DOI: 10.1088/1758-5090/ad5b1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Haihua Shi
- Department of Gastrointestinal surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215001, People's Republic of China
| | - Renshun Yuan
- Department of Gastrointestinal surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215001, People's Republic of China
| | - Chen Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
3
|
Das S, Valoor R, Ratnayake P, Basu B. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. ACS APPLIED BIO MATERIALS 2024; 7:2809-2835. [PMID: 38602318 DOI: 10.1021/acsabm.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Three-dimensional (3D) bioprinting of hydrogels with a wide spectrum of compositions has been widely investigated. Despite such efforts, a comprehensive understanding of the correlation among the process science, buildability, and biophysical properties of the hydrogels for a targeted clinical application has not been developed in the scientific community. In particular, the quantitative analysis across the entire developmental path for 3D extrusion bioprinting of such scaffolds is not widely reported. In the present work, we addressed this gap by using widely investigated biomaterials, such as gelatin methacryloyl (GelMA), as a model system. Using extensive experiments and quantitative analysis, we analyzed how the individual components of methacrylated carboxymethyl cellulose (mCMC), needle-shaped nanohydroxyapatite (nHAp), and poly(ethylene glycol)diacrylate (PEGDA) with GelMA as baseline matrix of the multifunctional bioink can influence the biophysical properties, printability, and cellular functionality. The complex interplay among the biomaterial ink formulations, viscoelastic properties, and printability toward the large structure buildability (structurally stable cube scaffolds with 15 mm edge) has been explored. Intriguingly, the incorporation of PEGDA into the GelMA/mCMC matrix offered improved compressive modulus (∼40-fold), reduced swelling ratio (∼2-fold), and degradation rates (∼30-fold) compared to pristine GelMA. The correlation among microstructural pore architecture, biophysical properties, and cytocompatibility is also established for the biomaterial inks. These photopolymerizable bio(material)inks served as the platform for the growth and development of bone and cartilage matrix when human mesenchymal stem cells (hMSCs) are either seeded on two-dimensional (2D) substrates or encapsulated on 3D scaffolds. Taken together, this present study unequivocally establishes a significant step forward in the development of a broad spectrum of shape-fidelity compliant bioink for the 3D bioprinting of multifunctional scaffolds and emphasizes the need for invoking more quantitative analysis in establishing process-microstructure-property correlation.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Remya Valoor
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Basara G, Celebi LE, Ronan G, Discua Santos V, Zorlutuna P. 3D bioprinted aged human post-infarct myocardium tissue model. Health Sci Rep 2024; 7:e1945. [PMID: 38655426 PMCID: PMC11035382 DOI: 10.1002/hsr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aims Fibrotic tissue formed after myocardial infarction (MI) can be as detrimental as MI itself. However, current in vitro cardiac fibrosis models fail to recapitulate the complexities of post-MI tissue. Moreover, although MI and subsequent fibrosis is most prominent in the aged population, the field suffers from inadequate aged tissue models. Herein, an aged human post-MI tissue model, representing the native microenvironment weeks after initial infarction, is engineered using three-dimensional bioprinting via creation of individual bioinks to specifically mimic three distinct regions: remote, border, and scar. Methods The aged post-MI tissue model is engineered through combination of gelatin methacryloyl, methacrylated hyaluronic acid, aged type I collagen, and photoinitiator at variable concentrations with different cell types, including aged human induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, cardiac fibroblasts, and cardiac myofibroblasts, by introducing a methodology which utilizes three printheads of the bioprinter to model aged myocardium. Then, using cell-specific proteins, the cell types that comprised each region are confirmed using immunofluorescence. Next, the beating characteristics are analyzed. Finally, the engineered aged post-MI tissue model is used as a benchtop platform to assess the therapeutic effects of stem cell-derived extracellular vesicles on the scar region. Results As a result, high viability (>74%) was observed in each region of the printed model. Constructs demonstrated functional behavior, exhibiting a beating velocity of 6.7 μm/s and a frequency of 0.3 Hz. Finally, the effectiveness of hiPSC-EV and MSC-EV treatment was assessed. While hiPSC-EV treatment showed no significant changes, MSC-EV treatment notably increased cardiomyocyte beating velocity, frequency, and confluency, suggesting a regenerative potential. Conclusion In conclusion, we envision that our approach of modeling post-MI aged myocardium utilizing three printheads of the bioprinter may be utilized for various applications in aged cardiac microenvironment modeling and testing novel therapeutics.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Lara Ece Celebi
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - George Ronan
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | | | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
5
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol 2023; 28:142-151. [PMID: 36804176 DOI: 10.1016/j.slast.2023.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Light-based bioprinting is a type of additive manufacturing technologies that uses light to control the formation of biomaterials, tissues, and organs. It has the potential to revolutionize the adopted approach in tissue engineering and regenerative medicine by allowing the creation of functional tissues and organs with high precision and control. The main chemical components of light-based bioprinting are activated polymers and photoinitiators. The general photocrosslinking mechanisms of biomaterials are described, along with the selection of polymers, functional group modifications, and photoinitiators. For activated polymers, acrylate polymers are ubiquitous but are made of cytotoxic reagents. A milder option that exists is based on norbornyl groups which are biocompatible and can be used in self-polymerization or with thiol reagents for more precision. Polyethylene-glycol and gelatin activated with both methods can have high cell viability rates. Photoinitiators can be divided into types I and II. The best performances for type I photoinitiators are produced under ultraviolet light. Most alternatives for visible-light-driven photoinitiators were of type II, and changing the co-initiator along the main reagent can fine-tune the process. This field is still underexplored and a vast room for improvements still exist, which can open the way for cheaper complexes to be developed. The progress, advantages, and shortcomings of light-based bioprinting are highlighted in this review, with special emphasis on developments and future trends of activated polymers and photoinitiators.
Collapse
Affiliation(s)
- Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Julio Zuazola
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA.
| |
Collapse
|
7
|
Restan Perez M, da Silva VA, Cortez PE, Joddar B, Willerth SM. 3D-bioprinted cardiac tissues and their potential for disease modeling. JOURNAL OF 3D PRINTING IN MEDICINE 2023; 7:10.2217/3dp-2022-0023. [PMID: 38250545 PMCID: PMC10798787 DOI: 10.2217/3dp-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Heart diseases cause over 17.9 million total deaths globally, making them the leading source of mortality. The aim of this review is to describe the characteristic mechanical, chemical and cellular properties of human cardiac tissue and how these properties can be mimicked in 3D bioprinted tissues. Furthermore, the authors review how current healthy cardiac models are being 3D bioprinted using extrusion-, laser- and inkjet-based printers. The review then discusses the pathologies of cardiac diseases and how bioprinting could be used to fabricate models to study these diseases and potentially find new drug targets for such diseases. Finally, the challenges and future directions of cardiac disease modeling using 3D bioprinting techniques are explored.
Collapse
Affiliation(s)
| | - Victor Alisson da Silva
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
| | - Polette Esmeralda Cortez
- Department of Metallurgical, Materials & Biomedical Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Binata Joddar
- Department of Metallurgical, Materials & Biomedical Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Stephanie Michelle Willerth
- Axolotl Biosciences, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Centre for Advanced Materials & Technology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
8
|
Wolfe JT, He W, Kim MS, Liang HL, Shradhanjali A, Jurkiewicz H, Freudinger BP, Greene AS, LaDisa JF, Tayebi L, Mitchell ME, Tomita-Mitchell A, Tefft BJ. 3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease. Front Cardiovasc Med 2023; 10:1162731. [PMID: 37293290 PMCID: PMC10247285 DOI: 10.3389/fcvm.2023.1162731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Congenital heart disease is the leading cause of death related to birth defects and affects 1 out of every 100 live births. Induced pluripotent stem cell technology has allowed for patient-derived cardiomyocytes to be studied in vitro. An approach to bioengineer these cells into a physiologically accurate cardiac tissue model is needed in order to study the disease and evaluate potential treatment strategies. Methods To accomplish this, we have developed a protocol to 3D-bioprint cardiac tissue constructs comprised of patient-derived cardiomyocytes within a hydrogel bioink based on laminin-521. Results Cardiomyocytes remained viable and demonstrated appropriate phenotype and function including spontaneous contraction. Contraction remained consistent during 30 days of culture based on displacement measurements. Furthermore, tissue constructs demonstrated progressive maturation based on sarcomere structure and gene expression analysis. Gene expression analysis also revealed enhanced maturation in 3D constructs compared to 2D cell culture. Discussion This combination of patient-derived cardiomyocytes and 3D-bioprinting represents a promising platform for studying congenital heart disease and evaluating individualized treatment strategies.
Collapse
Affiliation(s)
- Jayne T. Wolfe
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
| | - Wei He
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
| | - Min-Su Kim
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huan-Ling Liang
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akankshya Shradhanjali
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
| | - Hilda Jurkiewicz
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
| | | | | | - John F. LaDisa
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
- Department of Pediatrics - Section of Cardiology, Children’s Wisconsin, Milwaukee, WI, United States
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, United States
| | - Michael E. Mitchell
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, United States
| | - Aoy Tomita-Mitchell
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brandon J. Tefft
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Li S, Sun J, Yang J, Yang Y, Ding H, Yu B, Ma K, Chen M. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin. Biomater Res 2023; 27:11. [PMID: 36782342 PMCID: PMC9926638 DOI: 10.1186/s40824-023-00352-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Aging skin is characterized by a disturbed structure and lack of blood supply, which makes it difficult to heal once injured. ADSCs secrete large amounts of cytokines, which promote wound healing and vascular regeneration through paracrine secretion, and the number of cytokines can be elevated by hypoxic pretreating. However, the components of ADSCs are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel synthesized from gelatin and has recently emerged as a potentially attractive material for tissue engineering applications. GelMA loaded with concentrated hypoxic pretreated ADSCs conditioned medium could provide a new method of treating wounds in aged skin. METHODS Primary ADSCs were isolated from human adipose tissue and characterized by flow cytometry and differentiation test. ADSCs in passages 4-6 were pretreated in the hypoxic and normoxic environments to collect conditioned medium, the conditioned medium was then concentrated to prepare concentrated ADSCs conditioned medium(cADSC-CM)(the one collected from ADSCs under hypoxia was called hypo-CM ,and the one from normoxia was called nor-CM). The concentration of cytokines was detected. After treated with cADSC-CM, the abilities of proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs) were assayed, and Akt/mTOR and MAPK signal pathway was detected using western blotting. GelMA+hypo-CM hydrogel was prepared, and a comprehensive evaluation of morphology, protein release efficiency, degradation rate, mechanical properties, and rheology properties were performed. Full-thickness skin wounds were created on the backs of 20-month-old mice. After surgery, GelMA, GelMA+F12, GelMA+hypo-CM, and GelMA+nor-CM were applied to the wound surface respectively. H&E, Masson, and immunohistochemistry staining were performed, and a laser Doppler perfusion imager was used to evaluate the blood perfusion. The student's t-test was used for analysis between two groups and a one-way analysis of variance (ANOVA) was used for analysis among multi groups. RESULTS Our results revealed that 1) wounds in aged skin healed more slowly than that in young skin and exhibited poorer perfusion; 2) hypoxic pretreated ADSCs secreted more cytokines including VEGF by activating HIF1α; 3) hypo-CM promoted proliferation and migration of HUVECs through VEGF/Akt/mTOR and MAPK signal pathway; 4) GelMA-hypoCM accelerated wound healing and angiogenesis in aged skin in vivo. CONCLUSION GelMA loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells conditioned medium could accelerate wound healing in aged skin by promoting angiogenesis.
Collapse
Affiliation(s)
- Shiyi Li
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Jiachen Sun
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.411472.50000 0004 1764 1621Department of Dermatology and Venerology, Peking University First Hospital, Beijing, 100034 China
| | - Jinxiu Yang
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.506261.60000 0001 0706 78397th Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144 China
| | - Yi Yang
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Hongfan Ding
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Boya Yu
- grid.414252.40000 0004 1761 8894Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038 China ,grid.488137.10000 0001 2267 2324Chinese PLA Medical School, Beijing, 100853 China
| | - Kui Ma
- grid.414252.40000 0004 1761 8894Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100048 China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
10
|
Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, Chen X, Guo J, Cheng H, Xia L, Lu W, Zhang C, Xie J, Wang H, Chai R. GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology 2022; 20:460. [PMID: 36307790 PMCID: PMC9617371 DOI: 10.1186/s12951-022-01669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Repair of spinal cord injury (SCI) depends on microenvironment improvement and the reconnection between injured axons and regenerated neurons. Here, we fabricate a GelMA-MXene hydrogel nerve conduit with electrical conductivity and internal-facing longitudinal grooves and explore its function in SCI repair. It is found that the resultant grooved GelMA-MXene hydrogel could effectively promote the neural stem cells (NSCs) adhesion, directed proliferation and differentiation in vitro. Additionally, when the GelMA-MXene conduit loaded with NSCs (GMN) is implanted into the injured spinal cord site, effective repair capability for the complete transection of SCI was demonstrated. The GMN group shows remarkable nerve recovery and significantly higher BBB scores in comparison to the other groups. Therefore, GMN with the microgroove structure and loaded with NSCs is a promising strategy in treating SCI.
Collapse
Affiliation(s)
- Jiaying Cai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhichun Huang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lin Xia
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| | - Huan Wang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100086, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
12
|
Ching T, Vasudevan J, Chang SY, Tan HY, Sargur Ranganath A, Lim CT, Fernandez JG, Ng JJ, Toh YC, Hashimoto M. Biomimetic Vasculatures by 3D-Printed Porous Molds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203426. [PMID: 35866462 DOI: 10.1002/smll.202203426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in biofabrication, recapitulating complex architectures of cell-laden vascular constructs remains challenging. To date, biofabricated vascular models have not yet realized four fundamental attributes of native vasculatures simultaneously: freestanding, branching, multilayered, and perfusable. In this work, a microfluidics-enabled molding technique combined with coaxial bioprinting to fabricate anatomically relevant, cell-laden vascular models consisting of hydrogels is developed. By using 3D porous molds of poly(ethylene glycol) diacrylate as casting templates that gradually release calcium ions as a crosslinking agent, freestanding, and perfusable vascular constructs of complex geometries are fabricated. The bioinks can be tailored to improve the compatibility with specific vascular cells and to tune the mechanical modulus mimicking native blood vessels. Crucially, the integration of relevant vascular cells (such as smooth muscle cells and endothelial cells) in a multilayer and biomimetic configuration is highlighted. It is also demonstrated that the fabricated freestanding vessels are amenable for testing percutaneous coronary interventions (i.e., drug-eluting balloons and stents) under physiological mechanical states such as stretching and bending. Overall, a versatile fabrication technique with multifaceted possibilities of generating biomimetic vascular models that can benefit future research in mechanistic understanding of cardiovascular diseases and the development of therapeutic interventions is introduced.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jyothsna Vasudevan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shu-Yung Chang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Hsih Yin Tan
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
| | - Anupama Sargur Ranganath
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Javier G Fernandez
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- SingVaSC, Singapore Vascular Surgical Collaborative, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| |
Collapse
|
13
|
Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200244. [PMID: 35644929 PMCID: PMC9376856 DOI: 10.1002/advs.202200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Indexed: 05/04/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment. A gelatin methacryloyl (gelMA) bioink is used to create multi-channel cubic tumor analogues with high printing fidelity and mechanical tunability. Human-derived NB spheroids and human umbilical vein endothelial cells (HUVECs) are incorporated into the biomanufactured gelMA and cocultured under static versus dynamic conditions, demonstrating high levels of survival and growth. Quantification of NB-EC integration and tumor cell migration suggested an increased aggressive behavior of NB when cultured in bioprinted endothelialized models, when cocultured with HUVECs, and also as a result of dynamic culture. This model also allowed for the assessment of metabolic, cytokine, and gene expression profiles of NB spheroids under varying TME conditions. These results establish a high throughput research enabling platform to study the TME-mediated cellular-molecular mechanisms of tumor growth, aggression, and response to therapy.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Jenny Shim
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Rui Liu
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Riya Mehta
- Department of BiologyEmory UniversityAtlantaGA30322USA
| | - Andrew Mingee
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
| | - Chunhui Xu
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Kelly C. Goldsmith
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Aflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaAtlantaGA30342USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30332USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
14
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Abstract
Three-dimensional printing is a still-emerging technology with high impact for the medical community, particularly in the development of tissues for the clinic. Many types of printers are under development, including extrusion, droplet, melt, and light-curing technologies. Herein we discuss the various types of 3D printers and their strengths and weaknesses concerning tissue engineering. Despite the advantages of 3D printing, challenges remain in the development of large, clinically relevant tissues. Advancements in bioink development, printer technology, tissue vascularization, and cellular sourcing/expansion are discussed, alongside future opportunities for the field. Trends regarding in situ printing, personalized medicine, and whole organ development are highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kelsey Willson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA;
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA;
| |
Collapse
|
16
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
17
|
Sarvazyan N. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges. Front Physiol 2022; 12:770906. [PMID: 35173623 PMCID: PMC8842681 DOI: 10.3389/fphys.2021.770906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Valveless pumping based on Liebau mechanism entails asymmetrical positioning of the compression site relative to the attachment sites of the pump's elastic segment to the rest of the circuit. Liebau pumping is believed to play a key role during heart development and be involved in several other physiological processes. Until now studies of Liebau pump have been limited to numerical analyses, in silico modeling, experiments using non-biological elements, and a few indirect in vivo measurements. This review aims to stimulate experimental efforts to build Liebau pumps using biologically compatible materials in order to encourage further exploration of the fundamental mechanisms behind valveless pumping and its role in organ physiology. The covered topics include the biological occurrence of Liebau pumps, the main differences between them and the peristaltic flow, and the potential uses and body sites that can benefit from implantable valveless pumps based on Liebau principle. We then provide an overview of currently available tools to build such pumps and touch upon limitations imposed by the use of biological components. We also talk about the many variables that can impact Liebau pump performance, including the concept of resonant frequencies, the shape of the flowrate-frequency relationship, the flow velocity profiles, and the Womersley numbers. Lastly, the choices of materials to build valveless impedance pumps and possible modifications to increase their flow output are briefly discussed.
Collapse
Affiliation(s)
- Narine Sarvazyan
- Department of Pharmacology and Physiology, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
18
|
Brazhkina O, Park JH, Park HJ, Bheri S, Maxwell JT, Hollister SJ, Davis ME. Designing a 3D Printing Based Auxetic Cardiac Patch with hiPSC-CMs for Heart Repair. J Cardiovasc Dev Dis 2021; 8:jcdd8120172. [PMID: 34940527 PMCID: PMC8706296 DOI: 10.3390/jcdd8120172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
Myocardial infarction is one of the largest contributors to cardiovascular disease and reduces the ability of the heart to pump blood. One promising therapeutic approach to address the diminished function is the use of cardiac patches composed of biomaterial substrates and cardiac cells. These patches can be enhanced with the application of an auxetic design, which has a negative Poisson’s ratio and can be modified to suit the mechanics of the infarct and surrounding cardiac tissue. Here, we examined multiple auxetic models (orthogonal missing rib and re-entrant honeycomb in two orientations) with tunable mechanical properties as a cardiac patch substrate. Further, we demonstrated that 3D printing based auxetic cardiac patches of varying thicknesses (0.2, 0.4, and 0.6 mm) composed of polycaprolactone and gelatin methacrylate can support induced pluripotent stem cell-derived cardiomyocyte function for 14-day culture. Taken together, this work shows the potential of cellularized auxetic cardiac patches as a suitable tissue engineering approach to treating cardiovascular disease.
Collapse
Affiliation(s)
- Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Jeong Hun Park
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
| | - Joshua T. Maxwell
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30332, USA;
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Scott J. Hollister
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Correspondence: (S.J.H.); (M.E.D.)
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (O.B.); (H.-J.P.); (S.B.)
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30332, USA;
- Correspondence: (S.J.H.); (M.E.D.)
| |
Collapse
|
19
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
20
|
Willson K, Atala A, Yoo JJ. Bioprinting Au Natural: The Biologics of Bioinks. Biomolecules 2021; 11:1593. [PMID: 34827591 PMCID: PMC8615908 DOI: 10.3390/biom11111593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of appropriate bioinks is a complex task, dependent on the mechanical and biochemical requirements of the final construct and the type of printer used for fabrication. The two most common tissue printers are micro-extrusion and digital light projection printers. Here we briefly discuss the required characteristics of a bioink for each of these printing processes. However, physical printing is only a short window in the lifespan of a printed construct-the system must support and facilitate cellular development after it is printed. To that end, we provide a broad overview of some of the biological molecules currently used as bioinks. Each molecule has advantages for specific tissues/cells, and potential disadvantages are discussed, along with examples of their current use in the field. Notably, it is stressed that active researchers are trending towards the use of composite bioinks. Utilizing the strengths from multiple materials is highlighted as a key component of bioink development.
Collapse
Affiliation(s)
| | | | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (K.W.); (A.A.)
| |
Collapse
|
21
|
Wang Z, Wang L, Li T, Liu S, Guo B, Huang W, Wu Y. 3D bioprinting in cardiac tissue engineering. Am J Cancer Res 2021; 11:7948-7969. [PMID: 34335973 PMCID: PMC8315053 DOI: 10.7150/thno.61621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Heart disease is the main cause of death worldwide. Because death of the myocardium is irreversible, it remains a significant clinical challenge to rescue myocardial deficiency. Cardiac tissue engineering (CTE) is a promising strategy for repairing heart defects and offers platforms for studying cardiac tissue. Numerous achievements have been made in CTE in the past decades based on various advanced engineering approaches. 3D bioprinting has attracted much attention due to its ability to integrate multiple cells within printed scaffolds with complex 3D structures, and many advancements in bioprinted CTE have been reported recently. Herein, we review the recent progress in 3D bioprinting for CTE. After a brief overview of CTE with conventional methods, the current 3D printing strategies are discussed. Bioink formulations based on various biomaterials are introduced, and strategies utilizing composite bioinks are further discussed. Moreover, several applications including heart patches, tissue-engineered cardiac muscle, and other bionic structures created via 3D bioprinting are summarized. Finally, we discuss several crucial challenges and present our perspective on 3D bioprinting techniques in the field of CTE.
Collapse
|
22
|
Basara G, Ozcebe SG, Ellis BW, Zorlutuna P. Tunable Human Myocardium Derived Decellularized Extracellular Matrix for 3D Bioprinting and Cardiac Tissue Engineering. Gels 2021; 7:70. [PMID: 34208210 PMCID: PMC8293197 DOI: 10.3390/gels7020070] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM's low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks' mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA-MeHA-dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA-dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.
Collapse
Affiliation(s)
- Gozde Basara
- Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| | - Bradley W. Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| | - Pinar Zorlutuna
- Aerospace and Mechanical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA;
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; (S.G.O.); (B.W.E.)
| |
Collapse
|
23
|
Davtyan R, Sarvazyan NA. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies. Sci Rep 2021; 11:11505. [PMID: 34075100 PMCID: PMC8169938 DOI: 10.1038/s41598-021-90820-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Liebau pump is a tubular, non-peristaltic, pulsatile pump capable of creating unidirectional flow in the absence of valves. It requires asymmetrical positioning of the pincher relative to the attachment sites of its elastic segment to the rest of the circuit. Biological feasibility of such valveless pumps remains a hotly debated topic. To test the feasibility of the Liebau-based pumping in vessels with biologically relevant properties we quantified the output of Liebau pumps with their compliant segments made of a silicone rubber that mimicked the Young modulus of soft tissues. The lengths, the inner diameters, thicknesses of the tested compliant segments ranged from 1 to 5 cm, 3 to 8 mm and 0.3 to 1 mm, respectively. The compliant segment of the setup was compressed at 0.5–2.5 Hz frequencies using a 3.5-mm-wide rectangular piston. A nearest-neighbor tracking algorithm was used to track movements of 0.5-mm carbon particles within the system. The viscosity of the aqueous solution was varied by increased percentage of glycerin. Measurements yielded quantitative relationships between viscosity, frequency of compression and the net flowrate. The use of the Liebau principle of valveless pumping in conjunction with physiologically sized vessel and contraction frequencies yields flowrates comparable to peristaltic pumps of the same dimensions. We conclude that the data confirm physiological feasibility of Liebau-based pumping and warrant further testing of its mechanism using excised biological conduits or tissue engineered components. Such biomimetic pumps can serve as energy-efficient flow generators in microdevices or to study the function of embryonic heart during its normal development or in diseased states.
Collapse
Affiliation(s)
- Rubina Davtyan
- Department of Pharmacology and Physiology, School of Medicine and Health Science, The George Washington University, 2300 Eye Street NW, Washington, DC, 20037, USA
| | - Narine A Sarvazyan
- Department of Pharmacology and Physiology, School of Medicine and Health Science, The George Washington University, 2300 Eye Street NW, Washington, DC, 20037, USA.
| |
Collapse
|
24
|
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021; 6:1388-1401. [PMID: 33210031 PMCID: PMC7658327 DOI: 10.1016/j.bioactmat.2020.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is still one of the leading causes of death in the world, and heart transplantation is the current major treatment for end-stage cardiovascular diseases. However, because of the shortage of heart donors, new sources of cardiac regenerative medicine are greatly needed. The prominent development of tissue engineering using bioactive materials has creatively laid a direct promising foundation. Whereas, how to precisely pattern a cardiac structure with complete biological function still requires technological breakthroughs. Recently, the emerging three-dimensional (3D) bioprinting technology for tissue engineering has shown great advantages in generating micro-scale cardiac tissues, which has established its impressive potential as a novel foundation for cardiovascular regeneration. Whether 3D bioprinted hearts can replace traditional heart transplantation as a novel strategy for treating cardiovascular diseases in the future is a frontier issue. In this review article, we emphasize the current knowledge and future perspectives regarding available bioinks, bioprinting strategies and the latest outcome progress in cardiac 3D bioprinting to move this promising medical approach towards potential clinical implementation.
Collapse
Affiliation(s)
- Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xing Ye
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Peng Wu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihuan Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Donglin Zhuang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Haodong Jiang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowei Chen
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yinru He
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
25
|
Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional Bioprinting of Cardiovascular Tissues: Emerging Technology. JACC Basic Transl Sci 2021; 6:467-482. [PMID: 34095635 PMCID: PMC8165127 DOI: 10.1016/j.jacbts.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioprinting may overcome challenges in tissue engineering. Unlike conventional tissue engineering approaches, 3D bioprinting has a proven ability to support vascularization of larger scale constructs and has been used for several cardiovascular applications. An overview of 3D bioprinting techniques, in vivo translation, and challenges are described.
Collapse
Affiliation(s)
- Kevin Sung
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nisha R. Patel
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Graduate Program, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Front Bioeng Biotechnol 2021; 9:636257. [PMID: 33748085 PMCID: PMC7968457 DOI: 10.3389/fbioe.2021.636257] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background 3D bioprinting cardiac patches for epicardial transplantation are a promising approach for myocardial regeneration. Challenges remain such as quantifying printability, determining the ideal moment to transplant, and promoting vascularisation within bioprinted patches. We aimed to evaluate 3D bioprinted cardiac patches for printability, durability in culture, cell viability, and endothelial cell structural self-organisation into networks. Methods We evaluated 3D-bioprinted double-layer patches using alginate/gelatine (AlgGel) hydrogels and three extrusion bioprinters (REGEMAT3D, INVIVO, BIO X). Bioink contained either neonatal mouse cardiac cell spheroids or free (not-in-spheroid) human coronary artery endothelial cells with fibroblasts, mixed with AlgGel. To test the effects on durability, some patches were bioprinted as a single layer only, cultured under minimal movement conditions or had added fibroblast-derived extracellular matrix hydrogel (AlloECM). Controls included acellular AlgGel and gelatin methacryloyl (GELMA) patches. Results Printability was similar across bioprinters. For AlgGel compared to GELMA: resolutions were similar (200-700 μm line diameters), printing accuracy was 45 and 25%, respectively (AlgGel was 1.7x more accurate; p < 0.05), and shape fidelity was 92% (AlgGel) and 96% (GELMA); p = 0.36. For durability, AlgGel patch median survival in culture was 14 days (IQR:10-27) overall which was not significantly affected by bioprinting system or cellular content in patches. We identified three factors which reduced durability in culture: (1) bioprinting one layer depth patches (instead of two layers); (2) movement disturbance to patches in media; and (3) the addition of AlloECM to AlgGel. Cells were viable after bioprinting followed by 28 days in culture, and all BIO X-bioprinted mouse cardiac cell spheroid patches presented contractile activity starting between day 7 and 13 after bioprinting. At day 28, endothelial cells in hydrogel displayed organisation into endothelial network-like structures. Conclusion AlgGel-based 3D bioprinted heart patches permit cardiomyocyte contractility and endothelial cell structural self-organisation. After bioprinting, a period of 2 weeks maturation in culture prior to transplantation may be optimal, allowing for a degree of tissue maturation but before many patches start to lose integrity. We quantify AlgGel printability and present novel factors which reduce AlgGel patch durability (layer number, movement, and the addition of AlloECM) and factors which had minimal effect on durability (bioprinting system and cellular patch content).
Collapse
Affiliation(s)
- Christopher David Roche
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Poonam Sharma
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Anthony Wayne Ashton
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Chris Jackson
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Meilang Xue
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Jamieson C, Keenan P, Kirkwood D, Oji S, Webster C, Russell KA, Koch TG. A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine. Front Vet Sci 2021; 7:584193. [PMID: 33665213 PMCID: PMC7921312 DOI: 10.3389/fvets.2020.584193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
3D bioprinting is a rapidly evolving industry that has been utilized for a variety of biomedical applications. It differs from traditional 3D printing in that it utilizes bioinks comprised of cells and other biomaterials to allow for the generation of complex functional tissues. Bioprinting involves computational modeling, bioink preparation, bioink deposition, and subsequent maturation of printed products; it is an intricate process where bioink composition, bioprinting approach, and bioprinter type must be considered during construct development. This technology has already found success in human studies, where a variety of functional tissues have been generated for both in vitro and in vivo applications. Although the main driving force behind innovation in 3D bioprinting has been utility in human medicine, recent efforts investigating its veterinary application have begun to emerge. To date, 3D bioprinting has been utilized to create bone, cardiovascular, cartilage, corneal and neural constructs in animal species. Furthermore, the use of animal-derived cells and various animal models in human research have provided additional information regarding its capacity for veterinary translation. While these studies have produced some promising results, technological limitations as well as ethical and regulatory challenges have impeded clinical acceptance. This article reviews the current understanding of 3D bioprinting technology and its recent advancements with a focus on recent successes and future translation in veterinary medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas G. Koch
- Reproductive Health and Biotechnology Lab, Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V. Biomechanical factors in three-dimensional tissue bioprinting. APPLIED PHYSICS REVIEWS 2020; 7:041319. [PMID: 33425087 PMCID: PMC7780402 DOI: 10.1063/5.0023206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs. This review provides a comprehensive and detailed overview on various biomechanical factors involved in tissue bioprinting, including those involved in pre, during, and post printing procedures. In preprinting processes, factors including viscosity, osmotic pressure, and injectability are reviewed and their influence on cell behavior during the bioink preparation is discussed, providing a basic guidance for the selection and optimization of bioinks. In during bioprinting processes, we review the key characteristics that determine the success of tissue manufacturing, including the rheological properties and surface tension of the bioink, printing flow rate control, process-induced mechanical forces, and the in situ cross-linking mechanisms. Advanced bioprinting techniques, including embedded and multi-material printing, are explored. For post printing steps, general techniques and equipment that are used for characterizing the biomechanical properties of printed tissue constructs are reviewed. Furthermore, the biomechanical interactions between printed constructs and various tissue/cell types are elaborated for both in vitro and in vivo applications. The review is concluded with an outlook regarding the significance of biomechanical processes in tissue bioprinting, presenting future directions to address some of the key challenges faced by the bioprinting community.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Holly Bauser-Heaton
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| | - Vahid Serpooshan
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
29
|
Ning L, Mehta R, Cao C, Theus A, Tomov M, Zhu N, Weeks ER, Bauser-Heaton H, Serpooshan V. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44563-44577. [PMID: 32966746 DOI: 10.1021/acsami.0c15078] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) bioprinting of hydrogel-based constructs at adequate consistency and reproducibility can be obtained through a compromise between the hydrogel's inherent instability and printing fidelity. There is an increasing demand to develop bioprinting modalities that enable high-fidelity fabrication of 3D hydrogel structures that closely correspond to the envisioned design. In this work, we performed a systematic, in-depth characterization and optimization of embedded 3D bioprinting to create 3D gelatin-methacryloyl (gelMA) structures with highly controlled fidelity using Carbopol as suspension bath. The role of various embedded printing process parameters in bioprinting fidelity was investigated using a combination of experimental and theoretical approaches. We examined the effect of rheological properties of gelMA and Carbopol at varying concentrations, as well as printing conditions on the volumetric flow rate of gelMA bioink. Printing speed was examined and optimized to successfully print gelMA into the support bath at varying Carbopol concentrations. Printing fidelity was characterized in terms of printed strand diameter, uniformity, angle, and area. The optimal Carbopol solution that retained filament shape at highest fidelity was determined. The efficacy of developed bioprinting approach was then demonstrated by fabricating 3D hydrogel constructs with varying geometries and visualized using an advanced synchrotron-based imaging technique. We also investigated the influence of the Carbopol medium on cross-linking and the resulting stiffness of gelMA constructs. Finally, in vitro cytotoxicity of the developed bioprinting approach was assessed by printing human umbilical vein endothelial cells encapsulated in the gelMA bioink. These results demonstrate the significance of the close interplay between bioink-support bath rheology and printing parameters and help to establish an optimized workflow for creating 3D hydrogel structures with high fidelity and cytocompatibility via embedded bioprinting techniques. This robust platform could further expand the application of bioprinted soft tissue constructs in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Cong Cao
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Martin Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Ning Zhu
- Canadian Light Source, Saskatoon, S7N 2 V3 Saskatchewan, Canada
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, Georgia 30322 United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Gong Y, Chen Z, Yang L, Ai X, Yan B, Wang H, Qiu L, Tan Y, Witman N, Wang W, Zhao Y, Fu W. Intrinsic Color Sensing System Allows for Real-Time Observable Functional Changes on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS NANO 2020; 14:8232-8246. [PMID: 32609489 DOI: 10.1021/acsnano.0c01745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stem-cell based in vitro differentiation for disease modeling offers great value to explore the molecular and functional underpinnings driving many types of cardiomyopathy and congenital heart diseases. Nevertheless, one major caveat in the application of in vitro differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) involves the immature phenotype of the CMs. Most of the existing methods need complex apparatus and require laborious procedures in order to monitor the cardiac differentiation/maturation process and often result in cell death. Here we developed an intrinsic color sensing system utilizing a microgroove structural color methacrylated gelatin film, which allows us to monitor the cardiac differentiation process of hiPSC-derived cardiac progenitor cells in real time. Subsequently this system can be employed as an assay system to live monitor induced functional changes on hiPSC-CMs stemming from drug treatment, the effects of which are simply revealed through color diversity. Our research shows that early intervention of cardiac differentiation through simple physical cues can enhance cardiac differentiation and maturation to some extent. Our system also simplifies the previous complex experimental processes for evaluating the physiological effects of successful differentiation and drug treatment and lays a solid foundation for future transformational applications.
Collapse
Affiliation(s)
- Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Zhuoyue Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Bingqian Yan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Liya Qiu
- Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, Shanghai 200083, China
| | - Yao Tan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Nevin Witman
- Department of Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
31
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| |
Collapse
|
32
|
Mehrotra S, de Melo BAG, Hirano M, Keung W, Li RA, Mandal BB, Shin SR. Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907436. [PMID: 33071707 PMCID: PMC7566555 DOI: 10.1002/adfm.201907436] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/20/2023]
Abstract
Bioprinting holds great promise towards engineering functional cardiac tissue constructs for regenerative medicine and as drug test models. However, it is highly limited by the choice of inks that require maintaining a balance between the structure and functional properties associated with the cardiac tissue. In this regard, we have developed a novel and mechanically robust biomaterial-ink based on non-mulberry silk fibroin protein. The silk-based ink demonstrated suitable mechanical properties required in terms of elasticity and stiffness (~40 kPa) for developing clinically relevant cardiac tissue constructs. The ink allowed the fabrication of stable anisotropic scaffolds using a dual crosslinking method, which were able to support formation of aligned sarcomeres, high expression of gap junction proteins as connexin-43, and maintain synchronously beating of cardiomyocytes. The printed constructs were found to be non-immunogenic in vitro and in vivo. Furthermore, delving into an innovative method for fabricating a vascularized myocardial tissue-on-a-chip, the silk-based ink was used as supporting hydrogel for encapsulating human induced pluripotent stem cell derived cardiac spheroids (hiPSC-CSs) and creating perfusable vascularized channels via an embedded bioprinting technique. We confirmed the ability of silk-based supporting hydrogel towards maturation and viability of hiPSC-CSs and endothelial cells, and for applications in evaluating drug toxicity.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Bruna A. G. de Melo
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., 1555 Woodridge Ave Ann Arbor, MI 48105, USA
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|