1
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
4
|
Nirvanie-Persaud L, Millis RM. Epigenetics and Pain: New Insights to an Old Problem. Cureus 2022; 14:e29353. [PMID: 36159345 PMCID: PMC9487372 DOI: 10.7759/cureus.29353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Physicians and neuroscientists have long observed that factors such as thoughts, emotions, and expectations can influence the perception of pain. Pain can be described as an unpleasant sensation that causes physical discomfort and emotional distress. It alerts an individual to seek help and is the main complaint that brings individuals to physicians. Though it is associated with probable tissue damage, such damage may be subtle, sometimes involving the release of algesic chemicals, and also influenced by attitudes, beliefs, personality, and social factors. The perception of pain may vary due to a multitude of these factors influencing the ascending sensory impulse propagation to the primary somatosensory cortex. The genetics and epigenetics of pain modulators have been previously studied, but there is a lack of application in the everyday management and treatment of pain due to the paucity of valid evidence-based data. We used the PubMed database as our primary tool for researching current literature on this topic. The MeSH terms used included: gene modification, epigenetics, genes, pain, analgesia, “types of pain, and theories of pain. The results were filtered as follows: publications within the last 10 years, generalized pain studies regarding the biopsychosocial aspect of pain, pertinent genes, and epigenetic modulation of those genes; 52 publications were selected for review. By addressing the external factorial causes and the appropriate application of epigenetic principles which affect pain perception, it is hoped that this review will motivate future advancements in the management of acute and/or chronic pain.
Collapse
|
5
|
Kringel D, Malkusch S, Lötsch J. Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis. Int J Mol Sci 2021; 22:7250. [PMID: 34298869 PMCID: PMC8311652 DOI: 10.3390/ijms22147250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions of drugs with the classical epigenetic mechanism of DNA methylation or histone modification are increasingly being elucidated mechanistically and used to develop novel classes of epigenetic therapeutics. A data science approach is used to synthesize current knowledge on the pharmacological implications of epigenetic regulation of gene expression. Computer-aided knowledge discovery for epigenetic implications of current approved or investigational drugs was performed by querying information from multiple publicly available gold-standard sources to (i) identify enzymes involved in classical epigenetic processes, (ii) screen original biomedical scientific publications including bibliometric analyses, (iii) identify drugs that interact with epigenetic enzymes, including their additional non-epigenetic targets, and (iv) analyze computational functional genomics of drugs with epigenetic interactions. PubMed database search yielded 3051 hits on epigenetics and drugs, starting in 1992 and peaking in 2016. Annual citations increased to a plateau in 2000 and show a downward trend since 2008. Approved and investigational drugs in the DrugBank database included 122 compounds that interacted with 68 unique epigenetic enzymes. Additional molecular functions modulated by these drugs included other enzyme interactions, whereas modulation of ion channels or G-protein-coupled receptors were underrepresented. Epigenetic interactions included (i) drug-induced modulation of DNA methylation, (ii) drug-induced modulation of histone conformations, and (iii) epigenetic modulation of drug effects by interference with pharmacokinetics or pharmacodynamics. Interactions of epigenetic molecular functions and drugs are mutual. Recent research activities on the discovery and development of novel epigenetic therapeutics have passed successfully, whereas epigenetic effects of non-epigenetic drugs or epigenetically induced changes in the targets of common drugs have not yet received the necessary systematic attention in the context of pharmacological plasticity.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Cuitavi J, Hipólito L, Canals M. The Life Cycle of the Mu-Opioid Receptor. Trends Biochem Sci 2021; 46:315-328. [PMID: 33127216 DOI: 10.1016/j.tibs.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic target, including its biogenesis, trafficking to and from the plasma membrane, and how the regulation of these processes impacts its function and is related to pathophysiological conditions.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, UK.
| |
Collapse
|
7
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
An analysis of the effect of mu-opioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. THE PHARMACOGENOMICS JOURNAL 2020; 20:672-680. [PMID: 32029903 PMCID: PMC7415483 DOI: 10.1038/s41397-020-0158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
This study explored the effect of OPRM1 promoter region DNA methylation on the outcome of treatment with the opioid antagonist naltrexone (NTX) for alcohol dependence (AD). Ninety-three patients with DSM-IV AD [41 African Americans (AAs) and 52 European Americans (EAs)] received double-blind treatment with NTX or placebo for at least three months. Relapse to heavy drinking was assessed during the first 13 weeks of the trial. Peripheral blood methylation levels of 33 CpG units in the OPRM1 promoter region were quantified using Sequenom EpiTYPER technology. Bayesian logistic regression was used to analyze the effects of NTX treatment, CpG methylation, CpG methylation×NTX treatment, and age on AD relapse. The Random Forest machine learning algorithm was applied to select AD relapse predictors. No significant effect of individual OPRM1 promoter CpG units on AD relapse was observed in either AAs or EAs. Age was significantly associated with AD relapse in EAs, among whom older subjects had a lower relapse rate. Random forest analyses revealed that the prediction rate for AD relapse reached 66.0% with five top variables (age and four CpG units; ranked by their importance to AD relapse) in the prediction model. These findings suggest that methylation levels of individual OPRM1 promoter CpG units do not contribute significantly to inter-individual variation in NTX response. However, the age of subjects in combination with a cluster of specific OPRM1 promoter CpG units may affect NTX treatment outcome. Additional studies of OPRM1 DNA methylation changes during and after NTX treatment of AD are needed.
Collapse
|
9
|
Hormozi A, Zarifkar A, Rostami B, Naghibalhossaini F. An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:397-405. [PMID: 31582864 PMCID: PMC6754534 DOI: 10.30476/ijms.2019.44958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Intense stress can change pain perception and induce hyperalgesia; a phenomenon called stress-induced hyperalgesia (SIH). However, the neurobiological mechanism of this effect remains unclear. The present study aimed to investigate the effect of the spinal cord µ-opioid receptors (MOR) and α2-adrenergic receptors (α2-AR) on pain sensation in rats with SIH.
Methods: Eighteen Sprague-Dawley male rats, weighing 200-250 g, were randomly divided into two groups (n=9 per group), namely the control and stress group. The stress group was evoked by random 1-hour daily foot-shock stress (0.8 mA for 10 seconds, 1 minute apart) for 3 weeks using a communication box. The tail-flick and formalin tests were performed in both groups on day 22. The real-time RT-PCR technique was used to observe MOR and α2-AR mRNA levels at the L4-L5 lumbar spinal cord. Statistical analysis was performed using the GraphPad Prism 5 software (San Diego, CA, USA). Student’s t test was applied for comparisons between the groups. P<0.05 was considered statistically significant.
Results: There was a significant (P=0.0014) decrease in tail-flick latency in the stress group compared to the control group. Nociceptive behavioral responses to formalin-induced pain in the stress group were significantly increased in the acute (P=0.007) and chronic (P=0.001) phases of the formalin test compared to the control group. A significant reduction was also observed in MOR mRNA level of the stress group compared to the control group (P=0.003). There was no significant difference in α2-AR mRNA level between the stress and control group.
Conclusion: The results indicate that chronic stress can affect nociception and lead to hyperalgesia. The data suggest that decreased expression of spinal cord MOR causes hyperalgesia.
Collapse
Affiliation(s)
- Asef Hormozi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran.,Autoimmune Research Center, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| |
Collapse
|
10
|
Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide Study of Epigenetic Biomarkers of Opioid Dependence in European- American Women. Sci Rep 2019; 9:4660. [PMID: 30874594 PMCID: PMC6420601 DOI: 10.1038/s41598-019-41110-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
There is currently an epidemic of opioid use, overdose, and dependence in the United States. Although opioid dependence (OD) is more prevalent in men, opioid relapse and fatal opioid overdoses have recently increased at a higher rate among women. Epigenetic mechanisms have been implicated in the etiology of OD, though most studies to date have used candidate gene approaches. We conducted the first epigenome-wide association study (EWAS) of OD in a sample of 220 European-American (EA) women (140 OD cases, 80 opioid-exposed controls). DNA was derived from whole blood samples and EWAS was implemented using the Illumina Infinium HumanMethylationEPIC array. To identify differentially methylated CpG sites, we performed an association analysis adjusting for age, estimates of cell proportions, smoking status, and the first three principal components to correct for population stratification. After correction for multiple testing, association analysis identified three genome-wide significant differentially methylated CpG sites mapping to the PARG, RERE, and CFAP77 genes. These genes are involved in chromatin remodeling, DNA binding, cell survival, and cell projection. Previous genome-wide association studies have identified RERE risk variants in association with psychiatric disorders and educational attainment. DNA methylation age in the peripheral blood did not differ between OD subjects and opioid-exposed controls. Our findings implicate epigenetic mechanisms in OD and, if replicated, identify possible novel peripheral biomarkers of OD that could inform the prevention and treatment of the disorder.
Collapse
Affiliation(s)
- Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Zhongshan Cheng
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Huiping Zhang
- Departments of Psychiatry and Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
11
|
Methamphetamine (MA) Use Induces Specific Changes in LINE-1 Partial Methylation Patterns, Which Are Associated with MA-Induced Paranoia: a Multivariate and Neuronal Network Study. Mol Neurobiol 2018; 56:4258-4272. [PMID: 30302724 DOI: 10.1007/s12035-018-1371-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The use of psychoactive substances, including methamphetamine (MA) may cause changes in DNA methylation. The aim of this study was to examine the effects of MA use on long interspersed element-1 (LINE-1) methylation patterns in association with MA-induced paranoia. This study recruited 123 normal controls and 974 MA users, 302 with and 672 without MA-induced paranoia. The Semi-Structured Assessment for Drug Dependence and Alcoholism was used to assess demographic and substance use variables. Patterns of LINE-1 methylation were assessed in peripheral blood mononuclear cells and a combined bisulfite restriction analysis (COBRA) was used to estimate overall LINE-1 methylation (mC) while COBRA classified LINE-alleles into four patterns based on the methylation status of two CpG dinucleotides on each strand from 5' to 3', namely two methylated (mCmC) and two unmethylated (uCuC) CpGs and two types of partially methylated loci (mCuC that is 5'm with 3'u and uCmC that is 5'u with 3'm CpGs). MA users showed higher % mCuC and % mCuC + uCmC levels than controls. Use of solvents and opioids, but not cannabis and alcohol dependence, significantly lowered % uCmC levels, while current smoking significantly increased % uCuC levels. MA-induced paranoia was strongly associated with changes in LINE-1 partial methylation patterns (lowered % uCmC), heavy MA use, lower age at onset of MA use, and alcohol dependence. Women who took contraceptives showed significantly lower LINE-1 % mC and % mCmC and higher % uCuC levels than women without contraceptive use and men. The results show that MA-induced changes in LINE-1 partial methylation patterns are associated with MA-induced paranoia and could explain in part the pathophysiology of this type of psychosis. It is argued that MA-induced neuro-oxidative pathways may have altered LINE-1 partial methylation patterns, which in turn may regulate neuro-oxidative and immune pathways, which may increase risk to develop MA-induced paranoia.
Collapse
|
12
|
Hormozi A, Zarifkar A, Tatar M, Barazesh M, Rostami B. Effects of Post-Weaning Chronic Stress on Nociception, Spinal Cord μ-Opioid, and α2-Adrenergic Receptors Expression in Rats and Their Offspring. J Mol Neurosci 2018; 64:567-573. [DOI: 10.1007/s12031-018-1068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Lötsch J, Lerch F, Djaldetti R, Tegder I, Ultsch A. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). BIG DATA ANALYTICS 2018. [DOI: 10.1186/s41044-018-0032-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
14
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Marie-Claire C, Jourdaine C, Lépine JP, Bellivier F, Bloch V, Vorspan F. Pharmacoepigenomics of opiates and methadone maintenance treatment: current data and perspectives. Pharmacogenomics 2017; 18:1359-1372. [DOI: 10.2217/pgs-2017-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current treatments of opioid addiction include primarily maintenance medications such as methadone. Chronic exposure to opiate and/or long-lasting maintenance treatment induce modulations of gene expression in brain and peripheral tissues. There is increasing evidence that epigenetic modifications underlie these modulations. This review summarizes published results on opioid-induced epigenetic changes in animal models and in patients. The epigenetic modifications observed with other drugs of abuse often used by opiate abusers are also outlined. Specific methadone maintenance treatment induced epigenetic modifications at different treatment stages may be combined with the ones resulting from patients’ substance use history. Therefore, research comparing groups of addicts with similar history and substances use disorders but contrasting for well-characterized treatment phenotypes should be encouraged.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Clément Jourdaine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Jean-Pierre Lépine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Vanessa Bloch
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Florence Vorspan
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| |
Collapse
|
16
|
Chidambaran V, Zhang X, Martin LJ, Ding L, Weirauch MT, Geisler K, Stubbeman BL, Sadhasivam S, Ji H. DNA methylation at the mu-1 opioid receptor gene ( OPRM1) promoter predicts preoperative, acute, and chronic postsurgical pain after spine fusion. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:157-168. [PMID: 28533693 PMCID: PMC5432115 DOI: 10.2147/pgpm.s132691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction The perioperative pain experience shows great interindividual variability and is difficult to predict. The mu-1 opioid receptor gene (OPRM1) is known to play an important role in opioid-pain pathways. Since deoxyribonucleic acid (DNA) methylation is a potent repressor of gene expression, DNA methylation was evaluated at the OPRM1 promoter, as a predictor of preoperative, acute, and chronic postsurgical pain (CPSP). Methods A prospective observational cohort study was conducted in 133 adolescents with idiopathic scoliosis undergoing spine fusion under standard protocols. Data regarding pain, opioid consumption, anxiety, and catastrophizing (using validated questionnaires) were collected before and 2–3 months postsurgery. Outcomes evaluated were preoperative pain, acute postoperative pain (area under curve [AUC] for pain scores over 48 hours), and CPSP (numerical rating scale >3/10 at 2–3 months postsurgery). Blood samples collected preoperatively were analyzed for DNA methylation by pyrosequencing of 22 CpG sites at the OPRM1 gene promoter. The association of each pain outcome with the methylation percentage of each CpG site was assessed using multivariable regression, adjusting for significant (P<0.05) nongenetic variables. Results Majority (83%) of the patients reported no pain preoperatively, while CPSP occurred in 36% of the subjects (44/121). Regression on dichotomized preoperative pain outcome showed association with methylation at six CpG sites (1, 3, 4, 9, 11, and 17) (P<0.05). Methylation at CpG sites 4, 17, and 18 was associated with higher AUC after adjusting for opioid consumption and preoperative pain score (P<0.05). After adjusting for postoperative opioid consumption and preoperative pain score, methylation at CpG sites 13 and 22 was associated with CPSP (P<0.05). Discussion Novel CPSP biomarkers were identified in an active regulatory region of the OPRM1 gene that binds multiple transcription factors. Inhibition of binding by DNA methylation potentially decreases the OPRM1 gene expression, leading to a decreased response to endogenous and exogenous opioids, and an increased pain experience.
Collapse
Affiliation(s)
| | - Xue Zhang
- Division of Human Genetics.,Pyrosequencing Core for Genomic and Epigenomic Research
| | - Lisa J Martin
- Department of Pediatrics.,Division of Human Genetics
| | - Lili Ding
- Division of Biostatistics and Epidemiology
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology.,Division of Biomedical Informatics.,Division of Developmental Biology
| | | | | | | | - Hong Ji
- Pyrosequencing Core for Genomic and Epigenomic Research.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|