1
|
Cui Z, Shi C, An R, Tang Y, Li Y, Cao X, Jiang X, Liu CC, Xiao M, Xu L. In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy. ACS NANO 2025. [PMID: 39788571 DOI: 10.1021/acsnano.4c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses. In this study, we develop a NP cancer vaccine assisted by a polysaccharide derivative adjuvant, designed through a computational strategy, to evoke effective antigen-specific antitumor immunity. Using TLR4 as the putative receptor, we conducted a comprehensive evaluation of a prescreening library consisting of 34 inulin derivatives through docking and molecular dynamics simulation. Consequently, a new derivative, benzoylated inulin (InBz), is selected as the most promising TLR4 agonist. The adjuvant effect of InBz is evaluated by fabricating InBz NPs encapsulating the model antigen ovalbumin (OVA). In vitro, InBz-OVA NPs effectively activate the TLR4 signaling pathways and facilitate dendritic cell maturation, thereby enhancing the antigen delivery and presentation. In vivo, InBz-OVA NPs outperform a commercial aluminum-based adjuvant, elicit robust antibody titers, induce antigen-specific cytotoxic T lymphocytes, and achieve significant tumor suppression in murine models. Besides, the adjuvant effects of other representative derivatives, namely, acetylated and chloroacetylated inulin, with moderate and low potential from the library, are also chemically synthesized and experimentally evaluated and found to be in agreement with computational predictions, confirming the credibility of the strategy. This study provides an effective platform for the pursuit of efficient polysaccharide-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zan Cui
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chenyu Shi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Ran An
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Yan Tang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Yinping Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Xueting Cao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Luo Y, Jia X, Wu X, Diao L, Zhao Y, Liu X, Peng Y, Zhong W, Xing M, Lyu G. Bacteria-activated macrophage membrane coated ROS-responsive nanoparticle for targeted delivery of antibiotics to infected wounds. J Nanobiotechnology 2024; 22:781. [PMID: 39702152 DOI: 10.1186/s12951-024-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial infections and antibiotic resistance represent significant global public health challenges, necessitating the development of innovative antibacterial agents with targeted delivery capabilities. Our study utilized macrophages' natural ability to recognize bacteria and the increased reactive oxygen species (ROS) at infection sites to develop a novel nanoparticle for targeted delivery and controlled release. We prepared bacteria-activated macrophage membranes triggered by Staphylococcus aureus (Sa-MMs), which showed significantly higher expression of Toll-like receptors (TLRs), compared to normal macrophage membranes (MMs). These Sa-MMs were then used to coat vancomycin-loaded amphiphilic nanoparticles with ROS responsiveness (Van-NPs), resulting in the novel targeted delivery system Sa-MM@Van-NPs. Studies both In vitro and in vivo demonstrated that biocompatible Sa-MM@Van-NPs efficiently targeted infected sites and released vancomycin to eliminate bacteria, facilitating faster wound healing. By combining targeted delivery to infected sites and ROS-responsive antibiotic release, this approach might represent a robust strategy for precise infection eradication and enhanced wound healing.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xing Liu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yi Peng
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
- National Research Center for Emergency Medicine, Beijing, 100000, China.
| |
Collapse
|
3
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Göring J, Schwarz C, Unger E, Quaas R, Hilger I. The Long-Term Impact of Polysaccharide-Coated Iron Oxide Nanoparticles on Inflammatory-Stressed Mice. J Xenobiot 2024; 14:1711-1728. [PMID: 39584956 PMCID: PMC11587046 DOI: 10.3390/jox14040091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Since iron oxide nanoparticles (IONPs) are expected to be important tools in medical care, patients with inflammatory diseases will be increasingly exposed to IONPs in the future. Here, we assessed the short- and long-term impact of polysaccharide (PS)-coated IONPs on mice with persistent systemic inflammation. To this end, PS-IONPs were synthetized by a core-shell method. Mice were regularly injected with sterile zymosan. PS-IONPs were administered intravenously. At specific nanoparticle injection post-observation times, the organ iron concentration was determined via atomic absorption spectrometry, the expression of NF-κB-related proteins using SDS-PAGE and immunoblotting, as well as body weight and haemograms. Finally, the mediator secretion in blood plasma was analysed using multiplexed ELISA. Our data show that PS-IONPs induce short-term changes of iron levels in distinct organs and of NF-κB p65 and p50, p100, COX-2s, and Bcl-2 protein expression in the liver of inflammatory stressed mice. In the long term, there was an attenuated expression of several NF-κB-related proteins and attenuated features of inflammatory-based anaemia in blood. PS-IONPs weakly influenced the blood cytokine levels. PS-IONPs are biocompatible, but given their short-term pro-inflammatory impact, they should prospectively be applied with caution in patients with inflammatory diseases of the liver.
Collapse
Affiliation(s)
- Julia Göring
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (J.G.)
| | - Claudia Schwarz
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (J.G.)
| | - Eric Unger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (J.G.)
| | - Rainer Quaas
- Chemicell GmbH, Eresburgstrasse 22-23, D-12103 Berlin, Germany;
| | - Ingrid Hilger
- Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (J.G.)
| |
Collapse
|
5
|
Lin TW, Chou PY, Shen YT, Sheu MT, Chuang KH, Lin SY, Chang CY. Tumor Antigen-Tethered Spiked Virus-Like- Poly(Lactic-Co-Glycolic Acid)-Nanoparticle Vaccine Enhances Antitumor Ability Through Th9 Promotion in Mice. Int J Nanomedicine 2024; 19:10983-11002. [PMID: 39493273 PMCID: PMC11531760 DOI: 10.2147/ijn.s476715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Immunotherapy emerges as a promising frontier in cancer therapy and prevention. This study investigates the capacity of tumor-antigenic nanoparticles, specifically ovalbumin-tethered spiked virus-like poly(lactic-co-glycolic acid) nanoparticles (OVA-sVLNP), to effectively elicit humoral and cellular immune responses against tumors. Methods OVA-sVLNP were synthesized through thiol-maleimide crosslinking using a single emulsion method. Comprehensive characterization was performed through Nuclear Magnetic Resonance (NMR), dynamic light scattering, Cryo-electron microscopy (Cryo-EM), confocal microscopy, and flow cytometry. Immunogenicity was evaluated using an enzyme-linked immunosorbent assay (ELISA) for quantifying immunoglobulin levels (IgG, IgG1, IgG2a) and cytokines in mouse sera. Flow cytometry profiled cellular immune responses in mouse spleens, and organ biosafety was assessed using immunohistochemistry and hematoxylin and eosin (H&E) staining. Results OVA-sVLNP had a mean particle size of 193.8 ± 11.9 nm, polydispersity index of 0.307 ± 0.04, and zeta potential of -39.6 ± 10.16 mV, remaining stable for one month at 4°C. In vitro studies revealed significant upregulation of CD80/CD86 in dendritic cells, indicating robust activation. In vivo, the optimal concentration (V25) induced potent IgG, IgG1, and IgG2a antibodies, significant populations of CD3+CD4+, CD3+CD8+, and a rare subset of CD3+CD4+CD8+ memory T cells. Notably, Th9 induction resulted in the secretion of IL-9, IL-10, and other cytokines, which are crucial for orchestrating cytotoxic T cell activity and antitumor effects. Overall, higher doses did not improve outcomes, highlighting the significance of optimal dosing. Conclusion This study demonstrated potent immunogenicity of OVA-sVLNP, characterized by the induction of specific IgG antibodies and the stimulation of cellular immune responses, particularly tumor-killing Th9 cells. The simplicity and cost-effectiveness of the manufacturing process augment the potential of OVA-sVLNP as a viable candidate for antitumor vaccines, opening new avenues for cancer prevention and cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Ting-Wei Lin
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ting Shen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Kim SJ, Park HB, An EK, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Lipid-coated gold nanorods for photoimmunotherapy of primary breast cancer and the prevention of metastasis. J Control Release 2024; 373:105-116. [PMID: 38992622 DOI: 10.1016/j.jconrel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200437, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - HyunCheol Kim
- Department of Chemical and Biomolecular Engineering Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
7
|
Lavik E, Minasian L. Bioconjugates for Cancer Prevention: Opportunities for Impact. Bioconjug Chem 2024; 35:1148-1153. [PMID: 39116257 DOI: 10.1021/acs.bioconjchem.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cancer prevention encompasses both screening strategies to find cancers early when they are likely to be most treatable and prevention and interception strategies to reduce the risk of developing cancers. Bioconjugates, here defined broadly as materials and molecules that have synthetic and biological components, have roles to play across the cancer-prevention spectrum. In particular, bioconjugates may be developed as affordable, accessible, and effective screening strategies or as novel vaccines and drugs to reduce one's risk of developing cancers. Developmental programs are available for taking novel technologies and evaluating them for clinical use in cancer screening and prevention. While a variety of different challenges exist in implementing cancer-prevention interventions, a thoughtful approach to bioconjugates could improve the delivery and acceptability of the interventions.
Collapse
Affiliation(s)
- Erin Lavik
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Dr, Rockville, Maryland 20850, United States
| | - Lori Minasian
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Dr, Rockville, Maryland 20850, United States
| |
Collapse
|
8
|
Wu B, Liu Y, Zhang X, Luo D, Wang X, Qiao C, Liu J. A bibliometric insight into nanomaterials in vaccine: trends, collaborations, and future avenues. Front Immunol 2024; 15:1420216. [PMID: 39188723 PMCID: PMC11345159 DOI: 10.3389/fimmu.2024.1420216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background The emergence of nanotechnology has injected new vigor into vaccine research. Nanovaccine research has witnessed exponential growth in recent years; yet, a comprehensive analysis of related publications has been notably absent. Objective This study utilizes bibliometric methodologies to reveal the evolution of themes and the distribution of nanovaccine research. Methods Using tools such as VOSviewer, CiteSpace, Scimago Graphica, Pajek, R-bibliometrix, and R packages for the bibliometric analysis and visualization of literature retrieved from the Web of Science database. Results Nanovaccine research commenced in 1981. The publication volume exponentially increased, notably in 2021. Leading contributors include the United States, the Chinese Academy of Sciences, the "Vaccine", and researcher Zhao Kai. Other significant contributors comprise China, the University of California, San Diego, Veronique Preat, the Journal of Controlled Release, and the National Natural Science Foundation of China. The USA functions as a central hub for international cooperation. Financial support plays a pivotal role in driving research advancements. Key themes in highly cited articles include vaccine carrier design, cancer vaccines, nanomaterial properties, and COVID-19 vaccines. Among 7402 keywords, the principal nanocarriers include Chitosan, virus-like particles, gold nanoparticles, PLGA, and lipid nanoparticles. Nanovaccine is primarily intended to address diseases including SARS-CoV-2, cancer, influenza, and HIV. Clustering analysis of co-citation networks identifies 9 primary clusters, vividly illustrating the evolution of research themes over different periods. Co-citation bursts indicate that cancer vaccines, COVID-19 vaccines, and mRNA vaccines are pivotal areas of focus for current and future research in nanovaccines. "candidate vaccines," "protein nanoparticle," "cationic lipids," "ionizable lipids," "machine learning," "long-term storage," "personalized cancer vaccines," "neoantigens," "outer membrane vesicles," "in situ nanovaccine," and "biomimetic nanotechnologies" stand out as research interest. Conclusions This analysis emphasizes the increasing scholarly interest in nanovaccine research and highlights pivotal recent research themes such as cancer and COVID-19 vaccines, with lipid nanoparticle-mRNA vaccines leading novel research directions.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuexue Zhang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ding Luo
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuejie Wang
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Qiao
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine (TCM) Big Data Innovation Lab of Beijing Office of Academic Research, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Shuwen H, Yifei S, Xinyue W, Zhanbo Q, Xiang Y, Xi Y. Advances in bacteria-based drug delivery systems for anti-tumor therapy. Clin Transl Immunology 2024; 13:e1518. [PMID: 38939727 PMCID: PMC11208082 DOI: 10.1002/cti2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, bacteria have gained considerable attention as a promising drug carrier that is critical in improving the effectiveness and reducing the side effects of anti-tumor drugs. Drug carriers can be utilised in various forms, including magnetotactic bacteria, bacterial biohybrids, minicells, bacterial ghosts and bacterial spores. Additionally, functionalised and engineered bacteria obtained through gene engineering and surface modification could provide enhanced capabilities for drug delivery. This review summarises the current studies on bacteria-based drug delivery systems for anti-tumor therapy and discusses the prospects and challenges of bacteria as drug carriers. Furthermore, our findings aim to provide new directions and guidance for the research on bacteria-based drug systems.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiang ProvinceChina
| | - Song Yifei
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Wu Xinyue
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
| | - Yu Xiang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Yang Xi
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| |
Collapse
|
10
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. Methods Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. Results Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. Conclusion Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
11
|
Goto K, Ueno T, Sakaue S. Induction of antigen-specific immunity by mesoporous silica nanoparticles incorporating antigen peptides. J Biosci Bioeng 2024:S1389-1723(24)00161-0. [PMID: 38890051 DOI: 10.1016/j.jbiosc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are physically and chemically stable inorganic nanomaterials that have been attracting much attention as carriers for drug delivery systems in the field of nanomedicine. In the present study, we investigated the potential of MSN vaccines that incorporate antigen peptides for use in cancer immunotherapy. In vitro experiments demonstrated that fluorescently labeled MSNs accumulated in a line of mouse dendritic cells (DC2.4 cells), where the particles localized to the cytosol. These observations could suggest that MSNs have potential for use in delivering the loaded molecules into antigen-presenting cells, thereby stimulating the host acquired immune system. In vivo experiments demonstrated prolonged survival in mice implanted with ovalbumin (OVA)-expressing lymphoma cells (E.G7-OVA cells) following subcutaneous inoculation with MSNs incorporating OVA antigen peptides. Furthermore, OVA-specific immunoglobulin G antibodies and cytotoxic T lymphocytes were detected in the serum and the spleen cells, respectively, of mice inoculated with an MSN-OVA vaccine, indicating the induction of antigen-specific responses in both the humoral and cellular immune systems. These results suggested that the MSN therapies incorporating antigen peptides may serve as novel vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Koichi Goto
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Tomoya Ueno
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Saki Sakaue
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
12
|
Zhong D, Lu Z, Xia Y, Wu H, Zhang X, Li M, Song X, Wang Y, Moon A, Qiu HJ, Li Y, Sun Y. Ferritin Nanoparticle Delivery of the E2 Protein of Classical Swine Fever Virus Completely Protects Pigs from Lethal Challenge. Vaccines (Basel) 2024; 12:629. [PMID: 38932358 PMCID: PMC11209039 DOI: 10.3390/vaccines12060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), results in significant economic losses to the swine industry in many countries. Vaccination represents the primary strategy to control CSF and the CSFV E2 protein is known as the major protective antigen. However, the E2 protein expressed or presented by different systems elicits distinct immune responses. In this study, we established a stable CHO cell line to express the E2 protein and delivered it using self-assembled ferritin nanoparticles (NPs). Subsequently, we compared the adaptive immune responses induced by the E2-ferritin NPs and the monomeric E2 protein produced by the CHO cells or a baculovirus expression system. The results revealed that the NP-delivered E2 protein elicited higher titers of neutralizing antibodies than did the monomeric E2 protein in pigs. Importantly, only the NP-delivered E2 protein significantly induced CSFV-specific IFN-γ-secreting cells. Furthermore, all the pigs inoculated with the E2-ferritin NPs were completely protected from a lethal CSFV challenge infection. These findings demonstrate the ability of the E2-ferritin NPs to protect pigs against the lethal CSFV challenge by eliciting robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yu Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Xinyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Assad Moon
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (D.Z.); (Z.L.); (Y.X.); (H.W.); (X.Z.); (M.L.); (X.S.); (Y.W.); (A.M.); (H.-J.Q.)
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
13
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
14
|
Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, Severino P, Priefer R, Prajapati BG, Maheshwari R. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater 2024; 180:1-17. [PMID: 38604468 DOI: 10.1016/j.actbio.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Cristina Blanco-Llamero
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal
| | | | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Humzah Postwala
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Patricia Severino
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil; Massachusetts College of Pharmacy and Health Sciences University, Boston, MA 02115, USA
| | - Ronny Priefer
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bhupendra Gopalbhai Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
15
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
16
|
Shin S, Ahn YR, Kim M, Choi J, Kim H, Kim HO. Mammalian Cell Membrane Hybrid Polymersomes for mRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38615329 DOI: 10.1021/acsami.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cell membranes are structures essential to the cell function and adaptation. Recent studies have targeted cell membranes to identify their protective and interactive properties. Leveraging these attributes of cellular membranes and their application to vaccine delivery is gaining increasing prominence. This study aimed to fuse synthetic polymeric nanoparticles with cell membranes to develop cell membrane hybrid polymersomes (HyPSomes) for enhanced vaccine delivery. We designed a platform to hybridize cell membranes with methoxy-poly(ethylene glycol)-block-polylactic acid nanoparticles by using the properties of both components. The formed HyPSomes were optimized by using dynamic light scattering, transmission electron microscopy, and Förster resonance energy transfer, and their stability was confirmed. The synthesized HyPSomes replicated the antigenic surface of the source cells and possessed the stability and efficacy of synthetic nanoparticles. These HyPSomes demonstrated enhanced cellular uptake and translation efficiency and facilitated endosome escape. HyPSomes showed outstanding capabilities for the delivery of foreign mRNAs to antigen-presenting cells. HyPSomes may serve as vaccine delivery systems by bridging the gap between synthetic and natural systems. These systems could be used in other contexts, e.g., diagnostics and drug delivery.
Collapse
Affiliation(s)
- SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - HakSeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| |
Collapse
|
17
|
Li N, Zhang Y, Han M, Liu T, Wu J, Xiong Y, Fan Y, Ye F, Jin B, Zhang Y, Sun G, Sun X, Dong Z. Self-adjuvant Astragalus polysaccharide-based nanovaccines for enhanced tumor immunotherapy: a novel delivery system candidate for tumor vaccines. SCIENCE CHINA. LIFE SCIENCES 2024; 67:680-697. [PMID: 38206438 DOI: 10.1007/s11427-023-2465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257-264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Yun Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Miaomiao Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Tian Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Jinjia Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yingxia Xiong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yikai Fan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Fan Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Bing Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yinghua Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Xiaobo Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| |
Collapse
|
18
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomed Pharmacother 2024; 170:116059. [PMID: 38154273 DOI: 10.1016/j.biopha.2023.116059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
The liver cancer has microenvironmental features such as low pH, M2 tumor-associated macrophage enrichment, low oxygen, rich blood supply and susceptibility to hematotropic metastasis, high chemokine expression, enzyme overexpression, high redox level, and strong immunosuppression, which not only promotes the progression of the disease, but also seriously affects the clinical effectiveness of traditional therapeutic approaches. However, nanotechnology, due to its unique advantages of size effect and functionalized modifiability, can be utilized to develop various responsive nano-drug delivery system (NDDS) by using these characteristic signals of the liver cancer microenvironment as a source of stimulation, which in turn can realize the intelligent release of the drug under the specific microenvironment, and significantly increase the concentration of the drug at the target site. Therefore, researchers have designed a series of stimuli-responsive NDDS based on the characteristics of the liver cancer microenvironment, such as hypoxia, weak acidity, and abnormal expression of proteases, and they have been widely investigated for improving anti-tumor therapeutic efficacy and reducing the related side effects. This paper provides a review of the current application and progress of NDDS developed based on the response and regulation of the microenvironment in the treatment of liver cancer, compares the effects of the microenvironment and the NDDS, and provides a reference for building more advanced NDDS.
Collapse
Affiliation(s)
- Shijia Lu
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Chenxiao Zhang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Jinglong Wang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Limei Zhao
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Guofei Li
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
20
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
21
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
22
|
Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Taghavizadeh Yazdi ME, Jaafari MR, Alavizadeh SH. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Control Release 2023; 362:278-296. [PMID: 37640110 DOI: 10.1016/j.jconrel.2023.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.
Collapse
Affiliation(s)
- Vahideh Mohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sabina Quader
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 2023; 45:1053-1072. [PMID: 37335426 DOI: 10.1007/s10529-023-03383-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Momeneh Ghanaat
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Sekinehe Shokouhi Koushali
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
25
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
26
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
27
|
Li M, Wang Y, Wu P, Zhang S, Gong Z, Liao Q, Guo C, Wang F, Li Y, Zeng Z, Yan Q, Xiong W. Application prospect of circular RNA-based neoantigen vaccine in tumor immunotherapy. Cancer Lett 2023; 563:216190. [PMID: 37062328 DOI: 10.1016/j.canlet.2023.216190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Neoantigen is a protein produced by mutant gene, which is only expressed in tumor cells. It is an ideal target for therapeutic tumor vaccines. Although synthetic long peptide (SLP)-based neoantigen vaccine, DNA-based neoantigen vaccine, and mRNA-based neoantigen vaccine are all in the development stage, they have some inherent shortcomings. Therefore, researchers turned their attention to a new type of "non-coding RNA (ncRNA)", circular RNA (circRNA), for potential better choice. Because of its unique high stability and protein-coding capacity, circRNA is a promising target in the field of neoantigen vaccine. In this paper, we reviewed the feasibility of circRNA encoding neoantigens, summarized the construction process, explained the mechanism of circRNA vaccine in vitro, and discussed the advantages and disadvantages of circRNA vaccine and possible combination with other immunotherapies.
Collapse
Affiliation(s)
- Mohan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yian Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Pan Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Shanshan Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
28
|
Tapia D, Reyes-Sandoval A, Sanchez-Villamil JI. Protein-based Nanoparticle Vaccine Approaches Against Infectious Diseases. Arch Med Res 2023; 54:168-175. [PMID: 36894463 DOI: 10.1016/j.arcmed.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
The field of vaccine development has seen an increase in the number of rationally designed technologies that increase effectiveness against vaccine-resistant pathogens, while not compromising safety. Yet, there is still an urgent need to expand and further understand these platforms against complex pathogens that often evade protective responses. Nanoscale platforms have been at the center of new studies, especially in the wake of the coronavirus disease 2019 (COVID-19), with the aim of deploying safe and effective vaccines in a short time period. The intrinsic properties of protein-based nanoparticles, such as biocompatibility, flexible physicochemical characteristics, and variety have made them an attractive platform against different infectious disease agents. In the past decade, several studies have tested both lumazine synthase-, ferritin-, and albumin-based nanoplatforms against a wide range of complex pathogens in pre-clinical studies. Owed to their success in pre-clinical studies, several studies are undergoing human clinical trials or are near an initial phase. In this review we highlight the different protein-based platforms, mechanisms of synthesis, and effectiveness of these over the past decade. In addition, some challenges, and future directions to increase their effectiveness are also highlighted. Taken together, protein-based nanoscaffolds have proven to be an effective means to design rationally designed vaccines, especially against complex pathogens and emerging infectious diseases.
Collapse
Affiliation(s)
- Daniel Tapia
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio Nacional de Vacunología y Virus Tropicales, Ciudad de México, México
| | - Javier I Sanchez-Villamil
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Morelos, Atlacholoaya, Morelos, México.
| |
Collapse
|
29
|
Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release 2023; 355:760-778. [PMID: 36822241 DOI: 10.1016/j.jconrel.2023.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The successful clinical application of immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapeutics has attracted extensive attention to immunotherapy, however, their drawbacks such as limited specificity, persistence and toxicity haven't met the high expectations on efficient cancer treatments. Therapeutic cancer vaccines which instruct the immune system to capture tumor specific antigens, generate long-term immune memory and specifically eliminate cancer cells gradually become the most promising strategies to eradicate tumor. However, the disadvantages of some existing vaccines such as weak immunogenicity and in vivo instability have restricted their development. Nanotechnology has been recently incorporated into vaccine fabrication and exhibited promising results for cancer immunotherapy. Nanoparticles promote the stability of vaccines, as well as enhance antigen recognition and presentation owing to their nanometer size which promotes internalization of antigens by phagocytic cells. The surface modification with targeting units further permits the delivery of vaccines to specific cells. Meanwhile, nanocarriers with adjuvant effect can improve the efficacy of vaccines. In addition to classic vaccines composed of antigens and adjuvants, the nanoparticle-mediated chemotherapy, radiotherapy and certain other therapeutics could induce the release of tumor antigens in situ, which therefore effectively simulate antitumor immune responses. Such vaccine-like nanomedicine not only kills primary tumors, but also prevents tumor recurrence and helps eliminate metastatic tumors. Herein, we introduce recent developments in nanoparticle-based delivery systems for antigen delivery and in situ antitumor vaccination. We will also discuss the remaining opportunities and challenges of nanovaccine in clinical translation towards cancer treatment.
Collapse
Affiliation(s)
- Yunfei Yi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
30
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
31
|
Yang J, Dong X, Li B, Chen T, Yu B, Wang X, Dou X, Peng B, Hu Q. Poria cocos polysaccharide-functionalized graphene oxide nanosheet induces efficient cancer immunotherapy in mice. Front Bioeng Biotechnol 2023; 10:1050077. [PMID: 36727039 PMCID: PMC9885324 DOI: 10.3389/fbioe.2022.1050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction: Tumor vaccines that induce robust humoral and cellular immune responses have attracted tremendous interest for cancer immunotherapy. Despite the tremendous potential of tumor vaccines as an effective approach for cancer treatment and prevention, a major challenge in achieving sustained antitumor immunity is inefficient antigen delivery to secondary lymphoid organs, even with adjuvant aid. Methods: Herein, we present antigen/adjuvant integrated nanocomplexes termed nsGO/PCP/OVA by employing graphene oxide nanosheet (nsGO) as antigen nanocarriers loaded with model antigen ovalbumin (OVA) and adjuvant, Poria cocos polysaccharides (PCP). We evaluated the efficacy of nsGO/PCP/OVA in activating antigen-specific humoral as well as cellular immune responses and consequent tumor prevention and rejection in vivo. Results: The optimally formed nsGO/PCP/OVA was approximately 120-150 nm in diameter with a uniform size distribution. Nanoparticles can be effectively engulfed by dendritic cells (DCs) through receptor-mediated endocytosis, induced the maturation of DCs and improved the delivery efficiency both in vitro and in vivo. The nsGO/PCP/OVA nanoparticles also induced a significant enhancement of OVA antigen-specific Th1 and Th2 immune responses in vivo. In addition, vaccination with nsGO/PCP/OVA not only significantly suppressed tumor growth in prophylactic treatments, but also achieved a therapeutic effect in inhibiting the growth of already-established tumors. Conclusion: Therefore, this potent nanovaccine platform with nanocarrier nsGO and PCP as adjuvants provides a promising strategy for boosting anti-tumor immunity for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinning Yang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoxiao Dong
- Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Boye Li
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing, China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoli Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Xiangnan Dou
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| |
Collapse
|
32
|
Mufamadi MS, Ngoepe MP, Nobela O, Maluleke N, Phorah B, Methula B, Maseko T, Masebe DI, Mufhandu HT, Katata-Seru LM. Next-Generation Vaccines: Nanovaccines in the Fight against SARS-CoV-2 Virus and beyond SARS-CoV-2. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4588659. [PMID: 37181817 PMCID: PMC10175023 DOI: 10.1155/2023/4588659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
The virus responsible for the coronavirus viral pandemic is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging SARS-CoV-2 variants caused by distinctive mutations within the viral spike glycoprotein of SARS-CoV-2 are considered the cause for the rapid spread of the disease and make it challenging to treat SARS-CoV-2. The manufacturing of appropriate efficient vaccines and therapeutics is the only option to combat this pandemic. Nanomedicine has enabled the delivery of nucleic acids and protein-based vaccines to antigen-presenting cells to produce protective immunity against the coronavirus. Nucleic acid-based vaccines, particularly mRNA nanotechnology vaccines, are the best prevention option against the SARS-CoV-2 pandemic worldwide, and they are effective against the novel coronavirus and its multiple variants. This review will report on progress made thus far with SARS-CoV-2 vaccines and beyond employing nanotechnology-based nucleic acid vaccine approaches.
Collapse
Affiliation(s)
- Maluta Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | - Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
| | - Ofentse Nobela
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | | | | | - Banele Methula
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | - Thapelo Maseko
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha 6059, South Africa
- Nabio Consulting (Pty) Ltd., Pretoria 0183, South Africa
| | | | | | | |
Collapse
|
33
|
Virus-like nanoparticles (VLPs) based technology in the development of breast cancer vaccines. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Yin Q, Wang Y, Xiang Y, Xu F. Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses. Hum Vaccin Immunother 2022; 18:2119020. [PMID: 36170662 DOI: 10.1080/21645515.2022.2119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An attractive type of cancer immunotherapy is cancer therapeutic vaccines that induce antitumor immunity effectively. Although supportive results in the recent vaccine studies, there are still numerous drawbacks, such as poor stability, weak immunogenicity and strong toxicity, to be tackled for promoting the potency and durability of antitumor efficacy. NPs (Nanoparticles)-based vaccines offer unique opportunities to breakthrough the current bottleneck. As a rule, nanovaccines are new the generations of vaccines that use NPs as carriers and/or adjuvants. Several advantages of nanovaccines are constantly explored, including optimal nanometer size, high stability, plenty of antigen loading, enhanced immunogenicity, tunable antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Here, we summarized the merits and highlight the diverse role nanovaccines play in improving antitumor responses.
Collapse
Affiliation(s)
- Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Academy of Health Management, Changchun University of Chinese Medicine, Changchun, China
| | - Yipeng Xiang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-Kozakiewicz AM. Cancer-associated inflammation: pathophysiology and clinical significance. J Cancer Res Clin Oncol 2022; 149:2657-2672. [PMID: 36260158 PMCID: PMC9579684 DOI: 10.1007/s00432-022-04399-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
Purpose Cancer cells, despite stemming from the own cells of their host, usually elicit an immune response. This response usually enables elimination of cancer at its earliest stages. However, some tumors develop mechanisms of escaping immune destruction and even profiting from tumor-derived inflammation. Methods We summarized the roles of different immune cell populations in various processes associated with cancer progression and possible methods of reshaping tumor-associated inflammation to increase the efficacy of cancer therapy. Results Changes in various signaling pathways result in attraction of immunosuppressive, pro-tumorigenic cells, such as myeloid-derived suppressor cells, tumor-associated macrophages, and neutrophils, while at the same time suppressing the activity of lymphocytes, which have the potential of destroying cancer cells. These changes promote tumor progression by increasing angiogenesis and growth, accelerating metastasis, and impairing drug delivery to the tumor site. Conclusion Due to its multi-faceted role in cancer, tumor-associated inflammation can serve as a valuable therapy target. By increasing it, whether through decreasing overall immunosuppression with immune checkpoint inhibitor therapy or through more specific methods, such as cancer vaccines, oncolytic viruses, or chimeric antigen receptor T cells, cancer-derived immunosuppression can be overcome, resulting in immune system destroying cancer cells. Even changes occurring in the microbiota can influence the shape of antitumor response, which could provide new attractive diagnostic or therapeutic methods. Interestingly, also decreasing the distorted tumor-associated inflammation with non-steroidal anti-inflammatory drugs can lead to positive outcomes.
Collapse
Affiliation(s)
- Piotr Pęczek
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gajda
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Kacper Rutkowski
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | | |
Collapse
|
37
|
Gao Y, Gong X, Yu S, Jin Z, Ruan Q, Zhang C, Zhao K. Immune enhancement of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine. Int J Biol Macromol 2022; 220:183-192. [PMID: 35981671 DOI: 10.1016/j.ijbiomac.2022.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
The immunogenicity and toxicity of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/N, O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) as a universal vaccine adjuvant/delivery system remains unclear. The present study indicated that the positively charged N-2-HACC/CMCS NPs showed a regular spherical morphology, with a particle size of 219 ± 13.72 nm, zeta potential of 37.28 ± 4.58 mV, had hemocompatibility and biodegradation. Acute toxicity, repeated dose toxicity, abnormal toxicity, muscle stimulation, whole body allergic reaction evaluation in vitro, and cytotoxicity in vivo confirmed N-2-HACC/CMCS NPs is safe and non-toxic. N-2-HACC/OVA/CMCS NPs were prepared to evaluate the immunogenicity, which showed a particle size of 248.1 ± 15.53 nm, zeta potential of 17.24 ± 1.28 mV, encapsulation efficiency of 92.43 ± 0.96 %, and loading capacity of 42.97 ± 0.07 %. Oral or intramuscular route with the N-2-HACC/OVA/CMCS NPs in mice not only induced higher IgG, IgG1, IgG2a, and sIgA antibody titers, but also significantly produced higher levels of IL-6, IL-4, IFN-γ, and TNF-α, demonstrating that the N-2-HACC/OVA/CMCS NPs enhance humoral, cellular, and mucosal immune responses. Our results not only support the N-2-HACC/CMCS NPs to be a safe and potential universal nano adjuvant/delivery system in vaccine development, especially mucosal vaccines, but also rich the database knowledge of adjuvant/delivery systems, and provide new direction to introduce more licensed adjuvants.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiaochen Gong
- School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Shuang Yu
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qicheng Ruan
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang 150080, China; Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
38
|
Lipid A analog CRX-527 conjugated to synthetic peptides enhances vaccination efficacy and tumor control. NPJ Vaccines 2022; 7:64. [PMID: 35739113 PMCID: PMC9226002 DOI: 10.1038/s41541-022-00484-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Adjuvants play a determinant role in cancer vaccination by optimally activating APCs and shaping the T cell response. Bacterial-derived lipid A is one of the most potent immune-stimulators known, and is recognized via Toll-like receptor 4 (TLR4). In this study, we explore the use of the synthetic, non-toxic, lipid A analog CRX-527 as an adjuvant for peptide cancer vaccines. This well-defined adjuvant was covalently conjugated to antigenic peptides as a strategy to improve vaccine efficacy. We show that coupling of this TLR4 agonist to peptide antigens improves vaccine uptake by dendritic cells (DCs), maturation of DCs and T cell activation in vitro, and stimulates DC migration and functional T cell priming in vivo. This translates into enhanced tumor protection upon prophylactic and therapeutic vaccination via intradermal injection against B16-OVA melanoma and HPV-related TC1 tumors. These results highlight the potential of CRX-527 as an adjuvant for molecularly defined cancer vaccines, and support the design of adjuvant-peptide conjugates as a strategy to optimize vaccine formulation.
Collapse
|
39
|
Tang M, Cai JH, Diao HY, Guo WM, Yang X, Xing S. The progress of peptide vaccine clinical trials in gynecologic oncology. Hum Vaccin Immunother 2022; 18:2062982. [PMID: 35687860 PMCID: PMC9450897 DOI: 10.1080/21645515.2022.2062982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Peptide vaccine are a type of immunotherapy that are synthesized according to the amino acid sequence of known or predicted tumor antigen epitopes. They are safe and well tolerated and have shown exciting results in gynecologic oncology. However, no peptide vaccine has yet been licensed in this field. This review examines peptide vaccine clinical trials in gynecology registered on ClinicalTrials.gov through January 1, 2022, analyzes the global progress and current achievements of peptide vaccines in gynecology, and explores the efforts focused on devising new methods to boost immunotherapeutic outcomes, including the use of adjuvants, multi-epitope vaccines, combinations of helper T cell epitopes, personalized peptide vaccines, synthetic long peptides, new peptide delivery, and combination therapy.
Collapse
Affiliation(s)
- Mi Tang
- GCP institution, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jiang-Hui Cai
- Department of Pharmacy, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hao-Yang Diao
- GCP institution, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Wen-Mei Guo
- GCP institution, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiao Yang
- Obstetrics Department, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - ShaSha Xing
- GCP institution, Chengdu Women's and Children's Center Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| |
Collapse
|
40
|
Argenziano M, Occhipinti S, Scomparin A, Angelini C, Novelli F, Soster M, Giovarelli M, Cavalli R. Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Deliv Transl Res 2022; 12:2007-2018. [PMID: 35672651 PMCID: PMC9172608 DOI: 10.1007/s13346-022-01185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Immunotherapy is a valuable approach to cancer treatment as it is able to activate the immune system. However, the curative methods currently in clinical practice, including immune checkpoint inhibitors, present some limitations. Dendritic cell vaccination has been investigated as an immunotherapeutic strategy, and nanotechnology-based delivery systems have emerged as powerful tools for improving immunotherapy and vaccine development. A number of nanodelivery systems have therefore been proposed to promote cancer immunotherapy. This work aims to design a novel immunotherapy nanoplatform for the treatment of HER2 + breast cancer, and specially tailored chitosan-shelled nanobubbles (NBs) have been developed for the delivery of a DNA vaccine. The NBs have been functionalized with anti-CD1a antibodies to target dendritic cells (DCs). The NB formulations possess dimensions of approximately 300 nm and positive surface charge, and also show good physical stability up to 6 months under storage at 4 °C. In vitro characterization has confirmed that these NBs are capable of loading DNA with good encapsulation efficiency (82%). The antiCD1a-functionalized NBs are designed to target DCs, and demonstrated the ability to induce DC activation in both human and mouse cell models, and also elicited a specific immune response that was capable of slowing tumor growth in mice in vivo. These findings are the proof of concept that loading a tumor vaccine into DC-targeted chitosan nanobubbles may become an attractive nanotechnology approach for the future immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Marco Soster
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
41
|
Zhao J, Xu Y, Ma S, Wang Y, Huang Z, Qu H, Yao H, Zhang Y, Wu G, Huang L, Song W, Tang Z, Chen X. A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109254. [PMID: 34984753 DOI: 10.1002/adma.202109254] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In recent years, significant evolutions have been made in applying nanotechnologies for prophylactic and therapeutic cancer vaccine design. However, the clinical translation of nanovaccines is still limited owing to their complicated compositions and difficulties in the spatiotemporal coordination of antigen-presenting cell activation and antigen cross-presentation. Herein, a minimalist binary nanovaccine (BiVax) is designed that integrates innate stimulating activity into the carrier to elicit robust antitumor immunity. The authors started by making a series of azole molecules end-capped polyethylenimine (PEI-M), and were surprised to find that over 60% of the PEI-M polymers have innate stimulating activity via activation of the stimulator of interferon genes pathway. PEI-4BImi, a PEI-M obtained from a series of polymers, elicits robust antitumor immune responses when used as a subcutaneously injected nanovaccine by simply mixing with ovalbumin antigens, and this BiVax system performs much better than the traditional ternary vaccine system, as well as, commercialized aluminum-containing adjuvants. This system also enables the fast preparation of personalized BiVax by compositing PEI-4BImi with autologous tumor cell membrane protein antigens, and a 60% postoperative cure rate is observed when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Yudi Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Haoyuan Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Haochen Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, 126 Xinmin Streey, Changchun, 130021, China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, China
| |
Collapse
|
42
|
Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials 2022; 282:121411. [DOI: 10.1016/j.biomaterials.2022.121411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/17/2022]
|
43
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
44
|
Subhan MA, Muzibur Rahman M. Recent Development in Metallic Nanoparticles for Breast Cancer Therapy and Diagnosis. CHEM REC 2022; 22:e202100331. [PMID: 35146897 DOI: 10.1002/tcr.202100331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Metal-based nanoparticles are very promising for their applications in cancer diagnosis, drug delivery and therapy. Breast cancer is the major reason of death in woman especially in developed countries including EU and USA. Due to the heterogeneity of cancer cells, nanoparticles are effective as therapeutics and diagnostics. Anti-cancer therapy of breast tumors is challenging because of highly metastatic progression of the disease to brain, bone, lung, and liver. Magnetic nanoparticles are crucial for metastatic breast cancer detection and protection. This review comprehensively discusses the application of nanomaterials as breast cancer therapy, therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology, 3114, Sylhet, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
46
|
Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2022; 67:102899. [PMID: 34630635 PMCID: PMC8489264 DOI: 10.1016/j.jddst.2021.102899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
The inexorable coronavirus disease 2019 (COVID-19) pandemic with around 226 million people diagnosed and approximately 4.6 million deaths, is still moving toward more frightening statistics, calling for the urgent need to explore solutions for the current challenges in therapeutic and diagnostic approaches. The challenges associated with existing therapeutics in COVID-19 include lack of in vivo stability, efficacy, and safety. Nanoparticles (NPs) can offer a handful of tools to tackle these problems by enabling efficacious and safe delivery of both virus- and host-directed therapeutics. Furthermore, they can enable maximized clinical outcome while eliminating the chance of resistance to therapy by tissue-targeting and concomitant delivery of multiple therapeutics. The promising application of NPs as vaccine platforms is reflected by the major advances in developing novel COVID-19 vaccines. Two of the most critical COVID-19 vaccines are mRNA-based vaccines delivered via NPs, making them the first FDA-approved mRNA vaccines. Besides, NPs have been deployed as simple, rapid, and precise tools for point of care disease diagnosis. Not enough said NPs can also be exploited in novel ways to expedite the drug discovery process. In light of the above, this review discusses how NPs can overcome the hurdles associated with therapeutic and diagnostic approaches against COVID-19.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Corresponding author. Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, PO Box 14155-6451, 1417614411, Iran
| |
Collapse
|
47
|
Cai W, Bao W, Chen S, Yang Y, Li Y. Metabolic syndrome related gene signature predicts the prognosis of patients with pancreatic ductal carcinoma. A novel link between metabolic dysregulation and pancreatic ductal carcinoma. Cancer Cell Int 2021; 21:698. [PMID: 34930261 PMCID: PMC8690436 DOI: 10.1186/s12935-021-02378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is one of the most common malignancies worldwide. In recent years, specific metabolic activities, which involves the development of tumor, caused wide public concern. In this study, we wish to explore the correlation between metabolism and progression of tumor. Methods A retrospective analysis including 95 patients with pancreatic ductal adenocarcinoma (PDAC) and PDAC patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and The Gene Expression Omnibus (GEO) database were involved in our study. Multivariate Cox regression analysis was used to construct the prognosis model. The potential connection between metabolism and immunity of PDAC was investigated through a weighted gene co-expression network analysis (WGCNA). 22 types of Tumor-infiltrating immune cells (TIICs) between high-risk and low-risk groups were estimated through CIBERSORT. Moreover, the potential immune-related signaling pathways between high-risk and low-risk groups were explored through the gene set enrichment analysis (GSEA). The role of key gene GMPS in developing pancreatic tumor was further investigated through CCK-8, colony-information, and Transwell. Results The prognostic value of the MetS factors was analyzed using the Cox regression model, and a clinical MetS-based nomogram was established. Then, we established a metabolism-related signature to predict the prognosis of PDAC patients based on the TCGA databases and was validated in the ICGC database and the GEO database to find the distinct molecular mechanism of MetS genes in PDAC. The result of WGCNA showed that the blue module was associated with risk score, and genes in the blue module were found to be enriched in the immune-related signaling pathway. Furthermore, the result of CIBERSORT demonstrated that proportions of T cells CD8, T cells Regulatory, Tregs NK cells Activated, Dendritic cells Activated, and Mast cells Resting were different between high-risk and low-risk groups. These differences are potential causes of different prognoses of PDAC patients. GSEA and the protein–protein interaction network (PPI) further revealed that our metabolism-related signature was significantly enriched in immune‐related biological processes. Moreover, knockdown of GMPS in PDAC cells suppressed proliferation, migration, and invasion of tumor cells, whereas overexpression of GMPS performed oppositely. Conclusion The results shine light on fundamental mechanisms of metabolic genes on PDAC and establish a reliable and referable signature to evaluate the prognosis of PDAC. GMPS was identified as a potential candidate oncogene with in PDAC, which can be a novel biomarker and therapeutic target for PDAC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02378-w.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Chen
- Department of Nephrology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan, China
| | - Yan Yang
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
48
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
49
|
Huang Y, Nieh MP, Chen W, Lei Y. Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. Biotechnol Bioeng 2021; 119:34-47. [PMID: 34698385 DOI: 10.1002/bit.27965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 11/07/2022]
Abstract
Outer membrane vesicles (OMVs) are nanoscale spherical vesicles released from Gram-negative bacteria. The lipid bilayer membrane structure of OMVs consists of similar components as bacterial membrane and thus has attracted more and more attention in exploiting OMVs' bio-applications. Although the endotoxic lipopolysaccharide on natural OMVs may impose potential limits on their clinical applications, genetic modification can reduce their endotoxicity and decorate OMVs with multiple functional proteins. These genetically engineered OMVs have been employed in various fields including vaccination, drug delivery, cancer therapy, bioimaging, biosensing, and enzyme carrier. This review will first briefly introduce the background of OMVs followed by recent advances in functionalization and various applications of engineered OMVs with an emphasis on the working principles and their performance, and then discuss about the future trends of OMVs in biomedical applications.
Collapse
Affiliation(s)
- Yikun Huang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yu Lei
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
50
|
Xu ML, Liu TC, Dong FX, Meng LX, Ling AX, Liu S. Exosomal lncRNA LINC01711 facilitates metastasis of esophageal squamous cell carcinoma via the miR-326/FSCN1 axis. Aging (Albany NY) 2021; 13:19776-19788. [PMID: 34370713 PMCID: PMC8386530 DOI: 10.18632/aging.203389] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 01/11/2023]
Abstract
Esophageal cancer is a malignant tumor with a five-year survival rate of less than 20%. Early diagnosis and exploration of esophageal cancer pathogenesis are of great significance for the treatment and prognosis of esophageal cancer. Long non-coding RNA (lncRNA) plays a vital role in the occurrence and development of different types of tumors. However, the role of exosome LncRNA in esophageal squamous cell carcinoma (ESCC) is rarely reported. In this study, we detected high expression of lncRNA LINC01711 in ESCC tissues and was associated with poor prognosis. Silencing LINC01711 can inhibit the proliferation, migration, invasion, and growth of ESCC cell lines, and induce apoptosis. Linc01711 was identified as a competitive endogenous RNA that suppressed miR-326, and up-regulated the expression of fascin actin-bundling protein 1 (FSCN1). Besides, in vivo experiments showed that the administration of exosome-derived LINC01711 (LINC01711-Exo) promoted the growth of tumors in nude mice. In general, exosomal LINC01711 promoted the proliferation, migration, and invasion of esophageal cancer cells by up-regulating FSCN1 and down-regulating miR-326, thus improved the occurrence and development of ESCC.
Collapse
Affiliation(s)
- Mei-Ling Xu
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Tian-Cheng Liu
- First Department of Oncology, People's Hospital of Juxian, Rizhao, Shandong Province, China
| | - Feng-Xiang Dong
- First Department of Oncology, People's Hospital of Juxian, Rizhao, Shandong Province, China
| | - Ling-Xin Meng
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Ai-Xia Ling
- Department of Physical-Chemistry, College of Pharmaceutical Sciences, Jining Medical College, Jinan, Shandong Province, China
| | - Shan Liu
- Department of Oncology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| |
Collapse
|