1
|
Wu Y, Wu Q, Fan X, Yang L, Zou L, Liu Q, Shi G, Yang X, Tang K. Study on chitosan/gelatin hydrogels containing ceria nanoparticles for promoting the healing of diabetic wound. J Biomed Mater Res A 2024; 112:1532-1547. [PMID: 38501727 DOI: 10.1002/jbm.a.37701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Chronic inflammation at diabetic wound sites results in the uncontrolled accumulation of pro-inflammatory factors and reactive oxygen species (ROS), which impedes cell proliferation and delays wound healing. To promote the healing of diabetic wounds, chitosan/gelatin hydrogels containing ceria nanoparticles (CNPs) of various sizes were created in the current study. CNPs' efficacy in removingO 2 • - , •OH, and H2O2 was demonstrated, and the scavenging ability of CNPs of varying sizes was compared. The in vitro experiments demonstrated that hydrogels containing CNPs could effectively protect cells from ROS-induced damage and facilitate mouse fibroblast migration. Furthermore, during the treatment of diabetic wounds in vivo, hydrogels containing CNPs exhibited anti-inflammatory activity and could reduce the expression of the pro-inflammatory factors TNF-α (above 30%), IL-6 (above 90%), and IL-1β (above 80%), and effectively promote wound closure (above 80%) by inducing re-epithelialization, collagen deposition, and angiogenesis. In addition, the biological properties and therapeutic effects of hydrogels containing CNPs of various sizes were compared and discussed. The finding revealed that hydrogels with 4 nm CNPs exhibited more significant biological properties and had implications for diabetic wound treatment.
Collapse
Affiliation(s)
- Yonghui Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Qianqian Wu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Xialian Fan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Qingshan Liu
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Guangyou Shi
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Chen S, Wang Y, Bao S, Yao L, Fu X, Yu Y, Lyu H, Pang H, Guo S, Zhang H, Zhou P, Zhou Y. Cerium oxide nanoparticles in wound care: a review of mechanisms and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1404651. [PMID: 38832127 PMCID: PMC11145637 DOI: 10.3389/fbioe.2024.1404651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.
Collapse
Affiliation(s)
- Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
| | - Xiao Fu
- Department of Pediatrics, West China Second Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Yang Yu
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Hongbin Lyu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- Department of Psychiatric, The Zigong Affiliated Hospital of Southwest Medical University, Zigong, China
- Zigong Psychiatric Research Center, Zigong, China
| |
Collapse
|
3
|
Brandão Da Silva Assis M, Nestal De Moraes G, De Souza KR. Cerium oxide nanoparticles: Chemical properties, biological effects and potential therapeutic opportunities (Review). Biomed Rep 2024; 20:48. [PMID: 38357238 PMCID: PMC10865297 DOI: 10.3892/br.2024.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
The chemistry of pure cerium oxide (CeO2-x) nanoparticles has been widely studied since the 1970s, especially for chemical catalysis. CeO2-x nanoparticles have been included in an important class of industrial metal oxide nanoparticles and have been attributed a range of wide applications, such as ultraviolet absorbers, gas sensors, polishing agents, cosmetics, consumer products, high-tech devices and fuel cell conductors. Despite these early applications in the field of chemistry, the biological effects of CeO2-x nanoparticles were only explored in the 2000s. Since then, CeO2-x nanoparticles have gained a spot in research related to various diseases, especially the ones in which oxidative stress plays a part. Due to an innate oxidation state variation on their surface, CeO2-x nanoparticles have exhibited redox activities in diseases, such as cancer, acting either as an oxidizing agent, or as an antioxidant. In biological models, CeO2-x nanoparticles have been shown to modulate cancer cell viability and, more recently, cell death pathways. However, a deeper understanding on how the chemical structure of CeO2-x nanoparticles (including nanoparticle size, shape, suspension, agglomeration in the medium used, pH of the medium, type of synthesis and crystallite size) influences the cellular effects observed remains to be elucidated. In the present review, the chemistry of CeO2-x nanoparticles and their impact on biological models and modulation of cell signalling, particularly focusing on oxidative and cell death pathways, were investigated. The deeper understanding of the chemical activity of CeO2-x nanoparticles may provide the rationale for further biomedical applications towards disease treatment and drug delivery purposes.
Collapse
Affiliation(s)
- Mariane Brandão Da Silva Assis
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
| | - Gabriela Nestal De Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21 941 599, Brazil
| | - Kátia Regina De Souza
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
| |
Collapse
|
4
|
Saha S, Sachivkina N, Karamyan A, Novikova E, Chubenko T. Advances in Nrf2 Signaling Pathway by Targeted Nanostructured-Based Drug Delivery Systems. Biomedicines 2024; 12:403. [PMID: 38398005 PMCID: PMC10887079 DOI: 10.3390/biomedicines12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nanotechnology has gained significant interest in various applications, including sensors and therapeutic agents for targeted disease sites. Several pathological consequences, including cancer, Alzheimer's disease, autoimmune diseases, and many others, are mostly driven by inflammation and Nrf2, and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), plays a crucial role in maintaining redox status, the expression of antioxidant genes, and the inflammatory response. Interestingly, tuning the Nrf2/antioxidant response element (ARE) system can affect immune-metabolic mechanisms. Although many phytochemicals and synthetic drugs exhibited potential therapeutic activities, poor aqueous solubility, low bioavailability, poor tissue penetration, and, consequently, poor specific drug targeting, limit their practical use in clinical applications. Also, the therapeutic use of Nrf2 modulators is hampered in clinical applications by the absence of efficient formulation techniques. Therefore, we should explore the engineering of nanotechnology to modulate the inflammatory response via the Nrf2 signaling pathway. This review will initially examine the role of the Nrf2 signaling pathway in inflammation and oxidative stress-related pathologies. Subsequently, we will also review how custom-designed nanoscale materials encapsulating the Nrf2 activators can interact with biological systems and how this interaction can impact the Nrf2 signaling pathway and its potential outcomes, emphasizing inflammation.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Arfenya Karamyan
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Ekaterina Novikova
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Tamara Chubenko
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| |
Collapse
|
5
|
Rodrigues DBB, Punaro GR, Lima DY, Rodrigues AM, Pugliero S, Higa EMS. Cupuaçu extract protects the kidneys of diabetic rats by modulating Nrf2/NF-κB p65 and iNOS. AN ACAD BRAS CIENC 2023; 95:e20220927. [PMID: 37493696 DOI: 10.1590/0001-3765202320220927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 07/27/2023] Open
Abstract
Diabetes is characterized by increased levels of oxidative stress. Its suggested that extract of cupuaçu could improve the antioxidant system in diabetes. The aim was to evaluate the effect of EC on Nrf2/NF-κB p65 in normal and diabetic rats. Male, adult Wistar rats (9-week-old) were distributed in 4 groups: control (CTL) and diabetic (DM) who received water; CTLEC and DMEC who received 1 mL/day of EC (1 g/mL), via gavage for 8 consecutive weeks. The diabetes was inducted with a single intravenous dose of 45 mg/kg streptozotocin. Glycemia and body weight were measured at the beginning and end of the protocol, and the renal tissue was analyzed by Western blot for SOD-1, SOD-2, CAT, GSSG, Nrf2, NF-κB p65, iNOS and 3-NT. Glycemia was reduced in DMEC vs. DM after 8 weeks of EC treatment. There was no difference in body weight of DMEC vs. DM; however, DMEC vs. DM presented increased levels of CAT and Nrf2, with a significant reduction of NF-κB p65, iNOS and 3-NT. Therefore, we suggest that EC could be utilized as a complementary therapy to ameliorate the antioxidant profile via Nrf2 and to delay the evolution of diabetic complications in renal tissue by inflammatory pathway inhibition.
Collapse
Affiliation(s)
- Daniela B B Rodrigues
- Universidade Federal de São Paulo, Nefrologia, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Medicina Translacional, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| | - Giovana R Punaro
- Universidade Federal de São Paulo, Nefrologia, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| | - Deyse Y Lima
- Universidade Federal de São Paulo, Nefrologia, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| | - Adelson M Rodrigues
- Universidade Federal de São Paulo, Medicina Translacional, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| | - Samuel Pugliero
- Universidade Federal de São Paulo, Nefrologia, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Medicina Translacional, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| | - Elisa M S Higa
- Universidade Federal de São Paulo, Nefrologia, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Medicina Translacional, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Divisão de Emergência e Urgência, Rua Pedro de Toledo, #763, 14º Andar, 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
6
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
7
|
Khurana A, Saifi MA, Godugu C. Nanoceria Ameliorates Fibrosis, Inflammation, and Cellular Stress in Experimental Chronic Pancreatitis. ACS Biomater Sci Eng 2023; 9:1030-1042. [PMID: 36695711 DOI: 10.1021/acsbiomaterials.2c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic pancreatitis (CP) is an inflammatory, irreversible disorder of the pancreas which leads to organ atrophy and poses high risk for the development of pancreatic cancer. Given the lack of clinically approved therapy, we explored the pharmacological potential of the nanoparticles of cerium oxide (nanoceria, NC) against animal models of CP. Nanoceria ameliorated the features of CP as evident from biochemical parameters. It inhibited the inflammatory cytokines and chemokines by abrogation of macrophage signaling. Further, NC attenuated the fibrogenesis by inhibition of TGF-β signaling, endoplasmic reticulum stress, and epithelial-to-mesenchymal transition. Our findings reveal the anti-CP potential of the novel redox regenerative nanoceria against two models of CP.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| | - Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| |
Collapse
|
8
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
9
|
Badia A, Duarri A, Salas A, Rosell J, Ramis J, Gusta MF, Casals E, Zapata MA, Puntes V, García-Arumí J. Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS NANO 2023; 17:910-926. [PMID: 36596252 DOI: 10.1021/acsnano.2c05447] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increased oxidative stress in the retina and retinal pigment epithelium is implicated in age-related macular degeneration (AMD). Antioxidant cerium oxide nanoparticles (CeO2NPs) have been used to treat degenerative retinal pathologies in animal models, although their delivery route is not ideal for chronic patient treatment. In this work, we prepared a formulation for ocular topical delivery that contains small (3 nm), nonaggregated biocompatible CeO2NPs. In vitro results indicate the biocompatible and protective character of the CeO2NPs, reducing oxidative stress in ARPE19 cells and inhibiting neovascularization related to pathological angiogenesis in both HUVEC and in in vitro models of neovascular growth. In the in vivo experiments, we observed the capacity of CeO2NPs to reach the retina after topical delivery and a subsequent reversion of the altered retinal transcriptome of the retinal degenerative mouse model DKOrd8 toward that of healthy control mice, together with signs of decreased inflammation and arrest of degeneration. Furthermore, CeO2NP eye drops' treatment reduced laser-induced choroidal neovascular lesions in mice by lowering VEGF and increasing PEDF levels. These results indicate that CeO2NP eye drops are a beneficial antioxidant and neuroprotective treatment for both dry and wet forms of AMD disease.
Collapse
Affiliation(s)
- Anna Badia
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Jordi Rosell
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Joana Ramis
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Muriel Freixanet Gusta
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Miguel A Zapata
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| | - Victor Puntes
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, 08010,Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| |
Collapse
|
10
|
Godugu C, Khurana A, Saifi MA. Rare earth cerium oxide nanoparticles attenuated liver fibrosis in bile duct ligation mice model. J Trace Elem Med Biol 2023; 75:127102. [PMID: 36423438 DOI: 10.1016/j.jtemb.2022.127102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.
Collapse
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
12
|
Wang M, He H, Liu D, Ma M, Zhang Y. Preparation, Characterization and Multiple Biological Properties of Peptide-Modified Cerium Oxide Nanoparticles. Biomolecules 2022; 12:biom12091277. [PMID: 36139116 PMCID: PMC9496055 DOI: 10.3390/biom12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Although cerium oxide nanoparticles are attracting much attention in the biomedical field due to their unique physicochemical and biological functions, the cerium oxide nanoparticles greatly suffer from several unmet physicochemical challenges, including loss of enzymatic activity during the storage, non-specific cellular uptake, off-target toxicities, etc. Herein, in order to improve the targeting property of cerium oxide nanoparticles, we first modified cerium oxide nanoparticles (CeO2) with polyacrylic acid (PAA) and then conjugated with an endothelium-targeting peptide glycine-arginine-aspartic acid (cRGD) to construct CeO2@PAA@RGD. The physiochemical characterization results showed that the surface modifications did not impact the intrinsic enzymatic properties of CeO2, including catalase-like (CAT) and superoxide dismutase-like (SOD) activities. Moreover, the cellular assay data showed that CeO2@PAA@RGD exhibited a good biocompatibility and a higher cellular uptake due to the presence of RGD targeting peptide on its surface. CeO2@PAA@RGD effectively scavenged reactive oxygen species (ROS) to protect cells from oxidative-stress-induced damage. Additionally, it was found that the CeO2@PAA@RGD converted the phenotype of macrophages from proinflammatory (M1) to anti-inflammatory (M2) phenotype, inhibiting the occurrence of inflammation. Furthermore, the CeO2@PAA@RGD also promoted endothelial cell-mediated migration and angiogenesis. Collectively, our results successfully demonstrate the promising application of CeO2@PAA@RGD in the future biomedical field.
Collapse
Affiliation(s)
| | | | | | - Ming Ma
- Correspondence: (M.M.); (Y.Z.)
| | | |
Collapse
|
13
|
Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. NANOMATERIALS 2022; 12:nano12122117. [PMID: 35745455 PMCID: PMC9227416 DOI: 10.3390/nano12122117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Green synthesized cerium oxide nanoparticles (GS-CeO2 NPs) have a unique size, shape, and biofunctional properties and are decorated with potential biocompatible agents to perform various therapeutic actions, such as antimicrobial, anticancer, antidiabetic, and antioxidant effects and drug delivery, by acquiring various mechanistic approaches at the molecular level. In this review article, we provide a detailed overview of some of these critical mechanisms, including DNA fragmentation, disruption of the electron transport chain, degradation of chromosomal assemblage, mitochondrial damage, inhibition of ATP synthase activity, inhibition of enzyme catalytic sites, disorganization, disruption, and lipid peroxidation of the cell membrane, and inhibition of various cellular pathways. This review article also provides up-to-date information about the future applications of GS-CeONPs to make breakthroughs in medical sectors for the advancement and precision of medicine and to effectively inform the disease diagnosis and treatment strategies.
Collapse
|
14
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
15
|
Allawadhi P, Khurana A, Sayed N, Godugu C, Vohora D. Ameliorative effect of cerium oxide nanoparticles against Freund’s complete adjuvant-induced arthritis. Nanomedicine (Lond) 2022; 17:383-404. [DOI: 10.2217/nnm-2021-0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To assess the mechanistic effects of cerium oxide nanoparticles (CONPs) on Freund’s complete adjuvant (FCA)-induced rheumatoid arthritis in rats. Methods: CONPs were characterized and evaluated in vitro (RAW 264.7 macrophages) and in vivo (FCA-induced rheumatoid arthritis model). Results: In vitro treatment with CONPs significantly reduced lipopolysaccharide-induced oxidative stress (as evident from dichlorodihydrofluorescein diacetate staining), diminished mitochondrial stress (as observed with tetraethylbenzimidazolylcarbocyanine iodide staining) and reduced superoxide radicals. In vivo, CONPs exhibited anti-rheumatoid arthritis activity, as evident from results of paw volume, x-ray, clinical scoring, levels of cytokines (IL-17, IL-1β, TNF-α and TGF-β1) and histology. Conclusion: We provide preclinical proof that CONPs may be a novel futuristic nanoparticle-based approach for therapy of rheumatoid arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
16
|
Co-treatment of Nimbolide augmented the anti-arthritic effects of methotrexate while protecting against organ toxicities. Life Sci 2022; 295:120372. [PMID: 35143824 DOI: 10.1016/j.lfs.2022.120372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Prolonged exposure to the pharmacological doses of disease-modifying anti-rheumatic drugs (DMARDs) often results in major organ toxicities resulting in poor patient compliance. Methotrexate (MTX) is one of the commonly prescribed DMARDs for the treatment of arthritis, which results in vital organ dysfunction. To retain the anti-arthritic activity of MTX with the reduction in toxicities, combination therapies are warranted. Nimbolide (NMB) is a potent anticancer, anti-inflammatory and anti-fibrotic agent whose potential has been demonstrated in various pre-clinical models. Monoarthritis was developed with Complete Freund's Adjuvant in the knees of Wistar rats and treatment was given with either NMB (3 mg/kg/day) or MTX (2 mg/kg/week) alone or combination therapy (NMB + MTX). The anti-arthritic effects were evaluated by arthritic scoring, radiological imaging, synovial tissue proteins analysis, and histopathological staining. While hepato-renal toxicity was assessed in serum by evaluating the kidney and liver functional parameters, in tissues by oxidative-nitrosative stress markers, and pro-inflammatory cytokines levels. Histopathological analysis was performed to study the extent of tissue damage. Molecular studies like immunoblotting and immunohistochemistry were performed to understand the effect of combination therapy. We thereby report that monotherapy with either NMB or MTX exhibited significant anti-arthritic effects, while combination therapy resulted in augmented anti-arthritic effects with significant reduction in hepato-renal toxicity produced by MTX probably through anti-inflammatory and anti-oxidant effects. Therefore, our proposed combination of NMB and MTX may serve as a potential strategy for the effective management of arthritis.
Collapse
|
17
|
Attia N, Rostom DM, Mashal M. The use of cerium oxide nanoparticles in liver disorders: A double-sided coin? Basic Clin Pharmacol Toxicol 2021; 130:349-363. [PMID: 34902883 DOI: 10.1111/bcpt.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Being recognized as the first antioxidant nanoparticles (NPs) proposed for medicine, cerium oxide nanoparticles (CeO2 NPs) have recently gained tremendous attention for their vast biomedical applications. Nevertheless, inconsistent reports of either medical benefits or toxicity have created an atmosphere of uncertainty hindering their clinical utilization. Like other nanoparticles advocated as a promising protective/therapeutic option, CeO2 NPs are sometimes questioned as a health threat. As CeO2 NPs tend to accumulate in the liver after intravenous injection, liver is known to represent the key tissue to test for their therapeutic/toxicological effects. However, more research evidence is still needed before any conclusions can be elicited about the mechanisms by which CeO2 NPs could be harmful or protective/therapeutic to the liver tissue. A proper understanding of such discrepancies is warranted to plan for further modifications to mitigate any side effects. Therefore, in this MiniReview, we tried to demonstrate the two sides of the same coin, CeO2 NPs, within the liver context. As well, we highlighted a few promising strategies by which the negatives of CeO2 NPs could be diminished while enhancing all the positives.
Collapse
Affiliation(s)
- N Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| | - D M Rostom
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - M Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| |
Collapse
|
18
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
19
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
20
|
The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. NANOMATERIALS 2021; 11:nano11112991. [PMID: 34835755 PMCID: PMC8621168 DOI: 10.3390/nano11112991] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
The immune system contributes to maintaining the body’s functional integrity through its two main functions: recognizing and destroying foreign external agents (invading microorganisms) and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this context, it is expected that nanostructured materials in the size range of proteins, protein aggregates, and viruses with different molecular coatings can engage in a sophisticated interaction with the immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses. This paper describes the different modes of interaction between nanoparticles, especially inorganic nanoparticles, and the immune system, especially the innate immune system. This perspective should help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.
Collapse
|
21
|
Yang X, You J, Wei Y, Li H, Gao L, Guo Q, Huang Y, Gong C, Yi C. Emerging nanomaterials applied for tackling the COVID-19 cytokine storm. J Mater Chem B 2021; 9:8185-8201. [PMID: 34528037 DOI: 10.1039/d1tb01446c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the global outbreak of coronavirus disease 2019 (COVID-19), a hyperinflammatory state called the cytokine storm was recognized as a major contributor to multiple organ failure and mortality. However, to date, the diagnosis and treatment of the cytokine storm remain major challenges for the clinical prognosis of COVID-19. In this review, we outline various nanomaterial-based strategies for preventing the COVID-19 cytokine storm. We highlight the contribution of nanomaterials to directly inhibit cytokine release. We then discuss how nanomaterials can be used to deliver anti-inflammatory drugs to calm the cytokine storm. Nanomaterials also play crucial roles in diagnostics. Nanomaterial-based biosensors with improved sensitivity and specificity can be used to detect cytokines. In summary, emerging nanomaterials offer platforms and tools for the detection and treatment of the COVID-19 cytokine storm and future pandemic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
Solgi T, Amiri I, Asl SS, Saidijam M, Seresht BM, Artimani T. Antiapoptotic and antioxidative effects of cerium oxide nanoparticles on the testicular tissues of streptozotocin-induced diabetic rats: An experimental study. Int J Reprod Biomed 2021; 19:589-598. [PMID: 34458667 PMCID: PMC8387707 DOI: 10.18502/ijrm.v19i7.9465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background Cerium dioxide nanoparticles (CNPs) due to the antidiabetic and antioxidant activities are proposed for the treatment of oxidative stress-associated diseases. Objective To examine the impact of CNPs on hyperglycemia-induced apoptosis and oxidative stress in the testis of diabetic rats. Materials and Methods Twenty-four male rats were divided into four groups (n = 6/each) as diabetic rats, CNPs group, diabetic + CNPs rats, and controls. The control group was fed only mouse food and water. Rats became diabetic through receiving streptozotocin (STZ) 60 mg/kg. CNPs were given to the rats at a dose of 30 mg/kg daily for 2 wk. Malondialdehyde and total thiol group (TTG) levels were measured using spectrofluorometer. Expression of b-cell lymphoma protein 2-associated X protein (BAX) and b-cell lymphoma protein 2 (Bcl-2) were investigated using quantitative real-time polymerase chain reaction. Western blot analysis was used to examine caspase 3 protein levels. Results The content of malondialdehyde significantly increased in the STZ-diabetic rats, while TTG levels demonstrated a remarkable decrease. Caspase-3, BAX, and BAX/Bcl-2 mRNA ratio raised significantly in the STZ-diabetic rats. On the other hand, Bcl-2 mRNA levels reduced in the testis of diabetic rats (p = 0.006). Intervention with CNPs caused a substantial increase in the TTG levels, while the malondialdehyde contents, caspase-3, BAX levels, as well as BAX/Bcl-2 mRNA ratio were considerably decreased following CNPs treatment. Administration of CNPs increased mRNA levels of Bcl-2 (p < 0.0001). Conclusion CNPs treatment attenuates testicular apoptosis and oxidative stress induced by diabetes. This nanoparticle might be suggested for the treatment of diabetes-associated reproductive disorders.
Collapse
Affiliation(s)
- Torab Solgi
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Banafsheh Mirzaei Seresht
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Ali SA, Saifi MA, Godugu C, Talla V. Silibinin alleviates silica-induced pulmonary fibrosis: Potential role in modulating inflammation and epithelial-mesenchymal transition. Phytother Res 2021; 35:5290-5304. [PMID: 34250649 DOI: 10.1002/ptr.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis (PF) is a devastating interstitial lung disease resulting from indefinite causes with very few limited, those too ineffective therapeutic options. Earlier evidence reported inflammation and epithelial-mesenchymal transition (EMT) are the major threats in PF. The present study was aimed to examine the anti-fibrotic activity of silibinin (SB) in PF. PF was induced by administering oropharyngeal 1.5 mg/mice silica on day 1, followed by treatment with and without oral SB for 14 days. Lung injury was assessed by x-ray analysis on day 14 and all the animals were sacrificed on day 15. The results showed that silica remarkably altered the histoarchitecture and induced the expression of inflammatory components in BALF and pulmonary tissue. Immunoblotting investigation quantified the expression of TGF-β, p-smad2/3, collagen-I, fibronectin, and α-SMA in the pulmonary tissue. To this end, treatment with SB alleviated inflammatory components, including IL-1β, IL-6, and TNF-α in the fibrotic tissue. Moreover, SB harnessed the tissue architecture, improved diffusive scattering of x-ray signals, and modulated epithelial-mesenchymal phenotypic alterations, including TGF-β, p-smad2/3, and collagen-I. Altogether, the significant reduction of inflammatory signaling, collagen deposition, and epithelial-mesenchymal transdifferentiation by SB suggested that it could be used as a potential therapeutic candidate to treat pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India.,Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| |
Collapse
|
25
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Chai WF, Tang KS. Protective potential of cerium oxide nanoparticles in diabetes mellitus. J Trace Elem Med Biol 2021; 66:126742. [PMID: 33773280 DOI: 10.1016/j.jtemb.2021.126742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable metabolic disease which is closely related to excessive oxidative stress after constant exposure to high plasma glucose. Although the current antidiabetic medications are effective in lowering blood glucose, these medications do not prevent or reverse the disease progression. Thus, there is a crucial need to explore new therapeutic interventions that could address this shortcoming. As cerium oxide nanoparticles (CONPs) possess antioxidant property, this agent may be used as a treatment option for the management of DM. PURPOSE This review aims to provide a critical evaluation of the pharmacological and antidiabetic effects of CONPs in cell and animal models. The roles of CONPs in attenuating DM complications are also presented in this report. METHODS We conducted a literature search in the PubMed database using the keywords "cerium oxide", "cerous oxide", "ceria", "nanoceria", and "diabetes" from inception to December 2020. The inclusion criteria were primary source articles that investigated the role of CONPs in DM and diabetic complications. RESULTS We identified 47 articles from the initial search. After the thorough screening, only 31 articles were included in this study. We found that CONPs can attenuate parameters that are related to DM and diabetic complications in various animals and cell culture models. CONCLUSION CONPs could potentially be used in the treatment of those with DM and complications caused by the disease.
Collapse
Affiliation(s)
- Wui Fang Chai
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
27
|
Wang T, Li Y, Cornel EJ, Li C, Du J. Combined Antioxidant-Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS NANO 2021; 15:9027-9038. [PMID: 33881831 DOI: 10.1021/acsnano.1c02102] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infected diabetic wounds are difficult to heal due to high reactive oxygen species (ROS) concentrations and recurrent infections. Such wounds can easily deteriorate into a diabetic ulcer, a chronic diabetic complication with a very high mortality rate. Herein, we propose a combined antioxidant-antibiotic therapy based on poly(ε-caprolactone)-block-poly(glutamic acid) polymer vesicle to treat infected diabetic wounds. This was realized by in situ decoration of stable, well-dispersed ceria nanoparticles onto ciprofloxacin (CIP)-loaded polymer vesicles. These resulting CIP-loaded and ceria-decorated polymer vesicles (CIP-Ceria-PVs) exhibited high superoxide dismutase mimetic activity to inhibit superoxide free radicals (the inhibition rate reached ∼50% at an extremely low cerium concentration of 1.25 μg/mL). When the cerium content is in the range of 5-20 μg/mL, the CIP-Ceria-PVs showed the highest protective capability to normal L02 cells from damage of superoxide free radicals. In addition, the CIP-Ceria-PVs exhibited enhanced antibacterial activity (the dosage of CIP in CIP-Ceria-PVs was reduced by 25-50% compared to free CIP). In vivo treatment of infected diabetic wounds was performed on a diabetic mice model. The CIP-Ceria-PVs could effectively cure infected diabetic wounds within 14 days. Overall, a combined antioxidant-antibiotic therapy was proposed by introducing ceria nanoparticles and CIP into polymer vesicles for the treatment of infected diabetic wounds.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yiru Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Chemistry, Université Claude Bernard Lyon 1, Bat. Chevreul, 6 Rue Victor Grignard, 69100, Villeurbanne, Lyon, France
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
28
|
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. NANO TODAY 2020; 35:100982. [PMID: 32952596 PMCID: PMC7492057 DOI: 10.1016/j.nantod.2020.100982] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/09/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency and has devastated the global economy. The SARS-CoV-2 virus replicates in the host cells and is seemingly much more virulent compared to other flu viruses, as well as the SARS-CoV-1. The respiratory complications of the disease include acute respiratory distress syndrome (ARDS), cytokine storm, systemic inflammation, and pulmonary fibrosis. Nanoceria (NC) is a versatile rare earth nanoparticle with remarkable catalase and superoxide dismutase mimetic redox regenerative properties. Interestingly, NC possesses promising anti-inflammatory, antioxidant and anti-fibrotic properties, making it an attractive tool to fight against the SARS-CoV-2 as well as the associated systemic complications. Until now, there is no clinically approved vaccine or drug for the treatment of COVID-19, and the conquest to find a novel therapy for this global havoc is being undertaken at a warlike pace. Herein, based on preclinical evidence, we hypothesize that NC owing to its unique pharmacological properties, might be an attractive preclinical candidate to win the battle over COVID-19. Further, it may be used as a prevention or treatment strategy in combination with other drugs.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad, Telangana, 500030, India
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Delhi, 110016, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, Haryana, 124001, India
| | - Kamaldeep Joshi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, Haryana, 124001, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
29
|
Domala A, Bale S, Godugu C. Protective effects of nanoceria in imiquimod induced psoriasis by inhibiting the inflammatory responses. Nanomedicine (Lond) 2020; 15:5-22. [PMID: 31868114 DOI: 10.2217/nnm-2018-0515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: To investigate the effect of cerium oxide nanoparticles (nanoceria) on psoriasis. Materials & methods: Fourier transform infrared, powder x-ray diffraction and scanning electron microscopy were used to characterize nanoceria. Imiquimod (62.5 mg/mice) was used for the induction of psoriasis while nanoceria was administered/applied via multiple routes (topical gel, intraperitoneal and subcutaneous) as a therapeutic intervention once daily. Results: Nanoceria significantly attenuated splenic hypertrophy, psoriasis area severity index scoring, and lipid peroxidation. It also reduced the expression of various inflammatory and proliferation markers such as IL-17, IL-22, IL-23, Ki-67, NF-κB, COX-2 and GSK3. Conclusion: Nanoceria exerts an antipsoriatic effect by inhibiting major pathogenic immune axes namely the Th-cell mediated IL-17/IL-23 axis and by downregulating other crucial inflammatory proteins like NF-κB, COX-2 and GSK3.
Collapse
Affiliation(s)
- Akshara Domala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| |
Collapse
|
30
|
Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020; 25:E4559. [PMID: 33036163 PMCID: PMC7583868 DOI: 10.3390/molecules25194559] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several biocompatible materials have been applied for managing soft tissue lesions; cerium oxide nanoparticles (CNPs, or nanoceria) are among the most promising candidates due to their outstanding properties, including antioxidant, anti-inflammatory, antibacterial, and angiogenic activities. Much attention should be paid to the physical properties of nanoceria, since most of its biological characteristics are directly determined by some of these relevant parameters, including the particle size and shape. Nanoceria, either in bare or functionalized forms, showed the excellent capability of accelerating the healing process of both acute and chronic wounds. The skin, heart, nervous system, and ophthalmic tissues are the main targets of nanoceria-based therapies, and the other soft tissues may also be evaluated in upcoming experimental studies. For the repair and regeneration of soft tissue damage and defects, nanoceria-incorporated film, hydrogel, and nanofibrous scaffolds have been proven to be highly suitable replacements with satisfactory outcomes. Still, some concerns have remained regarding the long-term effects of nanoceria administration for human tissues and organs, such as its clearance from the vital organs. Moreover, looking at the future, it seems necessary to design and develop three-dimensional (3D) printed scaffolds containing nanoceria for possible use in the concepts of personalized medicine.
Collapse
Affiliation(s)
- Hossein Sadidi
- General Surgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ali Ahmadabadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 9176999311, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine,, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| |
Collapse
|
31
|
Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti AS, Berret JF. Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42056-42066. [PMID: 32812730 DOI: 10.1021/acsami.0c08778] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer-coated cerium oxide nanoparticles are prepared by the association of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG)-grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase-, and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not affect the superoxide dismutase-like, impair the catalase-like and oxidase-like, and surprisingly improves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid)-coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphonic acids as anchoring groups at the particle surface.
Collapse
Affiliation(s)
- Victor Baldim
- Matière et systèmes complexes, Université de Paris, CNRS, 75013 Paris, France
- Electrochimie et Physicochimie aux Interfaces, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles, France
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Nicolas Bia
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Alain Graillot
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Cédric Loubat
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
32
|
Pesaraklou A, Matin MM. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior. Nanomedicine (Lond) 2020; 15:1709-1718. [PMID: 32664817 DOI: 10.2217/nnm-2020-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2-NPs) have prolifically attracted immense interest of researchers due to their prominent anti-oxidant nature. However, these characteristics are accompanied by some ambiguities in other studies reporting their oxidant and toxic properties. In this regard previous literature has pointed to the importance of the NPs morphology and environmental conditions as well as biomolecules that induce a different response by initiating a cascade of activities. Therefore, due to the fact that signaling proteins are key mediators in cellular responses, the cognizance of the CeO2-NP-targeted signaling pathways could facilitate predicting the cellular behavior and thus more efficient applications of these NPs for clinical purposes. Consequently, a comprehensive review is necessary in this field, to clarify the impacts of CeO2-NPs on various signaling pathways.
Collapse
Affiliation(s)
- Atefeh Pesaraklou
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Stem Cells & Regenerative Medicine Research Group, Academic Center for Education, Culture & Research (ACECR), Khorasan Razavi Branch, Mashhad, 9177949367, Iran
| |
Collapse
|
33
|
Zavvari F, Nahavandi A, Shahbazi A. Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat 2020; 106:101799. [DOI: 10.1016/j.jchemneu.2020.101799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
|
34
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
35
|
Saifi MA, Peddakkulappagari CS, Ahmad A, Godugu C. Leveraging the Pathophysiological Alterations of Obstructive Nephropathy to Treat Renal Fibrosis by Cerium Oxide Nanoparticles. ACS Biomater Sci Eng 2020; 6:3563-3573. [PMID: 33463173 DOI: 10.1021/acsbiomaterials.9b01944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) has wide prevalence globally that affects a considerable population and has renal fibrosis (RF) as a hallmark feature. RF is characterized by abnormal deposition of extracellular matrix (ECM) in the interstitial space of renal tissue. There are only few studies where nanoparticles (NPs) were used for targeting the kidney mainly due to their size-dependent constraints. Further, most of the studies have been carried out in healthy animals. As the diseased kidney becomes susceptible to accumulation of nanoparticles, we hypothesized that nanoparticles (size ∼10 nm) could reach the kidney and might provide protective effects due to their inherent properties. We investigated the protective effects of cerium oxide nanoparticles (CONPs) with promising antioxidant activity in a CKD model. We, to the best of our knowledge, are first to report that CONPs abrogated RF by inhibiting transforming growth factor-β (TGF-β) signaling and epithelial-mesenchymal transition (EMT) in a fibrotic kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Chandra Sekhar Peddakkulappagari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| |
Collapse
|
36
|
Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well-known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well-dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium-oxide-associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society.
Collapse
Affiliation(s)
- Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Marina Parra-Robert
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Manuel Morales-Ruiz
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Víctor Puntes
- Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| |
Collapse
|
37
|
Pulivendala G, Bale S, Godugu C. Honokiol: A polyphenol neolignan ameliorates pulmonary fibrosis by inhibiting TGF-β/Smad signaling, matrix proteins and IL-6/CD44/STAT3 axis both in vitro and in vivo. Toxicol Appl Pharmacol 2020; 391:114913. [PMID: 32032644 DOI: 10.1016/j.taap.2020.114913] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is an epithelial/fibroblastic crosstalk disorder of the lungs with highly complex etiopathogenesis. Limited treatment possibilities are responsible for poor prognosis and mean survival rate of 3 to 5 years of PF patients after definite diagnosis. Once thought to be an irreversible disorder, recent evidences have brought into existence the concept of organ fibrosis reversibility due to plastic nature of fibrotic tissues. These findings have kindled interest among the scientific community and given a new direction for research in the arena of fibrosis for developing new anti-fibrotic therapies. The current study is designed to evaluate the anti-fibrotic effects of Honokiol (HNK), a neolignan active constituent from Magnolia officinalis. This study has been conducted in TGF-β1 induced in vitro model and 21 day in vivo murine model of Bleomycin induced PF. The findings of our study suggest that HNK was able to inhibit fundamental pathways of epithelial to mesenchymal transition (EMT) and TGF-β/Smad signaling both in vitro and in vivo. Additionally, HNK also attenuated collagen deposition and inflammation associated with fibrosis. We also hypothesized that HNK interfered with IL-6/CD44/STAT3 axis. As hypothesized, HNK significantly mitigated IL-6/CD44/STAT3 axis both in vitro and in vivo as evident from outcomes of various protein expression studies like western blotting, immunohistochemistry and ELISA. Taken together, it can be concluded that HNK reversed pulmonary fibrotic changes in both in vitro and in vivo experimental models of PF and exerted anti-fibrotic effects majorly by attenuating EMT, TGF-β/Smad signaling and partly by inhibiting IL-6/CD44/STAT3 signaling axis.
Collapse
Affiliation(s)
- Gauthami Pulivendala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
38
|
Zhang X, Gu H, Wang L, Huang F, Cai J. MiR-885-3p is down-regulated in peripheral blood mononuclear cells from T1D patients and regulates the inflammatory response via targeting TLR4/NF-κB signaling. J Gene Med 2019; 22:e3145. [PMID: 31763742 DOI: 10.1002/jgm.3145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-production pancreatic β cells. Recently, microRNAs (miRNAs) have emerged as important regulators in T1D. The present study aimed to determine miR-885-3p expression in T1D patients and to examine the effects of miR-885-3p on the inflammatory response in human monocytes. METHODS Relevant gene expression levels were determined by a quantitative polymerase chain reaction; western blotting and enzyme-linked immunosorbent assays determined the respective protein levels; and the interaction between miRNA and the downstream targets was evaluated using a luciferase reporter assay. RESULTS MiR-885-3p is down-regulated and the levels of pro-inflammatory cytokines are increased in peripheral blood mononuclear cells (PBMCs) from T1D patients compared to healthy controls. MiR-885-3p overexpression suppressed mRNA expression and secreted protein levels of pro-inflammatory cytokines in THP-1. A luciferase reporter assay showed that miR-885-3p directly targeted the 3'-untranslated region of Toll-like receptor 4 (TLR4) and miR-885-3p overexpression down-regulated TLR4 expression in THP-1 cells. The TLR4 mRNA expression level was increased in PBMCs isolated from T1D patients compared to heathy controls. TLR4 overexpression increased the secretion of pro-inflammatory cytokines and enhanced the activity of NF-κB signaling, and also attenuated the inhibitory effects of miR-885-3p overexpression on pro-inflammatory cytokine secretion and the activity of NF-κB signaling in THP-1 cells. CONCLUSIONS The present study identified the down-regulation of miR-885-3p and up-regulation of TLR4 in PBMCs isolated from T1D patients. Further mechanistic data demonstrated that miR-885-3p overexpression represses the production of pro-inflammatory cytokines via targeting TLR4/NF-κB signaling in THP-1 cells.
Collapse
Affiliation(s)
- Xiangdong Zhang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - Huimin Gu
- Medical College, Nantong University, Nantong City, China
| | - Li Wang
- Medical College, Nantong University, Nantong City, China
| | - Feng Huang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - Jin Cai
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong City, China
| |
Collapse
|
39
|
Maccarone R, Tisi A, Passacantando M, Ciancaglini M. Ophthalmic Applications of Cerium Oxide Nanoparticles. J Ocul Pharmacol Ther 2019; 36:376-383. [PMID: 31891528 DOI: 10.1089/jop.2019.0105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2-NPs; or nanoceria) have been largely studied for biomedical applications due to their peculiar auto-regenerative antioxidant activity. This review focuses on ophthalmic applications of nanoceria. Many in vivo data indicate that nanoceria protect the retina from neurodegeneration. In particular, they have been tested in animal models of age-related macular degeneration and retinitis pigmentosa and their neuroprotective properties have been shown to persist for a long time, without any collateral effects. In vitro cytotoxicity studies have shown that CeO2-NPs could be safe for lens cells and could represent a new therapy for cataract treatment, but further studies are needed. To date, different pharmaceutical formulations based on nanoceria have been created looking at future clinical ophthalmic applications, such as water-soluble nanoceria, glycol chitosan-coated ceria nanoparticles (GCCNPs), and alginate-gelatin hydrogel loaded GCCNPs. GCCNPs were also effective in preventing choroidal neovascularization in vivo. Based on the nanosize of nanoceria, corneal permeation could be achieved to allow topical treatment of nanoceria. PEGylation and encapsulation in liposomes represent the main strategies to support corneal permeation, without altering nanoceria chemical-physical properties. Based on their great antioxidant properties, safety, and nanosize, nanoceria represent a new potential therapeutic for the treatment of several eye disorders.
Collapse
Affiliation(s)
- Rita Maccarone
- Department of Biotechnology and Applied Clinical Sciences, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnology and Applied Clinical Sciences, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Passacantando
- Department of Physical and Chemical Science, and Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
40
|
Godugu C, Pasari LP, Khurana A, Anchi P, Saifi MA, Bansod SP, Annaldas S. Crocin, an active constituent of
Crocus sativus
ameliorates cerulein induced pancreatic inflammation and oxidative stress. Phytother Res 2019; 34:825-835. [DOI: 10.1002/ptr.6564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Lakshmi P. Pasari
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Amit Khurana
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Pratibha Anchi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Mohd A. Saifi
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Sapana P. Bansod
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| | - Shivaraju Annaldas
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research Balanagar, Hyderabad Telangana India
| |
Collapse
|
41
|
Sayed N, Khurana A, Saifi MA, Singh M, Godugu C. Withaferin A reverses bile duct ligation-induced liver fibrosis by modulating extracellular matrix deposition: Role of LOXL2/Snail1, vimentin, and NFκB signaling. Biofactors 2019; 45:959-974. [PMID: 31336025 DOI: 10.1002/biof.1546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Herein, we studied the effect of Withaferin A (WFA) in reversing bile duct ligation (BDL)-induced liver fibrosis. BDL was performed on C57BL/6J mice and 2 days later, WFA (1 and 3 mg/kg) was administered for 12 days. Estimation of liver enzymes and assays for lipid peroxidation, reduced glutathione, and nitrite levels were performed. Picrosirius red, Masson's trichrome, and H&E staining were performed to study histological changes. WFA proved to be a holistic intervention for the attenuation and reversal of liver fibrosis. Reduction in inflammatory stimulus and oxidative stress restored the levels of stress-related chaperone Hsp70 (p < .001 vs. BDL) in WFA treated groups. We found 3.59-fold (p < .001) and 1.37-fold (p < .01) reduction in the expression of lysyl oxidase like2 (LOXL2) and Snail1, respectively, in WFA-treated animals as compared with BDL animals. These reductions led to 1.9-fold (p < .001) elevation in levels of E-cadherin signifying the reversal of epithelial to mesenchymal transition by WFA. Further, the reduction in LOXL2 levels enhanced the susceptibility of fibrotic scar toward degradation. The picrosirius red and Masson's trichrome staining done on liver tissue sections supported the above results. We, for the first time, report the role of WFA in modulating the expression of LOXL2 and Snail1 in addition to vimentin inhibition and regulation of NFκB signaling for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mandip Singh
- College of Pharmacy Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
42
|
Córdoba-Jover B, Arce-Cerezo A, Ribera J, Pauta M, Oró D, Casals G, Fernández-Varo G, Casals E, Puntes V, Jiménez W, Morales-Ruiz M. Cerium oxide nanoparticles improve liver regeneration after acetaminophen-induced liver injury and partial hepatectomy in rats. J Nanobiotechnology 2019; 17:112. [PMID: 31672158 PMCID: PMC6822381 DOI: 10.1186/s12951-019-0544-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background and aims Cerium oxide nanoparticles are effective scavengers of reactive oxygen species and have been proposed as a treatment for oxidative stress-related diseases. Consequently, we aimed to investigate the effect of these nanoparticles on hepatic regeneration after liver injury by partial hepatectomy and acetaminophen overdose. Methods All the in vitro experiments were performed in HepG2 cells. For the acetaminophen and partial hepatectomy experimental models, male Wistar rats were divided into three groups: (1) nanoparticles group, which received 0.1 mg/kg cerium nanoparticles i.v. twice a week for 2 weeks before 1 g/kg acetaminophen treatment, (2) N-acetyl-cysteine group, which received 300 mg/kg of N-acetyl-cysteine i.p. 1 h after APAP treatment and (3) partial hepatectomy group, which received the same nanoparticles treatment before partial hepatectomy. Each group was matched with vehicle-controlled rats. Results In the partial hepatectomy model, rats treated with cerium oxide nanoparticles showed a significant increase in liver regeneration, compared with control rats. In the acetaminophen experimental model, nanoparticles and N-acetyl-cysteine treatments decreased early liver damage in hepatic tissue. However, only the effect of cerium oxide nanoparticles was associated with a significant increment in hepatocellular proliferation. This treatment also reduced stress markers and increased cell cycle progression in hepatocytes and the activation of the transcription factor NF-κB in vitro and in vivo. Conclusions Our results demonstrate that the nanomaterial cerium oxide, besides their known antioxidant capacities, can enhance hepatocellular proliferation in experimental models of liver regeneration and drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Altamira Arce-Cerezo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Montse Pauta
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Denise Oró
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain.,Working Group for the Biochemical Assessment of Hepatic Disease-SEQC-ML, Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain
| | - Eudald Casals
- Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Victor Puntes
- Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain.,Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036, Barcelona, Spain. .,Working Group for the Biochemical Assessment of Hepatic Disease-SEQC-ML, Barcelona, Spain. .,Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
43
|
Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology 2019; 17:84. [PMID: 31291944 PMCID: PMC6617741 DOI: 10.1186/s12951-019-0516-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Nanoceria has recently received much attention, because of its widespread biomedical applications, including antibacterial, antioxidant and anticancer activity, drug/gene delivery systems, anti-diabetic property, and tissue engineering. Main body Nanoceria exhibits excellent antibacterial activity against both Gram-positive and Gram-negative bacteria via the generation of reactive oxygen species (ROS). In healthy cells, it acts as an antioxidant by scavenging ROS (at physiological pH). Thus, it protects them, while in cancer cells (under low pH environment) it acts as pro-oxidant by generating ROS and kills them. Nanoceria has also been effectively used as a carrier for targeted drug and gene delivery in vitro and in vivo models. Besides, nanoceria can also act as an antidiabetic agent and confer protection towards diabetes-associated organ pathophysiology via decreasing the ROS level in diabetic subjects. Nanoceria also possesses excellent potential in the field of tissue engineering. In this review, firstly, we have discussed the different methods used for the synthesis of nanoceria as these are very important to control the size, shape and Ce3+/Ce4+ ratio of the particles upon which the physical, chemical, and biological properties depend. Secondly, we have extensively reviewed the different biomedical applications of nanoceria with probable mechanisms based on the literature reports. Conclusion The outcome of this review will improve the understanding about the different synthetic procedures and biomedical applications of nanoceria, which should, in turn, lead to the design of novel clinical interventions associated with various health disorders.
Graphical abstract ![]()
Collapse
Affiliation(s)
- Neelam Thakur
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan, 173229, HP, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | - Joydeep Das
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan, 173229, HP, India.
| |
Collapse
|
44
|
Nimbolide ameliorates unilateral ureteral obstruction-induced renal fibrosis by inhibition of TGF-β and EMT/Slug signalling. Mol Immunol 2019; 112:247-255. [PMID: 31202101 DOI: 10.1016/j.molimm.2019.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) involves interstitial fibrosis as an underlying pathological process associated with compromised renal function irrespective of etiological cause of the injury. The transforming growth factor-β (TGF-β) plays a pivotal role in progression of renal fibrosis. TGF-β transduces its downstream signalling by phosphorylation of smad2/3 and also regulates epithelial-mesenchymal-transition (EMT), a program centrally involved in activation of fibroblasts. Renal fibrosis was induced in Swiss albino mice by unilateral ureteral obstruction of animals. Kidney tissues were evaluated for fibrotic protein expression by western blot and immunohistochemistry. The administration of nimbolide (NB) to UUO animals reduced the oxidative stress, expression of ECM proteins, TGF-β, p-smad and EMT program. Further, NB administration also improved histoarchitecture of obstructed kidney and reduced the collagen deposition in kidney. Our results provided compelling evidence to support antifibrotic activity of NB by reduction in oxidative stress, TGF-β, and EMT program in fibrotic kidney. The administration of NB in animals blunted the UUO-induced renal injury, inflammation and reduced fibrogenesis in obstructed kidney.
Collapse
|
45
|
Bronczek GA, Vettorazzi JF, Soares GM, Kurauti MA, Santos C, Bonfim MF, Carneiro EM, Balbo SL, Boschero AC, Costa Júnior JM. The Bile Acid TUDCA Improves Beta-Cell Mass and Reduces Insulin Degradation in Mice With Early-Stage of Type-1 Diabetes. Front Physiol 2019; 10:561. [PMID: 31156453 PMCID: PMC6529580 DOI: 10.3389/fphys.2019.00561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/24/2019] [Indexed: 01/12/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by impairment in beta-cell mass and insulin levels, resulting in hyperglycemia and diabetic complications. Since diagnosis, appropriate control of glycaemia in T1D requires insulin administration, which can result in side effects, such as hypoglycemia. In this sense, some bile acids have emerged as new therapeutic targets to treat T1D and T2D, as well as metabolic diseases. The taurine conjugated bile acid, tauroursodeoxycholic (TUDCA) reduces the incidence of T1D development and improves glucose homeostasis in obese and T2D mice. However, its effects in early-stage of T1D have not been well explored. Therefore, we have assessed the effects of TUDCA on the glycemic control of mice with early-stage T1D. To achieve this, C57BL/6 mice received intraperitoneal administration of streptozotocin (STZ, 40 mg/kg) for 5 days. Once diabetes was confirmed in the STZ mice, they received TUDCA treatment (300 mg/kg) or phosphate buffered saline (PBS) for 24 days. After 15 days of treatment, the STZ+TUDCA mice showed a 43% reduction in blood glucose, compared with the STZ group. This reduction was likely due to an increase in insulinemia. This increase in insulinemia may be explained, at least in part, by a reduction in hepatic IDE activity and, consequently, reduction on insulin clearance, as well as an increase in beta-cell mass and a higher beta-cell number per islet. Also, the groups did not present any alterations in insulin sensitivity. All together, these effects contributed to the improvement of glucose metabolism in T1D mice, pointing TUDCA as a potential therapeutic agent for the glycemic control in early-stage of T1D.
Collapse
Affiliation(s)
- Gabriela Alves Bronczek
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil.,Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean Franciesco Vettorazzi
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian Ayumi Kurauti
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Cristiane Santos
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maressa Fernandes Bonfim
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - José Maria Costa Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
46
|
Khurana A, Sikha MS, Ramesh K, Venkatesh P, Godugu C. Modulation of cerulein-induced pancreatic inflammation by hydroalcoholic extract of curry leaf (Murraya koenigii). Phytother Res 2019; 33:1510-1525. [PMID: 30883967 DOI: 10.1002/ptr.6344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/06/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
This study was performed to study the in vitro and in vivo efficacy of hydroalcoholic extract of curry leaf (CLE) rich in carbazole alkaloids, against LPS-induced inflammation in Raw 264.7 macrophages and cerulein-induced acute pancreatitis, respectively. CLE was characterized by Fourier-transform infrared (FTIR) and liquid chromatography-mass spectrometry. Raw 264.7 cells were stimulated with LPS (2 μg/ml) and treated with CLE. The animals were treated with two doses of CLE (100 and 300 mg/kg). Plasma biochemistry, tissue lipid peroxidation, cytokines, and histological examination were evaluated. CLE was found to decently scavenge the activity of DPPH radical. It dose dependently suppressed nitrite production and oxidative stress in macrophages. CLE alleviated LPS-induced inflammation in macrophages as evident from the results of various inflammatory cytokines (IL-1β, IL-6, and TNF-α). In vivo, CLE reduced cerulein-induced pancreatic edema. CLE significantly abrogated the cerulein-induced lipid peroxidation, nitrite, MPO, and GSH levels. The inflammatory cytokines and p65-NFκB activity were significantly reduced by CLE. Mechanistically, CLE reduced the expression of NT, MPO, IL-1β, ICAM-1, and COX-2, and increased the expression of Nrf2. It reduced distant organ damage markers as well. We report for the first time that CLE holds substantial potential for the prevention of acute pancreatitis.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Mary Swathi Sikha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Kethavath Ramesh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Pooladanda Venkatesh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| |
Collapse
|
47
|
Anchi P, Khurana A, Swain D, Samanthula G, Godugu C. Dramatic improvement in pharmacokinetic and pharmacodynamic effects of sustain release curcumin microparticles demonstrated in experimental type 1 diabetes model. Eur J Pharm Sci 2019; 130:200-214. [DOI: 10.1016/j.ejps.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
48
|
Pasari LP, Khurana A, Anchi P, Aslam Saifi M, Annaldas S, Godugu C. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed Pharmacother 2019; 112:108629. [PMID: 30798137 DOI: 10.1016/j.biopha.2019.108629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis (AP) is an exocrine dysfunction of the pancreas where oxidative stress and inflammatory cytokines play a key role in induction and progression of the disease. Studies have demonstrated that antioxidant phytochemicals have been effective in improving pancreatitis condition, but there are no clinically approved drugs till date. Our study aims to assess the preventive activity of visnagin, a novel phytochemical isolated from Ammi visnaga against cerulein induced AP. Male Swiss albino mice were divided into six groups (n = 6, each group) comprising of normal control, cerulein control, seven day pre-treatment with visnagin at three dose levels; visnagin low dose (10 mg/kg), visnagin mid dose (30 mg/kg), visnagin high dose (60 mg/kg) and visnagin control (60 mg/kg). AP was induced by six injections of cerulein (50 μg/kg, i.p.) on the 7th day and the animals were sacrificed after 6 h of last cerulein dose. Various markers of pancreatic function, oxidative stress and inflammation were assessed. Visnagin was found to be effective in reducing plasma amylase and lipase levels, reduced cerulein induced oxidative stress. Visnagin dose dependently decreased the expression of IL-1β, IL-6, TNF-α and IL-17. It attenuated the levels of nuclear p65-NFκB. Visnagin improved the antioxidant defence by improving Nrf2 expression and halted pancreatic inflammation by suppressing NFκB and nitrotyrosine expression in the acinar cells. Further, it attenuated the expression of markers of multiple organ dysfunction syndrome and reduced inflammatory cytokines in lungs and intestine. Cumulatively, these findings indicate that visnagin has substantial potential to prevent cerulein induced AP.
Collapse
Affiliation(s)
- Lakshmi Priya Pasari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Shivaraju Annaldas
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana State, India.
| |
Collapse
|
49
|
Cerulein-induced chronic pancreatitis in Swiss albino mice: An improved short-term model for pharmacological screening. J Pharmacol Toxicol Methods 2019; 96:46-55. [PMID: 30684670 DOI: 10.1016/j.vascn.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/13/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
There is a need for short-term, reliable and reproducible animal model of chronic pancreatitis (CP) in small animals like mice. This study was aimed to establish the 9 exposures of cerulein-induced CP in mice. Repeated intraperitoneal cerulein injections were performed at 6 consecutive doses (50 μg/kg)/day, 3 days a week for 3 weeks to induce chronic pancreatitis in Swiss albino mice. The severity of damage was assessed by biochemical assays and histopathology. The expression of pro-inflammatory cytokine and fibrotic proteins was assessed by IHC and western blotting. The cerulein treated mice showed significantly elevated plasma amylase (p < .0285) and lipase levels (p < .0022) and resulted in significantly increased pancreatic oxidative (p < .0022) and nitrosative (p < .0022) stress. The hydroxyproline levels were 3.06 fold increased in the cerulein treated mice. The expressions of fibrotic cytokine TGF-β1 by 1.8 folds and pro-inflammatory cytokines TNF-α by 2.3 fold, IL-6 by 2.2 fold and IL-1β by 3.7 fold were markedly increased in cerulein treated mice. The histological evaluations indicated increased inflammatory cells infiltration and deposition of collagen. Moreover, the expression of fibrotic markers such as α-SMA increased by 2.5 folds (p < .00014), collagen1a by 1.3 folds (p < .0258) and fibronectin by 3.5 folds (p < .00014) were significantly increased. Our study demonstrates the superiority of 9 exposures of cerulein-induced CP model in mice with the reduction of duration, cerulein exposure, more economical and mortality rate of mice over the available models. Therefore, our model may be suitable to evaluate the pharmacological effects of new drugs in chronic pancreatitis.
Collapse
|
50
|
Niclosamide alleviates pulmonary fibrosis in vitro and in vivo by attenuation of epithelial-to-mesenchymal transition, matrix proteins & Wnt/β-catenin signaling: A drug repurposing study. Life Sci 2019; 220:8-20. [PMID: 30611787 DOI: 10.1016/j.lfs.2018.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023]
Abstract
Drug repurposing off late has been emerging as an inspiring alternative approach to conventional, exhaustive and arduous process of drug discovery. It is a process of identifying new therapeutic values for a drug already established for the treatment of a certain condition. Our current study is aimed at repurposing the old anti-helimenthic drug Niclosamide as an anti-fibrotic drug against pulmonary fibrosis (PF). PF is most common lethal interstitial lung disease hallmarked by deposition of extracelluar matrix and scarring of lung. Heterogenous nature, untimely diagnosis and lack of appropriate treatment options make PF an inexorable lung disorder. Prevailing void in PF treatment and drug repositioning strategy of drugs kindled our interest to demonstrate the anti-fibrotic activity of Niclosamide. Our study is aimed at investigating the anti-fibrotic potential of Niclosamide in TGF-β1 induced in vitro model of PF and 21-day model of Bleomycin induced PF in vivo respectively. Our study results showed that Niclosamide holds the potential to exert anti-fibrotic effect by hampering fibroblast migration, attenuating EMT, inhibiting fibrotic signaling and by regulating WNT/β-catenin signaling as evident from protein expression studies. Our study findings can give new directions to development of Niclosamide as an anti-fibrotic agent for treatment of pulmonary fibrosis.
Collapse
|