1
|
Nagasaka H, Sato S, Suzuki A, Terao H, Nakamura Y, Yoshihara M, Okubo Y, Washimi K, Yokose T, Kishida T, Miyagi Y. Clinicopathological Significance of Extranodal Adipose Tissue Invasion in Metastatic Lymph Nodes in Patients With Prostate Cancer. Prostate 2024. [PMID: 39567857 DOI: 10.1002/pros.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Lymph node (LN) metastasis is a poor prognostic factor in patients with prostate cancer. Elucidating the mechanisms underlying cancer progression in the metastatic microenvironment of LNs is crucial to establishing novel therapies. Adipocytes interact with cancer cells and regulate cancer progression. In this study, we aimed to clarify the clinicopathological significance of extranodal adipose tissue invasion in metastatic LNs and preoperative adipokine concentration in patients with prostate cancer exhibiting metastatic LNs. METHODS We examined the pathological findings of primary and metastatic nodes and clinical information of 66 specimens from 46 patients with prostate cancer. A sub-analysis was performed to assess the relationship between preoperative adiponectin/leptin concentrations and clinical/pathological findings in the blood samples of 56 patients with prostate cancer who either did or did not show LN metastasis. RESULTS The number of metastatic LNs in patients correlated with the involvement of adipose tissue and lymphovascular invasion (p = 0.039 and < 0.001, respectively). Preoperative adiponectin concentration was lower in patients with resected margin-positive and extraprostatic extension-positive primary cancers (p = 0.0071 and 0.02, respectively). Preoperative adiponectin concentrations were significantly lower in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). Moreover, leptin concentrations were significantly higher in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). In patients with metastatic LNs, preoperative adiponectin concentrations were significantly lower in patients with biochemical recurrence than in patients without biochemical recurrence (p = 0.031). There was no correlation between biochemical recurrence and pathological findings. CONCLUSIONS This is the first report on the detailed histopathological characteristics of prostate cancer with LN metastases and the significance of preoperative adiponectin concentration in predicting the pathological features of primary cancers. Also, adipokines are a significant prediction factor of LN metastases for prostate cancer patients. Adipose tissue and adipose-secreting factors may be involved in the progression of metastatic and primary prostate cancer.
Collapse
Affiliation(s)
- Hirotaka Nagasaka
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiyasu Nakamura
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuyo Yoshihara
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Muglia VF, Laschena L, Pecoraro M, de Lion Gouvea G, Colli LM, Panebianco V. Imaging assessment of prostate cancer recurrence: advances in detection of local and systemic relapse. Abdom Radiol (NY) 2024:10.1007/s00261-024-04412-7. [PMID: 39254707 DOI: 10.1007/s00261-024-04412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 09/11/2024]
Abstract
Prostate cancer (PCa) relapse, defined either by persistent PSA levels (after RP) or biochemical recurrence (BCR), is a common occurrence. The imaging evaluation of patients experiencing PCa relapse has undergone significant advancements in the past decade, notably with the introduction of new Positron Emission Tomography (PET) tracers such as Prostate-specific membrane antigen (PSMA), and the progress in functional Magnetic Resonance Imaging (MRI). This article will explore the role of traditional imaging, the evolution of MRI towards the development of the Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR) scoring system, and how next-generation imaging is enhancing diagnostic accuracy in the setting of PCa relapse, which is essential for adopting personalized strategies that may ultimately impact outcomes.
Collapse
Affiliation(s)
- Valdair Francisco Muglia
- Department of Medical Images, Oncology and Hematology, Ribeirao Preto Medical School, University of Sao Paulo, Hospital Clinicas Ribeirao Preto - Av. Bandeirantes 3900. Campus Monte Alegre -USP, Sao Paulo, 14049-900, Brazil.
| | - Ludovica Laschena
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Gabriel de Lion Gouvea
- Department of Medical Images, Oncology and Hematology, Ribeirao Preto Medical School, University of Sao Paulo, Hospital Clinicas Ribeirao Preto - Av. Bandeirantes 3900. Campus Monte Alegre -USP, Sao Paulo, 14049-900, Brazil
| | - Leandro Machado Colli
- Department of Medical Images, Oncology and Hematology, Ribeirao Preto Medical School, University of Sao Paulo, Hospital Clinicas Ribeirao Preto - Av. Bandeirantes 3900. Campus Monte Alegre -USP, Sao Paulo, 14049-900, Brazil
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Huang C, Zhang J, Wang H, Liang C. Exosomes That Have Different Cellular Origins Followed by the Impact They Have on Prostate Tumor Development in the Tumor Microenvironment. Cancer Rep (Hoboken) 2024; 7:e70001. [PMID: 39229670 PMCID: PMC11372288 DOI: 10.1002/cnr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common urinary tumor with the highest incidence rate and the second among the leading causes of death worldwide for adult males. In the worldwide cancer incidence rate, PCa is on the increase. The cancerous cells in the prostate and cells in the microenvironment surrounding the tumor communicate through signal transduction, which is crucial for the development and spread of PCa. RECENT FINDINGS Exosomes are nanoscale vesicles released into body fluids by various cells that can aid intercellular communication by releasing nucleic acids and proteins. Exosomes published by different types of cells in the tumor microenvironment can have varying impacts on the proliferation and growth of tumor cells via various signaling pathways, modes of action, and secreted cytokines. CONCLUSION The main purpose of this review is to describe the effects of different cell-derived exosomes in the tumor microenvironment of PCa on the progression of tumor cells, as well as to summarize and discuss the prospects for the application of exosomes in the treatment and diagnosis of PCa.
Collapse
Affiliation(s)
- Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Jialong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Hsu JY, Lin YS, Huang LH, Wen WC, Gao HW, Hsu CY, Ou YC, Tung MC. A case report on the atypical metastatic pathway of prostate cancer to the kidney and stomach. Urol Case Rep 2024; 56:102816. [PMID: 39224665 PMCID: PMC11366899 DOI: 10.1016/j.eucr.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer rarely metastasizes to the stomach and kidneys. We report a 73-year-old male with such spread, highlighting significant clinical challenges. Initially diagnosed via biopsy and imaging, he received hormone therapy and cytoreductive radical prostatectomy. Despite initial management, the cancer progressed to metastatic castration-resistant prostate cancer, with gastric and renal metastases confirmed by imaging and biopsy. This case emphasizes the need for awareness of rare metastatic sites, comprehensive diagnostic evaluations, and further research into these atypical metastases to improve patient outcomes and develop better treatment strategies for managing advanced prostate cancer effectively.
Collapse
Affiliation(s)
- Jhe-Yuan Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yi-Sheng Lin
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Li-Hua Huang
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wei-Chun Wen
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Hong-Wei Gao
- Department of Pathology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Wang H, Gong L, Huang X, White SD, Chung HT, Vesprini D, Petchiny TN, Fokas E, He H, Kerbel RS, Liu SK. Potentiating Salvage Radiotherapy in Radiorecurrent Prostate Cancer Through Anti-CTLA4 Therapy: Implications from a Syngeneic Model. Cancers (Basel) 2024; 16:2839. [PMID: 39199612 PMCID: PMC11352774 DOI: 10.3390/cancers16162839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
High-risk prostate cancer (PCa) is a leading cause in cancer death and can elicit significant morbidity and mortality. Currently, the salvage of local disease recurrence after radiation therapy (RT) is a major clinical problem. Immune checkpoint inhibitors (ICIs), which enhance immune activation, have demonstrated clinical therapeutic promise in combination with ionizing radiation (IR) in certain advanced cancers. We generated the TRAMP-C2 HF radiorecurrent syngeneic mouse model to evaluate the therapeutic efficacy of ICIs in combination with RT. The administration of anti-PDL1 and/or anti-CTLA4 did not achieve a significant tumor growth delay compared to the control. The combination of IR and anti-PDL1 did not yield additional a growth delay compared to IR and the isotype control. Strikingly, a significant tumor growth delay and complete cure in one-third of the mice were seen with the combination of IR and anti-CTLA4. Immune cells in tumor-draining lymph nodes and tumor-infiltrating lymphocytes from mice treated with IR and anti-CTLA4 demonstrated an upregulation of genes in T-cell functions and enrichment in both CD4+ and CD8+ T-cell populations compared to mice given IR and the isotype control. Taken together, these results indicate enhancement of T-cell response in radiorecurrent PCa by IR and anti-CTLA4.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Linsey Gong
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stephanie D. White
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Hans T. Chung
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Tera N. Petchiny
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emmanouil Fokas
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| |
Collapse
|
7
|
Liadi YM, Campbell T, Hwang BJ, Elliott B, Odero-Marah V. High Mobility Group AT-hook 2: A Biomarker Associated with Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2631. [PMID: 39123360 PMCID: PMC11311100 DOI: 10.3390/cancers16152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT). This study examines HMGA2's role in enzalutamide resistance. LNCaP and 22Rv1 cells overexpressing wild-type HMGA2, but not truncated HMGA2, showed EMT. Both variants led to a decreased sensitivity to enzalutamide but not alisertib compared to Neo control cells. The overexpression of HMGA2 did not alter AR expression. Enzalutamide-resistant C4-2B cells (C4-2B MDVR) had higher HMGA2 and AR/AR variant expression than enzalutamide-sensitive C4-2B cells but remained sensitive to alisertib. The HMGA2 knockdown in C4-2B MDVR cells increased sensitivity to both enzalutamide and alisertib without changing AR expression. A clinical analysis via cBioPortal revealed HMGA2 alterations in 3% and AR alterations in 59% of patients. The HMGA2 changes were linked to treatments like enzalutamide, abiraterone, or alisertib, with amplifications more prevalent in bone, lymph node, and liver metastases. Conclusively, HMGA2 is a potential biomarker for enzalutamide resistance in mPCa, independent of Snail and AR signaling, and alisertib may be an effective treatment for mPCa that expresses HMGA2.
Collapse
Affiliation(s)
- Yusuf Mansur Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
- Department of Biology, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| |
Collapse
|
8
|
Khokhar AA, Howles SA, Leiblich AW, Samdani K, Ahmed M. Mucinous Adenocarcinoma of the Prostate With Normal Prostate-Specific Antigen Levels, Pulmonary Metastasis, and the Absence of Nodal Disease: A Case Report. Cureus 2024; 16:e56563. [PMID: 38646307 PMCID: PMC11029818 DOI: 10.7759/cureus.56563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
A 74-year-old man was suffering from nine months of perineal pain and progressive worsening of urinary symptoms including nocturia and urgency. His prostate-specific antigen (PSA) levels were 1.48 ng/mL at the time of referral. Initially, a differential diagnosis of prostatitis or seminal vesicle inflammation was made, and four weeks of antibiotics were prescribed, which were later extended to six weeks due to failure of symptoms to resolve. Magnetic resonance imaging (MRI) of the prostate was then conducted. The impression was that there was ejaculatory duct obstruction caused by enlarged seminal vesicles with no evidence of significant prostate cancer. The prostate-specific antigen density (PSAd) was 0.04, and the prostate imaging reporting and data system (PIRADS) score was I-II. A CT chest with contrast was conducted for further investigation of pulmonary nodules found on the CT urogram. It revealed multiple calcified pulmonary nodules which were suspicious of malignancy. A CT-guided biopsy of one of the pulmonary nodules was taken, and histopathological analysis revealed a mucinous adenocarcinoma. A transurethral resection of the prostate (TURP) was then performed. Histopathological analysis of the prostatic surgical specimen revealed invasive mucinous adenocarcinoma. Based on the findings, a diagnosis of mucinous adenocarcinoma of the prostate with atypical lung metastasis without osseous or regional lymph node involvement was made, stage T4 N0 M1a. The patient is currently on a treatment regimen consisting of carboplatin, pemetrexed, and pembrolizumab.
Collapse
Affiliation(s)
- Arham A Khokhar
- Urology Department, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, GBR
| | - Sarah A Howles
- Urology Department, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, GBR
| | - Aaron W Leiblich
- Urology Department, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, GBR
| | - Khubaib Samdani
- Surgery Department, Benazir Bhutto Hospital, Rawalpindi, PAK
| | - Mubariz Ahmed
- Medicine Department, Isfandyar Bukhari District Hospital, Attock, PAK
| |
Collapse
|
9
|
Song X, Zheng M, Hu H, Chen L, Wang S, Ding Z, Fu G, Sun L, Zhao L, Zhang L, Xu B, Qiu Y. Pharmacokinetic Study of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles HY-088 in Rats. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00884-6. [PMID: 38393637 DOI: 10.1007/s13318-024-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND AND OBJECTIVE HY-088 injection is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIOs) composed of iron oxide crystals coated with polyacrylic acid (PAA) on the surface. The purpose of this study was to investigate the pharmacokinetics, tissue distribution, and mass balance of HY-088 injection. METHODS The pharmacokinetics of [55Fe]-HY-088 and [14C]-HY-088 were investigated in 48 SD rats by intravenous injection of 8.5 (low-dose group), 25.5 (medium-dose group), and 85 (high-dose group) mg/100 μCi/kg. Tissue distribution was studied by intravenous injection of 35 mg/100 μCi/kg in 48 SD rats, and its tissue distribution in vivo was obtained by ex vivo tissue assay. At the same time, [14C]-HY-088 was injected intravenously at a dose of 25.5 mg/100 μCi/kg into 16 SD rats, and its tissue distribution in vivo was studied by quantitative whole-body autoradiography. [14C]-HY-088 and [55Fe]-HY-088 were injected intravenously into 24 SD rats at a dose of 35 mg/100 μCi/kg, and their metabolism was observed. RESULTS In the pharmacokinetic study, [55Fe]-HY-088 reached the maximum observed concentration (Cmax) at 0.08 h in the low- and medium-dose groups of SD rats. [14C]-HY-088 reached Cmax at 0.08 h in the three groups of SD rats. The area under the concentration-time curve (AUC) of [55Fe]-HY-088 and [14C]-HY-088 increased with increasing dose. In the tissue distribution study, [55Fe]-HY-088 and [14C]-HY-088 were primarily distributed in the liver, spleen, and lymph nodes of both female and male rats. In the mass balance study conducted over 57 days, the radioactive content of 55Fe from [55Fe]-HY-088 was primarily found in the carcass, accounting for 86.42 ± 4.18% in females and 95.46 ± 6.42% in males. The radioactive recovery rates of [14C]-HY-088 in the urine of female and male rats were 52.99 ± 5.48% and 60.66 ± 2.23%, respectively. CONCLUSIONS Following single intravenous administration of [55Fe]-HY-088 and [14C]-HY-088 in SD rats, rapid absorption was observed. Both [55Fe]-HY-088 and [14C]-HY-088 were primarily distributed in the liver, spleen, and lymph nodes. During metabolism, the radioactivity of [55Fe]-HY-088 is mainly present in the carcass, whereas the 14C-labeled [14C]-HY-088 shell PAA is eliminated from the body mainly through the urine.
Collapse
Affiliation(s)
- Xin Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230013, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
- China Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Minglan Zheng
- Yangtze River Delta Center for Drug Evaluation and Inspection of NMPA, Shanghai, 201210, China
| | - Heping Hu
- Sichuan Huiyu Seacross Pharmaceutical,. Co. Ltd, Sichaun, 610021, China
| | - Lei Chen
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
| | - Shuzhe Wang
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
| | - Zhao Ding
- Sichuan Huiyu Seacross Pharmaceutical,. Co. Ltd, Sichaun, 610021, China
| | - Guangyi Fu
- Sichuan Huiyu Seacross Pharmaceutical,. Co. Ltd, Sichaun, 610021, China
| | - Luyao Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230013, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
- China Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Liyuan Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230013, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
- China Yangtze Delta Drug Advanced Research Institute, Nantong, 226133, China
| | - Ling Zhang
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China
| | - Bohua Xu
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, 226133, China.
| | - Yunliang Qiu
- China State Institute of Pharmaceutical Industry, Shanghai InnorStar Biotech Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
10
|
Sun J, Tian T, Wang N, Jing X, Qiu L, Cui H, Liu Z, Liu J, Yan L, Li D. Pretreatment level of serum sialic acid predicts both qualitative and quantitative bone metastases of prostate cancer. Front Endocrinol (Lausanne) 2024; 15:1338420. [PMID: 38384968 PMCID: PMC10880016 DOI: 10.3389/fendo.2024.1338420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Background Recently, serum sialic acid (SA) has emerged as a distinct prognostic marker for prostate cancer (PCa) and bone metastases, warranting differential treatment and prognosis for low-volume (LVD) and high-volume disease (HVD). In clinical settings, evaluating bone metastases can prove advantageous. Objectives We aimed to establish the correlation between SA and both bone metastasis and HVD in newly diagnosed PCa patients. Methods We conducted a retrospective analysis of 1202 patients who received a new diagnosis of PCa between November 2014 and February 2021. We compared pretreatment SA levels across multiple groups and investigated the associations between SA levels and the clinical parameters of patients. Additionally, we compared the differences between HVD and LVD. We utilized several statistical methods, including the non-parametric Mann-Whitney U test, Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression. Results The results indicate that SA may serve as a predictor of bone metastasis in patients with HVD. ROC curve analysis revealed a cut-off value of 56.15 mg/dL with an area under the curve of 0.767 (95% CI: 0.703-0.832, P < 0.001) for bone metastasis versus without bone metastasis and a cut-off value of 65.80 mg/dL with an area under the curve of 0.766 (95% CI: 0.644-0.888, P = 0.003) for HVD versus LVD. Notably, PCa patients with bone metastases exhibited significantly higher SA levels than those without bone metastases, and HVD patients had higher SA levels than LVD patients. In comparison to the non-metastatic and LVD cohorts, the cohort with HVD exhibited higher levels of alkaline phosphatase (AKP) (median, 122.00 U/L), fibrinogen (FIB) (median, 3.63 g/L), and prostate-specific antigen (PSA) (median, 215.70 ng/mL), as well as higher Gleason scores (> 7). Multivariate logistic regression analysis demonstrated that an SA level of > 56.15 mg/dL was independently associated with the presence of bone metastases in PCa patients (OR = 2.966, P = 0.018), while an SA level of > 65.80 mg/dL was independently associated with HVD (OR = 1.194, P = 0.048). Conclusion The pretreatment serum SA level is positively correlated with the presence of bone metastases.
Collapse
Affiliation(s)
- Jingtao Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Tian Tian
- Respiratory and Critical Care Medicine Department, Qilu Hospital of Shandong University, Jinan, China
| | - Naiqiang Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuehui Jing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, Yucheng People’s Hospital, Dezhou, China
| | - Laiyuan Qiu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haochen Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Mullen SA, Das D, Ziamiavaghi N, High R, Datta K, Teply BA. Association of plasma NRP2 and VEGF-C levels with prostate cancer disease severity. Prostate 2024; 84:277-284. [PMID: 37942701 PMCID: PMC10842186 DOI: 10.1002/pros.24648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Neuropilin 2 (NRP2) expression in tissue is an independent prognostic factor for aggressive prostate cancer. Since the NRP2 pathway activation is thought to occur in part through secondary resistance, quantification of NRP2 in initial tissue biopsy specimens collected at diagnosis may have limited utility in identifying patients at highest risk for morbidity and mortality. Given that metastatic tissue is only occasionally obtained for analysis, there is a need for development of a plasma biomarker indicative of NRP2 pathway activation to potentially inform prostate cancer prognosis. Therefore, we investigated if plasma levels of NRP2 or vascular endothelial growth factor C (VEGF-C), a known soluble ligand of NRP2, are prognostic for prostate cancer. We hypothesized that plasma NRP2 and VEGF-C would be associated with more advanced disease or relapsed disease. METHODS NRP2 and VEGF-C levels were quantified by enzyme-linked immunoassay in plasma samples obtained from 145 prostate cancer patients in an opportunistic biobank. These patients were either (1) newly diagnosed (N = 28), (2) in remission (N = 56), or (3) relapsed disease (N = 61). Plasma samples from 15 adult males without known malignancy served as a comparator cohort. Statistical analysis was performed to investigate the association of plasma NRP2/VEGF-C with patient outcomes, adjusting for age, race, prostate-specific antigen (PSA), Gleason score, and tumor stage at diagnosis. RESULTS Neither NRP2 nor VEGF-C levels were significantly different in cancer patients compared to noncancer controls. We observed no clear association between plasma NRP2 and disease severity. Increased plasma VEGF-C was significantly associated with disease remission and correlated with Stage I/II and intermediate-risk Gleason score. Neither NRP2 nor VEGF-C correlated with PSA level. CONCLUSIONS Although tissue NRP2 expression correlates with severe disease, this was not observed for plasma NRP2. Plasma NRP2 levels did not correlate with disease severity or relapse. VEGF-C was highest in patients in remission and with less severe disease. Future investigation is needed to identify noninvasive methods to assess tumor NRP2 status.
Collapse
Affiliation(s)
- Sarah A Mullen
- Department of Internal Medicine, Division of Hematology/Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dipanwita Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Negin Ziamiavaghi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Robin High
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin A Teply
- Department of Internal Medicine, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Taheri H, Ebrahimi P, Nazari P, Kefayat A, Mahdavian A. An unusual presentation of metastatic prostate cancer in a 44-year-old man: A case report and review of the literature. Clin Case Rep 2024; 12:e8447. [PMID: 38292222 PMCID: PMC10822781 DOI: 10.1002/ccr3.8447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Prostate cancer is one of the two most common non-cutaneous cancers in men. Its presentation might be with unusual symptoms and cause the wrong initial diagnosis. This case report discusses a rare neurologic manifestation of advanced metastatic cancer in a low-risk man. He had been receiving treatment for multiple sclerosis incorrectly due to unusual manifestations such as claudication and pelvic, leg, and shoulder pain. The patient underwent a whole-body bone scan and then a transrectal ultrasound-guided biopsy, which confirmed metastatic prostate cancer with a Gleason score between 7/10 and 10/10 in all samples. Following treatment with chemotherapeutic injections (docetaxel), luteinizing hormone-releasing hormone (LHRH) analogous (Zoladex), and testosterone-suppressing tablets (abiraterone), the disease has been under control and prostate-specific antigen (PSA) level has decreased significantly. The most common sites of metastasis are regional lymph nodes, bones, and lungs. However, there are reports about the spread of this type of cancer to other parts of the body. Although most patients are diagnosed when the tumor is localized to the prostate, in about 25% of patients, the disease is diagnosed when metastasis has occurred. Some markers can assist physicians in the diagnosis of this disease, such as the Prostate Health Index and the 4 K score. Key Clinical Message The diagnosis of prostate cancer should be considered in all age ranges of adult men. The long-distance metastasis might cause unusual presentations of the disease, such as neurologic, musculoskeletal, and dermatologic symptoms and signs far from the origin of the cancer, before genitourinary manifestations. It is crucial to keep the diagnosis of prostate cancer in mind for men with suggestive signs and symptoms that are not usually detected in this disease.
Collapse
Affiliation(s)
- Homa Taheri
- Cedars‐Sinai Cardiology DepartmentBeverly HillsCaliforniaUSA
| | - Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical SciencesAhvazIran
| | - Pedram Nazari
- Cancer Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | | - Abbas Mahdavian
- Urology DepartmentAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
13
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
14
|
Kim D, Lim B, Suh J, You D, Jeong IG, Hong JH, Ahn H. Clinical Significance of Radical Prostatectomy in Clinical Lymph Node Metastasis in Prostate Cancer. Ann Surg Oncol 2023; 30:7903-7909. [PMID: 37689608 DOI: 10.1245/s10434-023-14137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/26/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND This study aimed to investigate the role of radical prostatectomy (RP) among clinical nodal metastasis prostate cancer and whether histological confirmation of lymph node metastasis through surgery can help with treatment. PATIENTS AND METHODS After excluding patients with distant metastatic prostate cancer or neoadjuvant androgen deprivation therapy, 42 patients with clinical nodal metastasis who underwent RP at our institution were included in the study. We classified them as having or not having pathological lymph node metastasis. Clinicopathologic data were analyzed in this retrospective chart review. Kaplan-Meier analysis was used to calculate the estimated castration-resistant prostate cancer (CRPC)-free survival, biochemical recurrence (BCR)-free survival, and cancer-specific survival (CSS). RESULTS There is no significant difference in age, presence of diabetes mellitus, hypertension, BCR time, CRPC time, overall survival, salvage RT rate, and initial prostate-specific antigen level between the two groups. However, there is a significant difference in the pathology N1 group in terms of pathological T stage, pathologic Gleason score, BCR rate, CRPC rate, and CSS. A multivariate Cox proportional hazard regression analysis was used to identify predictors of CRPC-free survival. Patients with pathological lymph node metastasis had a shorter CRPC-free survival [hazard ratio (HR) 4.87; 95% confidence interval (CI) 1.25-19.00, p = 0.02]. CONCLUSION Radical prostatectomy can confirm lymph node metastasis. Although pathologic diagnosis has no effect on time to BCR and CPRC, because it affects BCR rate, CRPC rate, and CSS, an accurate pathological diagnosis obtained through surgery is beneficial in the treatment of clinical lymph node metastasis prostate cancer.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bumjin Lim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jungyo Suh
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Hyuk Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanjong Ahn
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int 2023; 23:247. [PMID: 37858151 PMCID: PMC10585889 DOI: 10.1186/s12935-023-03084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Prostate cancer (PCa) is a non-cutaneous malignancy in males with wide variation in incidence rates across the globe. It is the second most reported cause of cancer death. Its etiology may have been linked to genetic polymorphisms, which are not only dominating cause of malignancy casualties but also exerts significant effects on pharmacotherapy outcomes. Although many therapeutic options are available, but suitable candidates identified by useful biomarkers can exhibit maximum therapeutic efficacy. The single-nucleotide polymorphisms (SNPs) reported in androgen receptor signaling genes influence the effectiveness of androgen receptor pathway inhibitors and androgen deprivation therapy. Furthermore, SNPs located in genes involved in transport, drug metabolism, and efflux pumps also influence the efficacy of pharmacotherapy. Hence, SNPs biomarkers provide the basis for individualized pharmacotherapy. The pharmacotherapeutic options for PCa include hormonal therapy, chemotherapy (Docetaxel, Mitoxantrone, Cabazitaxel, and Estramustine, etc.), and radiotherapy. Here, we overview the impact of SNPs reported in various genes on the pharmacotherapy for PCa and evaluate current genetic biomarkers with an emphasis on early diagnosis and individualized treatment strategy in PCa.
Collapse
Affiliation(s)
- Khurram Rehman
- Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Deng Zhiqin
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Hina Ayub
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | - Naseem Saba
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | | | - Liang Yujie
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
16
|
Tirado-Garibay AC, Falcón-Ruiz EA, Ochoa-Zarzosa A, López-Meza JE. GPER: An Estrogen Receptor Key in Metastasis and Tumoral Microenvironments. Int J Mol Sci 2023; 24:14993. [PMID: 37834441 PMCID: PMC10573234 DOI: 10.3390/ijms241914993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogens and their role in cancer are well-studied, and some cancer types are classified in terms of their response to them. In recent years, a G protein-coupled estrogen receptor (GPER) has been described with relevance in cancer. GPER is a pleiotropic receptor with tissue-specific activity; in normal tissues, its activation is related to correct development and homeostasis, while in cancer cells, it can be pro- or anti-tumorigenic. Also, GPER replaces estrogen responsiveness in estrogen receptor alpha (ERα)-lacking cancer cell lines. One of the most outstanding activities of GPER is its role in epithelial-mesenchymal transition (EMT), which is relevant for metastasis development. In addition, the presence of this receptor in tumor microenvironment cells contributes to the phenotypic plasticity required for the dissemination and maintenance of tumors. These characteristics suggest that GPER could be a promising therapeutic target for regulating cancer development. This review focuses on the role of GPER in EMT in tumorigenic and associated cells, highlighting its role in relation to the main hallmarks of cancer and possible therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología—FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, Mexico; (A.C.T.-G.); (E.A.F.-R.); (A.O.-Z.)
| |
Collapse
|
17
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
18
|
Williams NR. Analysis of Clinical Trials and Review of Recent Advances in Therapy Decisions for Locally Advanced Prostate Cancer. J Pers Med 2023; 13:938. [PMID: 37373928 DOI: 10.3390/jpm13060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the implementation of screening and early detection in many countries, the prostate cancer mortality rate remains high, particularly when the cancer is locally advanced. Targeted therapies with high efficacy and minimal harms should be particularly beneficial in this group, and several new approaches show promise. This article briefly analyses relevant clinical studies listed on ClinicalTrials.gov, combined with a short literature review that considers new therapeutic approaches that can be investigated in future clinical trials. Therapies using gold nanoparticles are of special interest in low-resource settings as they can localize and enhance the cancer-cell killing potential of X-rays using equipment that is already widely available.
Collapse
Affiliation(s)
- Norman R Williams
- UCL Division of Surgery & Interventional Science, 3rd Floor, Charles Bell House, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
19
|
Di Donato M, Giovannelli P, Migliaccio A, Castoria G. The nerve growth factor-delivered signals in prostate cancer and its associated microenvironment: when the dialogue replaces the monologue. Cell Biosci 2023; 13:60. [PMID: 36941697 PMCID: PMC10029315 DOI: 10.1186/s13578-023-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
20
|
Saule L, Radzina M, Liepa M, Roznere L, Lioznovs A, Ratniece M, Mamis E, Vjaters E. Recurrent Prostate Cancer Diagnostics with 18F-PSMA-1007 PET/CT: A Systematic Review of the Current State. Diagnostics (Basel) 2022; 12:diagnostics12123176. [PMID: 36553183 PMCID: PMC9777208 DOI: 10.3390/diagnostics12123176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early diagnosis of recurrent prostate cancer is a cornerstone for further adequate therapy planning. Therefore, clinical practice and research still focuses on diagnostic tools that can detect prostate cancer in early recurrence when it is undetectable in conventional diagnostic imaging. 18F-PSMA-1007 PET/CT is a novel method to evaluate patients with biochemical recurrent PCa. The aim of this review was to evaluate the role of 18F-PSMA-1007 PET/CT in prostate cancer local recurrence, lymph node metastases and bone metastases detection. METHODS Original studies, reviews and five meta-analyses were included in this article. A total of 70 studies were retrieved, 31 were included in the study. RESULTS All patients described in the studies underwent 18F-PSMA-1007 PET/CT. The administered 18F-PSMA-1007 individual dose ranged from 159 ± 31 MBq to 363.93 ± 69.40 MBq. Results showed that 18F-PSMA-1007 PET/CT demonstrates a good detection rate in recurrent prostate cancer. CONCLUSIONS 18F-PSMA-1007 PET/CT appears to achieve reliable performance in detecting recurrent prostate cancer. The high detection rate of 18F-PSMA-1007 PET/CT in recurrent prostate cancer was confirmed, especially in local recurrence and small lymph nodes with non-specific characteristics on conventional diagnostic imaging methods. However, several authors emphasize some limitations for this tracer-for example, non-specific uptake in bone lesions that can mimic bone metastases.
Collapse
Affiliation(s)
- Laura Saule
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Correspondence: ; Tel.: +371-26131556
| | - Maija Radzina
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Mara Liepa
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Lilita Roznere
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Lioznovs
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Madara Ratniece
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Edgars Mamis
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Egils Vjaters
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Center of Urology, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
21
|
Zhang H, Du Y, Xin P, Man X. The LINC00852/miR-29a-3p/JARID2 axis regulates the proliferation and invasion of prostate cancer cell. BMC Cancer 2022; 22:1269. [PMID: 36471281 PMCID: PMC9724404 DOI: 10.1186/s12885-022-10263-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Long intergenic non-coding RNA 00852 (LINC00852) has been shown to promote the progression of many different cancers including prostate cancer. However, the involved mechanism in promoting the proliferation, migration and invasion of prostate cancer cells has not been reported. In this study, we found that LINC00852 was highly expressed in the tissue of prostate cancer using quantitative reverse transcription PCR (qRT-PCR). CCK-8 assay, colony formation experiment, Transwell migration and invasion experiments were performed to prove that the up-regulation of LINC00852 could promote the proliferation, migration and invasion of prostate cancer cells in vitro. Xenograft tumors experiments in nude mice confirmed that up-regulation of LINC00852 promoted the proliferation of prostate cancer cells in vivo. Bioinformatics predictions and dual-luciferase reporter gene assay showed that miR-29a-3p binds to the 3'-untranslated region of JARID2, and the enhancement of miR-29a-3p could reverse the effect of LINC00852 overexpression in vitro. Moreover, the results of qRT-PCR and western blot showed that LINC00852 could regulate the expression of JARID2 through miR-29a-3p induction. In summary, we demonstrated that LINC00852 played a key role in promoting the prostate cancer, and LINC00852/miR-29a-3p/JARID2 axis could be used as a target for prostate cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884Institute of Urology, China Medical University, Liaoning Shenyang, China
| | - Yang Du
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| | - Peng Xin
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| | - Xiaojun Man
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, 155 North Nanjing Street, 110001 Shenyang, Liaoning China
| |
Collapse
|
22
|
Unusual Metastatic Prostate Cancer in Subcarinal Lymph Node and Peritoneal Nodule Found on 18F-PSMA PET/CT With Rising PSA of 0.4 ng/mL. Clin Nucl Med 2022; 47:989-990. [PMID: 35619200 DOI: 10.1097/rlu.0000000000004294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT A 79-year-old man with metastatic prostate cancer underwent radical prostatectomy and bilateral lymph node dissection and received multiple lines of systematic treatment for his biopsy-proven peritoneal carcinomatosis. During the disease course, his prostate-specific antigen rose from 0.1 ng/mL to 0.4 ng/mL in 4 months, and testosterone level was <3 ng/dL. Workup 18F-DCFPyL PET/CT showed unusual prostate-specific membrane antigen-avid, 1.1-cm subcarinal lymph node and a 0.8-cm peritoneal nodule, which were not hypermetabolic on an 18F-FDG PET/CT 6 days later. This case illustrated the sensitivity for 18F-DCFPyL PET/CT in detecting metastatic castration-resistant prostate cancer.
Collapse
|
23
|
Poteska R, Rahbar K, Semjonow A, Schrader AJ, Boegemann M, Schlack K. The prognostic potential of alkaline phosphatase and lactic acid dehydrogenase in bmCRPC patients without significant PSA response under enzalutamide. BMC Cancer 2022; 22:375. [PMID: 35395766 PMCID: PMC8994227 DOI: 10.1186/s12885-022-09483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background In patients with bone metastatic castration-resistant prostate cancer (bmCRPC) on systemic treatment, it is difficult to differentiate between continuous rise of prostate specific antigen (PSA) representing progression, and PSA-surge, which is followed by clinical response or stable disease. The purpose of this study was to evaluate the prognostic value of dynamic changes of alkaline phosphatase (ALP) and lactic acid dehydrogenase (LDH) levels as a predictor of clinical efficacy or therapeutic resistance of patients who do not show a sufficient initial PSA decline of ≥50% from baseline during early therapy with Enzalutamide. Methods Forty-eight men with bmCRPC on Enzalutamide 07/2010-09/2019 with initially rising PSA were analyzed. We monitored PSA, LDH and ALP at week 0, 2, 4, and every 4 weeks thereafter and analyzed the correlation between ALP rising at 12 weeks with or without LDH-normalization and the association with survival. For this we used Kaplan Meier analysis and uni- and multivariate cox-regression models. Results In Kaplan-Meier analysis, ALP rising at 12 weeks with or without LDH-normalization was associated with significantly worse median progression-free survival (PFS) of 3 months vs. 5 months (Log rank P = 0.02) and 3 months vs. 5 months (P = 0.01), respectively and overall survival (OS) with 8 months vs. 15 months (P = 0.02) and 8 months vs. 17 months (P < 0.01). In univariate analysis of PFS, ALP rising at 12 weeks alone, ALP rising at 12 weeks without LDH-normalization and application of Enzalutamide after chemotherapy showed a statistically significant association towards shorter PFS (hazard ratio (HR): 0.51, P = 0.04; HR: 0.48, P = 0.03; HR: 0.48, P = 0.03). Worse OS was significantly associated with ALP rising at 12 weeks alone, ALP rising at 12 weeks without LDH-normalization, and application of Enzalutamide after chemotherapy (HR: 0.47, P = 0.02; HR: 0.36, P < 0.01; HR: 0.31, P < 0.01). In multivariate analysis only the application of Enzalutamide after chemotherapy remained an independent prognostic factor for worse OS (HR: 0.36, P = 0.01). Conclusions Dynamic changes of ALP (non-rise) and LDH (normalization) under therapy with Enzalutamide may be associated with clinical benefit, better PFS, and OS in patients with bmCRPC who do not show a PSA decline.
Collapse
Affiliation(s)
- Renata Poteska
- Department of Urology, University Hospital Muenster, Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Münster, Germany.,University Hospital Muenster, Westdeutsches Tumorzentrum, Münster, Germany
| | - Axel Semjonow
- Department of Urology, University Hospital Muenster, Münster, Germany.,University Hospital Muenster, Westdeutsches Tumorzentrum, Münster, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, Münster, Germany.,University Hospital Muenster, Westdeutsches Tumorzentrum, Münster, Germany
| | - Martin Boegemann
- Department of Urology, University Hospital Muenster, Münster, Germany.,University Hospital Muenster, Westdeutsches Tumorzentrum, Münster, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Muenster, Münster, Germany. .,University Hospital Muenster, Westdeutsches Tumorzentrum, Münster, Germany. .,Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, GB A1, D-48149, Muenster, Germany.
| |
Collapse
|
24
|
Li T, Liu T, Zhao Z, Xu X, Zhan S, Zhou S, Jiang N, Zhu W, Sun R, Wei F, Feng B, Guo H, Yang R. The Lymph Node Microenvironment May Invigorate Cancer Cells With Enhanced Metastatic Capacities. Front Oncol 2022; 12:816506. [PMID: 35295999 PMCID: PMC8918682 DOI: 10.3389/fonc.2022.816506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metastasis, a typical malignant biological behavior involving the distant migration of tumor cells from the primary site to other organs, contributed majorly to cancer-related deaths of patients. Although constant efforts have been paid by researchers to elucidate the mechanisms of cancer metastasis, we are still far away from the definite answer. Recently, emerging evidence demonstrated that cancer metastasis is a continuous coevolutionary process mediated by the interactions between tumor cells and the host organ microenvironment, and epigenetic reprogramming of metastatic cancer cells may confer them with stronger metastatic capacities. The lymph node served as the first metastatic niche for many types of cancer, and the appearance of lymph node metastasis predicted poor prognosis. Importantly, multiple immune cells and stromal cells station and linger in the lymph nodes, which constitutes the complexity of the lymph node microenvironment. The active cross talk between cancer cells and immune cells could happen unceasingly within the metastatic environment of lymph nodes. Of note, diverse immune cells have been found to participate in the formation of malignant properties of tumor, including stemness and immune escape. Based on these available evidence and data, we hypothesize that the metastatic microenvironment of lymph nodes could drive cancer cells to metastasize to further organs through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ning Jiang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Sun
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fayun Wei
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baofu Feng
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
26
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
27
|
Pham XH, Park SM, Ham KM, Kyeong S, Son BS, Kim J, Hahm E, Kim YH, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun BH. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. Int J Mol Sci 2021; 22:10116. [PMID: 34576279 PMCID: PMC8468474 DOI: 10.3390/ijms221810116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications. Silica-coating is one of the most effective methods for overcoming the disadvantages of QDs, owing to silica's physicochemical stability, nontoxicity, and excellent bioavailability. This review highlights recent progress in the design, preparation, and application of silica-coated QDs and presents an overview of the major challenges and prospects of their application.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seung-Min Park
- Department of Urology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - San Kyeong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 03080, Korea;
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (X.-H.P.); (K.-M.H.); (B.S.S.); (J.K.); (E.H.); (Y.-H.K.); (S.B.); (W.K.); (S.J.)
| |
Collapse
|
28
|
Phosphoproteomics Identifies Significant Biomarkers Associated with the Proliferation and Metastasis of Prostate Cancer. Toxins (Basel) 2021; 13:toxins13080554. [PMID: 34437425 PMCID: PMC8402417 DOI: 10.3390/toxins13080554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The spider peptide toxins HNTX-III and JZTX-I are a specific inhibitor and activator of TTX-S VGSCs, respectively. They play important roles in regulating MAT-LyLu cell metastasis in prostate cancer. In order to identify key biomarkers involved in the regulation of MAT-LyLu cell metastasis, iTRAQ-based quantitative phosphoproteomics analysis was performed on cells treated with HNTX-III, JZTX-I and blank. A total of 554 unique phosphorylated proteins and 1779 distinct phosphorylated proteins were identified, while 55 and 36 phosphorylated proteins were identified as differentially expressed proteins in HNTX-III and JZTX-I treated groups compared with control groups. Multiple bioinformatics analysis based on quantitative phosphoproteomics data suggested that the differentially expressed phosphorylated proteins and peptides were significantly associated with the migration and invasion of prostate tumors. Specifically, the toxins HNTX-III and JZTX-I have opposite effects on tumor formation and metastasis by regulating the expression and phosphorylation level of causal proteins. Herein, we highlighted three key proteins EEF2, U2AF2 and FLNC which were down-regulated in HNTX-III treated cells and up-regulated in JZTX-I treated cells. They played significant roles in cancer related physiological and pathological processes. The differentially expressed phosphorylated proteins identified in this study may serve as potential biomarkers for precision medicine for prostate cancer in the near future.
Collapse
|
29
|
Xu X, Man L. Papain Mediated Synthesized Gold Nanoparticles Encore the Potency of Bioconjugated Flutamide. Curr Pharm Biotechnol 2021; 22:557-568. [PMID: 32106799 DOI: 10.2174/1389201021666200227121144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer is the second most common cause of male cancer death after lung cancer in the US. Therefore, there is an urgent need for a highly effective therapeutic drug at substantially low doses. OBJECTIVE Anti-androgen drug flutamide was delivered to the prostate cancer cells using Papain Mediated Synthesized Gold Nanoparticles (PGNPs) as the drug delivery system. PGNPs and flutamide worked synergistically against cancer cells. METHODS Flutamide was used to bioconjugate with PGNPs to improve its efficacy against prostate cancer. The synthesis and bioconjugation of flutamide with PGNPs (F-PGNPs) were characterized by various characterization techniques such as UV-vis spectroscopy, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and zeta potential to ensure the synthesis, size, shape, size distribution, and stability. The drug loading efficiency of flutamide in F-PGNPs was confirmed and validated by UV-vis spectroscopy. Eventually, in vitro studies were performed to determine the potency of F-PGNPs, changes in nuclear morphology, and generation of Reactive Oxygen Species (ROS). RESULTS The efficacy of F-PGNPs (IC50 is 46.54 μg/mL) was found to be improved significantly over pure flutamide (IC50 is 64.63 μg/mL) against human prostate cancer PC-3 cell line whereas F-PGNPs did not show any significant toxicity up to a fairly high concentration toward normal mouse macrophage J774A.1 cells. The apoptotic effects and ROS generation of F-PGNPs were analyzed by increased permeability of the cell membrane and condensed chromatin with deep blue and green fluorescent nucleus, respectively. DISCUSSION The results clearly showed that F-PGNPs significantly improved the potency of flutamide by delivering it directly into the nucleus of cancer cells through caveolae-dependent endocytosis. CONCLUSION Thus, the greater inhibitory effect of F-PGNPs over the pure drug would be of great advantage during prostate cancer treatment.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Urology, Beijing Jishuitan Beijing, 100096, China
| | - Libo Man
- Department of Urology, Beijing Jishuitan Beijing, 100096, China
| |
Collapse
|
30
|
Akoto T, Saini S. Role of Exosomes in Prostate Cancer Metastasis. Int J Mol Sci 2021; 22:3528. [PMID: 33805398 PMCID: PMC8036381 DOI: 10.3390/ijms22073528] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
31
|
Carrasquilla M, Creswell ML, Pepin AN, Wang E, Forsthoefel M, McGunigal M, Bullock E, Lei S, Collins BT, Lischalk JW, Esposito G, Aghdam N, Kumar D, Suy S, Leger P, Hankins RA, Dawson NA, Collins SP. Rationale for Involved Field Stereotactic Body Radiation Therapy-Enhanced Intermittent Androgen Deprivation Therapy in Hormone-Sensitive Nodal Oligo-Recurrent Prostate Cancer Following Prostate Stereotactic Body Radiation Therapy. Front Oncol 2021; 10:606260. [PMID: 33537236 PMCID: PMC7848164 DOI: 10.3389/fonc.2020.606260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Lymph node recurrent prostate cancer is a common clinical scenario that is likely to increase significantly with the widespread adoption of novel positron emission tomography (PET) agents. Despite increasing evidence that localized therapy is disease modifying, most men with lymph node recurrent prostate cancer receive only systemic therapy with androgen deprivation therapy (ADT). For men who receive localized therapy the intent is often to delay receipt of systemic therapy. Little evidence exists on the optimal combination of local and systemic therapy in this patient population. In this hypothesis generating review, we will outline the rationale and propose a framework for combining involved field SBRT with risk adapted intermittent ADT for hormone sensitive nodal recurrent prostate cancer. In patients with a limited number of nodal metastases, involved field stereotactic body radiation therapy (SBRT) may have a role in eliminating castrate-resistant clones and possibly prolonging the response to intermittent ADT. We hypothesize that in a small percentage of patients, such a treatment approach may lead to long term remission or cure.
Collapse
Affiliation(s)
- Michael Carrasquilla
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | | | - Abigail N. Pepin
- George Washington University School of Medicine, Washington, DC, United States
| | - Edina Wang
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Matthew Forsthoefel
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Mary McGunigal
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Elizabeth Bullock
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Siyuan Lei
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Brian T. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Jonathan W. Lischalk
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Giuseppe Esposito
- Department of Nuclear Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Nima Aghdam
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Deepak Kumar
- Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Paul Leger
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Ryan A. Hankins
- Department of Urology, Georgetown University Hospital, Washington, DC, United States
| | - Nancy A. Dawson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Sean P. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| |
Collapse
|
32
|
Selig K, Shaw P, Ankerst D. Bayesian information criterion approximations to Bayes factors for univariate and multivariate logistic regression models. Int J Biostat 2020; 17:241-266. [PMID: 33119543 DOI: 10.1515/ijb-2020-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/08/2020] [Indexed: 11/15/2022]
Abstract
Schwarz's criterion, also known as the Bayesian Information Criterion or BIC, is commonly used for model selection in logistic regression due to its simple intuitive formula. For tests of nested hypotheses in independent and identically distributed data as well as in Normal linear regression, previous results have motivated use of Schwarz's criterion by its consistent approximation to the Bayes factor (BF), defined as the ratio of posterior to prior model odds. Furthermore, under construction of an intuitive unit-information prior for the parameters of interest to test for inclusion in the nested models, previous results have shown that Schwarz's criterion approximates the BF to higher order in the neighborhood of the simpler nested model. This paper extends these results to univariate and multivariate logistic regression, providing approximations to the BF for arbitrary prior distributions and definitions of the unit-information prior corresponding to Schwarz's approximation. Simulations show accuracies of the approximations for small samples sizes as well as comparisons to conclusions from frequentist testing. We present an application in prostate cancer, the motivating setting for our work, which illustrates the approximation for large data sets in a practical example.
Collapse
Affiliation(s)
- Katharina Selig
- Department of Mathematics, Technical University of Munich, Munchen, Germany
| | - Pamela Shaw
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donna Ankerst
- Department of Mathematics, Technical University of Munich, Munchen, Germany
| |
Collapse
|
33
|
Rho MJ, Park J, Moon HW, Lee C, Nam S, Kim D, Kim CS, Jeon SS, Kang M, Lee JY. Dr. Answer AI for prostate cancer: Clinical outcome prediction model and service. PLoS One 2020; 15:e0236553. [PMID: 32756597 PMCID: PMC7406030 DOI: 10.1371/journal.pone.0236553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives The importance of clinical outcome prediction models using artificial intelligence (AI) is being emphasized owing to the increasing necessity of developing a clinical decision support system (CDSS) employing AI. Therefore, in this study, we proposed a “Dr. Answer” AI software based on the clinical outcome prediction model for prostate cancer treated with radical prostatectomy. Methods The Dr. Answer AI was developed based on a clinical outcome prediction model, with a user-friendly interface. We used 7,128 clinical data of prostate cancer treated with radical prostatectomy from three hospitals. An outcome prediction model was developed to calculate the probability of occurrence of 1) tumor, node, and metastasis (TNM) staging, 2) extracapsular extension, 3) seminal vesicle invasion, and 4) lymph node metastasis. Random forest and k-nearest neighbors algorithms were used, and the proposed system was compared with previous algorithms. Results Random forest exhibited good performance for TNM staging (recall value: 76.98%), while k-nearest neighbors exhibited good performance for extracapsular extension, seminal vesicle invasion, and lymph node metastasis (80.24%, 98.67%, and 95.45%, respectively). The Dr. Answer AI software consisted of three primary service structures: 1) patient information, 2) clinical outcome prediction, and outcomes according to the National Comprehensive Cancer Network guideline. Conclusion The proposed clinical outcome prediction model could function as an effective CDSS, supporting the decisions of the physicians, while enabling the patients to understand their treatment outcomes. The Dr. Answer AI software for prostate cancer helps the doctors to explain the treatment outcomes to the patients, allowing the patients to be more confident about their treatment plans.
Collapse
Affiliation(s)
- Mi Jung Rho
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihwan Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyong Woo Moon
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Sejin Nam
- LifeSemantics, Seoul, Republic of Korea
| | | | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
35
|
Merhe A, Labban M, Hout M, Bustros G, Abou Heidar N, El-Asmar JM, Bulbul M, El Hajj A. Development of a novel nomogram incorporating platelet-to-lymphocyte ratio for the prediction of lymph node involvement in prostate carcinoma. Urol Oncol 2020; 38:930.e1-930.e6. [PMID: 32736935 DOI: 10.1016/j.urolonc.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The available nomograms used to predict lymph node involvement (LNI) are not comprehensive. We sought to derive a novel nomogram incorporating the platelet to lymphocyte ratio (PLR) to predict LNI and compare its performance to validated preoperative risk nomograms in a cohort of men undergoing robotic-assisted radical prostatectomy at our institution. METHODS Our electronic health record was queried for patients who underwent robotic-assisted radical prostatectomy with bilateral pelvic lymphadenectomy between 2013 and 2019. A bootstrapped multivariate logistic regression model was constructed for the predictors of LNI while adjusting for other covariates. Then, we used the derived logistic regression formula to estimate each patient's risk (%) for LNI. Individualized risks were also calculated using the following verified nomograms: Briganti-2012, Cagiannos, Godoy, and Memorial Sloan Kettering Cancer Center. Subsequently, we plotted the risks for our nomogram and the 4 verified nomograms into receiver operating characteristics curves. We reported the area under the curve (AUC) for each of the 5 nomograms and the corresponding 95% confidence interval (CI). RESULTS The cohort included 173 patients, of which 13.9% demonstrated LNI. LNI was associated with higher preoperative prostate-specific antigen (PSA) ≥ 10 [odds ratio [OR] = 4.89; 95% confidence interval [CI] (1.42-16.83)], higher grade (WHO group ≥ 3)[19.21; (2.23-195.25)], and higher percentage of positive biopsy cores (≥60%) [3.38, (1.04-11.00)]. With every 30-unit increase in PLR the risk of LNI increased by 47%. The nomogram derived from our data had the highest AUC [(AUC 0.877; 95% CI (0.806-0.947)]. The Memorial Sloan Kettering Cancer Center and Briganti 2012 displayed almost congruent ability [0.836; 95% CI (0.758-0.915)] and [0.827; (0.752-0.902)] to identify patients with positive nodes in our cohort with perfect sensitivity and negative predictive value. CONCLUSION The nomogram incorporating PLR demonstrated 94.7% sensitivity to predict LNI and avoided pelvic lymphadenectomy in half of the patients at a cut-off between 6.5% and 8.5%. A prospective study with a larger sample is needed to validate our findings.
Collapse
Affiliation(s)
- Ali Merhe
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Muhieddine Labban
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Mohammad Hout
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Gerges Bustros
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Nassib Abou Heidar
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Jose M El-Asmar
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon
| | - Albert El Hajj
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
36
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
37
|
Kamel MG, Istanbuly S, Abd-Elhay FAE, Mohamed MYF, Huu-Hoai L, Sadik M, Dibas M, Huy NT. Examined and Positive Lymph Node Counts Are Associated with Mortality in Prostate Cancer: A Population-Based Analysis. Urol Int 2020; 104:699-709. [PMID: 32268338 DOI: 10.1159/000505410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the third leading cause of death from cancer in the United States. We aimed to disclose the prognostic values of examined (dissected) lymph node (ELN), negative lymph node (NLN), and positive (metastatic) lymph node (PLN) counts and lymph node (LNs) ratio in PCa patients. METHODS We extracted data of PCa patients diagnosed between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) program. We included patients with a histologically confirmed diagnosis having at least one ELN and with the PCa as the primary tumor only. RESULTS We have included 96,064 patients. Multivariable Cox proportional hazards regression modelsdisclosed that patients having more ELNs were associated with better survival. However, we demonstrated that patients having more PLNs were associated with worse survival. Additionally, older age, unmarried patients, with Gleason's score of 8-10, T4 and M1 stages and those who received chemotherapy and/or radiation but did not receive surgery were significantly associated with worse PCa survival. CONCLUSIONS We have disclosed several independent predictors affecting PCa patients including age, marital status, Gleason's score, T and N stages, having received therapy, surgery, and ELN and PLN counts. Moreover, we demonstrated that patients with lower ELN and higher PLN counts were a high-risk group. We strongly recommend adding the ELN and/or PLN counts into consideration during patient staging/treatment.
Collapse
Affiliation(s)
- Mohamed Gomaa Kamel
- Faculty of Medicine, Minia University, Minia, Egypt.,Online Research Club, Nagasaki, Japan
| | - Sedralmontaha Istanbuly
- Online Research Club, Nagasaki, Japan.,Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
| | | | | | - Le Huu-Hoai
- Online Research Club, Nagasaki, Japan.,Saigon General Hospital, Ho Chi Minh, Vietnam
| | - Mohamed Sadik
- Online Research Club, Nagasaki, Japan.,Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Dibas
- Online Research Club, Nagasaki, Japan.,Sulaiman Al Rajhi Colleges, Al Bukayriya, Saudi Arabia
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan, .,Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh, Vietnam,
| |
Collapse
|
38
|
Xu N, Chen SH, Lin TT, Cai H, Ke ZB, Dong RN, Huang P, Li XD, Chen YH, Zheng QS. Development and validation of hub genes for lymph node metastasis in patients with prostate cancer. J Cell Mol Med 2020; 24:4402-4414. [PMID: 32130760 PMCID: PMC7176841 DOI: 10.1111/jcmm.15098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 12/24/2022] Open
Abstract
Lymph node metastasis is one of the most important independent risk factors that can negatively affect the prognosis of prostate cancer (PCa); however, the exact mechanisms have not been well studied. This study aims to better understand the underlying mechanism of lymph node metastasis in PCa by bioinformatics analysis. We analysed a total of 367 PCa cases from the cancer genome atlas database and performed weighted gene co-expression network analysis to explore some modules related to lymph node metastasis. Gene Ontology analysis and pathway enrichment analysis were conducted for functional annotation, and a protein-protein interaction network was built. Samples from the International Cancer Genomics Consortium database were used as a validation set. The turquoise module showed the most relevance with lymph node metastasis. Functional annotation showed that biological processes and pathways were mainly related to activation of the processes of cell cycle and mitosis. Four hub genes were selected: CKAP2L, CDCA8, ERCC6L and ARPC1A. Further validation showed that the four hub genes well-distinguished tumour and normal tissues, and they were good biomarkers for lymph node metastasis of PCa. In conclusion, the identified hub genes facilitate our knowledge of the underlying molecular mechanism for lymph node metastasis of PCa.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting-Ting Lin
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hai Cai
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Nan Dong
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Peng Huang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dong Li
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ye-Hui Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev 2020; 38:333-346. [PMID: 31659564 DOI: 10.1007/s10555-019-09815-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prostate-specific antigen (PSA) blood test is the accepted biomarker of tumor recurrence. PSA levels in serum correlate with disease progression, though its diagnostic accuracy is questionable. As a result, significant progress has been made in developing modified PSA tests such as PSA velocity, PSA density, 4Kscore, PSA glycoprofiling, Prostate Health Index, and the STHLM3 test. PSA, a serine protease, is secreted from the epithelial cells of the prostate. PSA has been suggested as a molecular target for prostate cancer therapy due to the fact that it is not only active in prostate tissue but also has a pivotal role on prostate cancer signaling pathways including proliferation, invasion, metastasis, angiogenesis, apoptosis, immune response, and tumor microenvironment regulation. Here, we summarize the current standing of PSA in prostate cancer progression as well as its utility in prostate cancer therapeutic approaches with an emphasis on the role of PSA in the tumor microenvironment.
Collapse
Affiliation(s)
- Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
40
|
Murray JR, Roach Iii M. Role of Para-aortic Radiotherapy in the Management of Prostate Cancer. Clin Oncol (R Coll Radiol) 2020; 32:189-198. [PMID: 31980365 DOI: 10.1016/j.clon.2019.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Recent studies assessing the patterns of failure following locoregional definitive therapy suggest that recurrences do happen in the adjacent most proximal drainage sites, not infrequently occurring within the common iliac and para-aortic regions. This pattern of recurrence and identification at initial presentation is being increasingly recognised using novel imaging techniques and there is limited evidence on how to manage these patients. We are awaiting definitive evidence regarding the clinical benefit of whole pelvic radiotherapy, and currently there is no consensus as to the optimal superior border. There is some acknowledgement that the superior border should encompass the common iliac nodal region. However, whether it should be extended even more proximally is currently unknown. Prospective randomised trials are required to determine if there is a role for extending the radiotherapy field in patients with or at high risk of para-aortic metastases.
Collapse
Affiliation(s)
- J R Murray
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK.
| | - M Roach Iii
- University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
41
|
Wang Y, Huang J, Chen W, Wang R, Kao M, Pan Y, Chan S, Tsai K, Kung H, Lin K, Wang L. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep 2019; 20:e45986. [PMID: 31468690 PMCID: PMC6776913 DOI: 10.15252/embr.201845986] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2 S), an endogenous signaling gaseous molecule, is involved in various physiological activities, including vessel relaxation, regulation of cellular bioenergetics, inflammation, and angiogenesis. By using xenograft orthotopic implantation of prostate cancer PC3 cells and subsequently comparing bone metastatic with primary tumor-derived cancer cells, we find that H2 S-producing enzyme cystathionine γ-lyase (CTH) is upregulated in bone-metastatic PC3 cells. Clinical data further reveal that the expression of CTH is elevated in late-stage prostate cancer patients, and higher CTH expression correlates with poor survival from The Cancer Genome Atlas (TCGA) prostate cancer RNA-seq datasets. CTH promotes NF-κB nuclear translocation through H2 S-mediated sulfhydration on cysteine-38 of the NF-κB p65 subunit, resulting in increased IL-1β expression and H2 S-induced cell invasion. Knockdown of CTH in PC3 cells results in the suppression of tumor growth and distant metastasis, while overexpression of CTH in DU145 cells promotes primary tumor growth and lymph node metastasis in the orthotopic implanted xenograft mouse model. Together, our findings provide evidence that CTH generated H2 S promotes prostate cancer progression and metastasis through IL-1β/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yi‐Hsiang Wang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
- Institute of Molecular MedicineCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Jo‐Ting Huang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
| | - Wen‐Ling Chen
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
| | - Rong‐Hsuan Wang
- Institute of BiotechnologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Ming‐Chien Kao
- Institute of BiotechnologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Yan‐Ru Pan
- Institute of BiotechnologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Shih‐Hsuan Chan
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
- Institute of Molecular MedicineCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
- Chiese Medicine Research CenterInstitute of Integrated MedicineChina Medical UniversityTaichung CityTaiwan
| | - Kuo‐Wang Tsai
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of Chemical BiologyNational Pingtung University of EducationPingtungTaiwan
| | - Hsing‐Jien Kung
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
- PhD Program for Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| | - Kai‐Ti Lin
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
- Institute of BiotechnologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Lu‐Hai Wang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanMiaoli CountyTaiwan
- Chiese Medicine Research CenterInstitute of Integrated MedicineChina Medical UniversityTaichung CityTaiwan
| |
Collapse
|
42
|
PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene 2019; 38:4215-4231. [PMID: 30705401 PMCID: PMC6756056 DOI: 10.1038/s41388-019-0722-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer disseminates primarily into the adjacent lymph nodes, which is related to a poor outcome. Atypical protein kinase C ζ (PKCζ) is highly expressed in aggressive prostate cancer and correlates with Gleason score, clinical stage, and poor prognosis. Here, we report the molecular mechanisms of PKCζ in lymphatic metastasis during prostate cancer progression. Using zinc-finger nuclease technology or PKCζ shRNA lentiviral particles, and orthotopic mouse xenografts, we show that PKCζ-knockout or knockdown from aggressive prostate cancer (PC3 and PC3U) cells, decreasesd tumor growth and lymphatic metastasis in vivo. Intriguingly, PKCζ-knockout or knockdown impaired the activation of AKT, ERK, and NF-κB signaling in prostate cancer cells, thereby impairing the expression of lymphangiogenic factors and macrophage recruitment, resulting in aberrant lymphangiogenesis. Moreover, PKCζ regulated the expression of hyaluronan synthase enzymes, which is important for hyaluronan-mediated lymphatic drainage and tumor dissemination. Thus, PKCζ plays a crucial oncogenic role in the lymphatic metastasis of prostate cancer and is predicted to be a novel therapeutic target for prostate cancer.
Collapse
|
43
|
van Leeuwen FWB, Winter A, van Der Poel HG, Eiber M, Suardi N, Graefen M, Wawroschek F, Maurer T. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol 2019; 16:159-171. [DOI: 10.1038/s41585-018-0140-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Fujii H, Horie S, Takeda K, Mori S, Kodama T. Optimal range of injection rates for a lymphatic drug delivery system. JOURNAL OF BIOPHOTONICS 2018; 11:e201700401. [PMID: 29461015 DOI: 10.1002/jbio.201700401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The lymphatic drug delivery system (LDDS) is a new technique that permits the injection of drugs into a sentinel lymph node (SLN) at an early stage of tumor metastasis, thereby treating metastasis in the SLN and its secondary lymph nodes (LNs). The quantity of drug required for a LDDS is much smaller than that needed for systemic chemotherapy. However, the relationship between the rate of drug injection into a SLN and the amount of drug reaching the secondary LNs has not been investigated. In this study, we used an MXH10/Mo-lpr/lpr mouse model to show that the optimal rate for the injection of a fluorescent dye by a LDDS was 10 to 80 μL/min. An injection rate of 10 to 80 μL/min was able to fill the downstream LN. However, an injection rate of 100 μL/min drove the fluorescent dye into the efferent lymphatic vessels and thoracoepigastric vein, decreasing the amount of dye retained in the downstream LN. Bolus injection (defined as an injection rate of 2400 μL/min) was unable to deliver fluorescent dye into the downstream LN. These results agree with the impulse values calculated from the injection pressures in the upstream LN. We anticipate that our findings will facilitate the development of a LDDS for use in the clinic.
Collapse
Affiliation(s)
- Honoka Fujii
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Tohoku University, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
46
|
Basement membrane extract attenuates the more malignant gene expression profile accentuated by fibronectin in prostate cancer cells. Mol Cell Biochem 2018; 451:131-138. [PMID: 29961211 DOI: 10.1007/s11010-018-3399-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
Prostate cancer (PCa) has high mortality rates, with most of the deaths resulting from the development of metastasis. Fibronectin (FN) plays key roles in cell adhesion and affects the migratory behavior of cells. In the tumor microenvironment and also in the blood plasma during metastasis, FN displays increased expression, however its role in prostate cancer remains poorly understood. This study aimed to unveil the specific roles of FN as a soluble component, alone or in combination with a complex basement membrane. To investigate the impact of FN in neoplastic prostate cells, we evaluated the gene expression of LNCaP cells by RT-qPCR after exposure to soluble FN (25 µg/mL) either alone or in combination with a basement membrane. When FN was the predominant matrix element, such as in blood plasma, PCa tumor cells increased their expression of genes related to an invasive behavior and resistance to apoptosis, including CDH2, ITGA5, AKT1, and BCL2. However, the combined presence of FN and a complex basement membrane had the opposite effect on LNCaP cells, in which the expression levels of CDH2, ITGA5, AKT1, and BCL2 were reduced. Hierarchical clustering analysis with LNCaP and RWPE-1 cells showed that LNCaP cells exposed to an enriched extracellular matrix displayed an expression pattern more similar to that shown by RWPE-1 cells, a cell line that illustrates characteristics of the normal prostate epithelium. These findings provide the groundwork for future studies addressing the role of FN in tumor growth, particularly in the context of cancer evolution/progression from a solid primary tumor to a transitory circulating state.
Collapse
|
47
|
Hueting TA, Cornel EB, Somford DM, Jansen H, van Basten JPA, Pleijhuis RG, Korthorst RA, van der Palen JAM, Koffijberg H. External Validation of Models Predicting the Probability of Lymph Node Involvement in Prostate Cancer Patients. Eur Urol Oncol 2018; 1:411-417. [PMID: 31158080 DOI: 10.1016/j.euo.2018.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple statistical models predicting lymph node involvement (LNI) in prostate cancer (PCa) exist to support clinical decision-making regarding extended pelvic lymph node dissection (ePLND). OBJECTIVE To validate models predicting LNI in Dutch PCa patients. DESIGN, SETTING, AND PARTICIPANTS Sixteen prediction models were validated using a patient cohort of 1001 men who underwent ePLND. Patient characteristics included serum prostate specific antigen (PSA), cT stage, primary and secondary Gleason scores, number of biopsy cores taken, and number of positive biopsy cores. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Model performance was assessed using the area under the receiver operating characteristic curve (AUC). Calibration plots were used to visualize over- or underestimation by the models. RESULTS AND LIMITATIONS LNI was identified in 276 patients (28%). Patients with LNI had higher PSA, higher primary Gleason pattern, higher Gleason score, higher number of nodes harvested, higher number of positive biopsy cores, and higher cT stage compared to patients without LNI. Predictions generated by the 2012 Briganti nomogram (AUC 0.76) and the Memorial Sloan Kettering Cancer Center (MSKCC) web calculator (AUC 0.75) were the most accurate. Calibration had a decisive role in selecting the most accurate models because of overlapping confidence intervals for the AUCs. Underestimation of LNI probability in patients had a predicted probability of <20%. The omission of model updating was a limitation of the study. CONCLUSIONS Models predicting LNI in PCa patients were externally validated in a Dutch patient cohort. The 2012 Briganti and MSKCC nomograms were identified as the most accurate prediction models available. PATIENT SUMMARY In this report we looked at how well models were able to predict the risk of prostate cancer spreading to the pelvic lymph nodes. We found that two models performed similarly in predicting the most accurate probabilities.
Collapse
Affiliation(s)
- Tom A Hueting
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands.
| | - Erik B Cornel
- Department of Urology, Ziekenhuisgroep Twente, Hengelo, The Netherlands
| | - Diederik M Somford
- Department of urology, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Hanneke Jansen
- Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | | | - Rick G Pleijhuis
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Ruben A Korthorst
- Department of Urology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Job A M van der Palen
- Department of Research Methodology, Measurement and Data Analysis, University of Twente, Enschede, The Netherlands; Medisch spectrum Twente, Enschede, The Netherlands
| | - Hendrik Koffijberg
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| |
Collapse
|
48
|
Tang K, Niu C, Xu Y, Zhu Y, Tang S, Zhang M, Zhou Q. Phase-shifted paclitaxel-loaded multifunctional contrast agent for US/MR imaging and synergistic hyperthermal/chemotherapy of metastasis in lymph nodes. RSC Adv 2018; 8:5407-5419. [PMID: 35542401 PMCID: PMC9078143 DOI: 10.1039/c7ra13091k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/25/2018] [Indexed: 11/29/2022] Open
Abstract
The existing approaches used to detect a tumor-induced sentinel lymph node and treat metastasis have limitations. In this study, by encapsulating perfluoropentane (PFP), magnetic iron oxide nanoparticles (Fe3O4) and the chemotherapy drug paclitaxel (PTX), we fabricated novel polymer nanoparticles (NPNs) that can effectively absorb heat after irradiation by near-infrared irradiation (NIR), thereby synergistically enhancing tumor therapy via a phase-shift thermoelastic expansion effect. These NPNs can be used for dual-modal ultrasound (US) and magnetic resonance (MR) imaging and to treat metastasis in lymph nodes under NIR irradiation-triggered drug delivery. The enhancement of US/MR imaging proved effective in vitro and in vivo, and NIR irradiation proved valid, promoting PTX release at the target site. A lower proliferation index and density and a higher tumor cell apoptotic index in the histopathology results confirmed the effectiveness of NPN chemotherapy for lymph nodes. We fabricated novel polymer nanoparticles that can effectively absorb heat after irradiation by NIR irradiation, thereby synergistically enhancing tumor therapy via a phase-shift thermoelastic expansion effect.![]()
Collapse
Affiliation(s)
- Kui Tang
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yan Xu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yun Zhu
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Shixiong Tang
- Department of Radiology
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Meixiang Zhang
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| | - Qichang Zhou
- Department of Ultrasound Diagnosis
- The Second Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
49
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
50
|
Miyata Y, Nakamura Y, Yasuda T, Matsuo T, Ohba K, Furusato B, Fukuoka J, Sakai H. Neoadjuvant hormonal therapy for low-risk prostate cancer induces biochemical recurrence after radical prostatectomy via increased lymphangiogenesis-related parameters. Prostate 2017; 77:1408-1415. [PMID: 28845514 PMCID: PMC5638062 DOI: 10.1002/pros.23402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The effects of neoadjuvant hormonal therapy (NHT) on pathological features and lymphangiogenesis in patients with prostate cancer (PCa) for each pre-operative risk classification are unclear. METHODS To clarify the anti-cancer effects of NHT, we investigated 153 patients (non-NHT group = 80 and NHT group = 73) who underwent radical prostatectomy (RP) in Nagasaki University Hospital. Lymph vessel density and area (evaluated by D2-40-positive vessels), vascular endothelial growth factor (VEGF)-C and VEGF-D expressions, and biochemical recurrence (BCR)-free survival were compared between these two groups for each D'Amico risk classification (low = 33, intermediate = 58, high = 62 patients). RESULTS In low-risk PCa patients, the risks of lymph vessel invasion and BCR were significantly higher in the NHT group than in the non-NHT group (P = 0.040 and 0.022, respectively). Such significant difference was not seen in the intermediate- or high-risk PCa groups. Lymph vessel density of the peri-tumoral and intra-tumoral areas and the lymph vessel area were significantly higher (P < 0.001) in the NHT group than in the non-NHT group in low-risk PCa. In regard to the expression of VEGF-C or VEGF-D, significant difference was not detected in low-risk PCa. CONCLUSIONS NHT stimulated cancer cell progression and BCR via up-regulation of lymphangiogenesis-related parameters in patients with low-risk PCa. Although VEGF-C and VEGF-D expressions were not changed by NHT, lymph vessel density and area were increased in low-risk PCa patients. We suggest that NHT for patients with low-risk PCa may have a high risk for BCR after RP.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yuichiro Nakamura
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Takuji Yasuda
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomohiro Matsuo
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kojiro Ohba
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Bungo Furusato
- Department of PathologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Junya Fukuoka
- Department of PathologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hideki Sakai
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|