1
|
Volk P, Rahmani Manesh M, Warren ME, Besko K, Gonçalves de Andrade E, Wicki-Stordeur LE, Swayne LA. Long-term neurological dysfunction associated with COVID-19: Lessons from influenza and inflammatory diseases? J Neurochem 2024; 168:3500-3511. [PMID: 38014645 DOI: 10.1111/jnc.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
As the COVID-19 pandemic persists, SARS-CoV-2 infection is increasingly associated with long-term neurological side effects including cognitive impairment, fatigue, depression, and anxiety, colloquially known as "long-COVID." While the full extent of long-COVID neuropathology across years or even decades is not yet known, we can perhaps take direction from long-standing research into other respiratory diseases, such as influenza, that can present with similar long-term neurological consequences. In this review, we highlight commonalities in the neurological impacts of influenza and COVID-19. We first focus on the common potential mechanisms underlying neurological sequelae of long-COVID and influenza, namely (1) viral neurotropism and (2) dysregulated peripheral inflammation. The latter, namely heightened peripheral inflammation leading to central nervous system dysfunction, is emerging as a shared mechanism in various peripheral inflammatory or inflammation-associated diseases and conditions. We then discuss historical and modern examples of influenza- and COVID-19-associated cognitive impairment, depression, anxiety, and fatigue, revealing key similarities in their neurological sequelae. Although we are learning that the effects of influenza and COVID differ somewhat in terms of their influence on the brain, as the impacts of long-COVID grow, such comparisons will likely prove valuable in guiding ongoing research into long-COVID, and perhaps foreshadow what could be in store for individuals with COVID-19 and their brain health.
Collapse
Affiliation(s)
- Parker Volk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Mary E Warren
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katie Besko
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
2
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
3
|
Rowe T, Davis W, Wentworth DE, Ross T. Differential interferon responses to influenza A and B viruses in primary ferret respiratory epithelial cells. J Virol 2024; 98:e0149423. [PMID: 38294251 PMCID: PMC10878268 DOI: 10.1128/jvi.01494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024] Open
Abstract
Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - William Davis
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - David E. Wentworth
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
5
|
Chen J, Wang J, Zhu H, Zhang Y, Sun J, Wang W, Wei C, Zhong H, Dong M. Generation of a Live Attenuated Influenza A Vaccine Using Chemical-Triggered Intein. ACS Synth Biol 2023; 12:1686-1695. [PMID: 37196336 DOI: 10.1021/acssynbio.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Noticeable morbidity and mortality can be caused by influenza A virus in humans. Conventional live attenuated influenza vaccine (LAIV) is one of the main strategies to control the spread of influenza, but its protective efficacy is often limited by its suboptimal immunogenicity and safety. Therefore, a new type of LAIV that can overcome the shortage of existing vaccines is urgently needed. Here, we report a novel method to construct the recombinant influenza A virus (IAV) regulated by small molecules. By inserting 4-hydroxytamoxifen (4-HT)-dependent intein into the polymerase acidic (PA) protein of IAV, a series of 4-HT-dependent recombinant viruses were generated and screened. Among them, the S218 recombinant virus strain showed excellent 4-HT dependent replication characteristics both in vitro and in vivo. Further immunological evaluation indicated that the 4-HT-dependent viruses were highly attenuated in the host and could elicit robust humoral, mucosal, and cellular immunity against the challenge of homologous viruses. The attenuated strategies presented here could also be broadly applied to the development of vaccines against other pathogens.
Collapse
Affiliation(s)
- Ji Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jinyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongyu Zhu
- School of Pharmacy, Qingdao University, Qingdao 266021, China
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266021, China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jin Sun
- School of Pharmacy, Qingdao University, Qingdao 266021, China
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Mingxin Dong
- School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
6
|
Wang Q, Zeng X, Tang S, Lan L, Wang X, Lai Z, Liu Z, Hou X, Gao L, Yun C, Zhang Z, Leng J, Fan X. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews. Virus Res 2023; 324:199027. [PMID: 36543317 DOI: 10.1016/j.virusres.2022.199027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Animal influenza viruses can spread across species and pose a fatal threat to human health due to the high pathogenicity and mortality. Animal models are crucial for studying cross-species infection and the pathogenesis of influenza viruses. Tupaia belangeri (tree shrew) has been emerging as an animal model for multiple human virus infections recently because of the close genetic relationship and phylogeny with humans. So far, tree shrew has been reported to be susceptible to human influenza virus subtype H1N1, avian influenza viruses subtype H9N2, subtype H5N1, and subtype H7N9. However, the pathogenicity, infection, and immunity of swine and land avian influenza viruses with low pathogenicity and the potential to jump to humans remain largely unexplored in the tree shrew model. Previously, our team has successfully isolated the newly emerging swine influenza virus subtype H3N2 (A/Swine/GX/NS2783/2010, SW2783) and avian influenza virus subtype H6N6 (A/CK/ZZ/346/2014, ZZ346). In this study, we observed the pathogenicity, immune characteristics, and cross-species infection potential ability of SW2783 and ZZ346 strains in tree shrew model with 50% tissue culture infective dose (TCID50), hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), real-time quantitative PCR (qRT-PCR) and other experimental methods. Both animal-borne influenza viruses had a strong ability on tissue infection in the turbinate and the trachea of tree shrews in vitro, in which SW2783 showed stronger replication ability than in ZZ346. SW2783 and ZZ346 both showed pathogenic ability with infected tree shrews model in vivo without prior adaptive culture, which mainly happened in the upper respiratory tract. However, the infection ability was weak, the clinical symptoms were mild, and the histopathological changes in the respiratory tract were relatively light. Furthermore, innate immune responses and adaptive immunity were observed in the tree shrew model after the infection of SW2783 and ZZ346 strains. We observed that the unadapted SW2783 and ZZ346 virus could transmit among tree shrews by direct contact. We also observed that SW2783 virus could transmit from tree shrews to guinea pigs. These results indicated that both animal-borne influenza viruses could induce similar pathogenicity and immune response to those caused by human-common influenza viruses. Tree shrews may be an excellent animal model for studying the interaction between the influenza virus and the host and the cross-species infection mechanism of the animal influenza virus.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chenxia Yun
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zengfeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xiaohui Fan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
8
|
Sun H, Wang K, Yao W, Liu J, Lv L, Shi X, Chen H. Inter-Fighting between Influenza A Virus NS1 and β-TrCP: A Novel Mechanism of Anti-Influenza Virus. Viruses 2022; 14:v14112426. [PMID: 36366524 PMCID: PMC9699209 DOI: 10.3390/v14112426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) prevents innate immune signaling during infection. In our previous study, the production of pro-inflammatory cytokines was associated with Cullin-1 RING ligase (CRL1), which was related to NF-κB activation. However, the underlying mechanism is unclear. Here, an E3 ligase, β-transducin repeat-containing protein (β-TrCP), was significantly downregulated during IAV infection. Co-IP analysis revealed that non-structural 1 protein (NS1) interacts with β-TrCP. With co-transfection, an increase in NS1 expression led to a reduction in β-TrCP expression, affecting the level of IκBα and then resulting in repression of the activation of the NF-κB pathway during IAV infection. In addition, β-TrCP targets the viral NS1 protein and significantly reduces the replication level of influenza virus. Our results provide a novel mechanism for influenza to modulate its immune response during infection, and β-TrCP may be a novel target for influenza virus antagonism.
Collapse
Affiliation(s)
- Haiwei Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (H.S.); (H.C.)
| | - Kai Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lu Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xinjin Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (H.S.); (H.C.)
| |
Collapse
|
9
|
Wang YH, Limaye A, Liu JR, Wu TN. Potential probiotics for regulation of the gut-lung axis to prevent or alleviate influenza in vulnerable populations. J Tradit Complement Med 2022; 13:161-169. [PMID: 36970463 PMCID: PMC10037066 DOI: 10.1016/j.jtcme.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022] Open
Abstract
Influenza, also known as "flu", is an infectious disease caused by influenza viruses. Three types of influenza virus, A, B, and C, are able to infect humans. In most people, influenza causes mild symptoms, but it can also induce severe complications and death. Annual influenza vaccines are currently the main intervention used to minimize mortality and morbidity. However, vaccination frequently fails to provide adequate protection, especially in the elderly. Traditional flu vaccine targets hemagglutinin to prevent virus infection, but the constant mutation of hemagglutinin means that it is a challenge to develop vaccines quickly enough to keep up with mutations. Thus, other methods of curbing influenza incidence would be welcomed, especially for vulnerable populations. Although influenza viruses primarily infect the respiratory tract, influenza virus infection also induces intestinal dysbiosis. Through gut microbiota-derived secreted products and the circulating immune cells, gut microbiota can affect pulmonary immunity. The crosstalk between the respiratory tract and gut microbiota, termed the "gut-lung axis", is observed in the regulation of immune responses against influenza virus infection or inflammation-induced lung damage, indicating the possibility of using probiotics to prevent influenza virus infection or alleviate respiratory symptoms. In this review, we summarize the current findings on the antiviral functions of particular probiotics and/or combinations and discuss the antiviral mechanisms and immunomodulatory activities of probiotics in vitro, in mice, and in humans. Clinical studies show probiotic supplements can provide health benefits, not only to the elderly or children with compromised immune systems, but also to young- and middle-aged adults.
Collapse
|
10
|
Hiller BE, Yin Y, Perng YC, de Araujo Castro Í, Fox LE, Locke MC, Monte KJ, López CB, Ornitz DM, Lenschow DJ. Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathog 2022; 18:e1010228. [PMID: 35675358 PMCID: PMC9212157 DOI: 10.1371/journal.ppat.1010228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis. Influenza viruses are respiratory viruses that cause significant morbidity and mortality worldwide. In the lungs, influenza A virus primarily infects epithelial cells that line the conducting airways and alveoli. Fibroblast growth factor-9 (FGF9) is a growth factor that has been shown to have antiviral activity and is upregulated during early IAV infection in asymptomatic patients, leading us to hypothesize that FGF9 would protect the lung epithelium from IAV infection. However, mice that express and secrete FGF9 from club cells in the conducting airway had more severe respiratory virus infection and a hyperactive inflammatory immune response as early as 1 day post-infection. Analysis of the FGF9-expressing airway epithelial cells found an elevated antiviral and inflammatory interferon signature, which protected these cells from severe IAV infection. However, heightened infection of alveolar cells resulted in excessive inflammation in the alveoli, resulting in more severe disease and death. Our study identifies a novel antiviral and inflammatory role for FGFs in the lung airway epithelium and confirms that early and robust IAV infection of alveolar cells results in more severe disease.
Collapse
Affiliation(s)
- Bradley E Hiller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Yi-Chieh Perng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ítalo de Araujo Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Lindsey E Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marissa C Locke
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kristen J Monte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
11
|
Kwon JW, Quan H, Song J, Chung H, Jung D, Hong JJ, Na YR, Seok SH. Liposomal Dexamethasone Reduces A/H1N1 Influenza-Associated Morbidity in Mice. Front Microbiol 2022; 13:845795. [PMID: 35495698 PMCID: PMC9048800 DOI: 10.3389/fmicb.2022.845795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/23/2022] [Indexed: 01/20/2023] Open
Abstract
Re-emerging viral threats have continued to challenge the medical and public health systems. It has become clear that a significant number of severe viral infection cases are due to an overreaction of the immune system, which leads to hyperinflammation. In this study, we aimed to demonstrate the therapeutic efficacy of the dexamethasone nanomedicine in controlling the symptoms of influenza virus infection. We found that the A/Wisconsin/WSLH34939/2009 (H1N1) infection induced severe pneumonia in mice with a death rate of 80%, accompanied by significant epithelial cell damage, infiltration of immune cells, and accumulation of pro-inflammatory cytokines in the airway space. Moreover, the intranasal delivery of liposomal dexamethasone during disease progression reduced the death rate by 20%. It also significantly reduced the protein level of tumor necrosis factor-alpha (TNFα), interleukin-1β (IL-1β), IL-6, and the C-X-C motif chemokine ligand 2 (CXCL2) as well as the number of infiltrated immune cells in the bronchoalveolar lavage fluids as compared to the control and free dexamethasone. The liposomal dexamethasone was mainly distributed into the monocyte/macrophages as a major cell population for inducing the cytokine storm in the lungs. Taken together, the intranasal delivery of liposomal dexamethasone may serve as a novel promising therapeutic strategy for the treatment of influenza A-induced pneumonia.
Collapse
Affiliation(s)
- Jung Won Kwon
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hailian Quan
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Juha Song
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Chung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Daun Jung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea.,KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Varghese PM, Kishore U, Rajkumari R. Human C1q Regulates Influenza A Virus Infection and Inflammatory Response via Its Globular Domain. Int J Mol Sci 2022; 23:3045. [PMID: 35328462 PMCID: PMC8949502 DOI: 10.3390/ijms23063045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
The Influenza A virus (IAV) is a severe respiratory pathogen. C1q is the first subcomponent of the complement system's classical pathway. C1q is composed of 18 polypeptide chains. Each of these chains contains a collagen-like region located at the N terminus, and a C-terminal globular head region organized as a heterotrimeric structure (ghA, ghB and ghC). This study was aimed at investigating the complement activation-independent modulation by C1q and its individual recombinant globular heads against IAV infection. The interaction of C1q and its recombinant globular heads with IAV and its purified glycoproteins was examined using direct ELISA and far-Western blotting analysis. The effect of the complement proteins on IAV replication kinetics and immune modulation was assessed by qPCR. The IAV entry inhibitory properties of C1q and its recombinant globular heads were confirmed using cell binding and luciferase reporter assays. C1q bound IAV virions via HA, NA and M1 IAV proteins, and suppressed replication in H1N1, while promoting replication in H3N2-infected A549 cells. C1q treatment further triggered an anti-inflammatory response in H1N1 and pro-inflammatory response in H3N2-infected cells as evident from differential expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Furthermore, C1q treatment was found to reduce luciferase reporter activity of MDCK cells transfected with H1N1 pseudotyped lentiviral particles, indicative of an entry inhibitory role of C1q against infectivity of IAV. These data appear to demonstrate the complement-independent subtype specific modulation of IAV infection by locally produced C1q.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
13
|
Varghese PM, Mukherjee S, Al-Mohanna FA, Saleh SM, Almajhdi FN, Beirag N, Alkahtani SH, Rajkumari R, Nal Rogier B, Sim RB, Idicula-Thomas S, Madan T, Murugaiah V, Kishore U. Human Properdin Released By Infiltrating Neutrophils Can Modulate Influenza A Virus Infection. Front Immunol 2021; 12:747654. [PMID: 34956182 PMCID: PMC8695448 DOI: 10.3389/fimmu.2021.747654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The complement system is designed to recognise and eliminate invading pathogens via activation of classical, alternative and lectin pathways. Human properdin stabilises the alternative pathway C3 convertase, resulting in an amplification loop that leads to the formation of C5 convertase, thereby acting as a positive regulator of the alternative pathway. It has been noted that human properdin on its own can operate as a pattern recognition receptor and exert immune functions outside its involvement in complement activation. Properdin can bind directly to microbial targets via DNA, sulfatides and glycosaminoglycans, apoptotic cells, nanoparticles, and well-known viral virulence factors. This study was aimed at investigating the complement-independent role of properdin against Influenza A virus infection. As one of the first immune cells to arrive at the site of IAV infection, we show here that IAV challenged neutrophils released properdin in a time-dependent manner. Properdin was found to directly interact with haemagglutinin, neuraminidase and matrix 1 protein Influenza A virus proteins in ELISA and western blot. Furthermore, modelling studies revealed that properdin could bind HA and NA of the H1N1 subtype with higher affinity compared to that of H3N2 due to the presence of an HA cleavage site in H1N1. In an infection assay using A549 cells, properdin suppressed viral replication in pH1N1 subtype while promoting replication of H3N2 subtype, as revealed by qPCR analysis of M1 transcripts. Properdin treatment triggered an anti-inflammatory response in H1N1-challenged A549 cells and a pro-inflammatory response in H3N2-infected cells, as evident from differential mRNA expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Properdin treatment also reduced luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles; however, it was increased in the case of pseudotyped H3N2 particles. Collectively, we conclude that infiltrating neutrophils at the site of IAV infection can release properdin, which then acts as an entry inhibitor for pandemic H1N1 subtype while suppressing viral replication and inducing an anti-inflammatory response. H3N2 subtype can escape this immune restriction due to altered haemagglutinin and neuraminindase, leading to enhanced viral entry, replication and pro-inflammatory response. Thus, depending on the subtype, properdin can either limit or aggravate IAV infection in the host.
Collapse
Affiliation(s)
- Praveen M Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Shuvechha Mukherjee
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Souad M Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Saad H Alkahtani
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Beatrice Nal Rogier
- INSERM U1104 Centre d'immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Robert B Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
14
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
15
|
Mazzaccaro D, Dolci M, Perego F, Delbue S, Giannetta M, Cardani R, Valentina Renna L, Costa E, Corsi-Romanelli MM, Galli C, Pariani E, Nano G, Clemente C, Basilico N. VIRAL AGENTS AND SYSTEMIC LEVELS OF INFLAMMATORY CYTOKINES IN VULNERABLE AND STABLE ATHEROSCLEROTIC CAROTID PLAQUES. Ann Vasc Surg 2021; 82:325-333. [PMID: 34902464 DOI: 10.1016/j.avsg.2021.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND To investigate the presence of genetic material of viral agents and the serum level of inflammatory cytokines in patients submitted to carotid endarterectomy having vulnerable versus stable atherosclerotic plaques. METHODS Data of patients consecutively submitted to carotid endarterectomy for a significant stenosis from 07/2019 to 12/2019 were prospectively collected. The genetic material of Epstein-Barr (EBV), CitoMegalo (CMV), Herpes Simplex (HSV), Varicella-Zoster (VZV) and Influenza (IV) Viruses was searched in the patient's plaques, both in the "mid" of the plaque and in an adjacent lateral portion of no-plaque area. The serum levels of TNF-α, IL-1β, IL-6, IL10 and CCL5 were determined. The obtained results were then correlated to the histologic vulnerability of the removed carotid plaque. P values <0.05 were considered statistically significant. RESULTS Data of 50 patients were analyzed. A vulnerable plaque was found in 31 patients (62%). The genome of CMV, HSV, VZV and IV was not found in any of the vascular samples, while the EBV genome was found in the "mid" of two vulnerable plaques, but not in their respective control area. Eighty-two percent of patients who did not receive anti-IV vaccination (23/28) had vulnerable carotid plaque, compared with 36% of vaccinated patients (8/22, p=0.001). Serum levels of TNF-α and IL-6 were higher in patients with a vulnerable plaque compared to patients with a stable plaque (73.6±238.2 vs 3.9±13.1 pg/ml, p=0.01, and 45.9±103.6 vs 10.1±25.3 pg/ml, p=0.01, respectively), independent of comorbidities, viral exposure or flu vaccination. CONCLUSION The EBV genome was found in the "core" of two vulnerable carotid plaques, but not in their respective adjacent control. Influenza vaccination was associated with a lower incidence of carotid plaque vulnerability. Serum levels of TNF-α and IL-6 were higher in patients with a vulnerable plaque compared to patients with a stable plaque.
Collapse
Affiliation(s)
- Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Matteo Giannetta
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- BioCor Biobank, UO of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Laura Valentina Renna
- BioCor Biobank, UO of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Elena Costa
- UO of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Massimiliano M Corsi-Romanelli
- UO of Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Claudio Clemente
- UO SMEL-2, Surgical Pathology, Department of Pathology and Laboratory Medicine, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol 2021; 22:1416-1427. [PMID: 34663977 DOI: 10.1038/s41590-021-01035-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2021] [Indexed: 01/20/2023]
Abstract
Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.
Collapse
|
17
|
Zarski LM, Vaala WE, Barnett DC, Bain FT, Soboll Hussey G. A Live-Attenuated Equine Influenza Vaccine Stimulates Innate Immunity in Equine Respiratory Epithelial Cell Cultures That Could Provide Protection From Equine Herpesvirus 1. Front Vet Sci 2021; 8:674850. [PMID: 34179166 PMCID: PMC8224402 DOI: 10.3389/fvets.2021.674850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Equine herpesvirus 1 (EHV-1) ubiquitously infects horses worldwide and causes respiratory disease, abortion, and equine herpesvirus myeloencephalopathy. Protection against EHV-1 disease is elusive due to establishment of latency and immune-modulatory features of the virus. These include the modulation of interferons, cytokines, chemokines, antigen presentation, and cellular immunity. Because the modulation of immunity likely occurs at the site of first infection—the respiratory epithelium, we hypothesized that the mucosal influenza vaccine Flu Avert® I.N. (Flu Avert), which is known to stimulate strong antiviral responses, will enhance antiviral innate immunity, and that these responses would also provide protection from EHV-1 infection. To test our hypothesis, primary equine respiratory epithelial cells (ERECs) were treated with Flu Avert, and innate immunity was evaluated for 10 days following treatment. The timing of Flu Avert treatment was also evaluated for optimal effectiveness to reduce EHV-1 replication by modulating early immune responses to EHV-1. The induction of interferons, cytokine and chemokine mRNA expression, and protein secretion was evaluated by high-throughput qPCR and multiplex protein analysis. Intracellular and extracellular EHV-1 titers were determined by qPCR. Flu Avert treatment resulted in the modulation of IL-8, CCL2, and CXCL9 starting at days 5 and 6 post-treatment. Coinciding with the timing of optimal chemokine induction, our data also suggested the same timing for reduction of EHV-1 replication. In combination, our results suggest that Flu Avert may be effective at counteracting some of the immune-modulatory properties of EHV-1 at the airway epithelium and the peak for this response occurs 5–8 days post-Flu Avert treatment. Future in vivo studies are needed to investigate Flu Avert as a prophylactic in situations where EHV-1 exposure may occur.
Collapse
Affiliation(s)
- Lila M Zarski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| | | | | | | | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| |
Collapse
|
18
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
19
|
DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. J Biol Chem 2021; 296:100579. [PMID: 33766561 PMCID: PMC8081917 DOI: 10.1016/j.jbc.2021.100579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
Viruses and hosts have coevolved for millions of years, leading to the development of complex host-pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule-mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.
Collapse
|
20
|
Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza A Virus Infection in C57BL/6 Mice. Cells 2021; 10:cells10030509. [PMID: 33673645 PMCID: PMC7997358 DOI: 10.3390/cells10030509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.
Collapse
|
21
|
Latreille E, Lee WL. Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses 2021; 13:161. [PMID: 33499234 PMCID: PMC7911974 DOI: 10.3390/v13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a constant threat to public health given their ability to cause global pandemics. Infection with either virus may lead to aberrant host responses, such as excessive immune cell recruitment and activation, dysregulated inflammation, and coagulopathy. These may contribute to the development of lung edema and respiratory failure. An increasing amount of evidence suggests that lung endothelial cells play a critical role in the pathogenesis of both viruses. In this review, we discuss how infection with influenza or SARS-CoV-2 may induce endothelial dysfunction. We compare the effects of infection of these two viruses, how they may contribute to pathogenesis, and discuss the implications for potential treatment. Understanding the differences between the effects of these two viruses on lung endothelial cells will provide important insight to guide the development of therapeutics.
Collapse
Affiliation(s)
- Elyse Latreille
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Warren L. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Interdepartmental Division of Critical Care and the Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
Identification of Important N-Linked Glycosylation Sites in the Hemagglutinin Protein and Their Functional Impact on DC-SIGN Mediated Avian Influenza H5N1 Infection. Int J Mol Sci 2021; 22:ijms22020743. [PMID: 33451024 PMCID: PMC7828482 DOI: 10.3390/ijms22020743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
DC-SIGN, a C-type lectin mainly expressed in dendritic cells (DCs), has been reported to mediate several viral infections. We previously reported that DC-SIGN mediated H5N1 influenza A virus (AIVs) infection, however, the important DC-SIGN interaction with N-glycosylation sites remain unknown. This study aims to identify the optimal DC-SIGN interacting N-glycosylation sites in HA proteins of H5N1-AIVs. Results from NetNGlyc program analyzed the H5 hemagglutinin sequences of isolates during 2004–2020, revealing that seven and two conserved N-glycosylation sites were detected in HA1 and HA2 domain, respectively. A lentivirus pseudotyped A/Vietnam/1203/04 H5N1 envelope (H5N1-PVs) was generated which displayed an abundance of HA5 proteins on the virions via immuno-electron microscope observation. Further, H5N1-PVs or reverse-genetics (H5N1-RG) strains carrying a serial N-glycosylated mutation was generated by site-directed mutagenesis assay. Human recombinant DC-SIGN (rDC-SIGN) coated ELISA showed that H5N1-PVs bound to DC-SIGN, however, mutation on the N27Q, N39Q, and N181Q significantly reduced this binding (p < 0.05). Infectivity and capture assay demonstrated that N27Q and N39Q mutations significantly ameliorated DC-SIGN mediated H5N1 infection. Furthermore, combined mutations (N27Q&N39Q) significantly waned the interaction on either H5N1-PVs or -RG infection in cis and in trans (p < 0.01). This study concludes that N27 and N39 are two essential N-glycosylation contributing to DC-SIGN mediating H5N1 infection.
Collapse
|
23
|
Oommen A, Cunningham S, Joshi L. Transcriptomic Analysis of Respiratory Tissue and Cell Line Models to Examine Glycosylation Machinery during SARS-CoV-2 Infection. Viruses 2021; 13:v13010082. [PMID: 33435561 PMCID: PMC7827443 DOI: 10.3390/v13010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Glycosylation, being the most abundant post-translational modification, plays a profound role affecting expression, localization and function of proteins and macromolecules in immune response to infection. Presented are the findings of a transcriptomic analysis performed using high-throughput functional genomics data from public repository to examine the altered transcription of the human glycosylation machinery in response to SARS-CoV-2 stimulus and infection. In addition to the conventional in silico functional enrichment analysis methods we also present results from the manual analysis of biomedical literature databases to bring about the biological significance of glycans and glycan-binding proteins in modulating the host immune response during SARS-CoV-2 infection. Our analysis revealed key immunomodulatory lectins, proteoglycans and glycan epitopes implicated in exerting both negative and positive downstream inflammatory signaling pathways, in addition to its vital role as adhesion receptors for SARS-CoV-2 pathogen. A hypothetical correlation of the differentially expressed human glycogenes with the altered host inflammatory response and the cytokine storm-generated in response to SARS-CoV-2 pathogen is proposed. These markers can provide novel insights into the diverse roles and functioning of glycosylation pathways modulated by SARS-CoV-2, provide avenues of stratification, treatment, and targeted approaches for COVID-19 immunity and other viral infectious agents.
Collapse
Affiliation(s)
- Anup Oommen
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.O.); (S.C.)
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Stephen Cunningham
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.O.); (S.C.)
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.O.); (S.C.)
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, H91 TK33 Galway, Ireland
- Correspondence:
| |
Collapse
|
24
|
Hao X, Li S, Chen L, Dong M, Wang J, Hu J, Gu M, Wang X, Hu S, Peng D, Liu X, Shang S. Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 2020; 12:v12121396. [PMID: 33291218 PMCID: PMC7762099 DOI: 10.3390/v12121396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Avian influenza virus (AIV) emerged and has continued to re-emerge, continuously posing great threats to animal and human health. The detection of hemagglutination inhibition (HI) or virus neutralization antibodies (NA) is essential for assessing immune protection against AIV. However, the HI/NA-independent immune protection is constantly observed in vaccines’ development against H7N9 subtype AIV and other subtypes in chickens and mammals, necessitating the analysis of the cellular immune response. Here, we established a multi-parameter flow cytometry to examine the innate and adaptive cellular immune responses in chickens after intranasal infection with low pathogenicity H7N9 AIV. This assay allowed us to comprehensively define chicken macrophages, dendritic cells, and their MHC-II expression, NK cells, γδ T cells, B cells, and distinct T cell subsets in steady state and during infection. We found that NK cells and KUL01+ cells significantly increased after H7N9 infection, especially in the lung, and the KUL01+ cells upregulated MHC-II and CD11c expression. Additionally, the percentages and numbers of γδ T cells and CD8 T cells significantly increased and exhibited an activated phenotype with significant upregulation of CD25 expression in the lung but not in the spleen and blood. Furthermore, B cells showed increased in the lung but decreased in the blood and spleen in terms of the percentages or/and numbers, suggesting these cells may be recruited from the periphery after H7N9 infection. Our study firstly disclosed that H7N9 infection induced local and systemic cellular immune responses in chickens, the natural host of AIV, and that the flow cytometric assay developed in this study is useful for analyzing the cellular immune responses to AIVs and other avian infectious diseases and defining the correlates of immune protection.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Lina Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Maoli Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.H.); (S.L.); (L.C.); (M.D.); (J.W.); (J.H.); (M.G.); (X.W.); (S.H.); (D.P.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.L.); (S.S.); Tel.: +86-514-879-914-16 (X.L.); +86-514-879-770-81 (S.S.)
| |
Collapse
|
25
|
Luo Z, Liu LF, Jiang YN, Tang LP, Li W, Ouyang SH, Tu LF, Wu YP, Gong HB, Yan CY, Jiang S, Lu YH, Liu T, Jiang Z, Kurihara H, Yu Y, Yao XS, Li YF, He RR. Novel insights into stress-induced susceptibility to influenza: corticosterone impacts interferon-β responses by Mfn2-mediated ubiquitin degradation of MAVS. Signal Transduct Target Ther 2020; 5:202. [PMID: 32943610 PMCID: PMC7499204 DOI: 10.1038/s41392-020-00238-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/09/2022] Open
Abstract
Although stress has been known to increase the susceptibility of pathogen infection, the underlying mechanism remains elusive. In this study, we reported that restraint stress dramatically enhanced the morbidity and mortality of mice infected with the influenza virus (H1N1) and obviously aggravated lung inflammation. Corticosterone (CORT), a main type of glucocorticoids in rodents, was secreted in the plasma of stressed mice. We further found that this stress hormone significantly boosted virus replication by restricting mitochondrial antiviral signaling (MAVS) protein-transduced IFN-β production without affecting its mRNA level, while the deficiency of MAVS abrogated stress/CORT-induced viral susceptibility in mice. Mechanistically, the effect of CORT was mediated by proteasome-dependent degradation of MAVS, thereby resulting in the impediment of MAVS-transduced IFN-β generation in vivo and in vitro. Furthermore, RNA-seq assay results indicated the involvement of Mitofusin 2 (Mfn2) in this process. Gain- and loss-of-function experiments indicated that Mfn2 interacted with MAVS and recruited E3 ligase SYVN1 to promote the polyubiquitination of MAVS. Co-immunoprecipitation experiments clarified an interaction between any two regions of Mfn2 (HR1), MAVS (C-terminal/TM) and SYVN1 (TM). Collectively, our findings define the Mfn2-SYVN1 axis as a new signaling cascade for proteasome-dependent degradation of MAVS and a 'fine tuning' of antiviral innate immunity in response to influenza infection under stress.
Collapse
Affiliation(s)
- Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Fang Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ying-Nan Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lu-Ping Tang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Long-Fang Tu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yu-Hui Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tongzheng Liu
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China. .,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China. .,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
26
|
Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, Shean RC, Bluemling GR, Kolykhalov AA, Greninger AL, Natchus MG, Painter GR, Plemper RK. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med 2020; 11:11/515/eaax5866. [PMID: 31645453 DOI: 10.1126/scitranslmed.aax5866] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Influenza viruses constitute a major health threat and economic burden globally, frequently exacerbated by preexisting or rapidly emerging resistance to antiviral therapeutics. To address the unmet need of improved influenza therapy, we have created EIDD-2801, an isopropylester prodrug of the ribonucleoside analog N 4-hydroxycytidine (NHC, EIDD-1931) that has shown broad anti-influenza virus activity in cultured cells and mice. Pharmacokinetic profiling demonstrated that EIDD-2801 was orally bioavailable in ferrets and nonhuman primates. Therapeutic oral dosing of influenza virus-infected ferrets reduced group pandemic 1 and group 2 seasonal influenza A shed virus load by multiple orders of magnitude and alleviated fever, airway epithelium histopathology, and inflammation, whereas postexposure prophylactic dosing was sterilizing. Deep sequencing highlighted lethal viral mutagenesis as the underlying mechanism of activity and revealed a prohibitive barrier to the development of viral resistance. Inhibitory concentrations were low nanomolar against influenza A and B viruses in disease-relevant well-differentiated human air-liquid interface airway epithelia. Correlating antiviral efficacy and cytotoxicity thresholds with pharmacokinetic profiles in human airway epithelium models revealed a therapeutic window >1713 and established dosing parameters required for efficacious human therapy. These data recommend EIDD-2801 as a clinical candidate with high potential for monotherapy of seasonal and pandemic influenza virus infections. Our results inform EIDD-2801 clinical trial design and drug exposure targets.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Michael Hart
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Negar Makhsous
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Roland Plesker
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, 63225 Langen, Germany
| | - Alec H Barrena
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Prabhakar G Reddy
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Deborah G Mitchell
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Ryan C Shean
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gregory R Bluemling
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | | | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA.,Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
27
|
Histone Deacetylase 6 Knockout Mice Exhibit Higher Susceptibility to Influenza A Virus Infection. Viruses 2020; 12:v12070728. [PMID: 32640546 PMCID: PMC7411611 DOI: 10.3390/v12070728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
The host innate defence against influenza virus infection is an intricate system with a plethora of antiviral factors involved. We have identified host histone deacetylase 6 (HDAC6) as an anti-influenza virus factor in cultured cells. Consistent with this, we report herein that HDAC6 knockout (KO) mice are more susceptible to influenza virus A/PR/8/1934 (H1N1) infection than their wild type (WT) counterparts. The KO mice lost weight faster than the WT mice and, unlike WT mice, could not recover their original body weight. Consequently, more KO mice succumbed to infection, which corresponded with higher lung viral loads. Conversely, the expression of the critical innate antiviral response genes interferon alpha/beta, CD80, CXCL10 and IL15 was significantly downregulated in KO mouse lungs compared to WT mouse lungs. These data are consistent with the known function of HDAC6 of de-acetylating the retinoic acid inducible gene-I (RIG-I) and activating the host innate antiviral response cascade. Loss of HDAC6 thus leads to a blunted innate response and increased susceptibility of mice to influenza A virus infection.
Collapse
|
28
|
Host-Pathogen Responses to Pandemic Influenza H1N1pdm09 in a Human Respiratory Airway Model. Viruses 2020; 12:v12060679. [PMID: 32599823 PMCID: PMC7354428 DOI: 10.3390/v12060679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host–pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.
Collapse
|
29
|
Ellwanger JH, Kulmann-Leal B, Kaminski VDL, Rodrigues AG, Bragatte MADS, Chies JAB. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Res 2020; 286:198040. [PMID: 32479976 PMCID: PMC7260533 DOI: 10.1016/j.virusres.2020.198040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CCR5 regulates multiple cell types (e.g., T regulatory and Natural Killer cells) and immune responses. The effects of CCR5, CCR5Δ32 (variant associated with reduced CCR5 expression) and CCR5 antagonists vary between infections. CCR5 affects the pathogenesis of flaviviruses, especially in the brain. The genetic variant CCR5Δ32 increases the risk of symptomatic West Nile virus infection. The triad “CCR5, extracellular vesicles and infections” is an emerging topic.
The interactions between chemokine receptors and their ligands may affect susceptibility to infectious diseases as well as their clinical manifestations. These interactions mediate both the traffic of inflammatory cells and virus-associated immune responses. In the context of viral infections, the human C-C chemokine receptor type 5 (CCR5) receives great attention from the scientific community due to its role as an HIV-1 co-receptor. The genetic variant CCR5Δ32 (32 base-pair deletion in CCR5 gene) impairs CCR5 expression on the cell surface and is associated with protection against HIV infection in homozygous individuals. Also, the genetic variant CCR5Δ32 modifies the CCR5-mediated inflammatory responses in various conditions, such as inflammatory and infectious diseases. CCR5 antagonists mimic, at least in part, the natural effects of the CCR5Δ32 in humans, which explains the growing interest in the potential benefits of using CCR5 modulators for the treatment of different diseases. Nevertheless, beyond HIV infection, understanding the effects of the CCR5Δ32 variant in multiple viral infections is essential to shed light on the potential effects of the CCR5 modulators from a broader perspective. In this context, this review discusses the involvement of CCR5 and the effects of the CCR5Δ32 in human infections caused by the following pathogens: West Nile virus, Influenza virus, Human papillomavirus, Hepatitis B virus, Hepatitis C virus, Poliovirus, Dengue virus, Human cytomegalovirus, Crimean-Congo hemorrhagic fever virus, Enterovirus, Japanese encephalitis virus, and Hantavirus. Subsequently, this review addresses the impacts of CCR5 gene editing and CCR5 modulation on health and viral diseases. Also, this article connects recent findings regarding extracellular vesicles (e.g., exosomes), viruses, and CCR5. Neglected and emerging topics in “CCR5 research” are briefly described, with focus on Rocio virus, Zika virus, Epstein-Barr virus, and Rhinovirus. Finally, the potential influence of CCR5 on the immune responses to coronaviruses is discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Alves de Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Núcleo de Bioinformática do Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
30
|
Oliva J, Mettier J, Sedano L, Delverdier M, Bourgès-Abella N, Hause B, Loupias J, Pardo I, Bleuart C, Bordignon PJ, Meunier E, Le Goffic R, Meyer G, Ducatez MF. Murine Model for the Study of Influenza D Virus. J Virol 2020; 94:e01662-19. [PMID: 31776281 PMCID: PMC6997775 DOI: 10.1128/jvi.01662-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
A novel genus within the Orthomyxoviridae family was identified in the United States and named influenza D virus (IDV). Bovines have been proposed to be the primary host, and three main viral lineages (D/OK-like, D/660-like, and D/Japan-like) have been described. Experimental infections had previously been performed in swine, ferrets, calves, and guinea pigs in order to study IDV pathogenesis. We developed a murine experimental model to facilitate the study of IDV pathogenesis and the immune response. DBA/2 mice were inoculated with 105 50% tissue culture infective dose (TCID50) of D/bovine/France/5920/2014 (D/OK-like). No clinical signs or weight loss were observed. Viral replication was observed mainly in the upper respiratory tract (nasal turbinates) but also in the lower respiratory tract of infected mice, with a peak at 4 days postinfection. Moreover, the virus was also detected in the intestines. All infected mice seroconverted by 14 days postinfection. Transcriptomic analyses demonstrated that IDV induced the activation of proinflammatory genes, such as gamma interferon (IFN-γ) and CCL2. Inoculation of NF-κB-luciferase and Ifnar1-/- mice demonstrated that IDV induced mild inflammation and that a type I interferon response was not necessary in IDV clearance. Adaptation of IDV by serial passages in mice was not sufficient to induce disease or increased pathogenesis. Taken together, present data and comparisons with the calf model show that our mouse model allows for the study of IDV replication and fitness (before selected viruses may be inoculated on calves) and also of the immune response.IMPORTANCE Influenza D virus (IDV), a new genus of Orthomyxoviridae family, presents a large host range and a worldwide circulation. The pathogenicity of this virus has been studied in the calf model. The mouse model is frequently used to enable a first assessment of a pathogen's fitness, replication, and pathogenesis for influenza A and B viruses. We showed that DBA/2 mice are a relevant in vivo model for the study of IDV replication. This model will allow for rapid IDV fitness and replication evaluation and will enable phenotypic comparisons between isolated viruses. It will also allow for a better understanding of the immune response induced after IDV infection.
Collapse
Affiliation(s)
- J Oliva
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J Mettier
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - L Sedano
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - M Delverdier
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - B Hause
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - J Loupias
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - I Pardo
- Université de Toulouse, ENVT, Toulouse, France
| | - C Bleuart
- Université de Toulouse, ENVT, Toulouse, France
| | - P J Bordignon
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - E Meunier
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - R Le Goffic
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - G Meyer
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - M F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
31
|
Murugaiah V, Varghese PM, Saleh SM, Tsolaki AG, Alrokayan SH, Khan HA, Collison KS, Sim RB, Nal B, Al-Mohanna FA, Kishore U. Complement-Independent Modulation of Influenza A Virus Infection by Factor H. Front Immunol 2020; 11:355. [PMID: 32269562 PMCID: PMC7109256 DOI: 10.3389/fimmu.2020.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is an ancient innate immune defense mechanism that can recognize molecular patterns on the invading pathogens. Factor H, as an inhibitor of the alternative pathway, down-regulates complement activation on the host cell surface. Locally synthesized factor H at the site of infection/injury, including lungs, can act as a pattern recognition molecule without involving complement activation. Here, we report that factor H, a sialic acid binder, interacts with influenza A virus (IAV) and modulates IAV entry, as evident from down-regulation of matrix protein 1 (M1) in H1N1 subtype-infected cells and up-regulation of M1 expression in H3N2-infected A549 cells. Far-western blot revealed that factor H binds hemagglutinin (HA, ~70 kDa), neuraminidase (NA, ~60 kDa), and M1 (~25 kDa). IAV-induced transcriptional levels of IFN-α, TNF-α, IL-12, IL-6, IFN-α, and RANTES were reduced following factor H treatment for the H1N1 subtype at 6 h post-infection. However, for the H3N2 subtype, mRNA levels of these pro-inflammatory cytokines were enhanced. A recombinant form of vaccinia virus complement control protein (VCP), which like factor H, contains CCP modules and has complement-regulatory activity, mirrored the results obtained with factor H. Both factor H (25%), and VCP (45%) were found to reduce luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles. Factor H (50%) and VCP (30%) enhanced the luciferase reporter activity for H3N2, suggesting an entry inhibitory role of factor H and VCP against H1N1, but not H3N2. Thus, factor H can modulate IAV infection and inflammatory responses, independent of its complement-related functions.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G. Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Béatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- *Correspondence: Uday Kishore
| |
Collapse
|
32
|
Zeng X, Zhang X, Wei D. Toonaciliatin K attenuates the lung injury induced by lung infection of H1N1 influenza virus by regulating the NF-κB/MyD88/TLR-7 pathway in mice. Arch Med Sci 2020; 16:1387-1393. [PMID: 33224338 PMCID: PMC7667422 DOI: 10.5114/aoms.2019.86220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION H1N1 infection has a high mortality rate due to lung injury and respiratory distress. The present study determines the protective effect of toonaciliatin K against the lung injury induced by the lung infection of H1N1 influenza mice and also postulates the molecular mechanism. MATERIAL AND METHODS Infection was induced by exposing the anesthetized mice to H1N1 virus (10 LD50 in a volume of 30 ml) intranasally at day zero and mice were treated with toonaciliatin K 16.5 and 33 mg/kg intragastrically for 2 weeks. The effect of toonaciliatin K was assessed by estimating survival rate and lung edema by the lung index. Histopathological changes were determined by H + E staining and western blot and an RT-PCR study was also performed on the lung tissue homogenate. RESULTS Data of the study suggest that toonaciliatin K treatment enhances the survival rate and reduces the lung index compared to infected mice. There was a decrease in the level of chemokines and cytokines in the lung tissue of the toonaciliatin K treated group compared to infected mice. Moreover, expression of TLR-7, NF-κB p65 and MyD88 protein was found to be reduced in the lung tissue of the toonaciliatin K treated group compared to infected mice. CONCLUSIONS Data of the study suggested that toonaciliatin K protects against lung injury in lung H1N1 lung infection by regulating the TLR-7/Myd88/NF-κB p65 pathway.
Collapse
Affiliation(s)
- Xiankun Zeng
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| | - Xiaofan Zhang
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| | - Dongsheng Wei
- Department of Laboratory, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region, China
| |
Collapse
|
33
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
34
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
35
|
Historical H1N1 Influenza Virus Imprinting Increases Vaccine Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at Vaccination in Ferrets. Vaccines (Basel) 2019; 7:vaccines7040133. [PMID: 31569351 PMCID: PMC6963198 DOI: 10.3390/vaccines7040133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.
Collapse
|
36
|
Robinson KM, Ramanan K, Tobin JM, Nickolich KL, Pilewski MJ, Kallewaard NL, Sellman BR, Cohen TS, Alcorn JF. Survival during influenza-associated bacterial superinfection improves following viral- and bacterial-specific monoclonal antibody treatment. JCI Insight 2019; 4:125554. [PMID: 31341107 DOI: 10.1172/jci.insight.125554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
Postinfluenza bacterial superinfections cause increased morbidity and mortality compared with singular infection with influenza during both pandemics and seasonal epidemics. Vaccines and current treatments provide limited benefit, a rationale to conduct studies utilizing alternative therapies. FY1 and an optimized version, MEDI8852, anti-influenza HA mAbs, have been shown to neutralize influenza virus during singular influenza infection. MEDI4893*, an anti-Staphylococcus aureus α-toxin mAb, has been shown to improve survival when administered prophylactically prior to S. aureus pneumonia. Our objective was to determine if mAbs can improve survival during postinfluenza bacterial pneumonia. We administered FY1 in a murine model of postinfluenza methicillin-resistant S. aureus (MRSA) pneumonia and observed improved survival rates when given early during the course of influenza infection. Our findings indicate decreased lung injury and increased uptake and binding of bacteria by macrophages in the mice that received FY1 earlier in the course of influenza infection, corresponding to decreased bacterial burden. We also observed improved survival when mice were treated with a combination of FY1 and MEDI4893* late during the course of postinfluenza MRSA pneumonia. In conclusion, both FY1 and MEDI4893* prolong survival when used in a murine model of postinfluenza MRSA pneumonia, suggesting pathogen-specific mAbs as a possible therapeutic in the context of bacterial superinfection.
Collapse
Affiliation(s)
- Keven M Robinson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krishnaveni Ramanan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua M Tobin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kara L Nickolich
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew J Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Bret R Sellman
- Department of Microbial Sciences, MedImmune, Gaithersburg, Maryland, USA
| | - Taylor S Cohen
- Department of Microbial Sciences, MedImmune, Gaithersburg, Maryland, USA
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Smith CA, Tyrell DJ, Kulkarni UA, Wood S, Leng L, Zemans RL, Bucala R, Goldstein DR. Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight 2019; 4:128034. [PMID: 31292300 PMCID: PMC6629144 DOI: 10.1172/jci.insight.128034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 01/24/2023] Open
Abstract
Influenza-associated mortality continues to occur annually despite available antiviral therapies. New therapies that improve host immunity could reduce influenza virus disease burden. Targeting macrophage migration inhibitory factor (MIF) has improved the outcomes of certain inflammatory diseases, but its role in influenza viral infection is unclear. Here, we showed that, during influenza viral infection, Mif-deficient mice have less inflammation, viral load, and mortality compared with WT control mice; conversely, Tg mice, overexpressing Mif in alveolar epithelial cells, had higher inflammation, viral load, and mortality. Antibody-mediated blockade of MIF in WT mice during influenza viral infection improved their survival. Mif-deficient murine lungs showed reduced levels of parkin, a mitophagy protein that negatively regulates antiviral signaling, prior to infection and augmented antiviral type I/III IFN levels in the airspaces after infection as compared with WT lungs. Additionally, in vitro assays with human lung epithelial cells showed that treatment with recombinant human MIF increased the percentage of influenza virus-infected cells. In conclusion, our study reveals that MIF impairs antiviral host immunity and increases inflammation during influenza infection and suggests that targeting MIF could be therapeutically beneficial during influenza viral infection.
Collapse
MESH Headings
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/pathology
- Alveolar Epithelial Cells/virology
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Disease Models, Animal
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/virology
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/immunology
- Intramolecular Oxidoreductases/metabolism
- Lung/immunology
- Lung/pathology
- Macrophage Migration-Inhibitory Factors/antagonists & inhibitors
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Survival Analysis
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
- Viral Load
Collapse
Affiliation(s)
- Candice A. Smith
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J. Tyrell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Upasana A. Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherri Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology and
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Denton AE, Innocentin S, Carr EJ, Bradford BM, Lafouresse F, Mabbott NA, Mörbe U, Ludewig B, Groom JR, Good-Jacobson KL, Linterman MA. Type I interferon induces CXCL13 to support ectopic germinal center formation. J Exp Med 2019; 216:621-637. [PMID: 30723095 PMCID: PMC6400543 DOI: 10.1084/jem.20181216] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023] Open
Abstract
Denton et al. show that during influenza infection of mice, type I interferon can induce CXCL13 de novo in pulmonary PGDFRα+ fibroblasts. This chemokine drives CXCR5-dependent recruitment of B cells to the lung, thereby supporting pulmonary germinal center formation. Ectopic lymphoid structures form in a wide range of inflammatory conditions, including infection, autoimmune disease, and cancer. In the context of infection, this response can be beneficial for the host: influenza A virus infection–induced pulmonary ectopic germinal centers give rise to more broadly cross-reactive antibody responses, thereby generating cross-strain protection. However, despite the ubiquity of ectopic lymphoid structures and their role in both health and disease, little is known about the mechanisms by which inflammation is able to convert a peripheral tissue into one that resembles a secondary lymphoid organ. Here, we show that type I IFN produced after viral infection can induce CXCL13 expression in a phenotypically distinct population of lung fibroblasts, driving CXCR5-dependent recruitment of B cells and initiating ectopic germinal center formation. This identifies type I IFN as a novel inducer of CXCL13, which, in combination with other stimuli, can promote lung remodeling, converting a nonlymphoid tissue into one permissive to functional tertiary lymphoid structure formation.
Collapse
Affiliation(s)
- Alice E Denton
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Edward J Carr
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Barry M Bradford
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Fanny Lafouresse
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Neil A Mabbott
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Urs Mörbe
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
39
|
Francis ME, King ML, Kelvin AA. Back to the Future for Influenza Preimmunity-Looking Back at Influenza Virus History to Infer the Outcome of Future Infections. Viruses 2019; 11:v11020122. [PMID: 30704019 PMCID: PMC6410066 DOI: 10.3390/v11020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The influenza virus-host interaction is a classic arms race. The recurrent and evolving nature of the influenza virus family allows a single host to be infected several times. Locked in co-evolution, recurrent influenza virus infection elicits continual refinement of the host immune system. Here we give historical context of circulating influenza viruses to understand how the individual immune history is mirrored by the history of influenza virus circulation. Original Antigenic Sin was first proposed as the negative influence of the host’s first influenza virus infection on the next and Imprinting modernizes Antigenic Sin incorporating both positive and negative outcomes. Building on imprinting, we refer to preimmunity as the continual refinement of the host immune system with each influenza virus infection. We discuss imprinting and the interplay of influenza virus homology, vaccination, and host age establishing preimmunity. We outline host signatures and outcomes of tandem infection according to the sequence of virus and classify these relationships as monosubtypic homologous, monosubtypic heterologous, heterosubtypic, or heterotypic sequential infections. Finally, the preimmunity knowledge gaps are highlighted for future investigation. Understanding the effects of antigenic variable recurrent influenza virus infection on immune refinement will advance vaccination strategies, as well as pandemic preparedness.
Collapse
Affiliation(s)
- Magen Ellen Francis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Morgan Leslie King
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Alyson Ann Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Canadian Centre for Vaccinology, IWK Health Centre, Halifax NS B3K 6R8, Canada.
| |
Collapse
|
40
|
Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses 2019; 11:E99. [PMID: 30682859 PMCID: PMC6409894 DOI: 10.3390/v11020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Proteasome is a large protein complex, which degrades most intracellular proteins. It regulates numerous cellular processes, including the removal of misfolded or unfolded proteins, cell cycle control, and regulation of apoptosis. However, the function of proteasome subunits in viral immunity has not been well characterized. In this study, we identified PSMB1, a member of the proteasome β subunits (PSMB) family, as a negative regulator of innate immune responses during viral infection. Knockdown of PSMB1 enhanced the RNA virus-induced cytokine and chemokine production. Overexpression of PSMB1 abolished virus-induced activation of the interferon-stimulated response element (ISRE) and interferon beta (IFNβ) promoters. Mechanistically, PSMB1 inhibited the activation of RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) signaling pathways. PSMB1 was induced after viral infection and its interaction with IKK-ε promoted degradation of IKK-ε through the ubiquitin-proteasome system. Collectively, our study demonstrates PSMB1 is an important regulator of innate immune signaling.
Collapse
Affiliation(s)
- Fangyi Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhenmin Niu
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| | - Bin Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Pengcheng Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
41
|
Chason KD, Jaspers I, Parker J, Sellers S, Brighton LE, Hunsucker SA, Armistead PM, Fischer WA. Age-Associated Changes in the Respiratory Epithelial Response to Influenza Infection. J Gerontol A Biol Sci Med Sci 2018; 73:1643-1650. [PMID: 29878083 PMCID: PMC6230210 DOI: 10.1093/gerona/gly126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Older adults suffer a disproportionate burden of influenza-related morbidity and mortality typically attributed to defects in the aging immune system collectively known as immunosenescence. While the age-related decline in the adaptive immune system has been well characterized, little is known about how aging affects the principal site of influenza infection-the nasal epithelium. In human nasal epithelial cell cultures (hNECs) from older adults, we found similar or increased levels of cytokines during influenza infection compared with hNECs from younger individuals. However, hNECs from older individuals demonstrated decreased mRNA expression for several key proteins that affect clearance of infected cells, including MHC-I and transporter associated with antigen presentation (TAP). These findings were confirmed at the level of protein expression. In vivo studies corroborated the in vitro differences in MHC-I and TAP gene expression and also revealed important decreases in the expression of key influenza-specific antiviral mediators MX1 and IFITM1. Furthermore, epithelial cell-cytotoxic T lymphocyte co-cultures demonstrate that CTL cytotoxic activity is dose-dependent on MHC-I antigen presentation. Taken together, these results indicate that aging is associated with important changes in the nasal epithelium, including antigen presentation and antiviral pathways, which may contribute to increased severity of disease in older adults through impaired clearance of infected cells.
Collapse
Affiliation(s)
- Kelly D Chason
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine
| | - Joel Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - Subhashini Sellers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
| | - Louisa E Brighton
- Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine
| | - Sally A Hunsucker
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - Paul M Armistead
- Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine
| | - William A Fischer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
42
|
Brisse E, Imbrechts M, Mitera T, Vandenhaute J, Berghmans N, Boon L, Wouters C, Snoeck R, Andrei G, Matthys P. Lymphocyte-independent pathways underlie the pathogenesis of murine cytomegalovirus-associated secondary haemophagocytic lymphohistiocytosis. Clin Exp Immunol 2018; 192:104-119. [PMID: 29178470 PMCID: PMC6398522 DOI: 10.1111/cei.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022] Open
Abstract
Haemophagocytic lymphohistiocytosis (HLH) constitutes a spectrum of immunological disorders characterized by uncontrolled immune activation and key symptoms such as fever, splenomegaly, pancytopenia, haemophagocytosis, hyperferritinaemia and hepatitis. In genetic or primary HLH, hyperactivated CD8+ T cells are the main drivers of pathology. However, in acquired secondary HLH, the role of lymphocytes remains vague. In the present study the involvement of lymphocytes in the pathogenesis of a cytomegalovirus-induced model of secondary HLH was explored. We have previously reported CD8+ T cells to be redundant in this model, and therefore focused on CD4+ helper and regulatory T cells. CD4+ T cells were activated markedly and skewed towards a proinflammatory T helper type 1 transcription profile in mice displaying a severe and complete HLH phenotype. Counter to expectations, regulatory T cells were not reduced in numbers and were, in fact, more activated. Therapeutic strategies targeting CD25high hyperactivated T cells were ineffective to alleviate disease, indicating that T cell hyperactivation is not a pathogenic factor in cytomegalovirus-induced murine HLH. Moreover, even though T cells were essential in controlling viral proliferation, CD4+ T cells, in addition to CD8+ T cells, were dispensable in the development of the HLH-like syndrome. In fact, no T or B cells were required for induction and propagation of HLH disease, as evidenced by the occurrence of cytomegalovirus-associated HLH in severe combined immunodeficient (SCID) mice. These data suggest that lymphocyte-independent mechanisms can underlie virus-associated secondary HLH, accentuating a clear distinction with primary HLH.
Collapse
Affiliation(s)
- E. Brisse
- Laboratory of ImmunobiologyRega Institute, KU LeuvenLeuvenBelgium
| | - M. Imbrechts
- Laboratory of ImmunobiologyRega Institute, KU LeuvenLeuvenBelgium
| | - T. Mitera
- Laboratory of ImmunobiologyRega Institute, KU LeuvenLeuvenBelgium
| | - J. Vandenhaute
- Laboratory of ImmunobiologyRega Institute, KU LeuvenLeuvenBelgium
| | - N. Berghmans
- Laboratory of Molecular ImmunologyRega Institute, KU LeuvenLeuvenBelgium
| | - L. Boon
- Epirus Biopharmaceuticals NetherlandsUtrechtthe Netherlands
| | - C. Wouters
- Laboratory of Pediatric ImmunologyUniversity Hospital Gasthuisberg, KU LeuvenLeuvenBelgium
| | - R. Snoeck
- Laboratory of Virology and ChemotherapyRega Institute, KU LeuvenLeuvenBelgium
| | - G. Andrei
- Laboratory of Virology and ChemotherapyRega Institute, KU LeuvenLeuvenBelgium
| | - P. Matthys
- Laboratory of ImmunobiologyRega Institute, KU LeuvenLeuvenBelgium
| |
Collapse
|
43
|
Denney L, Branchett W, Gregory LG, Oliver RA, Lloyd CM. Epithelial-derived TGF-β1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunol 2018; 11:523-535. [PMID: 29067998 PMCID: PMC5797694 DOI: 10.1038/mi.2017.77] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/26/2017] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are under constant bombardment from potentially antigenic particles and so must maintain a balance between homeostasis and inappropriate immune activation and consequent pathology. Epithelial cells have a vital role orchestrating pulmonary homeostasis and defense against pathogens. TGF-β regulates an array of immune responses-both inflammatory and regulatory-however, its function is highly location- and context-dependent. We demonstrate that epithelial-derived TGF-β acts as a pro-viral factor suppressing early immune responses during influenza A infection. Mice specifically lacking bronchial epithelial TGF-β1 (epTGFβKO) displayed marked protection from influenza-induced weight loss, airway inflammation, and pathology. However, protection from influenza-induced pathology was not associated with a heightened lymphocytic immune response. In contrast, the kinetics of interferon beta (IFNβ) release into the airways was significantly enhanced in epTGFβKO mice compared with control mice, with elevated IFNβ on day 1 in epTGFβKO compared with control mice. This induced a heighted antiviral state resulting in impaired viral replication in epTGFβKO mice. Thus, epithelial-derived TGF-β acts to suppress early IFNβ responses leading to increased viral burden and pathology. This study demonstrates the importance of the local epithelial microenvironmental niche in shaping initial immune responses to viral infection and controlling host disease.
Collapse
|
44
|
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 2018; 28:43-52. [PMID: 29172107 PMCID: PMC5835172 DOI: 10.1016/j.coviro.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
45
|
Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 2017; 45:84-93. [PMID: 28853207 DOI: 10.1111/1440-1681.12848] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
Abstract
Curcumin, an active phenolic agent extract from the Curcuma longa, exhibits excellent anti-cancer, anti-inflammation, and neuroprotective effects. We aimed to investigate the anti-influenza role of curcumin in vitro and in vivo. The effect of curcumin on replication of influenza A virus (IAV) was examined in human lung cancer cell line A549, as well as in a mouse model. Curcumin could inhibit IAV in vitro and alleviate the severity of the disease in the mouse after infection with IAV. The results also indicated that curcumin could trigger expression of Heme oxygenase-1 in vivo and attenuate IAV-induced injury to the lung tissue. Furthermore, curcumin could regulate immune response following IAV infection through inhibiting production of local inflammatory cytokines. In addition, curcumin was found to inhibit NF-κB signalling in macrophages, as well as the subsequent production of cytokines/chemokines responding to IAV infection, by enhancing IκBα and AMPK. Our current study supports the potential of curcumin as a promising treatment against IAV infection, whose effect may be mediated by regulating immune response to prevent injury to the lung tissue.
Collapse
Affiliation(s)
- Shuguang Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Jing Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangjun Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Zhou J, Guo X, Fang D, Yu Y, Si L, Wang Y, Zeng G, Yan H, Wu J, Ke C, Jiang L. Avian Influenza A (H7N9) viruses isolated from patients with mild and fatal infection differ in pathogenicity and induction of cytokines. Microb Pathog 2017; 111:402-409. [PMID: 28826765 DOI: 10.1016/j.micpath.2017.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
Abstract
Since 2013, a novel Influenza A (H7N9) virus strain has continued to circulate within poultry and causing human disease. Influenza A (H7N9) virus results in two types of infection: mild and severe. The different results of clinical findings may be related with host susceptibility and characteristics of the virus itself. In order to investigate potential pathogenesis of Influenza A (H7N9) virus, we performed pathogenecity and cytokines analysis of two isolates, A/Guangdong/6/2013 H7N9 virus (GD-6) from a patient with a mild infection, and A/Guangdong/7/2013 H7N9 virus (GD-7) from a patient with a fatal infection. We found that GD-7 replicated to higher levels than GD-6 in human peripheral blood mononuclear cells (PBMCs), lung tissues, and mice. Furthermore, GD-7 infection resulted in more severe lung damage in mice lung tissues than GD-6 infection. GD-7 elicited higher levels of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) than GD-6 did. In conclusion, GD-7 was more pathogenic and induced higher levels of proinflammatory cytokines than GD-6 did.
Collapse
Affiliation(s)
- Junmei Zhou
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaolan Guo
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Teaching Center of Biology Experiment, Guangzhou Medical University, Guangzhou, 511436, China
| | - Danyun Fang
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Yu
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lulu Si
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Wang
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gucheng Zeng
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huijun Yan
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Wu
- Microbiology Laboratory, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, 511430, China
| | - Changwen Ke
- Microbiology Laboratory, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, 511430, China.
| | - Lifang Jiang
- Key Laboratory for Tropic Diseases Control of the Ministry of Education, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
47
|
Abstract
Legionella pneumophila and influenza types A and B viruses can cause either community-acquired pneumonia with respiratory failure, or Legionella infection could attribute to influenza infection with potentially fatal prognosis. Copathogenesis between pandemic influenza and bacteria is characterized by complex interactions between coinfecting pathogens and the host. Understanding the underlying reason of the emersion of the secondary bacterial infection during an influenza infection is challenging. The dual infection has an impact on viral control and may delay viral clearance. Effective vaccines and antiviral therapy are crucial to increase resistance toward influenza, decrease the prevalence of influenza, and possibly interrupt the potential secondary bacterial infections.
Collapse
Affiliation(s)
- Eleni E Magira
- 1st Department of Critical Care Medicine, Evangelismos General Hospital, National and Kapodistrian University of Athens, 45-47 Ispilandou Street, Athens 10675, Greece.
| | - Sryros Zakynthinos
- 1st Department of Critical Care and Pulmonary Services, Center of Sleep Disorders, Evangelismos General Hospital, National and Kapodistrian University of Athens, 45-47 Ipsilantou Street, Athens 10676, Greece
| |
Collapse
|
48
|
Makarkov AI, Chierzi S, Pillet S, Murai KK, Landry N, Ward BJ. Plant-made virus-like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine 2017; 35:4629-4636. [DOI: 10.1016/j.vaccine.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
|
49
|
Zhou B, Yang Z, Feng Q, Liang X, Li J, Zanin M, Jiang Z, Zhong N. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:60-67. [PMID: 28119097 DOI: 10.1016/j.jep.2017.01.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baphicacanthus cusia root also names "Nan Ban Lan Gen" has been traditionally used to prevent and treat influenza A virus infections. Here, we identified a peptide derivative, aurantiamide acetate (compound E17), as an active compound in extracts of B. cusia root. Although studies have shown that aurantiamide acetate possesses antioxidant and anti-inflammatory properties, the effects and mechanism by which it functions as an anti-viral or as an anti-inflammatory during influenza virus infection are poorly defined. Here we investigated the anti-viral activity and possible mechanism of compound E17 against influenza virus infection. MATERIALS AND METHODS The anti-viral activity of compound E17 against Influenza A virus (IAV) was determined using the cytopathic effect (CPE) inhibition assay. Viruses were titrated on Madin-Darby canine kidney (MDCK) cells by plaque assays. Ribonucleoprotein (RNP) luciferase reporter assay was further conducted to investigate the effect of compound E17 on the activity of the viral polymerase complex. HEK293T cells with a stably transfected NF-κB luciferase reporter plasmid were employed to examine the activity of compound E17 on NF-κB activation. Activation of the host signaling pathway induced by IAV infection in the absence or presence of compound E17 was assessed by western blotting. The effect of compound E17 on IAV-induced expression of pro-inflammatory cytokines was measured by real-time quantitative PCR and Luminex assays. RESULTS Compound E17 exerted an inhibitory effect on IAV replication in MDCK cells but had no effect on avian IAV and influenza B virus. Treatment with compound E17 resulted in a reduction of RNP activity and virus titers. Compound E17 treatment inhibited the transcriptional activity of NF-κB in a NF-κB luciferase reporter stable HEK293 cell after stimulation with TNF-α. Furthermore, compound E17 blocked the activation of the NF-κB signaling pathway and decreased mRNA expression levels of pro-inflammatory genes in infected cells. Compound E17 also suppressed the production of IL-6, TNF-α, IL-8, IP-10 and RANTES from IAV-infected lung epithelial (A549) cells. CONCLUSIONS These results indicate that compound E17 isolated from B. cusia root has potent anti-viral and anti-inflammatory effects on IAV-infected cells via inhibition of the NF-κB pathway. Therefore, compound E17 could be a potential therapeutic agent for the treatment of influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Zifeng Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou 510120, China
| | - Qitong Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou 510120, China
| | - Mark Zanin
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China.
| | - Nanshan Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou 510120, China.
| |
Collapse
|
50
|
Mint3/Apba3 depletion ameliorates severe murine influenza pneumonia and macrophage cytokine production in response to the influenza virus. Sci Rep 2016; 6:37815. [PMID: 27883071 PMCID: PMC5121658 DOI: 10.1038/srep37815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023] Open
Abstract
Influenza virus (IFV) infection is a common cause of severe pneumonia. Studies have suggested that excessive activation of the host immune system including macrophages is responsible for the severe pathologies mediated by IFV infection. Here, we focused on the X11 protein family member Mint3/Apba3, known to promote ATP production via glycolysis by activating hypoxia inducible factor-1 (HIF-1) in macrophages, and examined its roles in lung pathogenesis and anti-viral defence upon IFV infection. Mint3-deficient mice exhibited improved influenza pneumonia with reduced inflammatory cytokines/chemokine levels and neutrophil infiltration in the IFV-infected lungs without alteration in viral burden, type-I interferon production, or acquired immunity. In macrophages, Mint3 depletion attenuated NF-κB signalling and the resultant cytokine/chemokine production in response to IFV infection by increasing IκBα and activating the cellular energy sensor AMPK, respectively. Thus, Mint3 might represent one of the likely therapeutic targets for the treatment of severe influenza pneumonia without affecting host anti-viral defence through suppressing macrophage cytokine/chemokine production.
Collapse
|