1
|
Ługowska A. Oncological Aspects of Lysosomal Storage Diseases. Cells 2024; 13:1664. [PMID: 39404425 PMCID: PMC11475748 DOI: 10.3390/cells13191664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are caused by the deficient activity of a lysosomal hydrolase or the lack of a functional membrane protein, transporter, activator, or other protein. Lysosomal enzymes break down macromolecular compounds, which contribute to metabolic homeostasis. Stored, undegraded materials have multiple effects on cells that lead to the activation of autophagy and apoptosis, including the toxic effects of lyso-lipids, the disruption of intracellular Ca2+ ion homeostasis, the secondary storage of macromolecular compounds, the activation of signal transduction, apoptosis, inflammatory processes, deficiencies of intermediate compounds, and many other pathways. Clinical observations have shown that carriers of potentially pathogenic variants in LSD-associated genes and patients affected with some LSDs are at a higher risk of cancer, although the results of studies on the frequency of oncological diseases in LSD patients are controversial. Cancer is found in individuals affected with Gaucher disease, Fabry disease, Niemann-Pick type A and B diseases, alfa-mannosidosis, and sialidosis. Increased cancer prevalence has also been reported in carriers of a potentially pathogenic variant of an LSD gene, namely CLN3, SGSH, GUSB, NEU1, and, to a lesser extent, in other genes. In this review, LSDs in which oncological events can be observed are described.
Collapse
Affiliation(s)
- Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
2
|
Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, Krogsæter EK, Wollnik C, Abu-Remaileh M, Grimm C, Hermey G, Kuhn R, Gruber-Schoffnegger D, Markmann S. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep 2024; 14:17469. [PMID: 39080379 PMCID: PMC11289453 DOI: 10.1038/s41598-024-67479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.
Collapse
Affiliation(s)
| | - R Tang
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Charles River Laboratory, Chesterford Research Park, Saffron Walden, UK
| | - K Nyame
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - N N Laqtom
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Biological and Environmental Science & Engineering Division, King Abdullah University Of Science And Technology, Thuwal, Saudi Arabia
| | - M Schweizer
- Core Facility Morphology and Electronmicroscopy, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - E K Krogsæter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Gladstone Institutes, San Francisco, CA, USA
| | | | - M Abu-Remaileh
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research IIP, Munich/Frankfurt, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Kuhn
- Evotec SE, Hamburg, Germany
| | | | | |
Collapse
|
3
|
Reith RR, Batt MC, Fuller AM, Meekins JM, Diehl KA, Zhou Y, Bedwell PS, Ward JA, Sanders SK, Petersen JL, Steffen DJ. A recessive CLN3 variant is responsible for delayed-onset retinal degeneration in Hereford cattle. J Vet Diagn Invest 2024; 36:438-446. [PMID: 38516801 PMCID: PMC11110775 DOI: 10.1177/10406387241239918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.
Collapse
Affiliation(s)
- Rachel R. Reith
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Mackenzie C. Batt
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Anna M. Fuller
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Jessica M. Meekins
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Kathryn A. Diehl
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | | | - Jack A. Ward
- American Hereford Association, Breed Improvement, Kansas City, MO, USA
| | - Stacy K. Sanders
- American Hereford Association, Breed Improvement, Kansas City, MO, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - David J. Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Diaw SH, Delcambre S, Much C, Ott F, Kostic VS, Gajos A, Münchau A, Zittel S, Busch H, Grünewald A, Klein C, Lohmann K. DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery. Neurogenetics 2024; 25:141-147. [PMID: 38498291 DOI: 10.1007/s10048-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (ATF4, CLN3, EIF2A, RRM1, YY1), genes involved in G protein-coupled receptor signaling (BDKRB2, LPAR1), and a gene linked to apoptosis and DNA replication/repair (CRADD), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (STXBP1, TOR1A) unveiled differences in expression patterns between MMCs and controls. Notably, the genes CUEDC2, DRD4, ECH1, and SIX2 were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.
Collapse
Affiliation(s)
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Vladimir S Kostic
- Institute of Neurology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Agata Gajos
- Department of Extrapyramidal Diseases, Medical University of Lodz, Lodz, 90-647, Poland
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
5
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
6
|
Calcagni' A, Staiano L, Zampelli N, Minopoli N, Herz NJ, Di Tullio G, Huynh T, Monfregola J, Esposito A, Cirillo C, Bajic A, Zahabiyon M, Curnock R, Polishchuk E, Parkitny L, Medina DL, Pastore N, Cullen PJ, Parenti G, De Matteis MA, Grumati P, Ballabio A. Loss of the batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat Commun 2023; 14:3911. [PMID: 37400440 DOI: 10.1038/s41467-023-39643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.
Collapse
Affiliation(s)
- Alessia Calcagni'
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | | | - Nadia Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Niculin J Herz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Rachel Curnock
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Luke Parkitny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
7
|
Cameron JM, Damiano JA, Grinton B, Carney PW, McKelvie P, Silbert P, Lawn N, Scheffer IE, Oliver KL, Hildebrand MS, Berkovic SF. Recognition and epileptology of protracted CLN3 disease. Epilepsia 2023; 64:1833-1841. [PMID: 37039534 PMCID: PMC10952944 DOI: 10.1111/epi.17616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder. METHODS We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families. RESULTS Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort. SIGNIFICANCE We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.
Collapse
Affiliation(s)
- Jillian M. Cameron
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| | - John A. Damiano
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| | - Bronwyn Grinton
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| | - Patrick W. Carney
- Eastern Health Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
| | - Penny McKelvie
- Department of PathologySt Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Peter Silbert
- Department of MedicineUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | | | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Karen L. Oliver
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Population Health and Immunity DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Michael S. Hildebrand
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Samuel F. Berkovic
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Purzycka-Olewiecka JK, Hetmańczyk-Sawicka K, Kmieć T, Szczęśniak D, Trubicka J, Krawczyński M, Pronicki M, Ługowska A. Deterioration of visual quality and acuity as the first sign of ceroid lipofuscinosis type 3 (CLN3), a rare neurometabolic disease. Metab Brain Dis 2023; 38:709-715. [PMID: 36576693 PMCID: PMC9859910 DOI: 10.1007/s11011-022-01148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Ceroid lipofuscinosis type 3 (CLN3) is an autosomal recessive, neurodegenerative metabolic disease. Typical clinical symptoms include progressive visual loss, epilepsy of unknown etiology and dementia. Presence of lipofuscin deposits with typical pattern of 'fingerprints' and vacuolized lymphocytes suggest the diagnosis of CLN3. Cause of CLN3 are mutations in the CLN3 gene, among which the most frequently found is the large deletion 1.02 kb spreading on exons 7 and 8. We present 4 patients from 2 families, in whom the deterioration of visual quality and acuity was observed as first clinical sign, when they were a few years old and it was successively accompanied by symptoms of neurologic deterioration (like generalized convulsions with consciousness impairment). In all patients the 1.02 kb deletion in the CLN3 gene was detected in homo- or heterozygosity with other CLN3 pathogenic variant. Ultrastructural studies revealed abnormal structures corresponding to 'fingerprint' profiles (FPPs) in conjunctival endothelial cells. It should be emphasized that in patients with blindness of unknown cause the diagnosis of ceroid lipofuscinosis should be considered and in older children-especially CLN3. The facility of the analysis for the presence of 1.02 kb deletion and economic costs are a solid argument for intensive use of this test in the diagnostic procedure of CLN3.
Collapse
Affiliation(s)
| | | | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dominika Szczęśniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Joanna Trubicka
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Center for Medical Genetics GENESIS, Poznan, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
9
|
Chear S, Perry S, Wilson R, Bindoff A, Talbot J, Ware TL, Grubman A, Vickers JC, Pébay A, Ruddle JB, King AE, Hewitt AW, Cook AL. Lysosomal alterations and decreased electrophysiological activity in CLN3 disease patient-derived cortical neurons. Dis Model Mech 2022; 15:dmm049651. [PMID: 36453132 PMCID: PMC10655821 DOI: 10.1242/dmm.049651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
CLN3 disease is a lysosomal storage disorder associated with fatal neurodegeneration that is caused by mutations in CLN3, with most affected individuals carrying at least one allele with a 966 bp deletion. Using CRISPR/Cas9, we corrected the 966 bp deletion mutation in human induced pluripotent stem cells (iPSCs) of a compound heterozygous patient (CLN3 Δ 966 bp and E295K). We differentiated these isogenic iPSCs, and iPSCs from an unrelated healthy control donor, to neurons and identified disease-related changes relating to protein synthesis, trafficking and degradation, and in neuronal activity, which were not apparent in CLN3-corrected or healthy control neurons. CLN3 neurons showed numerous membrane-bound vacuoles containing diverse storage material and hyperglycosylation of the lysosomal LAMP1 protein. Proteomic analysis showed increase in lysosomal-related proteins and many ribosomal subunit proteins in CLN3 neurons, accompanied by downregulation of proteins related to axon guidance and endocytosis. CLN3 neurons also had lower electrophysical activity as recorded using microelectrode arrays. These data implicate inter-related pathways in protein homeostasis and neurite arborization as contributing to CLN3 disease, and which could be potential targets for therapy.
Collapse
Affiliation(s)
- Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Tyson L. Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan B. Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
10
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Klein M, Kaleem A, Oetjen S, Wünkhaus D, Binkle L, Schilling S, Gjorgjieva M, Scholz R, Gruber-Schoffnegger D, Storch S, Kins S, Drewes G, Hoffmeister-Ullerich S, Kuhl D, Hermey G. Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system. Autophagy 2021; 18:2068-2085. [PMID: 34964690 PMCID: PMC9397472 DOI: 10.1080/15548627.2021.2016232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PSENEN/PEN2 is the smallest subunit of the γ-secretase complex, an intramembrane protease that cleaves proteins within their transmembrane domains. Mutations in components of the γ-secretase underlie familial Alzheimer disease. In addition to its proteolytic activity, supplementary, γ-secretase independent, functions in the macroautophagy/autophagy-lysosome system have been proposed. Here, we screened for PSENEN-interacting proteins and identified CLN3. Mutations in CLN3 are causative for juvenile neuronal ceroid lipofuscinosis, a rare lysosomal storage disorder considered the most common neurodegenerative disease in children. As mutations in the PSENEN and CLN3 genes cause different neurodegenerative diseases, understanding shared cellular functions of both proteins might be pertinent for understanding general cellular mechanisms underlying neurodegeneration. We hypothesized that CLN3 modulates γ-secretase activity and that PSENEN and CLN3 play associated roles in the autophagy-lysosome system. We applied CRISPR gene-editing and obtained independent isogenic HeLa knockout cell lines for PSENEN and CLN3. Following previous studies, we demonstrate that PSENEN is essential for forming a functional γ-secretase complex and is indispensable for γ-secretase activity. In contrast, CLN3 does not modulate γ-secretase activity to a significant degree. We observed in PSENEN- and CLN3-knockout cells corresponding alterations in the autophagy-lysosome system. These include reduced activity of lysosomal enzymes and lysosome number, an increased number of autophagosomes, increased lysosome-autophagosome fusion, and elevated levels of TFEB (transcription factor EB). Our study strongly suggests converging roles of PSENEN and CLN3 in the autophagy-lysosome system in a γ-secretase activity-independent manner, supporting the idea of common cytopathological processes underlying different neurodegenerative diseases. Abbreviations: Aβ, amyloid-beta; AD, Alzheimer disease; APP, amyloid precursor protein; ATP5MC, ATP synthase membrane subunit c; DQ-BSA, dye-quenched bovine serum albumin; ER, endoplasmic reticulum; GFP, green fluorescent protein; ICC, immunocytochemistry; ICD, intracellular domain; JNCL, juvenile neuronal ceroid lipofuscinosis; KO, knockout; LC3, microtubule associated protein 1 light chain 3; NCL, neuronal ceroid lipofuscinoses; PSEN, presenilin; PSENEN/PEN2: presenilin enhancer, gamma-secretase subunit; TAP, tandem affinity purification; TEV, tobacco etch virus; TF, transferrin; WB, Western blot; WT, wild type.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Oetjen
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lars Binkle
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Schilling
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Milena Gjorgjieva
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Scholz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stephan Storch
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gerard Drewes
- Cellzome, Functional Genomics Research and Development, Heidelberg, Germany
| | - Sabine Hoffmeister-Ullerich
- Bioanalytics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021; 82:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
Collapse
Affiliation(s)
- Anais Franco-Romero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Myology Center, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
15
|
Smirnov VM, Nassisi M, Solis Hernandez C, Méjécase C, El Shamieh S, Condroyer C, Antonio A, Meunier I, Andrieu C, Defoort-Dhellemmes S, Mohand-Said S, Sahel JA, Audo I, Zeitz C. Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmol 2021; 139:278-291. [PMID: 33507216 DOI: 10.1001/jamaophthalmol.2020.6089] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Biallelic variants in CLN3 lead to a spectrum of diseases, ranging from severe neurodegeneration with retinal involvement (juvenile neuronal ceroid lipofuscinosis) to retina-restricted conditions. Objective To provide a detailed description of the retinal phenotype of patients with isolated retinal degeneration harboring biallelic CLN3 pathogenic variants and to attempt a phenotype-genotype correlation associated with this gene defect. Design, Setting, and Participants This retrospective cohort study included patients carrying biallelic CLN3 variants extracted from a cohort of patients with inherited retinal disorders (IRDs) investigated at the National Reference Center for Rare Ocular Diseases of the Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts from December 2007 to August 2020. Data were analyzed from October 2019 to August 2020. Main Outcome and Measures Functional (best-corrected visual acuity, visual field, color vision, and full-field electroretinogram), morphological (multimodal retinal imaging), and clinical data from patients were collected and analyzed. Gene defect was identified by either next-generation sequencing or whole-exome sequencing and confirmed by Sanger sequencing, quantitative polymerase chain reaction, and cosegregation analysis. Results Of 1533 included patients, 843 (55.0%) were women and 690 (45.0%) were men. A total of 15 cases from 11 unrelated families harboring biallelic CLN3 variants were identified. All patients presented with nonsyndromic IRD. Two distinct patterns of retinal disease could be identified: a mild rod-cone degeneration of middle-age onset (n = 6; legal blindness threshold reached by 70s) and a severe retinal degeneration with early macular atrophic changes (n = 9; legal blindness threshold reached by 40s). Eleven distinct pathogenic variants were detected, of which 4 were novel. All but 1, p.(Arg405Trp), CLN3 point variants and their genotypic associations were clearly distinct between juvenile neuronal ceroid lipofuscinosis and retina-restricted disease. Mild and severe forms of retina-restricted CLN3-linked IRDs also had different genetic background. Conclusions and Relevance These findings suggest CLN3 should be included in next-generation sequencing panels when investigating patients with nonsyndromic rod-cone dystrophy. These results document phenotype-genotype correlations associated with specific variants in CLN3. However, caution seems warranted regarding the potential neurological outcome if a pathogenic variant in CLN3 is detected in a case of presumed isolated IRD for the onset of neurological symptoms could be delayed.
Collapse
Affiliation(s)
- Vasily M Smirnov
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Université de Lille, Faculté de Médecine, Lille, France.,Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Cyntia Solis Hernandez
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Cécile Méjécase
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Institute of Ophthalmology, University College London, London, United Kingdom
| | - Said El Shamieh
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Christel Condroyer
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Isabelle Meunier
- Institute for Neurosciences Montpellier, INSERM U1051, University of Monpellier, Montpellier, France.,National Center for Rare Genetic Retinal Dystrophies, Hôpital Guy de Chauliac, Montpellier, France
| | - Camille Andrieu
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | | | - Saddek Mohand-Said
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Audo
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Institute of Ophthalmology, University College London, London, United Kingdom.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021; 31:1416-1434. [PMID: 34080016 PMCID: PMC8684486 DOI: 10.1093/glycob/cwab046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous clinical observations and exploitation of cellular and animal models indicate that glucosylceramide (GlcCer) and galactosylceramide (GalCer) are involved in many physiological and pathological phenomena. In many cases, the biological importance of these monohexosylcermides has been shown indirectly as the result of studies on enzymes involved in their synthesis and degradation. Under physiological conditions, GalCer plays a key role in the maintenance of proper structure and stability of myelin and differentiation of oligodendrocytes. On the other hand, GlcCer is necessary for the proper functions of epidermis. Such an important lysosomal storage disease as Gaucher disease (GD) and a neurodegenerative disorder as Parkinson’s disease are characterized by mutations in the GBA1 gene, decreased activity of lysosomal GBA1 glucosylceramidase and accumulation of GlcCer. In contrast, another lysosomal disease, Krabbe disease, is associated with mutations in the GALC gene, resulting in deficiency or decreased activity of lysosomal galactosylceramidase and accumulation of GalCer and galactosylsphingosine. Little is known about the role of both monohexosylceramides in tumor progression; however, numerous studies indicate that GlcCer and GalCer play important roles in the development of multidrug-resistance by cancer cells. It was shown that GlcCer is able to provoke immune reaction and acts as a self-antigen in GD. On the other hand, GalCer was recognized as an important cellular receptor for HIV-1. Altogether, these two molecules are excellent examples of how slight differences in chemical composition and molecular conformation contribute to profound differences in their physicochemical properties and biological functions.
Collapse
Affiliation(s)
- Safoura Reza
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| |
Collapse
|
17
|
A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 2021; 4:161. [PMID: 33547385 PMCID: PMC7864947 DOI: 10.1038/s42003-021-01682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.
Collapse
|
18
|
Zhang X, Zhang D, Thompson JA, Chen SC, Huang Z, Jennings L, McLaren TL, Lamey TM, De Roach JN, Chen FK, McLenachan S. Gene correction of the CLN3 c.175G>A variant in patient-derived induced pluripotent stem cells prevents pathological changes in retinal organoids. Mol Genet Genomic Med 2021; 9:e1601. [PMID: 33497524 PMCID: PMC8104174 DOI: 10.1002/mgg3.1601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Mutations in CLN3 cause Batten disease, however non‐syndromic CLN3 disease, characterized by retinal‐specific degeneration, has been also described. Here, we characterized an induced pluripotent stem cell (iPSC)‐derived disease model derived from a patient with non‐syndromic CLN3‐associated retinopathy. Methods Patient‐iPSC, carrying the 1 kb‐deletion and c.175G>A variants in CLN3, coisogenic iPSC, in which the c.175G>A variant was corrected, and control iPSC were differentiated into neural retinal organoids (NRO) and cardiomyocytes. CLN3 transcripts were analyzed by Sanger sequencing. Gene expression was characterized by qPCR and western blotting. NRO were characterized by immunostaining and electron microscopy. Results Novel CLN3 transcripts were detected in adult human retina and control‐NRO. The major transcript detected in patient‐NRO displayed skipping of exons 2 and 4–9. Accumulation of subunit‐C of mitochondrial ATPase (SCMAS) protein was demonstrated in patient‐derived cells. Photoreceptor progenitor cells in patient‐NRO displayed accumulation of peroxisomes and vacuolization of inner segments. Correction of the c.175G>A variant restored CLN3 mRNA and protein expression and prevented SCMAS and inner segment vacuolization. Conclusion Our results demonstrate the expression of novel CLN3 transcripts in human retinal tissues. The c.175G>A variant alters splicing of the CLN3 pre‐mRNA, leading to features consistent with CLN3 deficiency, which were prevented by gene correction.
Collapse
Affiliation(s)
- Xiao Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| | - Zhiqin Huang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| | - Luke Jennings
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, Perth, WA, Australia
| |
Collapse
|
19
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
21
|
Kinarivala N, Morsy A, Patel R, Carmona AV, Sajib MS, Raut S, Mikelis CM, Al-Ahmad A, Trippier PC. An iPSC-Derived Neuron Model of CLN3 Disease Facilitates Small Molecule Phenotypic Screening. ACS Pharmacol Transl Sci 2020; 3:931-947. [PMID: 33073192 DOI: 10.1021/acsptsci.0c00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a family of rare lysosomal storage disorders. The most common form of NCL occurs in children harboring a mutation in the CLN3 gene. This form is lethal with no existing cure or treatment beyond symptomatic relief. The pathophysiology of CLN3 disease is complex and poorly understood, with current in vivo and in vitro models failing to identify pharmacological targets for therapeutic intervention. This study reports the characterization of the first CLN3 patient-specific induced pluripotent stem cell (iPSC)-derived model of the blood-brain barrier and establishes the suitability of an iPSC-derived neuron model of the disease to facilitate compound screening. Upon differentiation, hallmarks of CLN3 disease are apparent, including lipofuscin and subunit c of mitochondrial ATP synthase accumulation, mitochondrial dysfunction, and attenuated Bcl-2 expression. The model led to the identification of small molecules that cleared subunit c accumulation by mTOR-independent modulation of autophagy, conferred protective effects through induction of Bcl-2 and rescued mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ronak Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Snehal Raut
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
22
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
23
|
Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, Jung KS, Mitov MI, Lin N, Butterfield DA, Lu S, Liu J, Moseley HNB, Fan TWM, Kleinman ME, Wang QJ. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165883. [PMID: 32592935 DOI: 10.1016/j.bbadis.2020.165883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Robert M Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rahul R Deshpande
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Huijuan Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Mihail I Mitov
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | | | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Shuyan Lu
- Pfizer Inc., San Diego, CA, United States
| | - Jinze Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Computer Science, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
24
|
Burns JC, Cotleur B, Walther DM, Bajrami B, Rubino SJ, Wei R, Franchimont N, Cotman SL, Ransohoff RM, Mingueneau M. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. eLife 2020; 9:e57495. [PMID: 32579115 PMCID: PMC7367682 DOI: 10.7554/elife.57495] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
To date, microglia subsets in the healthy CNS have not been identified. Utilizing autofluorescence (AF) as a discriminating parameter, we identified two novel microglia subsets in both mice and non-human primates, termed autofluorescence-positive (AF+) and negative (AF-). While their proportion remained constant throughout most adult life, the AF signal linearly and specifically increased in AF+ microglia with age and correlated with a commensurate increase in size and complexity of lysosomal storage bodies, as detected by transmission electron microscopy and LAMP1 levels. Post-depletion repopulation kinetics revealed AF- cells as likely precursors of AF+ microglia. At the molecular level, the proteome of AF+ microglia showed overrepresentation of endolysosomal, autophagic, catabolic, and mTOR-related proteins. Mimicking the effect of advanced aging, genetic disruption of lysosomal function accelerated the accumulation of storage bodies in AF+ cells and led to impaired microglia physiology and cell death, suggestive of a mechanistic convergence between aging and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jeremy Carlos Burns
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of MedicineBostonUnited States
| | - Bunny Cotleur
- Emerging Neurosciences Research Unit, BiogenCambridgeUnited States
| | | | - Bekim Bajrami
- Chemical Biology and ProteomicsCambridgeUnited States
| | - Stephen J Rubino
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| | - Ru Wei
- Chemical Biology and ProteomicsCambridgeUnited States
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Michael Mingueneau
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| |
Collapse
|
25
|
Yasa S, Modica G, Sauvageau E, Kaleem A, Hermey G, Lefrancois S. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J Cell Sci 2020; 133:jcs.234047. [PMID: 32034082 DOI: 10.1242/jcs.234047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
Mutations in CLN3 are a cause of juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease. Clinical manifestations include cognitive regression, progressive loss of vision and motor function, epileptic seizures and a significantly reduced lifespan. CLN3 localizes to endosomes and lysosomes, and has been implicated in intracellular trafficking and autophagy. However, the precise molecular function of CLN3 remains to be elucidated. Previous studies showed an interaction between CLN3 and Rab7A, a small GTPase that regulates several functions at late endosomes. We confirmed this interaction in live cells and found that CLN3 is required for the efficient endosome-to-TGN trafficking of the lysosomal sorting receptors because it regulates the Rab7A interaction with retromer. In cells lacking CLN3 or expressing CLN3 harbouring a disease-causing mutation, the lysosomal sorting receptors were degraded. We also demonstrated that CLN3 is required for the Rab7A-PLEKHM1 interaction, which is required for fusion of autophagosomes to lysosomes. Overall, our data provide a molecular explanation behind phenotypes observed in JNCL and give an indication of the pathogenic mechanism behind Batten disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7 .,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada H3A 0C7.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, Canada H2X 3Y7
| |
Collapse
|
26
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
27
|
Petcherski A, Chandrachud U, Butz ES, Klein MC, Zhao WN, Reis SA, Haggarty SJ, Ruonala MO, Cotman SL. An Autophagy Modifier Screen Identifies Small Molecules Capable of Reducing Autophagosome Accumulation in a Model of CLN3-Mediated Neurodegeneration. Cells 2019; 8:cells8121531. [PMID: 31783699 PMCID: PMC6953052 DOI: 10.3390/cells8121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Alterations in the autophagosomal–lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal–lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.
Collapse
Affiliation(s)
- Anton Petcherski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Uma Chandrachud
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Elisabeth S. Butz
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Madeleine C. Klein
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Wen-Ning Zhao
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Surya A. Reis
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Stephen J. Haggarty
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Mika O. Ruonala
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Susan L. Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Correspondence: ; Tel.: +1-617-726-9180
| |
Collapse
|
28
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
29
|
Appu AP, Bagh MB, Sadhukhan T, Mondal A, Casey S, Mukherjee AB. Cln3-mutations underlying juvenile neuronal ceroid lipofuscinosis cause significantly reduced levels of Palmitoyl-protein thioesterases-1 (Ppt1)-protein and Ppt1-enzyme activity in the lysosome. J Inherit Metab Dis 2019; 42:944-954. [PMID: 31025705 PMCID: PMC6739123 DOI: 10.1002/jimd.12106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Mutations in at least 13 different genes (called CLNs) underlie various forms of neuronal ceroid lipofuscinoses (NCLs), a group of the most common neurodegenerative lysosomal storage diseases. While inactivating mutations in the CLN1 gene, encoding palmitoyl-protein thioesterases-1 (PPT1), cause infantile NCL (INCL), those in the CLN3 gene, encoding a protein of unknown function, underlie juvenile NCL (JNCL). PPT1 depalmitoylates S-palmitoylated proteins (constituents of ceroid) required for their degradation by lysosomal hydrolases and PPT1-deficiency causes lysosomal accumulation of autofluorescent ceroid leading to INCL. Because intracellular accumulation of ceroid is a characteristic of all NCLs, a common pathogenic link for these diseases has been suggested. It has been reported that CLN3-mutations suppress the exit of cation-independent mannose 6-phosphate receptor (CI-M6PR) from the trans Golgi network (TGN). Because CI-M6PR transports soluble proteins such as PPT1 from the TGN to the lysosome, we hypothesized that CLN3-mutations may cause lysosomal PPT1-insufficiency contributing to JNCL pathogenesis. Here, we report that the lysosomes in Cln3-mutant mice, which mimic JNCL, and those in cultured cells from JNCL patients, contain significantly reduced levels of Ppt1-protein and Ppt1-enzyme activity and progressively accumulate autofluorescent ceroid. Furthermore, in JNCL fibroblasts the V0a1 subunit of v-ATPase, which regulates lysosomal acidification, is mislocalized to the plasma membrane instead of its normal location on lysosomal membrane. This defect dysregulates lysosomal acidification, as we previously reported in Cln1 -/- mice, which mimic INCL. Our findings uncover a previously unrecognized role of CLN3 in lysosomal homeostasis and suggest that CLN3-mutations causing lysosomal Ppt1-insuffiiciency may at least in part contribute to JNCL pathogenesis.
Collapse
|
30
|
Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem 2019; 294:9592-9604. [PMID: 31040178 DOI: 10.1074/jbc.ra119.008852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.
Collapse
Affiliation(s)
- Carolin Schmidtke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Stephan Tiede
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland 00014
| | - Sabrina Jabs
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany 13125
| | - Georgia Makrypidi
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Michaela Schweizer
- the Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | - Ingke Braren
- Vector Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Angela Schulz
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Thomas Braulke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246,
| |
Collapse
|
31
|
Bajaj L, Lotfi P, Pal R, di Ronza A, Sharma J, Sardiello M. Lysosome biogenesis in health and disease. J Neurochem 2019; 148:573-589. [PMID: 30092616 PMCID: PMC6368902 DOI: 10.1111/jnc.14564] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
This review focuses on the pathways that regulate lysosome biogenesis and that are implicated in numerous degenerative storage diseases, including lysosomal storage disorders and late-onset neurodegenerative diseases. Lysosomal proteins are synthesized in the endoplasmic reticulum and trafficked to the endolysosomal system through the secretory route. Several receptors have been characterized that execute post-Golgi trafficking of lysosomal proteins. Some of them recognize their cargo proteins based on specific amino acid signatures, others based on a particular glycan modification that is exclusively found on lysosomal proteins. Nearly all receptors serving lysosome biogenesis are under the transcriptional control of transcription factor EB (TFEB), a master regulator of the lysosomal system. TFEB coordinates the expression of lysosomal hydrolases, lysosomal membrane proteins, and autophagy proteins in response to pathways sensing lysosomal stress and the nutritional conditions of the cell among other stimuli. TFEB is primed for activation in lysosomal storage disorders but surprisingly its function is impaired in some late-onset neurodegenerative storage diseases like Alzheimer's and Parkinson's, because of specific detrimental interactions that limit TFEB expression or activation. Thus, disrupted TFEB function presumably plays a role in the pathogenesis of these diseases. Multiple studies in animal models of degenerative storage diseases have shown that exogenous expression of TFEB and pharmacological activation of endogenous TFEB attenuate disease phenotypes. These results highlight TFEB-mediated enhancement of lysosomal biogenesis and function as a candidate strategy to counteract the progression of these diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Rituraj Pal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| |
Collapse
|
32
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
33
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
34
|
Chen FK, Zhang X, Eintracht J, Zhang D, Arunachalam S, Thompson JA, Chelva E, Mallon D, Chen SC, McLaren T, Lamey T, De Roach J, McLenachan S. Clinical and molecular characterization of non-syndromic retinal dystrophy due to c.175G>A mutation in ceroid lipofuscinosis neuronal 3 (CLN3). Doc Ophthalmol 2018; 138:55-70. [PMID: 30446867 DOI: 10.1007/s10633-018-9665-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Mutation of the CLN3 gene, associated with juvenile neuronal ceroid lipofuscinosis, has recently been associated with late-onset, non-syndromic retinal dystrophy. Herein we describe the multimodal imaging, immunological and systemic features of an adult with compound heterozygous CLN3 mutations. METHODS A 50-year-old female with non-syndromic retinal dystrophy from the age of 36 years underwent multimodal retinal imaging, electroretinography, neuroimaging, immunological studies and genetic testing. CLN3 transcripts were amplified from patient leukocytes by reverse transcriptase polymerase chain reaction and characterized by Sanger sequencing. RESULTS Visual acuity declined to 6/12 and 6/76 due to asymmetrical central scotoma. ERG responses became electronegative and patient's serum contained anti-retinal antibodies. Final visual acuity stabilized at 6/60 bilaterally 3 years after peri-ocular steroid and rituximab infusion. Genetic testing revealed compound heterozygous CLN3 mutations: the 1.02 kb deletion and a novel missense mutation (c.175G>A). In silico, analyses predicted the c.175G>A mutation disrupted an exonic splice enhancer site in exon 3. In patient leukocytes, CLN3 expression was reduced and novel CLN3 transcripts lacking exon 3 were detected. CONCLUSIONS Our case study shows that (1) non-syndromic CLN3 disease leads to rod and delayed primary cone degeneration resulting in constricting peripheral field and enlarging central scotoma and, (2) the c.175G>A CLN3 mutation, altered splicing of the CLN3 gene. Overall, we provide comprehensive clinical characterization of a patient with non-syndromic CLN3 disease.
Collapse
Affiliation(s)
- Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Xiao Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jonathan Eintracht
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Sukanya Arunachalam
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Enid Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Dominic Mallon
- Department of Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Terri McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - John De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.
| |
Collapse
|
35
|
Shematorova EK, Shpakovski DG, Chernysheva AD, Shpakovski GV. Molecular mechanisms of the juvenile form of Batten disease: important role of MAPK signaling pathways (ERK1/ERK2, JNK and p38) in pathogenesis of the malady. Biol Direct 2018; 13:19. [PMID: 30621751 PMCID: PMC6889328 DOI: 10.1186/s13062-018-0212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Mutations in the CLN3 gene lead to so far an incurable juvenile-onset neuronal ceroid lipofuscinosis (JNCL) or Batten disease that starts at the age of 4–6 years with a progressive retinopathy leading to blindness. Motor disturbances, epilepsy and dementia manifest during several following years. Most JNCL patients carry the same 1.02-kb deletion in the CLN3 gene, encoding an unusual transmembrane protein, CLN3 or battenin. Results Based on data of genome-wide expression profiling in CLN3 patients with different rate of the disease progression [Mol. Med., 2011, 17: 1253–1261] and our bioinformatic analysis of battenin protein-protein interactions in neurons we propose that CLN3 can function as a molecular chaperone for some plasma membrane proteins, being crucially important for their correct folding in endoplasmic reticulum. Changes in spatial structure of these membrane proteins lead to transactivation of the located nearby receptors. Particularly, CLN3 interacts with a subunit of Na/K ATPase ATP1A1 which changes its conformation and activates the adjacent epidermal growth factor receptor (EGFR). As a result, a large amount of erroneously activated EGFR generates MAPK signal cascades (ERK1/ERK2, JNKs and p38) from cell surface eventually causing neurons’ death. Conclusions Molecular mechanism of the juvenile form of Batten disease (JNCL), which is based on the excessive activation of signaling cascades in a time of the radical increase of neuronal membranes’ area in the growing brain, have been proposed and substantiated. The primary cause of this phenomenon is the defective function of the CLN3 protein that could not act properly as molecular chaperone for some plasma membrane proteins in the endoplasmic reticulum. The incorrect three-dimensional structure of at least one such protein, ATP1A1, leads to unregulated spontaneous and repetitive activation of the SRC kinase that transactivates EGFR with the subsequent uncontrolled launch of various MAPK cascades. Possible ways of treatment of patients with JNCL have been suggested. Reviewers This article was reviewed by Konstantinos Lefkimmiatis, Eugene Koonin and Vladimir Poroikov.
Collapse
Affiliation(s)
- Elena K Shematorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia.
| | - Dmitry G Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia
| | - Anna D Chernysheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia.
| |
Collapse
|
36
|
Burkovetskaya M, Bosch ME, Karpuk N, Fallet R, Kielian T. Caspase 1 activity influences juvenile Batten disease (CLN3) pathogenesis. J Neurochem 2018; 148:652-668. [PMID: 29873075 DOI: 10.1111/jnc.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3Δex7/8 mouse model of JNCL, whereas neuron death occurs much later in the disease process. We previously reported that Cln3Δex7/8 microglia are primed toward a pro-inflammatory phenotype typified by exaggerated caspase 1 inflammasome activation and here we extend those findings to demonstrate heightened caspase activity in the Cln3Δex7/8 mouse brain. Based on the ability of caspase 1 to cleave a large number of substrates that have been implicated in JNCL pathology, we examined the functional implications of caspase 1 inflammasome activity by crossing Cln3Δex7/8 and caspase 1-deficient mice to create Cln3Δex7/8 /Casp-1-/- animals. Caspase 1 deletion influenced motor behavior deficits and astrocyte activation in the context of CLN3 mutation, since both were significantly reversed in Cln3Δex7/8 /Casp-1-/- mice, with phenotypes approaching that of wild-type animals. We also report a progressive age-dependent reduction in whisker length in Cln3Δex7/8 mice that was partially caspase 1-dependent. However, not all CLN3 phenotypes were reversed following caspase 1 deletion, since no significant differences in lysosomal accumulation or microglial activation were observed between Cln3Δex7/8 and Cln3Δex7/8 /Casp-1-/- mice. Although the molecular targets of aberrant caspase 1 activity in the context of CLN3 mutation remain to be identified, our studies suggest that caspase 1 may represent a potential therapeutic target to mitigate some attributes of CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Megan E Bosch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
37
|
Lau NKC, Ching CK, Lee HHC, Chak WKM, Kwan Shing N, Hanchard NA, Mak CM. First case of genetically confirmed CLN3 disease in Chinese with cDNA sequencing revealing pathogenicity of a novel splice site variant. Clin Chim Acta 2018; 486:151-155. [PMID: 30053402 DOI: 10.1016/j.cca.2018.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Juvenile neuronal ceroid lipofuscinosis (CLN3 disease) is a hereditary progressive neurodegenerative disease well documented among Caucasians, but such clinical data and genetic characterization is lacking among Asian populations. PATIENT AND METHODS A 13-year-old Chinese girl presented for diagnostic evaluation with retinitis pigmentosa, generalised tonic-clonic seizure and cerebellar ataxia. Electron microscopy of whole blood and skin biopsy, and mutation analysis of CLN3 gene with genomic DNA and cDNA, were performed. RESULTS Electron microscopy showed vacuolated lymphocytes, and characteristic patterns in eccrine glands suggestive of neuronal ceroid lipofuscinosis. Sequencing of genomic DNA showed homozygous splice site variant NM_000086.2(CLN3):c.906+6T>G, and the pathogenicity of which was confirmed by cDNA sequencing to demonstrate the deletion of a transmembrane domain of the CLN3 protein. The mutant protein was predicted to adversely affect ligand binding of CLN3 as a lysosomal membrane protein. CONCLUSIONS Here we report the first genetically confirmed CLN3 disease in Chinese, with a novel splice site variant with proposed pathogenetic mechanism relating gene and protein, and highlights the potential ethnic differences in the mutation spectrum. We wish to establish the importance of clinical awareness and laboratory diagnosis of CLN3 disease, especially in the promising age of gene therapy.
Collapse
Affiliation(s)
- Nike Kwai Cheung Lau
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| | - Chor Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| | - Hencher Han Chih Lee
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| | - Wai Kwong Mario Chak
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong.
| | - Ng Kwan Shing
- Department of Pathology, Tuen Mun Hospital, Hong Kong.
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong.
| |
Collapse
|
38
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
39
|
Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2018; 19:ijms19020625. [PMID: 29470438 PMCID: PMC5855847 DOI: 10.3390/ijms19020625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.
Collapse
|
40
|
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol 2018; 2:697-704. [DOI: 10.1038/s41559-018-0477-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
|
41
|
Cárcel-Trullols J, Kovács AD, Pearce DA. Role of the Lysosomal Membrane Protein, CLN3, in the Regulation of Cathepsin D Activity. J Cell Biochem 2017; 118:3883-3890. [PMID: 28390177 PMCID: PMC5603378 DOI: 10.1002/jcb.26039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
Among Neuronal Ceroid Lipofuscinoses (NCLs), which are childhood fatal neurodegenerative disorders, the juvenile onset form (JNCL) is the most common. JNCL is caused by recessive mutations in the CLN3 gene. CLN3 encodes a lysosomal/endosomal transmembrane protein but its precise function is not completely known. We have previously reported that in baby hamster kidney (BHK) cells stably expressing myc-tagged human CLN3 (myc-CLN3), hyperosmotic conditions drastically increased myc-CLN3 mRNA and protein expression. In the present study, we analyzed the consequences of hyperosmolarity, and increased CLN3 expression on cathepsin D (CTSD) activity and prosaposin processing using BHK cells transiently or stably expressing myc-CLN3. We found that hyperosmolarity increased lysotracker staining of lysosomes, and elevated the levels of myc-CLN3 and lysosome-associated membrane protein-1 (LAMP1). Hyperosmolarity, independently of the expression level of myc-CLN3, decreased the levels of PSAP and saposin D, which are protein cofactors in sphingolipid metabolism. The lysosomal enzyme cathepsin D (CTSD) mediates the proteolytic cleavage of PSAP precursor into saposins A-D. Myc-CLN3 colocalized with CTSD and activity of CTSD decreased as myc-CLN3 expression increased, and clearly decreased under hyperosmotic conditions. Nevertheless, levels of CTSD measured by Western blotting were not altered under any studied condition. Our results suggest a direct involvement of CLN3 in the regulation of CTSD activity. J. Cell. Biochem. 118: 3883-3890, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jaime Cárcel-Trullols
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
| | - Attila D. Kovács
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, South Dakota, 57104 USA
| | - David A. Pearce
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, South Dakota, 57104 USA
| |
Collapse
|
42
|
Self-Complementary AAV9 Gene Delivery Partially Corrects Pathology Associated with Juvenile Neuronal Ceroid Lipofuscinosis (CLN3). J Neurosci 2017; 36:9669-82. [PMID: 27629717 DOI: 10.1523/jneurosci.1635-16.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by autosomal-recessive mutations in CLN3 for which no treatment exists. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline and premature death (late teens to 20s). We explored a gene delivery approach for JNCL by generating two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and β-actin promoters to drive low versus high transgene expression, respectively. This approach was based on the expectation that low CLN3 levels are required for cellular homeostasis due to minimal CLN3 expression postnatally, although this had not yet been demonstrated in vivo One-month-old Cln3(Δex7/8) mice received one systemic (intravenous) injection of scAAV9/MeCP2-hCLN3 or scAAV9/β-actin-hCLN3, with green fluorescent protein (GFP)-expressing viruses as controls. A promoter-dosage effect was observed in all brain regions examined, in which hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/β-actin-hCLN3 versus scAAV9/MeCP2-hCLN3. However, a disconnect occurred between CLN3 levels and disease improvement, because only the scAAV9 construct driving low CLN3 expression (scAAV9/MeCP2-hCLN3) corrected motor deficits and attenuated microglial and astrocyte activation and lysosomal pathology. This may have resulted from preferential promoter usage because transgene expression after intravenous scAAV9/MeCP2-GFP injection was primarily detected in NeuN(+) neurons, whereas scAAV9/β-actin-GFP drove transgene expression in GFAP(+) astrocytes. This is the first demonstration of a systemic delivery route to restore CLN3 in vivo using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals. SIGNIFICANCE STATEMENT Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by CLN3 mutations. We explored a gene delivery approach using two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and β-actin promoters. hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/β-actin-hCLN3 versus scAAV9/MeCP2-hCLN3 after a single systemic injection. However, only scAAV9/MeCP2-hCLN3 corrected motor deficits and attenuated glial activation and lysosomal pathology. This may reflect preferential promoter usage because transgene expression with scAAV9/MeCP2-green fluorescent protein (GFP) was primarily in neurons, whereas scAAV9/β-actin-GFP drove transgene expression in astrocytes. This is the first demonstration of systemic delivery for CLN3 using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals.
Collapse
|
43
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
44
|
Age-dependent alterations in neuronal activity in the hippocampus and visual cortex in a mouse model of Juvenile Neuronal Ceroid Lipofuscinosis (CLN3). Neurobiol Dis 2017; 100:19-29. [DOI: 10.1016/j.nbd.2016.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022] Open
|
45
|
Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L, Saleem U, Tse DY, Sanagasetti D, Wu SM, Neilson JR, Pereira FA, Pautler RG, Rodney GG, Cooper JD, Sardiello M. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 2017; 8:14338. [PMID: 28165011 PMCID: PMC5303831 DOI: 10.1038/ncomms14338] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. The transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis. Here authors show that trehalose, an mTOR-independent autophagy inducer, alleviates the pathological phenotypes in a mouse model of neurodegenerative disease. Trehalose acts by inhibiting Akt, which normally suppresses TFEB via an mTORC1-independent mechanism.
Collapse
Affiliation(s)
- Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hemanth R Nelvagal
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London SE5 9RT, UK
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Gary R Stinnett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle L Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Laura Bremner
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London SE5 9RT, UK
| | - Usama Saleem
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London SE5 9RT, UK
| | - Dennis Y Tse
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.,School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Deepthi Sanagasetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Samuel M Wu
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fred A Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London SE5 9RT, UK
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Huber RJ, Myre MA, Cotman SL. Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis. Cell Adh Migr 2016; 11:399-418. [PMID: 27669405 DOI: 10.1080/19336918.2016.1236179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, refers to a group of severe neurodegenerative disorders that primarily affect children. The most common subtype of the disease is caused by loss-of-function mutations in CLN3, which is conserved across model species from yeast to human. The precise function of the CLN3 protein is not known, which has made targeted therapy development challenging. In the social amoeba Dictyostelium discoideum, loss of Cln3 causes aberrant mid-to-late stage multicellular development. In this study, we show that Cln3-deficiency causes aberrant adhesion and aggregation during the early stages of Dictyostelium development. cln3- cells form ∼30% more multicellular aggregates that are comparatively smaller than those formed by wild-type cells. Loss of Cln3 delays aggregation, but has no significant effect on cell speed or cAMP-mediated chemotaxis. The aberrant aggregation of cln3- cells cannot be corrected by manually pulsing cells with cAMP. Moreover, there are no significant differences between wild-type and cln3- cells in the expression of genes linked to cAMP chemotaxis (e.g., adenylyl cyclase, acaA; the cAMP receptor, carA; cAMP phosphodiesterase, pdsA; g-protein α 9 subunit, gpaI). However, during this time in development, cln3- cells show reduced cell-substrate and cell-cell adhesion, which correlate with changes in the levels of the cell adhesion proteins CadA and CsaA. Specifically, loss of Cln3 decreases the intracellular level of CsaA and increases the amount of soluble CadA in conditioned media. Together, these results suggest that the aberrant aggregation of cln3- cells is due to reduced adhesion during the early stages of development. Revealing the molecular basis underlying this phenotype may provide fresh new insight into CLN3 function.
Collapse
Affiliation(s)
- Robert J Huber
- a Department of Biology , Trent University , Peterborough , Ontario , Canada
| | - Michael A Myre
- b Department of Biological Sciences , University of Massachusetts Lowell , Lowell , Massachusetts , USA
| | - Susan L Cotman
- c Center for Human Genetic Research, Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
47
|
Nuzhnyi EP, Yakimovskii AF, Timofeeva AA, Usenko TS, Nikolaev MA, Emelyanov AK, Amosov VI, Bubnova EV, Boukina AM, Zakharova EY, Pchelina SN. [Mutation del 1,02kb in the CLN3 gene and extrapyramidal syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:50-53. [PMID: 27635612 DOI: 10.17116/jnevro20161168150-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the GBA and SMPD1 genes, which lead to the development of lysosomal storage diseases, are high risk factors for Parkinson's disease and dementia with Lewy bodies. We screened the mutations in the GALC and CLN3 genes in patients with Parkinson's disease and control subjects. A heterozygous CLN3 mutation (del 1.02 kb) carrier with clinical features of the unusual extrapyramidal syndrome was identified. A role of CLN3 mutations in the development of neurodegenerative disorders is discussed.
Collapse
Affiliation(s)
- E P Nuzhnyi
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A F Yakimovskii
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - T S Usenko
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia; Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - M A Nikolaev
- Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - A K Emelyanov
- Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| | - V I Amosov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - E V Bubnova
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | | | | | - S N Pchelina
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia; Konstantinov St. Petersburg Institute of Nuclear Physics, St. Petersburg, Russia
| |
Collapse
|
48
|
Oetjen S, Kuhl D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J Neurochem 2016; 139:456-470. [DOI: 10.1111/jnc.13744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sandra Oetjen
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
49
|
Hersrud SL, Kovács AD, Pearce DA. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1324-36. [PMID: 27101989 PMCID: PMC4899816 DOI: 10.1016/j.bbadis.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL.
Collapse
Affiliation(s)
- Samantha L Hersrud
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States.
| |
Collapse
|
50
|
Labonne JDJ, Shen Y, Kong IK, Diamond MP, Layman LC, Kim HG. Comparative deletion mapping at 1p31.3-p32.2 implies NFIA responsible for intellectual disability coupled with macrocephaly and the presence of several other genes for syndromic intellectual disability. Mol Cytogenet 2016; 9:24. [PMID: 26997977 PMCID: PMC4797196 DOI: 10.1186/s13039-016-0234-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND While chromosome 1 is the largest chromosome in the human genome, less than two dozen cases of interstitial microdeletions in the short arm have been documented. More than half of the 1p microdeletion cases were reported in the pre-microarray era and as a result, the proximal and distal boundaries containing the exact number of genes involved in the microdeletions have not been clearly defined. RESULTS We revisited a previous case of a 10-year old female patient with a 1p32.1p32.3 microdeletion displaying syndromic intellectual disability. We performed microarray analysis as well as qPCR to define the proximal and distal deletion breakpoints and revised the karyotype from 1p32.1p32.3 to 1p31.3p32.2. The deleted chromosomal region contains at least 35 genes including NFIA. Comparative deletion mapping shows that this region can be dissected into five chromosomal segments containing at least six candidate genes (DAB1, HOOK1, NFIA, DOCK7, DNAJC6, and PDE4B) most likely responsible for syndromic intellectual disability, which was corroborated by their reduced transcript levels in RT-qPCR. Importantly, one patient with an intragenic microdeletion within NFIA and an additional patient with a balanced translocation disrupting NFIA display intellectual disability coupled with macrocephaly. CONCLUSION We propose NFIA is responsible for intellectual disability coupled with macrocephaly, and microdeletions at 1p31.3p32.2 constitute a contiguous gene syndrome with several genes contributing to syndromic intellectual disability.
Collapse
Affiliation(s)
- Jonathan D. J. Labonne
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yiping Shen
- />Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Il-Keun Kong
- />Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do Korea
| | - Michael P. Diamond
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Lawrence C. Layman
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hyung-Goo Kim
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|