1
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2024. [PMID: 39618290 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
2
|
Henise J, Hangasky JA, Charych D, Carreras CW, Ashley GW, Santi DV. A platform technology for ultra-long acting intratumoral therapy. Sci Rep 2024; 14:14000. [PMID: 38890412 PMCID: PMC11189489 DOI: 10.1038/s41598-024-64261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Intratumoral (IT) therapy is a powerful method of controlling tumor growth, but a major unsolved problem is the rapidity that injected drugs exit tumors, limiting on-target exposure and efficacy. We have developed a generic long acting IT delivery system in which a drug is covalently tethered to hydrogel microspheres (MS) by a cleavable linker; upon injection the conjugate forms a depot that slowly releases the drug and "bathes" the tumor for long periods. We established technology to measure tissue pharmacokinetics and studied MSs attached to SN-38, a topoisomerase 1 inhibitor. When MS ~ SN-38 was injected locally, tissues showed high levels of SN-38 with a long half-life of ~ 1 week. IT MS ~ SN-38 was ~ tenfold more efficacious as an anti-tumor agent than systemic SN-38. We also propose and provide an example that long-acting IT therapy might enable safe use of two drugs with overlapping toxicities. Here, long-acting IT MS ~ SN-38 is delivered with concurrent systemic PARP inhibitor. The tumor is exposed to both drugs whereas other tissues are exposed only to the systemic drug; synergistic anti-tumor activity supported the validity of this approach. We propose use of this approach to increase efficacy and reduce toxicities of combinations of immune checkpoint inhibitors such as αCTLA-4 and αPD-1.
Collapse
Affiliation(s)
- Jeff Henise
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - John A Hangasky
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - Deborah Charych
- Nektar, 455 Mission Bay Blvd. South, San Francisco, CA, USA
- ShynianBio Inc., 1001 17th St., San Francisco, CA, 94107, USA
| | | | - Gary W Ashley
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA
| | - Daniel V Santi
- ProLynx, 135 Mississippi Street, San Francisco, CA, 94107, USA.
| |
Collapse
|
3
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
4
|
Sánchez-Costa M, Urigoitia A, Comino N, Arnaiz B, Khatami N, Ruiz-Hernandez R, Diamanti E, Abarrategi A, López-Gallego F. In-Hydrogel Cell-Free Protein Expression System as Biocompatible and Implantable Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15993-16002. [PMID: 38509001 DOI: 10.1021/acsami.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.
Collapse
Affiliation(s)
| | - Ane Urigoitia
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Natalia Comino
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Blanca Arnaiz
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Neda Khatami
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- Polymat, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | | | - Eleftheria Diamanti
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Ander Abarrategi
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Fernando López-Gallego
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| |
Collapse
|
5
|
Maheshwari R, Ghode P, Sharma M. Lab on chip based self-adjustable liposomes for rapid wound healing: An in depth in vitro, in vivo and higher dose toxicity investigation. BIOMATERIALS ADVANCES 2024; 158:213777. [PMID: 38266334 DOI: 10.1016/j.bioadv.2024.213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Thanks to microfluidic technology, different nano-delivery systems are becoming clinically viable. Using a novel and rapid microfluidic hydrodynamic focusing (MHF) method (lipids on chip) we developed self-adaptable liposomes (SLs) containing cefpodoxime proxetil (CP) for the treatment of skin infections caused by Staphylococcus aureus. SLs were optimized using different flow rate ratios in the MHF method and the final formulation CPT3 was found to be the best in terms of particle size (68.27 ± 01.15 nm), % entrapment efficiency (% EE: 82 ± 1.5), polydispersity (PDI: 0.2 ± 0.012), and degree of deformability (DOD: 4.7 ± 0.18 nm). Rats (Sprague Dawley) treated with a self-adaptable CPT3 liposomal formulation recuperate skin injury, exhibited reduced bacterial counts (<106 CFU/mL) in the wounded region, and completely restored (100 %) on day 21. Rat survival, in vivo dermal pharmacokinetics and ex vivo-in vivo relationship were also investigated. Rats treated with an even 10-fold higher dose (100 mg/kg/day) of CP using an equivalent CPT3 formulation did not show any symptoms of toxicity as revealed by hematological, biochemical, and internal organ assessment observations. Finally, the developed CPT3 formulation with special interest in patients with high-risk skin injuries not only delivered CP in a controlled manner but was also clinically effective and safe as it did not produce any serious adverse events even at 10× higher doses in the infected rats.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India.
| | - Piyush Ghode
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, Dhule, Maharashtra 425405, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
6
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
7
|
Mehralizadeh H, Nazari A, Oruji F, Roostaie M, Hosseininozari G, Yazdani O, Esbati R, Roudini K. Cytokine sustained delivery for cancer therapy; special focus on stem cell- and biomaterial- based delivery methods. Pathol Res Pract 2023; 247:154528. [PMID: 37257247 DOI: 10.1016/j.prp.2023.154528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
As immune regulators, cytokines serve critical role as signaling molecules in response to danger, tissue damage, or injury. Importantly, due to their vital role in immunological surveillance, cytokine therapy has become a promising therapeutics for cancer therapy. Cytokines have, however, been used only in certain clinical settings. Two key characteristics of cytokines contribute to this clinical translational challenge: first, they are highly pleiotropic, and second, in healthy physiology, they are typically secreted and act very locally in tissues. Systemic administration of the cytokines can consequently result in serious side effects. Thus, scientists have sought various strategies to circumvent theses hurdles. Recent in vivo reports signify that cytokine delivery platforms can increase their safety and therapeutic efficacy in tumor xenografts. Meanwhile, cytokine delivery using multipotent stem cells, in particular mesenchymal stem/stromal cells (MSCs), and also a diversity of particles and biomaterials has demonstrated greater capability in this regards. Herein, we take a glimpse into the recent advances in cytokine sustained delivery using stem cells and also biomaterials to ease safe and effective treatments of a myriad of human tumors.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Minoo Roostaie
- School of Medicine, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Ghazaleh Hosseininozari
- Department of Cell and Molecular biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| | - Kamran Roudini
- Department of Internal Medicine, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
8
|
Murugan D, Murugesan V, Panchapakesan B, Rangasamy L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14215438. [PMID: 36358857 PMCID: PMC9653801 DOI: 10.3390/cancers14215438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Natural killer cells are a part of the native immune response to cancer. NK cell-based immunotherapies are an emerging strategy to kill tumor cells. This paper reviews the role of NK cells, their mechanism of action for killing tumor cells, and the receptors which could serve as potential targets for signaling. In this review, the role of nanoparticles in NK cell activation and increased cytotoxicity of NK cells against cancer are highlighted. Abstract Natural killer (NK) cells are one of the first lines of defense against infections and malignancies. NK cell-based immunotherapies are emerging as an alternative to T cell-based immunotherapies. Preclinical and clinical studies of NK cell-based immunotherapies have given promising results in the past few decades for hematologic malignancies. Despite these achievements, NK cell-based immunotherapies have limitations, such as limited performance/low therapeutic efficiency in solid tumors, the short lifespan of NK cells, limited specificity of adoptive transfer and genetic modification, NK cell rejection by the patient’s immune system, insignificant infiltration of NK cells into the tumor microenvironment (TME), and the expensive nature of the treatment. Nanotechnology could potentially assist with the activation, proliferation, near-real time imaging, and enhancement of NK cell cytotoxic activity by guiding their function, analyzing their performance in near-real time, and improving immunotherapeutic efficiency. This paper reviews the role of NK cells, their mechanism of action in killing tumor cells, and the receptors which could serve as potential targets for signaling. Specifically, we have reviewed five different areas of nanotechnology that could enhance immunotherapy efficiency: nanoparticle-assisted immunomodulation to enhance NK cell activity, nanoparticles enhancing homing of NK cells, nanoparticle delivery of RNAi to enhance NK cell activity, genetic modulation of NK cells based on nanoparticles, and nanoparticle activation of NKG2D, which is the master regulator of all NK cell responses.
Collapse
Affiliation(s)
- Dhanashree Murugan
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Vasanth Murugesan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Balaji Panchapakesan
- Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: (B.P.); (L.R.)
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
- Correspondence: (B.P.); (L.R.)
| |
Collapse
|
9
|
Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine 2022; 17:4677-4696. [PMID: 36211025 PMCID: PMC9541303 DOI: 10.2147/ijn.s376216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy, a major breakthrough in cancer treatment, has been successfully applied to treat a number of tumors. However, given the presence of factors in the tumor microenvironment (TME) that impede immunotherapy, only a small proportion of patients achieve a good clinical response. With the ability to increase permeability and cross biological barriers, nanomaterials have been successfully applied to deliver immunotherapeutic agents, thus realizing the anti-cancer therapeutic potential of therapeutic agents. This has driven a wave of research into systems for the delivery of immunotherapeutic agents, which has resulted in widespread interest in nanomaterial-based drug delivery systems. Nanomaterial-based drug delivery systems are able to overcome the challenges from TME and thus achieve good results in cancer immunotherapy. If it can make a breakthrough in improving biocompatibility and reducing cytotoxicity, it will be more widely used in clinical practice. Different types of nanomaterials may also have some subtle differences in enhancing cancer immunotherapy. Moreover, delivery systems made of nanomaterials loaded with drugs, such as cytotoxic drugs, cytokines, and adjuvants, could be used for cancer immunotherapy because they avoid the toxicity and side effects associated with these drugs, thereby enabling their reuse. Therefore, further insights into nanomaterial-based drug delivery systems will provide more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China,Correspondence: Dong Tang, Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China, Email
| |
Collapse
|
11
|
Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol 2022; 18:939-956. [PMID: 35854464 DOI: 10.1166/jbn.2022.3315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the rapid development of nanotechnology, carrier-based nano-drug delivery systems (DDSs) have been widely studied due to their advantages in optimizing pharmacokinetic and distribution profiles. However, despite those merits, some carrier-related limitations, such as low drug-loading capacity, systematic toxicity and unclear metabolism, usually prevent their further clinical transformation. Carrier-free nanomedicines with non-therapeutic excipients, are considered as an excellent paradigm to overcome these obstacles, owing to their superiority in improving both drug delivery efficacy and safety concern. In recent years, carrier-free nanomedicines have opened new horizons for cancer immunotherapy, and have already made outstanding progress. Herein, in this review, we are focusing on making an integrated and exhaustive overview of lately reports about them. Firstly, the major synthetic strategies of carrier-free nanomedicines are introduced, such as nanocrystals, prodrug-, amphiphilic drug-drug conjugates (ADDCs)-, polymer-drug conjugates-, and peptide-drug conjugates (PepDCs)-assembled nanomedicines. Afterwards, the typical applications of carrier-free nanomedicines in cancer immunotherapy are well-discussed, including cancer vaccines, cytokine therapy, enhancing T-cell checkpoint inhibition, as well as modulating tumor microenvironment (TME). After that, both the advantages and the potential challenges, as well as the future prospects of carrier-free nanomedicines in cancer immunotherapy, were discussed. And we believe that it would be of great potential practiced and reference value to the relative fields.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
12
|
Lewicki S, Leśniak M, Sobolewska-Ruta A, Lewicka A, Grodzik M, Machaj EK, Saracyn M, Kubiak JZ, Pojda Z. Encapsulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in liposomes prepared by thin film hydration and their transfer to mesenchymal stem cells and cord blood hematopoietic stem cells. Arch Med Sci 2022; 18:1051-1061. [PMID: 35832713 PMCID: PMC9266718 DOI: 10.5114/aoms.2020.94527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/29/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cytokines are important immune modulator factors controlling homeostasis of the body and are involved in tissue regeneration after wound healing. The encapsulation of cytokines in liposomes has many advantages potentially useful for their transfer to the cells. Liposomes protect cytokines from neutralization, improving their pharmacokinetics or biologic activity in vivo. They are targeted to specific cell types and may delay the release of cytokines, allowing their sustained paracrine delivery. Their physicochemical characteristics such as size, shape, charge, and stability are important parameters improving bio-distribution and prolonged pharmacokinetics of encapsulated cytokines. MATERIAL AND METHODS We developed an efficient protocol for the encapsulation of two types of cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF), in liposomes that can be stored long term in the active state. RESULTS This method allows for the encapsulation of 12-13% of the total amount of cytokines and 50% of encapsulated cytokines are entrapped in liposomes of more than ≤ 600 nm in diameter. We show that in the studied cell lines the liposome-encapsulated cytokines do not affect cell morphology, proliferation or mortality. CONCLUSIONS The G-CSF or GM-CSF can be delivered to the cells in working concentrations through the encapsulation in the liposomes. Before the clinical application, the efficiency of these liposomes should be confirmed by an in vivo study.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | - Aneta Lewicka
- Laboratory of Food and Nutrition Hygiene, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Marek Saracyn
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Univ Rennes, CNRS, IGDR – Institute of Genetics and Development of Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, Rennes, France
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Skłodowska-Curie Institute-Oncology Center, Warsaw, Poland
| |
Collapse
|
13
|
Fobian SF, Cheng Z, ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics 2021; 14:26. [PMID: 35056922 PMCID: PMC8779430 DOI: 10.3390/pharmaceutics14010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, a promising and widely applied mode of oncotherapy, makes use of immune stimulants and modulators to overcome the immune dysregulation present in cancer, and leverage the host's immune capacity to eliminate tumors. Although some success has been seen in this field, toxicity and weak immune induction remain challenges. Liposomal nanosystems, previously used as targeting agents, are increasingly functioning as immunotherapeutic vehicles, with potential for delivery of contents, immune induction, and synergistic drug packaging. These systems are tailorable, multifunctional, and smart. Liposomes may deliver various immune reagents including cytokines, specific T-cell receptors, antibody fragments, and immune checkpoint inhibitors, and also present a promising platform upon which personalized medicine approaches can be built, especially with preclinical and clinical potentials of liposomes often being frustrated by inter- and intrapatient variation. In this review, we show the potential of liposomes in cancer immunotherapy, as well as the methods for synthesis and in vivo progression thereof. Both preclinical and clinical studies are included to comprehensively illuminate prospects and challenges for future research and application.
Collapse
Affiliation(s)
| | | | - Timo L. M. ten Hagen
- Laboratory Experimental Oncology (LEO), Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.-F.F.); (Z.C.)
| |
Collapse
|
14
|
Zhang J, Zhao X. Administration of fusion cytokines induces tumor regression and systemic antitumor immunity. MedComm (Beijing) 2021; 2:256-268. [PMID: 34766145 PMCID: PMC8491205 DOI: 10.1002/mco2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
It is difficult to improve the curative effects of cancer immunotherapy on solid tumors. Cytokines, as powerful immune regulators, show potential in activating host antitumor immunity. We have previously found that the administration of certain cytokine combinations induces complete tumor clearance. Here, we constructed cognate fusion cytokines and evaluated their antitumor effects in various mouse tumor models. The in situ induction of the expression of the fusion cytokine IL12IL2GMCSF caused tumor eradication, including that of the tumors at advanced stages. An immune memory against unrelated syngeneic tumors was also elicited. Furthermore, flow cytometry analysis revealed that tumor‐infiltrating CD3+ cells were greatly increased in the treated tumors and were accompanied by an elevation of CD8+/CD4+ ratios. This fusion protein exhibited superior immune activating capability compared to that of cytokine mixtures, in the experiments done in vitro. We also induced tumor regression in various immunocompetent tumor models via intratumoral injection. To improve its translational potential for clinical application, a systemically‐administered immunocytokine, IL12IL2DiaNFGMCSF, was constructed by inserting a tumor‐targeting diabody in the fusion protein. This protein also displayed good immune stimulating activities in vitro. Intravenous infusion of IL12IL2DiaNFGMCSF induced tumor‐infiltrating immune cell alterations like IL12IL2GMCSF, with moderate serum IFNγ increment. Therapeutic effects were observed in the various tumor models after systemic administration of IL12IL2DiaNFGMCSF, but with slight toxicity. These results show the feasibility of developing a versatile cancer immunotherapy.
Collapse
Affiliation(s)
| | - Xuan Zhao
- Institute for Immunology and School of Medicine Tsinghua University Beijing China
| |
Collapse
|
15
|
Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep 2021; 48:6563-6580. [PMID: 34424444 DOI: 10.1007/s11033-021-06660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings. Biomaterials and nanotechnology have introduced vehicles for drug delivery and have revolutionized the concept of the modern immunotherapeutic paradigm. Various types of nanomaterials, such as nanoparticles and, more specifically, drug-loaded nanoparticles are becoming famous for drug delivery applications because of safety, patient compliance, and smart action. Such therapeutic modalities have acknowledged regulatory endorsement and are being used in twenty-first-century clinical settings. Considering the emerging concepts and landscaping potentialities, herein, we spotlight and discuss nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach to combat cancer metastasis. The introductory part of this manuscript discusses a broad overview of cancer immunotherapy to understand better the tumor microenvironment and nanotechnology-oriented immunomodulatory strategies to cope with advanced-stage cancers. Following that, most addressable problems allied with conventional immunotherapies are given in comparison to nanoparticle-based immunotherapies. The later half of this work comprehensively highlights the requisite delivery of various bioactive entities with particular cases and examples. Finally, this review also encompasses a comprehensive concluding overview and future standpoints to strengthen a successful clinical translation of nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
16
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
18
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
20
|
Jin SM, Lee SN, Yoo YJ, Lim YT. Molecular and Macroscopic Therapeutic Systems for Cytokine‐Based Cancer Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Chemical Engineering Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
21
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|
22
|
Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Around 200 cytokines with roles in cell signaling have been identified and studied, with the vast majority belonging to the four-α-helix bundle family. These proteins exert their function by binding to specific receptors and are implicated in many diseases. The use of several cytokines as therapeutic targets has been approved by the FDA, however their rapid clearance in vivo still greatly limits their efficacy. Nano-based drug delivery systems have been widely applied in nanomedicine to develop safe, specific and controlled delivery techniques. Nevertheless, each nanomaterial has its own specifications and their suitability towards the biochemical and biophysical properties of the selected drug needs to be determined, weighing in the final choice of the ideal nano drug delivery system. Nanoparticles remain the most used vehicle for cytokine delivery, where polymeric carriers represent the vast majority of the studied systems. Liposomes and gold or silica nanoparticles are also explored and discussed in this review. Additionally, surface functionalization is of great importance to facilitate the attachment of a wide variety of molecules and modify features such as bioavailability. Since the monitoring of cytokine levels has an important role in early clinical diagnosis and for assessing therapeutic efficacy, nanotechnological advances are also valuable for nanosensor development.
Collapse
|
23
|
Poelaert BJ, Romanova S, Knoche SM, Olson MT, Sliker BH, Smits K, Dickey BL, Moffitt-Holida AEJ, Goetz BT, Khan N, Smith L, Band H, Mohs AM, Coulter DW, Bronich TK, Solheim JC. Nanoformulation of CCL21 greatly increases its effectiveness as an immunotherapy for neuroblastoma. J Control Release 2020; 327:266-283. [PMID: 32711026 DOI: 10.1016/j.jconrel.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/19/2023]
Abstract
Neuroblastoma is the most commonly diagnosed extracranial solid tumor in children. The patients with aggressive metastatic disease or refractory/relapsed neuroblastoma currently face a dismally low chance of survival. Thus, there is a great need for more effective therapies for this illness. In previous studies, we, as well as others, showed that the immune cell chemoattractant C-C motif chemokine ligand 21 (CCL21) is effective as an intratumoral therapy able to slow the growth of cancers. In this current study, we developed and tested an injectable, slow-release, uniform, and optimally loaded alginate nanoformulation of CCL21 as a means to provide prolonged intratumoral treatment. The alginate-nanoformulated CCL21, when injected intratumorally into mice bearing neuroblastoma lesions, significantly prolonged survival and decreased the tumor growth rate compared to CCL21 alone, empty nanoparticles, or buffer. Notably, we also observed complete tumor clearance and subsequent full protection against tumor rechallenge in 33% of nanoformulated CCL21-treated mice. Greater intratumoral presence of nanoformulated CCL21, compared to free CCL21, at days 1 and 2 after treatment ended was confirmed through fluorescent labeling and tracking. Nanoformulated CCL21-treated tumors exhibited a general pattern of prolonged increases in anti-tumor cytokines and relatively lower levels of pro-tumor cytokines in comparison to tumors treated with CCL21 alone or buffer only. Thus, this novel nanoformulation of CCL21 is an effective treatment for neuroblastoma, and may have potential for the delivery of CCL21 to other types of solid tumors in the future and as a slow-release delivery modality for other immunotherapies.
Collapse
Affiliation(s)
- Brittany J Poelaert
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Shelby M Knoche
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Bailee H Sliker
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Kaitlin Smits
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Brittney L Dickey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Alexandra E J Moffitt-Holida
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Nuzhat Khan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Lynette Smith
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Donald W Coulter
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Joyce C Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States of America; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
24
|
Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020; 41:970-985. [PMID: 32424240 PMCID: PMC7470849 DOI: 10.1038/s41401-020-0424-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has received extensive attention due to its ability to activate the innate or adaptive immune systems of patients to combat tumors. Despite a few clinical successes, further endeavors are still needed to tackle unresolved issues, including limited response rates, development of resistance, and immune-related toxicities. Accumulating evidence has pinpointed the tumor microenvironment (TME) as one of the major obstacles in cancer immunotherapy due to its detrimental impacts on tumor-infiltrating immune cells. Nanomedicine has been battling with the TME in the past several decades, and the experience obtained could be exploited to improve current paradigms of immunotherapy. Here, we discuss the metabolic features of the TME and its influence on different types of immune cells. The recent progress in nanoenabled cancer immunotherapy has been summarized with a highlight on the modulation of immune cells, tumor stroma, cytokines and enzymes to reverse the immunosuppressive TME.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyesun Hyun
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lian-Tao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Andrew Z Wang
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
26
|
Affiliation(s)
- Nejat K. Egilmez
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
27
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
28
|
Nanotechnology in the arena of cancer immunotherapy. Arch Pharm Res 2020; 43:58-79. [DOI: 10.1007/s12272-020-01207-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
|
29
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|
30
|
Ribeiro EB, de Marchi PGF, Honorio-França AC, França EL, Soler MAG. Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities. J Biomed Mater Res A 2019; 108:234-245. [PMID: 31587469 DOI: 10.1002/jbm.a.36808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The therapeutic administration of cytokines has been introduced aiming to modulate the immune response system, seeking for different approaches to face pathologies such as cancer, auto immune and infectious diseases. The objective of this study was to investigate the effects of a stable oil-in-water (O/W) nanoemulsion system carrying the cytokine Interferon gamma (IFN-γ) on the activity of phagocytes and MCF-7 human breast cancer cells. Nanoemulsions were prepared through ultra-homogenization, and they consisted of distilled water, triglycerides of capric acid/caprylic, sorbitan-oleate, polysorbate 80, and 1-butanol. IFN-γ (100 ng ml-1 ) was incorporated into two O/W nanoemulsion formulations, and these formulations were characterized in terms of their preliminary and accelerated physicochemical stability, rheological properties, droplet size, polydispersity and surface charge. We identified the most optimal IFN-γ nanoemulsion (IFN-γNE2), which remained stable under extreme temperature variations for 90 days, contained an average dose of 97 ng ml-1 of IFN-γ and exhibited a biocompatible pH and a relative stable rheological profile. Cell viability and intracellular Ca2+ release assays conducted showed that IFN-γNE2 reduced the cell viability of MCF-7 cells without affecting the cell viability of phagocytes. Furthermore, IFN-γNE2 was able to induce cellular activity of phagocytes as evidenced by increased intracellular Ca2+ release in these cells. Our findings on this IFN-γ nanoemulsion suggest that it can be a promising therapeutic agent for immunostimulation and cancer treatment.
Collapse
Affiliation(s)
- Elton B Ribeiro
- Institute of Physics, University of Brasilia, Brasilia-DF, Brazil.,Institute of Health Science, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Patricia G F de Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Adenilda C Honorio-França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Eduardo L França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Maria A G Soler
- Institute of Physics, University of Brasilia, Brasilia-DF, Brazil
| |
Collapse
|
31
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
32
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
33
|
Hong E, Dobrovolskaia MA. Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv Drug Deliv Rev 2019; 141:3-22. [PMID: 29339144 DOI: 10.1016/j.addr.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Cancer is a complex systemic disorder that affects many organs and tissues and arises from the altered function of multiple cellular and molecular mechanisms. One of the systems malfunctioning in cancer is the immune system. Restoring and improving the ability of the immune system to effectively recognize and eradicate cancer is the main focus of immunotherapy, a topic which has garnered recent and significant interest. The initial excitement about immunotherapy, however, has been challenged by its limited efficacy in certain patient populations and the development of adverse effects such as therapeutic resistance and autoimmunity. At the same time, a number of advances in the field of nanotechnology have sought to address the challenges faced by modern immunotherapeutics and allow these therapeutic strategies to realize their full potential. This endeavour requires an understanding of not only the immunological barriers in cancer but also the mechanisms by which modern technologies and immunotherapeutics modulate the function of the immune system. Herein, we summarize the major barriers relevant to cancer immunotherapy and review current progress in addressing these obstacles using various approaches and clinically approved therapies. We then discuss the remaining challenges and how they can be addressed by nanotechnology. We lay out translational considerations relevant to the therapies described and propose a framework for the development of next-generation nanotechnology-enabled immunotherapies.
Collapse
|
34
|
Cai J, Wang H, Wang D, Li Y. Improving Cancer Vaccine Efficiency by Nanomedicine. ACTA ACUST UNITED AC 2019; 3:e1800287. [PMID: 32627400 DOI: 10.1002/adbi.201800287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Cancer vaccines, which have been widely investigated in the past few decades, are one of the most attractive strategies for cancer immunotherapy. Through the precise delivery of antigens and adjuvants to lymphoid organs or lymphocytes via nanotechnology, innate and adaptive immunity can be boosted to prevent the growth and relapse of malignant tumors. Indeed, nanomedicine offers great opportunities to improve the efficiency of vaccines. Various functional platforms are used to deliver small molecules, peptides, nucleic acids, and even whole cell antigens to the target area of interest, achieving enhanced antitumor immunity and durable therapeutic benefits. Herein, the recent progress in cancer vaccines based on nanotechnology is summarized. Novel platforms used for delivering tumor antigens, promoting adjuvant functions, and combining other therapeutic strategies are discussed. Moreover, possible striving directions and major challenges of nanomedicine for vaccination are also reviewed.
Collapse
Affiliation(s)
- Junyu Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Dangge Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| |
Collapse
|
35
|
Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front Immunol 2018; 9:2909. [PMID: 30619273 PMCID: PMC6297829 DOI: 10.3389/fimmu.2018.02909] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah K. Maenhout
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Zhang J, Jiang H, Zhang H. In situ administration of cytokine combinations induces tumor regression in mice. EBioMedicine 2018; 37:38-46. [PMID: 30297145 PMCID: PMC6284351 DOI: 10.1016/j.ebiom.2018.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background Recent advances in cancer immunotherapy suggest a possibility of harnessing the immune system to defeat malignant tumors, but the complex immunosuppressive microenvironment confines the therapeutic benefits to a minority of patients with solid tumors. Methods A lentivector-based inducible system was established to evaluate the therapeutic effect of cytokines in established tumors. Intratumoral injection of certain cytokine combination in syngeneic tumor models was conducted to assess the therapeutic potentials. Findings Doxycycline (Dox)-induced local expression of cytokine combinations exhibites a strong synergistic effect, leading to complete regression of tumors. Notably, IL12 + GMCSF+IL2 expression induces eradication of tumors in all mice tolerated with this treatment, including those bearing large tumors of ~15 mm in diameter, and generates intensive systemic antitumor immunity. Other combinations with similar immune regulatory roles also induce tumor elimination in most of mice. Moreover, intratumoral injection of chitosan/IL12 + GMCSF+IL2 solution induces a complete response in all the tested syngeneic tumor models, regardless of various tumor immunograms. Interpretation Administration of certain cytokine combinations in tumor microenvironment induces a strong synergistic antitumor response, including the recruitment of large amount of immune cells and the generation of systemic antitumor immunity. It provides a versatile method for the immunotherapy of intractable malignant neoplasms. Fund There is no external funding supporting this study.
Collapse
Affiliation(s)
- Jinyu Zhang
- Mianyi Biotech Corporation, Chongqing 401332, China.
| | - Haochen Jiang
- Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyun Zhang
- Beijing Chaoyang District Animal Disease Control Center, Beijing 100018, China
| |
Collapse
|
37
|
Hameed S, Bhattarai P, Dai Z. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. SCIENCE CHINA-LIFE SCIENCES 2018; 61:380-391. [PMID: 29607461 DOI: 10.1007/s11427-017-9256-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment (TME) comprising cellular and non-cellular components is a major source of cancer hallmarks. Notably, angiogenesis responsible for normal physiological remodeling process can otherwise harness vessel abnormalities during tumorigenesis eliciting severe therapeutic inefficiency. Currently, FDA approved antiangiogenic drugs have only shown modest clinical success owing to tumor hypoxia, antiangiogenic therapeutic resistance, and limited knowledge in understanding TME. In order to overcome these limitations, targeting angiogenesis combined with immunosuppressive TME could offer potential therapeutic opportunities. Indeed, these therapeutic approaches can be further revisited with the advent of nanotechnology that can target the key cellular components of TME and tumor cells more precisely. Synergetic targeting without eliciting systemic toxicity achieved by integration of antiangiogenic and immunotherapy in a single nanoplatform is vital for therapeutic success. In this review, we will discuss the most promising nanotechnological advancements oriented to modulate the immunosuppressive TME in association with antiangiogenic therapy that has gained immense popularity in cancer treatment.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
38
|
Abstract
Cancer immunotherapy is a powerful, growing treatment approach to cancer that can be combined with chemotherapy, radiotherapy, and oncosurgery. Modulating the immune system to enhance anticancer response by several strategies has yielded improved cancer survival. Despite this progress, the success rate for immunotherapy has been below expectations due to unpredictable efficacy and off-target side effects from systemic dosing. Nanotechnology offers numerous different materials and targeting properties to overcome many of these challenges in immunotherapy. In this chapter, we review current immunotherapy and its challenges as well as the latest nanotechnology applications in cancer immunotherapy.
Collapse
|
39
|
Tiet P, Berlin JM. Exploiting homing abilities of cell carriers: Targeted delivery of nanoparticles for cancer therapy. Biochem Pharmacol 2017; 145:18-26. [PMID: 28941937 DOI: 10.1016/j.bcp.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Off target toxicities is one of the hallmarks of conventional chemotherapy as only a tiny percentage of the injected dose actually reaches the tumor(s). Numerous strategies have been employed in attempts to achieve targeted therapeutic delivery to tumors. One strategy that has received immense attention has been the packaging of these chemotherapeutics into nanoparticles and relying on the enhanced permeation and retention (EPR) effect for targeting. However, few, if any, nanoformulations have been used clinically that actually show enhanced drug delivery to tumors. There are a number of biological barriers to successful targeted delivery and nanoparticles large enough to theoretically benefit from the EPR effect predominantly accumulate in the liver and spleen after systemic administration. Nanoparticles that do reach the tumor will experience challenges such as difficulty penetrating deeply into tumors and rapid uptake by macrophages rather than tumor cells. In order to overcome this, researchers are investigating a new drug delivery system by utilizing T-cells, macrophages, or stem cells (Mesenchymal/Neural Stem Cells) and loading them with therapeutic nanoparticles for targeted delivery due to either their organotropic or tumor tropic migratory capabilities. By exploiting the migration and motility of these particular cells, researchers have delivered drug-loaded nanoparticles as well as nanoparticles for use in thermal ablation and magnetic field treatments, with the goals of decreasing off-target toxicities and increasing intratumoral distribution of the therapeutic payload. This is an inherently complex drug delivery system that requires optimization of multiple parameters - including cell type, payload, cell loading, release rate from nanoparticle and more - for success. Here we review recent advances and upcoming challenges for the field.
Collapse
Affiliation(s)
- Pamela Tiet
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 11500 East Duarte Road, Duarte, CA 91010, United States.
| | - Jacob M Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 11500 East Duarte Road, Duarte, CA 91010, United States.
| |
Collapse
|
40
|
Grimaldi AM, Incoronato M, Salvatore M, Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 2017; 12:2349-2365. [PMID: 28868980 DOI: 10.2217/nnm-2017-0208] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although recent successes in clinical trials are strengthening research focused on cancer immunology, the poor immunogenicity and off-target side effects of immunotherapeutics remain major challenges in translating these promising approaches to clinically feasible therapies in the treatment of a large range of tumors. Nanotechnology offers target-based approaches, which have shown significant improvements in the rapidly advancing field of cancer immunotherapy. Here, we first discuss the chemical and physical features of nanoparticulate systems that can be tuned to address the anticancer immune response, and then review recent, key examples of the exploited strategies, ranging from nanovaccines to NPs revising the tumor immunosuppressive microenvironment, up to immunotherapeutic multimodal NPs. Finally, the paper concludes by identifying the promising and outstanding challenges the field of emerging nanotechnologies is facing for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- IRCCS SDN, Via Gianturco 113, 80143, Naples, Italy.,Department of Motor Sciences & Healthiness, University of Naples Parthenope, via Medina 40, 80133, Naples, Italy
| |
Collapse
|
41
|
Marino V, Borsatto A, Vocke F, Koch KW, Dell'Orco D. CaF 2 nanoparticles as surface carriers of GCAP1, a calcium sensor protein involved in retinal dystrophies. NANOSCALE 2017; 9:11773-11784. [PMID: 28785759 DOI: 10.1039/c7nr03288a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CaF2-based nanoparticles (NP) are promising biocompatible tools for nanomedicine applications. The structure of the NP crystal lattice allows for specific interactions with Ca2+-binding proteins through their EF-hand cation binding motifs. Here we investigated the interaction of 23 nm citrate-coated CaF2 NP with a calcium sensor protein GCAP1 that is normally expressed in photoreceptor cells and involved in the regulation of the early steps of vision. Protein-NP interactions were thoroughly investigated for the wild type (WT) GCAP1 as well as for a variant carrying the Asp 100 to Glu mutation (D100E), which prevents the binding of Ca2+ to the highest affinity site and is linked to cone dystrophy. Circular dichroism and fluorescence spectroscopy showed that protein structure and Ca2+-sensing capability are conserved for both variants upon interaction with the NP surface, although the interaction mode depends on the specific occupation of Ca2+-binding sites. NP binding stabilizes the structure of the bound GCAP1 and occurs with nanomolar affinity, as probed by isothermal titration calorimetry. Surface plasmon resonance revealed a fully reversible binding compatible with physiologically relevant kinetics of protein release whereas biochemical assays indicated a residual capability for NP-dissociated GCAP1 to regulate the target retinal guanylate cyclase. Our study constitutes a proof of concept that CaF2 NP could be optimized to serve as biologically compatible carriers of high amounts of functional GCAP1 in photoreceptors affected by retinal dystrophies.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Alberto Borsatto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
42
|
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev 2017; 114:193-205. [PMID: 28449872 DOI: 10.1016/j.addr.2017.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Macrophages are versatile and plastic effector cells of the immune system, and contribute to diverse immune functions including pathogen or apoptotic cell removal, inflammatory activation and resolution, and tissue healing. Macrophages function as signaling regulators and amplifiers, and influencing their activity is a powerful approach for controlling inflammation or inducing a wound-healing response in regenerative medicine. This review discusses biomaterials-based approaches for altering macrophage activity, approaches for targeting drugs to macrophages, and approaches for delivering macrophages themselves as a therapeutic intervention.
Collapse
|
43
|
Qiu H, Min Y, Rodgers Z, Zhang L, Wang AZ. Nanomedicine approaches to improve cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28296286 DOI: 10.1002/wnan.1456] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/28/2016] [Accepted: 12/17/2016] [Indexed: 01/10/2023]
Abstract
Significant advances have been made in the field of cancer immunotherapy by orchestrating the body's immune system to eradicate cancer cells. However, safety and efficacy concerns stemming from the systemic delivery of immunomodulatory compounds limits cancer immunotherapies expansion and application. In this context, nanotechnology presents a number of advantages, such as targeted delivery to immune cells, enhanced clinical outcomes, and reduced adverse events, which may aid in the delivery of cancer vaccines and immunomodulatory agents. With this in mind, a diverse range of nanomaterials with different physicochemical characteristics have been developed to stimulate the immune system and battle cancer. In this review, we will focus on some recent developments and the potential advantages of utilizing nanotechnology within the field of cancer immunotherapy. WIREs Nanomed Nanobiotechnol 2017, 9:e1456. doi: 10.1002/wnan.1456 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hui Qiu
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Zach Rodgers
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
44
|
Shukla S, Myers JT, Woods SE, Gong X, Czapar AE, Commandeur U, Huang AY, Levine AD, Steinmetz NF. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials 2017; 121:15-27. [PMID: 28063980 DOI: 10.1016/j.biomaterials.2016.12.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/18/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2+ malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarah E Woods
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjian Gong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anna E Czapar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ulrich Commandeur
- Department of Molecular Biotechnology, RWTH-Aachen University, 52064 Aachen, Germany
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan D Levine
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Siegler EL, Kim YJ, Wang P. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jocit.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Vanitha S, Chaubey N, Ghosh SS, Sanpui P. Recombinant human granulocyte macrophage colony stimulating factor (hGM-CSF): Possibility of nanoparticle-mediated delivery in cancer immunotherapy. Bioengineered 2016; 8:120-123. [PMID: 27459024 DOI: 10.1080/21655979.2016.1212136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most of the cancer treatment strategies from chemotherapy to radiotherapy render cancer cells apoptotic and these apoptotic cancer cells accumulate at the tumor sites. The accumulation of apoptotic cancer cells often result in inflammation and autoimmune responses causing serious health implications. Macrophages, which are effective immune combatants, can help in the clearance of these deleterious occupants. Granulocyte macrophage colony stimulating factor (GM-CSF) is a key cytokine, modulator of immune system and responsible for growth and differentiation of granulocytes and macrophages. In this regard, supply of recombinant GM-CSF can enhance the capability of macrophages for clearance of apoptotic cancer cells. However, delivery of the cytokine in vivo can suffer from certain disadvantages like faster depletion, less stability and low targeting efficiency. We believe that the stability and sustained release of GM-CSF can be improved through its encapsulation inside appropriately designed nanoparticles.
Collapse
Affiliation(s)
- Selvarajan Vanitha
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Nidhi Chaubey
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Siddhartha S Ghosh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India.,b Centre for Nanotechnology, Indian Institute of Technology Guwahati , Assam , India
| | - Pallab Sanpui
- b Centre for Nanotechnology, Indian Institute of Technology Guwahati , Assam , India
| |
Collapse
|
47
|
Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem 2016; 8:1317-30. [PMID: 27357616 DOI: 10.4155/fmc-2016-0072] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and while successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is, therefore, a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them.
Collapse
|
48
|
Abstract
Founded on the growing insight into the complex cancer-immune system interactions, adjuvant immunotherapies are rapidly emerging and being adapted for the treatment of various human malignancies. Immune checkpoint inhibitors, for example, have already shown clinical success. Nevertheless, many approaches are not optimized, require frequent administration, are associated with systemic toxicities and only show modest efficacy as monotherapies. Nanotechnology can potentially enhance the efficacy of such immunotherapies by improving the delivery, retention and release of immunostimulatory agents and biologicals in targeted cell populations and tissues. This review presents the current status and emerging trends in such nanotechnology-based cancer immunotherapies including the role of nanoparticles as carriers of immunomodulators, nanoparticles-based cancer vaccines, and depots for sustained immunostimulation. Also highlighted are key translational challenges and opportunities in this rapidly growing field.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of Biomedical Engineering, Case
Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case
Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve
University, Cleveland, OH 44106, USA
- Department of Materials Science and
Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and
Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
49
|
Abstract
The immune system is an incredibly complex biological network that plays a significant role in almost all disease pathogenesis. With an increased understanding of how this vital system operates, there has been a great emphasis on leveraging, manipulating, and/or supplementing endogenous immunity to better prevent or treat different disease states. More recently, the advent of nanotechnology has ushered in a plethora of new nanoparticle-based platforms that can be used to improve existing immunomodulation modalities. As the ability to engineer at the nanoscale becomes increasingly sophisticated, nanoparticles can be finely tuned to effect the desired immune responses, leading to exciting new avenues for addressing pressing issues in public health. In this review, we give an overview of the different areas in which nanoparticle technology has been applied toward modulating the immune system and highlight the recent advances within each.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093;
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
50
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|