1
|
Singh R, Jadhav K, Kamboj R, Malhotra H, Ray E, Jhilta A, Dhir V, Verma RK. Self-actuating inflammation responsive hydrogel microsphere formulation for controlled drug release in rheumatoid arthritis (RA): Animal trials and study in human fibroblast like synoviocytes (hFLS) of RA patients. BIOMATERIALS ADVANCES 2024; 160:213853. [PMID: 38636119 DOI: 10.1016/j.bioadv.2024.213853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Patients with rheumatoid arthritis (RA) often have one or more painfuljoints despite adequate medicine. Local drug delivery to the synovial cavity bids for high drug concentration with minimal systemic adverse effects. However, anti-RA drugs show short half-lives in inflamed joints after intra-articular delivery. To improve the therapeutic efficacy, it is essential to ensure that a drug is only released from the formulation when it is needed. In this work, we developed an intelligent "Self-actuating" drug delivery system where Disease-modifying anti-rheumatic Drug (DMARD) methotrexate is incorporated within a matrix intended to be injected directly into joints. This formulation has the property to sense the need and release medication only when joints are inflamed in response to inflammatory enzyme Matrix metalloproteinases (MMP). These enzymes are important proteases in RA pathology, and several MMP are present in augmented levels in synovial fluid and tissues. A high level of MMP present in synovial tissues of RA patients would facilitate the release of drugs in response and ascertain controlled drug release. The formulation is designed to be stable within the joint environment, but to dis-assemble in response to inflammation. The synthesized enzyme-responsive methotrexate (Mtx) encapsulated micron-sized polymer-lipid hybrid hydrogel microspheres (Mtx-PLHM) was physiochemically characterized and tested in synovial fluid, Human Fibroblast like synoviocytes (h-FLS) (derived from RA patients) and a rat arthritic animal model. Mtx-PLHM can self-actuate and augment the release of Mtx drug upon contact with either exogenously added MMP or endogenous MMP present in the synovial fluid of patients with RA. The drug release from the prepared formulation is significantly amplified to several folds in the presence of MMP-2 and MMP-9 enzymes. In the rat arthritic model, Mtx-PLHM showed promising therapeutic results with the significant alleviation of RA symptoms through decrease in joint inflammation, swelling, bone erosion, and joint damage examined by X-ray analysis, histopathology and immune-histology. This drug delivery system would be nontoxic as it releases more drug only during the period of exacerbation of inflammation. This will simultaneously protect patients from unwanted side effects when the disease is inactive and lower the need for repeated joint injections.
Collapse
Affiliation(s)
- Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Hitesh Malhotra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Varun Dhir
- Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Cao S, Wei Y, Yao Z, Yue Y, Deng J, Xu H, Sheng W, Yu F, Liu P, Xiong A, Zeng H. A bibliometric and visualized analysis of nanoparticles in musculoskeletal diseases (from 2013 to 2023). Comput Biol Med 2024; 169:107867. [PMID: 38141451 DOI: 10.1016/j.compbiomed.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
As the pace of research on nanomedicine for musculoskeletal (MSK) diseases accelerates, there remains a lack of comprehensive analysis regarding the development trajectory, primary authors, and research focal points in this domain. Additionally, there's a need of detailed elucidation of potential research hotspots. The study gathered articles and reviews focusing on the utilization of nanoparticles (NPs) for MSK diseases published between 2013 and 2023, extracted from the Web of Science database. Bibliometric and visualization analyses were conducted using various tools such as VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package. China, the USA, and India emerged as the key drivers in this research domain. Among the numerous institutions involved, Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University exhibited the highest productivity levels. Vallet-Regi Maria emerged as the most prolific author in this field. International Journal of Nanomedicine accounted for the largest number of publications in this area. The top five disorders of utmost significance in this field include osteosarcoma, cartilage diseases, bone fractures, bone neoplasms, and joint diseases. These findings are instrumental in providing researchers with a comprehensive understanding of this domain and offer valuable perspectives for future investigations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Zhi Yao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Huihui Xu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Weibei Sheng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fei Yu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Kim DK, Park JY, Kang YJ, Khang D. Drug Repositioning of Metformin Encapsulated in PLGA Combined with Photothermal Therapy Ameliorates Rheumatoid Arthritis. Int J Nanomedicine 2023; 18:7267-7285. [PMID: 38090362 PMCID: PMC10711299 DOI: 10.2147/ijn.s438388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Rheumatoid arthritis (RA) is a highly prevalent form of autoimmune disease that affects nearly 1% of the global population by causing severe cartilage damage and inflammation. Despite its prevalence, previous efforts to prevent the perpetuation of RA have been hampered by therapeutics' cytotoxicity and poor delivery to target cells. The present study exploited drug repositioning and nanotechnology to convert metformin, a widely used antidiabetic agent, into an anti-rheumatoid arthritis drug by designing poly(lactic-co-glycolic acid) (PLGA)-based spheres. Moreover, this study also explored the thermal responsiveness of the IL-22 receptor, a key regulator of Th-17, to incorporate photothermal therapy (PTT) into the nanodrug treatment. Materials and Methods PLGA nanoparticles were synthesized using the solvent evaporation method, and metformin and indocyanine green (ICG) were encapsulated in PLGA in a dropwise manner. The nanodrug's in vitro anti-inflammatory properties were examined in J744 and FLS via real-time PCR. PTT was induced by an 808 nm near-infrared (NIR) laser, and the anti-RA effects of the nanodrug with PTT were evaluated in DBA/1 collagen-induced arthritis (CIA) mice models. Further evaluation of anti-RA properties was carried out using flow cytometry, immunofluorescence analysis, and immunohistochemical analysis. Results The encapsulation of metformin into PLGA allowed the nanodrug to enter the target cells via macropinocytosis and clathrin-mediated endocytosis. Metformin-encapsulated PLGA (PLGA-MET) demonstrated promising anti-inflammatory effects by decreasing the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), increasing the expression of anti-inflammatory cytokines (IL-10 and IL-4), and promoting the polarization of M1 to M2 macrophages in J774 cells. The treatment of the nanodrug with PTT exhibited more potent anti-inflammatory effects than free metformin or PLGA-MET in CIA mice models. Conclusion These results demonstrated that PLGA-encapsulated metformin treatment with PTT can effectively ameliorate inflammation in a spatiotemporal manner.
Collapse
Affiliation(s)
- Dae Kyu Kim
- Deparment of Biochemistry, Bowdoin College, Brunswick, ME, 04011, USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Youn Joo Kang
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
4
|
Zimath P, Pinto S, Dias S, Rafacho A, Sarmento B. Zein nanoparticles as oral carrier for mometasone furoate delivery. Drug Deliv Transl Res 2023; 13:2948-2959. [PMID: 37208563 PMCID: PMC10545574 DOI: 10.1007/s13346-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Mometasone furoate (MF) is a synthetic glucocorticoid used clinically to treat specific inflammatory disorders including superior and inferior respiratory tract. Due to its poor bioavailability we further investigated whether nanoparticles (NPs) made of zein protein may constitute a safe and effective choice to incorporate MF. Thus, in this work, we loaded MF into zein NPs aiming to evaluate possible advantages that could result from oral delivery and extend the range of MF application such as inflammatory gut diseases. MF-loaded zein NPs presented an average size in the range of 100 and 135 nm, narrow size distribution (polydispersity index < 0.300), zeta potential of around + 10 mV and association efficiency of MF over 70%. Transmission electron microscopy imaging revealed that NPs had a round shape and presented a smooth surface. The zein NPs showed low MF release in a buffer that mimics the gastric condition (pH = 1.2) and slower and controlled MF release in the intestinal condition (pH = 6.8). The short and intermediate safety of zein NPs was confirmed assessing the incubation against Caco-2 and HT29-MTX intestinal cells up to 24 h. Permeability studies of MF across Caco-2/HT29-MTX co-culture monolayer evidenced that zein NPs modulated MF transport across cell monolayer resulting in a stronger and prolonged interaction with mucus, potentially extending the time of absorption and overall local and systemic bioavailability. Overall, zein NPs showed to be suitable to carry MF to the intestine and future studies can be developed to investigate the use of MF-loaded zein NPs to treat intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Priscila Zimath
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal.
- IUCS - CESPU, Gandra, Portugal.
| |
Collapse
|
5
|
Aldayel AM, Hufnagel S, O'Mary HL, Valdes SA, Alzhrani RF, Xu H, Cui Z. Effect of nanoparticle size on their distribution and retention in chronic inflammation sites. DISCOVER NANO 2023; 18:105. [PMID: 37606823 PMCID: PMC10444937 DOI: 10.1186/s11671-023-03882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Nanomedicines are increasingly researched and used for the treatment of chronic inflammatory diseases. Herein, the effect of the size of nanoparticles on their distribution and retention in chronic inflammatory sites, as compared to healthy tissues, was studied in a mouse model with chronic inflammation in one of the hind footpads. Using PEGylated gold nanoparticles of 2, 10, 100, and 200 nm, we found that although the smaller nanoparticles of 2 and 10 nm showed greater distribution and slower clearance in the inflamed footpad than the relatively larger nanoparticles of 100 and 200 nm, the larger nanoparticles of 100 and 200 nm were more selectively distributed in the inflamed hind footpad than in the healthy hind footpad in the same mouse. Based on these findings, we prepared protein nanoparticles of 100-200 nm with albumin, IgG antibody, or anti-TNF-α monoclonal antibody (mAb). The nanoparticles can release proteins in response to high redox activity and/or low pH, conditions seen in chronic inflammation sites. We then showed that upon intravenous injection, those stimuli-responsive protein nanoparticles distributed more selectively in the inflamed footpad than free proteins and remained longer in the inflamed footpad than similar protein nanoparticles that are not sensitive to high redox activity or low pH. These findings support the feasibility of increasing the selectivity of nanomedicines and protein therapeutics to chronic inflammation sites and prolonging their retention at the sites by innovative nanoparticle engineering.
Collapse
Affiliation(s)
- Abdulaziz M Aldayel
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), 11426, Riyadh, Saudi Arabia.
| | - Stephanie Hufnagel
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah L O'Mary
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Solange A Valdes
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Ureña NM, de Oliveira CP, Guterres SS, Pohlmann AR, da Costa OTF, Boechat AL. The Anti-Arthritic Activity of Diclofenac Lipid-Core Nanocapsules: Stereological Analysis Showing More Protection of Deep Joint Components. Molecules 2023; 28:5219. [PMID: 37446881 DOI: 10.3390/molecules28135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Diclofenac is the most prescribed nonsteroidal anti-inflammatory drug worldwide and is used to relieve pain and inflammation in inflammatory arthritis. Diclofenac is associated with serious adverse effects, even in regular-dose regimens. Drug delivery systems can overcome this issue by reducing adverse effects and optimizing their efficacy. This study evaluated the activity of lipid-core nanocapsules loaded with diclofenac (DIC-LNCs) in an experimental model of adjuvant-induced arthritis. The diclofenac nanoformulation was obtained via self-assembly. A stereological analysis approach was applied for the morphological quantification of the volume, density, and cellular profile count of the metatarsophalangeal joints of rats. Proinflammatory cytokines and biochemical profiles were also obtained. Our results showed that the diclofenac nanocapsule DIC-LNCs were able to reduce arthritis compared with the control group and the DIC group. DIC-LNCs efficiently reduced proinflammatory cytokines, C-reactive protein, and xanthine oxidase levels. Additionally, DIC-LNCs reduced the loss of synoviocytes and chondrocytes compared with the DIC (p < 0.05) and control groups (p < 0.05). These data suggest that DIC-LNCs have anti-arthritic activity and preserve joint components, making them promising for clinical use.
Collapse
Affiliation(s)
- Nathalie Marte Ureña
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Catiúscia Padilha de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Oscar Tadeu Ferreira da Costa
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Morfologia Quantitativa, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Antonio Luiz Boechat
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Terapias Inovadoras, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| |
Collapse
|
7
|
Zhang R, Liu F, Zhang Q, Yang L, Hou X, Du T, Fan J, Hu H, Deng H, Hao L, Guo L, Fu C. Intra-articular delivery system of methotrexate for rheumatoid arthritis therapy: An in-suit thermosensitive comprehensive gel of polysaccharide from Aconitum carmichaelii Debx. Int J Biol Macromol 2023:124822. [PMID: 37257527 DOI: 10.1016/j.ijbiomac.2023.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
The polysaccharides (FP) extracted from the lateral roots of Aconitum carmichaelii Debx. (Fuzi) are natural compounds, which have effective therapy for rheumatoid arthritis (RA). Methotrexate (MTX) is the first-line drug for RA, but its application is greatly limited to the toxicity in liver and kidney and drug resistance. In this study, an attempt is made to apply oxidized FP (OFP) as a polymer carrier based on intra-articular delivery system loaded MTX. The FP could be developed and used as comprehensive gel carriers with biocompatibility and degradability for therapy of RA. Firstly, OFP-chitosan-poloxamer 407 (OFP-CS-F407-MTX) gel was prepared by natural non-toxic cross-linking agents. Physicochemical characterization was performed by using 1H NMR and FTIR spectroscopic techniques to assess the successful functionalization of OFP. TGA, SEM and rheological experiment of OFP-CS-F407-MTX gel were investigated. Notably, we loaded MTX into OFP-CS-F407-MTX gel which had remarkable therapeutic efficacy and biosafety for RA. Based on advantages of intra-articular injection of OFP-CS-F407-MTX gel releasing MTX, it modulated proinflammatory cytokines by down-regulating TNF-α, IL-6 and IL-1β expression. Therefore, OFP-CS-F407-MTX in situ gel delivery system can potentially reduce systemic toxicity and irritation of oral administration of MTX but give a controlled release of drug for a long period of time.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Xinlian Hou
- Hua Run Sanjiu (Ya'an) Pharmaceutical Co., Ltd., Ya'an 625000, Sichuan Province, China
| | - TaoMing Du
- Department of Radiology, Chengdu Seventh People's Hospital, Chengdu 610000, Sichuan Province, China
| | - Jie Fan
- Department of Radiology, Chengdu Seventh People's Hospital, Chengdu 610000, Sichuan Province, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li Hao
- Hua Run Sanjiu (Ya'an) Pharmaceutical Co., Ltd., Ya'an 625000, Sichuan Province, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| |
Collapse
|
8
|
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023; 87:101927. [PMID: 37031724 DOI: 10.1016/j.arr.2023.101927] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune inflammatory disorder defined by the damage to the bone and cartilage in the synovium, which causes joint impairment and an increase in the mortality rate. It is associated with an incompletely elucidated pathophysiological mechanism. Even though disease-modifying antirheumatic drugs have contributed to recent improvements in the standard of care for RA, only a small fraction of patients is able to attain and maintain clinical remission without the necessity for ongoing immunosuppressive drugs. The evolution of tolerance over time as well as patients' inability to respond to currently available therapy can alter the overall management of RA. A significant increase in the research of RA nano therapies due to the possible improvements they may provide over traditional systemic treatments has been observed. New approaches to getting beyond the drawbacks of existing treatments are presented by advancements in the research of nanotherapeutic techniques, particularly drug delivery nano systems. Via passive or active targeting of systemic delivery, therapeutic drugs can be precisely transported to and concentrated in the affected sites. As a result, nanoscale drug delivery systems improve the solubility and bioavailability of certain drugs and reduce dose escalation. In the present paper, we provide a thorough overview of the possible biomedical applications of various nanostructures in the diagnostic and therapeutic management of RA, derived from the shortcomings of conventional therapies. Moreover, the paper suggests the need for improvement on the basis of research directions and properly designed clinical studies.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
9
|
da Rocha EMT, Bracht L, Gonçalves OH, Leimann FV, Ames FQ, Schneider LCL, Duda JV, Cardia GFE, Bonetti CI, Cuman RKN, Bersani-Amado CA. Development and characterization of trans-anethole-containing solid lipid microparticles: antiinflammatory and gastroprotective effects in experimental inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:469-484. [PMID: 36385686 DOI: 10.1007/s00210-022-02323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
The present study prepared, optimized, and characterized solid lipid microparticles that contained trans-anethole (SLMAN), evaluated their antiinflammatory activity in acute and chronic inflammation models, and investigated their effects on the gastric mucosa in arthritic rats. The microparticles were obtained by a hot homogenization process and characterized by physicochemical analyses. The acute inflammatory response was induced by an intradermal injection of 0.1 ml of carrageenan solution (200 μg) in the hind paw. The rats were treated orally with a single dose of SLMAN 1 h before induction of the inflammatory response. The chronic inflammatory response was induced by the subcutaneous application of 0.1 ml of complete Freund's adjuvant suspension (500 µg) in the hind paw. SLMAN was orally administered, starting on the day of arthritis induction, and continued for 21 days. The results showed that SLMAN was obtained with good encapsulation efficiency. Treatment with SLMAN at doses of 25 and 50 mg/kg was as effective as trans-anethole (AN) at a dose of 250 mg/kg on acute and chronic inflammatory responses. Histological analyses showed that treatment with SLMAN did not aggravate lesions in the gastric mucosa in arthritic rats. These results indicated that treatment with SLMAN at a dose that was 5-10 times lower than non-encapsulated AN exerted an inhibitory effect on acute and chronic inflammatory responses, suggesting the better bioavailability and efficacy of microencapsulated AN without aggravating lesions in the gastric mucosa in arthritic rats.
Collapse
Affiliation(s)
- Edvalkia Magna Teobaldo da Rocha
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Queiroz Ames
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - João Victor Duda
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Gabriel Fernando Esteves Cardia
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Carla Indianara Bonetti
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil.
| | - Ciomar Aparecida Bersani-Amado
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| |
Collapse
|
10
|
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Exploring the role of exosomes in rheumatoid arthritis. Inflammopharmacology 2023; 31:119-128. [PMID: 36414831 DOI: 10.1007/s10787-022-01100-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
In prosperous countries, autoimmune illnesses affect minimum 7% of the community. Rheumatoid Arthritis (RA) as an autoimmune illness is thought to be induced through a variety of genomic, physiological, and biological factors. Many experts in the field of nanomedicine have looked to stem cells as a viable strategy to repair human tissue; however, exosomes have demonstrated greater potential in recent years. Exosomes, produced from stem cells in particular, have exhibited a high propensity to give therapeutic effects. To resist local cellular stress, they are secreted in a paracrine manner from cells. As a result, exosomes produced from stem cells can provide enormous health uses. If treatment is not given, autoantibodies produce synovial inflammation and arthritis, which can lead to chronic inflammation, and impairment. Exosomes could be administered for the treatment of RA, by acting as therapeutic vectors. Exosomes are murine extracellular vesicles that influence biological mechanisms and signal transduction by transporting genetic and protein components. Diseases like RA and bone fractures could be treated using cell-free therapeutic strategies if exosomes could be isolated from stem cells efficiently and packaged with specific restorative substances. To get to this position, many breakthroughs must be achieved, and the following review summarises the most recent developments in stem cell-derived exosomes, with a focus on the important literature on exosome dynamics in RA.
Collapse
|
12
|
Khurana A, Saifi MA, Godugu C. Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis. Biol Trace Elem Res 2022; 201:3404-3417. [PMID: 36319828 DOI: 10.1007/s12011-022-03446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 04/17/2023]
Abstract
In this work, we tested the efficacy of yttrium oxide nanoparticles (NY), a promising antioxidant and anti-inflammatory agent, in L-arginine (L-Arg) induced chronic pancreatitis (CP) model. The nanoparticles were characterized using multiple techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (pXRD), and Energy dispersive X-ray analysis (EDX). The rats were divided into three groups: normal control, L-Arg control, L-Arg + NY (1 mg/kg). We probed the mechanistic effects of the NY by ELISA, multiplex analysis of TGF-β pathway and inflammatory cytokines and immunoblotting. NY treatment significantly reduced pancreatic oxidative-nitrosative stress. In addition, NY intervention also reduced inflammatory cytokines and chemokines resulting in the inhibition of fibrosis signaling. Further, NY treatment suppressed the TGF-β signaling and epithelial-mesenchymal transition (EMT). We conclude that NY shows potential antioxidant, anti-inflammatory, and anti-fibrotic effects against CP and associated fibrosis.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
13
|
Li C, Zheng X, Hu M, Jia M, Jin R, Nie Y. Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opin Drug Deliv 2022; 19:883-898. [PMID: 35760767 DOI: 10.1080/17425247.2022.2094364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune systemic disease in which inflammatory and immune cells accumulate in inflamed joints. Researchers aimed at the characteristics of RA to achieve the effect of treating RA through different therapeutic strategies, and have used various endogenous materials to design drug-loaded nanoparticles that can target RA by binding to cell adhesion molecules or chemokines. In some cases, the nanoparticles can respond to the characteristics of the microenvironment. AREAS COVERED This article reviews the recent advances in the treatment of RA from two aspects of therapeutic strategies and delivery strategies. Therapeutic strategies mainly include neutralization of inflammatory factors, promotion of inflammatory cell apoptosis, ROS scavenger, immunosuppression, and bone tissue repair. The drug delivery strategy is mainly described from two aspects: chemically functionalized biomimetic nanoparticles and endogenous nanoparticles. EXPERT OPINION Biomimetic NPs may be effective drug carriers for targeted RA treatment. NPs can reduce the clearance of mononuclear phagocytes, prolong the blood circulation time, and improve the targeting ability. With the deepening of research, more and more biomimetic NPs have entered the clinical trial stage. However, safe and scalable preparation methods are needed to improve their clinical applicability.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mei Hu
- Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
14
|
Bruschi F, Ashour D, Othman A. Trichinella-induced immunomodulation: Another tale of helminth success. Food Waterborne Parasitol 2022; 27:e00164. [PMID: 35615625 PMCID: PMC9125654 DOI: 10.1016/j.fawpar.2022.e00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.
Collapse
Key Words
- AAM, alternatively activated macrophage
- AW, adult worm
- Allergy
- Autoimmune diseases
- Breg, regulatory B cell
- CAM, classically activated macrophage
- Cancer
- ES L1, ES product of T. spiralis muscle larva
- ES, excretory–secretory
- IFN- γ, interferon-γ
- IIL, intestinal infective larva
- IL, interleukin
- Immune evasion
- Immunomodulation
- ML, muscle larva
- NBL, newborn larva
- NOS, nitric oxide synthase
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TNF- α, tumor necrosis factor-α
- Th, T helper
- Tol-DC, tolerogenic dendritic cell
- Treg, regulatory T cell
- Trichinella
- Trichinella-derived molecules
- Ts-AES, ES from adult T. spiralis
Collapse
Affiliation(s)
- F. Bruschi
- School of Medicine, Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - D.S. Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A.A. Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Wang X, Cao W, Sun C, Wang Y, Wang M, Wu J. Development of pH-sensitive dextran-based methotrexate nanodrug for rheumatoid arthritis therapy through inhibition of JAK-STAT pathways. Int J Pharm 2022; 622:121874. [PMID: 35636630 DOI: 10.1016/j.ijpharm.2022.121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and symmetrical autoimmune disease that primarily characterized with articular synovial hyperplasia, joint swelling, cartilage and bone destruction. The in-depth understanding of the role of immune signaling pathway inhibitors provides inspiration for the construction of new and more effective strategy for RA therapy. In this study, by loading methotrexate (MTX) into an acetalated dextran biopolymer, AcDEX, we developed a pH-sensitive, MTX-loaded and molecularly targeted nanodrug MTX@pH-AcDEX NPs) to decrease the toxicity of MTX and simultaneously enhance its therapeutic effect. The resultant MTX@pH-AcDEX NPs showed the spherical morphology and notable pH-responsiveness with high drug loading of 88.32%. As demonstrated in vitro and in vivo, the reduced cytotoxicity of both RAW264.7 cells and LPS-activated RAW264.7 cells treated with MTX@pH-AcDEX NPs was found compared to free MTX. Upon intravenous administration into adjuvant-induced arthritis (AIA) rat model, the nanodrug had potent pharmacokinetic and pharmacodynamic profiles, which can accumulate in RA lesions and release MTX inhibitors for regulating the JAK-STAT pathways. As a result, the MTX@pH-AcDEX NPs achieved the cartilage and bone protective and a better anti-inflammatory effect with negligible systemic toxicity, suggesting the strong potential of safe and effective nanodrug for RA therapy as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Wenjun Cao
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Chuanfen Sun
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yutie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Mingyu Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| | - Jiarong Wu
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
16
|
Xu A, Yang R, Zhang M, Wang X, Di Y, Jiang B, Di Y, Zhou Z, Zhou L. Macrophage targeted triptolide micelles capable of cGAS-STING pathway inhibition for rheumatoid arthritis treatment. J Drug Target 2022; 30:961-972. [PMID: 35467469 DOI: 10.1080/1061186x.2022.2070173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abundant M1 macrophages in the joint synovium were the main factors that exacerbate rheumatoid arthritis (RA) by secreting various types of inflammatory cytokines. Here, we note that cGAS-STING, an important pro-inflammatory pathway, was significantly up-regulated in RA, enabling it be the potential target for RA therapy. Therefore, in this work, we developed M1 macrophages targeted micelles capable of cGAS-STING pathway inhibition for the smart treatment of RA. The folic acid (FA) and lauric acid (LA) were modified on dextran to obtain an amphiphilic polymer (FDL). Then, FDL was subsequently applied to encapsulate triptolide (TP) to form FDL@TP nanomicelles. The FDL@TP could target the joint and enhance the cell uptake of TP by M1 macrophages (overexpressing folate receptor-β), which also reduced the side effects of TP on normal tissues. In M1 macrophages, the released TP, acted as an anti-inflammatory and immunosuppressant, obviously down-regulated the expressions of cGAS and STING protein, and thus reduced the secretion of TNF-α, IL-1β, and IL-6. Importantly, compared with the same dose of free TP, FDL@TP could significantly enhance the anti-inflammatory effect. Therefore, FDL@TP nanomicelles were believed to be superior candidates for the clinical treatment of RA.
Collapse
Affiliation(s)
- Alan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Ruoxi Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Mingfei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Xiang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Yuxi Di
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Baoping Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Yongxiang Di
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zhanwei Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Lingling Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Han M, Song Y, Liu S, Lu X, Su L, Liu M, Zhu X, Sun K, Lu Y, Wang A. Engineering of Stimulus-Responsive Pirfenidone Liposomes for Pulmonary Delivery During Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:882678. [PMID: 35548360 PMCID: PMC9081653 DOI: 10.3389/fphar.2022.882678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive and irreversible loss of lung function. Clinically safe and efficacious drug treatments for IPF are lacking. Pirfenidone (an anti-inflammatory, antioxidant and anti-fibrotic small-molecule drug) is considered a promising treatment for IPF. Unfortunately, several disadvantages of pirfenidone caused by traditional administration (e.g., gastrointestinal reactions, short elimination half-life) hinder its implementation. We designed pirfenidone pH-sensitive liposomes (PSLs) to target the acidic microenvironment of IPF and act directly at the disease site through pulmonary administration. Pirfenidone was encapsulated in liposomes to extend its half-life, and modified with polyethylene glycol on the surface of liposomes to improve the permeability of the mucus layer in airways. In vitro, the cytotoxicity of pirfenidone PSLs to pulmonary fibroblasts was increased significantly at 48 h compared with that using pirfenidone. In a murine and rat model of bleomycin-induced pulmonary fibrosis, pirfenidone PSLs inhibited IPF development and increased PSL accumulation in the lungs compared with that using pirfenidone solution or phosphate-buffered saline. Pirfenidone PSLs had potentially fewer side effects and stronger lung targeting. These results suggest that pirfenidone PSLs are promising preparations for IPF treatment.
Collapse
Affiliation(s)
- Meishan Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yingjian Song
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Linyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Meixuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiaosu Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Yanan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
18
|
Marasini N, Er G, Fu C, Subasic CN, Ibrahim J, Skwarczynski M, Toth I, Whittaker AK, Kaminskas LM. Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomater 2022; 142:298-307. [PMID: 35114374 DOI: 10.1016/j.actbio.2022.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
Abstract
Methotrexate (MTX) is an effective disease modifying anti-rheumatic drug, but can cause significant hepatotoxicity and liver failure in some individuals. The goal of this work was to develop a MTX-conjugated hyperbranched polymeric nanoparticle based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and examine its ability to selectively deliver MTX to rheumatic joints while sparing the liver. MTX was conjugated to the hyperbranched polymer via a matrix metalloproteinase-13 cleavable peptide linker. Two populations of nanoparticles were produced, with sizes averaging 20 and 200nm. Tri-peptide (FFK)-modified MTX was liberated in the presence of matrix metalloproteinase 13 (MMP-13)and showed 100 to 1000-fold lower antiproliferative capacity in monocytic THP-1 cells compared to unmodified MTX, depending on whether the gamma-carboxylate of MTX was functionalized with O-tert-butyl. Nanoparticles showed prolonged plasma exposure after intravenous injection with a terminal half-life of approximately 1 day, but incomplete (50%) absorption after subcutaneous administration. Nanoparticles selectively accumulated in inflamed joints in a rat model of rheumatoid arthritis and showed less than 5% biodistribution in the liver after 5 days. MTX-OtBu nanoparticles also showed no hepatocellular toxicity at 500 μM MTX equivalents. This work provides support for the further development of OEGMA-based hyperbranched polymers as MTX drug delivery systems for rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Nanomedicines containing covalently conjugated methotrexate offer the potential for selective accumulation of the potent hepatotoxic drug in rheumatic joints and limited liver exposure. One limitation of the high surface presentation of methotrexate on a nanoparticle surface, however, is the potential for enhanced liver uptake. We developed several OEGMA-based hyperbranched polymers containing alpha-carboxyl modified and unmodified methotrexate conjugated via an MMP-13 cleavable hexapeptide linker. The modified methotrexate polymer showed promising in vitro and in vivo behavior warranting further development and optimization as an anti-rheumatic nanomedicine. This work presents a new avenue for further research into the development of hyperbranched polymers for rheumatoid arthritis and suggests interesting approaches that may overcome some limitations associated with the translation of anti-rheumatic nanomedicines into patients.
Collapse
|
19
|
CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting. Int J Mol Sci 2022; 23:ijms23073623. [PMID: 35408983 PMCID: PMC8998744 DOI: 10.3390/ijms23073623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the most common malignant tumor of the male urinary system. Nanodrug delivery systems (NDDS) have been widely applied in drug delivery for tumor therapy; however, nanotherapeutics encounter various biological barriers that prevent successful accumulation of drugs, specifically at diseased sites. Therefore, there is an urgent need to develop a CRPC-targeting nanocomposite with fine biocompatibility for penetrating various biological barriers, delivering sufficient drugs to the targeting site and improving therapeutic efficiency. In this work, CRPC cell membranes were firstly adapted as biomimetic vectors for the encapsulating PEG-PLGA polymer containing the chemotherapy drug docetaxel (DTX). The CRPC membrane-camouflaged nanoparticles can easily escape early recognition by the immune system, penetrate the extracellular barrier, and evade clearance by the circulatory system. In addition to the characteristics of traditional nanoparticles, the CRPC cell membrane contains an arsenal of highly specific homotypic moieties that can be used to recognize the same cancer cell types and increase the targeted drug delivery of DTX. In vivo fluorescence and radionuclide dual-model imaging were fulfilled by decorating the biomimetic nanosystem with near-infrared dye and isotope, which validated the homotypic targeting property offered by the CRPC cell membrane coating. Importantly, remarkably improved therapeutic efficacy was achieved in a mice model bearing CRPC tumors. This homologous cell membrane enabled an efficient drug delivery strategy and enlightened a new pathway for the clinical application of tumor chemotherapy drugs in the future.
Collapse
|
20
|
Rahman MM, Islam F, Afsana Mim S, Khan MS, Islam MR, Haque MA, Mitra S, Emran TB, Rauf A. Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. JOURNAL OF NANOMATERIALS 2022; 2022:1-19. [DOI: 10.1155/2022/4217529] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cancer is a fatal disorder that affects people across the globe, yet existing therapeutics are ineffective. The development of submicrometer transport for optimizing the biodistribution of systemically provided medications is the focus of nanomedicine. Nanoparticle- (NP-) based treatments may enable the development of novel therapeutic approaches to combat this deadly disorder. In multifunctional, multimodal imaging, and drug delivery carriers, NPs generally play a major role. They have emerged as potential strategies for the invention of innovative therapeutic procedures in the last decade. The exponential growth of nanotechnologies in recent years has increased public awareness of the application of these innovative therapeutic approaches. Many tumor-targeted nanomedicines have been studied in cancer therapy, and there is clear evidence for a significant improvement in the therapeutic index of antineoplastic drugs. Age-related factors such as metabolic and physiological alterations in old age and inadequate animal models are currently understudied in nanomedicine and pharmacology. This review highlighted the most important targeting approaches, as well as public awareness, therapeutic advancements, and future prospects in age-related metabolic variations, and tumor-targeted nanomedicine studies.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Anamul Haque
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Qiu S, Chinnathambi A, Salmen SH, Prabakaran D, Alharbi SA, Veeraraghavan VP, Surapaneni KM. Synthesized Chitosan-Sodium Alginate-Polyethylene glycol-D-Pinitol nanocomposites showed antiarthritic activity on Freund’s Complete Adjuvant-induced arthritis in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2022; 67:102899. [PMID: 34630635 PMCID: PMC8489264 DOI: 10.1016/j.jddst.2021.102899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
The inexorable coronavirus disease 2019 (COVID-19) pandemic with around 226 million people diagnosed and approximately 4.6 million deaths, is still moving toward more frightening statistics, calling for the urgent need to explore solutions for the current challenges in therapeutic and diagnostic approaches. The challenges associated with existing therapeutics in COVID-19 include lack of in vivo stability, efficacy, and safety. Nanoparticles (NPs) can offer a handful of tools to tackle these problems by enabling efficacious and safe delivery of both virus- and host-directed therapeutics. Furthermore, they can enable maximized clinical outcome while eliminating the chance of resistance to therapy by tissue-targeting and concomitant delivery of multiple therapeutics. The promising application of NPs as vaccine platforms is reflected by the major advances in developing novel COVID-19 vaccines. Two of the most critical COVID-19 vaccines are mRNA-based vaccines delivered via NPs, making them the first FDA-approved mRNA vaccines. Besides, NPs have been deployed as simple, rapid, and precise tools for point of care disease diagnosis. Not enough said NPs can also be exploited in novel ways to expedite the drug discovery process. In light of the above, this review discusses how NPs can overcome the hurdles associated with therapeutic and diagnostic approaches against COVID-19.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Corresponding author. Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, PO Box 14155-6451, 1417614411, Iran
| |
Collapse
|
23
|
Zhong J, Zhang Q, Zhang Z, Shi K, Sun Y, Liu T, Lin J, Yang K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. NANO RESEARCH 2022; 15:153-161. [DOI: 10.1007/s12274-021-3449-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 08/22/2024]
|
24
|
Kandell R, Kudryashev JA, Kwon EJ. Targeting the Extracellular Matrix in Traumatic Brain Injury Increases Signal Generation from an Activity-Based Nanosensor. ACS NANO 2021; 15:20504-20516. [PMID: 34870408 PMCID: PMC8716428 DOI: 10.1021/acsnano.1c09064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a critical public health concern and major contributor to death and long-term disability. After the initial trauma, a sustained secondary injury involving a complex continuum of pathophysiology unfolds, ultimately leading to the destruction of nervous tissue. One disease hallmark of TBI is ectopic protease activity, which can mediate cell death, extracellular matrix breakdown, and inflammation. We previously engineered a fluorogenic activity-based nanosensor for TBI (TBI-ABN) that passively accumulates in the injured brain across the disrupted vasculature and generates fluorescent signal in response to calpain-1 cleavage, thus enabling in situ visualization of TBI-associated calpain-1 protease activity. In this work, we hypothesized that actively targeting the extracellular matrix (ECM) of the injured brain would improve nanosensor accumulation in the injured brain beyond passive delivery alone and lead to increased nanosensor activation. We evaluated several peptides that bind exposed/enriched ECM constituents in the brain and discovered that nanomaterials modified with peptides that target hyaluronic acid (HA) displayed widespread distribution across the injury lesion, in particular colocalizing with perilesional and hippocampal neurons. Modifying TBI-ABN with HA-targeting peptide led to increases in activation in a ligand-valency-dependent manner, up to 6.6-fold in the injured cortex compared to a nontargeted nanosensor. This robust nanosensor activation enabled 3D visualization of injury-specific protease activity in a cleared and intact brain. In our work, we establish that targeting brain ECM with peptide ligands can be leveraged to improve the distribution and function of a bioresponsive imaging nanomaterial.
Collapse
Affiliation(s)
| | | | - Ester J. Kwon
- Department of Bioengineering, University of California−San Diego, La Jolla, California 92093, United States
| |
Collapse
|
25
|
Song Y, Ismail M, Shan Q, Zhao J, Zhu Y, Zhang L, Du Y, Ling L. ROS-mediated liposomal dexamethasone: a new FA-targeted nanoformulation to combat rheumatoid arthritis via inhibiting iRhom2/TNF-α/BAFF pathways. NANOSCALE 2021; 13:20170-20185. [PMID: 34846489 DOI: 10.1039/d1nr05518f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder that has seriously affected human health worldwide and its current management requires more successful therapeutic approaches. The combination of nanomedicines and pathophysiology into one system may provide an alternative strategy for precise RA treatment. In this work, a practical ROS-mediated liposome, abbreviated as Dex@FA-ROS-Lips that comprised synthetic dimeric thioether lipids (di-S-PC) and a surface functionalized with folic acid (FA), was proposed for dexamethasone (Dex) delivery. Incorporation with thioether lipids and a FA segment significantly improved the triggered release and improved the triggered release of cytotoxic Dex as well as the active targeting of RA, altering its overall pharmacokinetics and safety profiles in vivo. As proof, the designed Dex@FA-ROS-Lips demonstrated effective internalization by LPS-activated Raw264.7 macrophages with FA receptor overexpression and released Dex at the inflammatory site due to the ROS-triggered disassembly. Intravenous injection of this Dex@FA-ROS-Lips into adjuvant-induced arthritis (AIA) mice led to its incremental accumulation in inflamed joint tissues and significantly alleviated the cartilage destruction and joint swelling via suppression of proinflammatory cytokines (iRhom2, TNF-α and BAFF), as compared to the effect of commercial free Dex. Importantly, the Dex@FA-ROS-Lips nanoformulation showed better hemocompatibility with less adverse effects on the body weight and immune organ index of AIA mice. The anti-inflammatory mechanism of Dex@FA-ROS-Lips was further studied and it was found that it is possibly associated with the down-regulation of iRhom2 and the activation of the TNF-α/BAFF signaling pathway. Therefore, the integration of nanomedicines and the RA microenvironment using multifunctional Dex@FA-ROS-Lips shall be a novel RA treatment modality with full clinical potential, and based on the enhanced therapeutic effect, the signaling pathway of iRhom2/TNF-α/BAFF reasonably explained the mechanism of Dex@FA-ROS-Lips in anti-RA, which suggested a molecular target for RA therapy and other inflammatory diseases.
Collapse
Affiliation(s)
- Yanqin Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Center for Biomedical Innovation, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
26
|
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH, Cheng XS. Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered 2021; 12:12544-12554. [PMID: 34839787 PMCID: PMC8810130 DOI: 10.1080/21655979.2021.2010315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is ubiquitous in septic shock patients and is associated with high morbidity and mortality rates. Heat shock protein 22 (Hsp22), which belongs to the small HSP family of proteins, is involved in several biological functions. However, the function of Hsp22 in lipopolysaccharide (LPS)-induced myocardial injury is not yet established. This study was aimed at investigating the underlying mechanistic aspects of Hsp22 in myocardial injury induced by LPS. In this study, following the random assignment of male C57BL/6 mice into control, LPS-treated, and LPS + Hsp22 treated groups, relevant echocardiograms and staining were performed to scrutinize the cardiac pathology. Plausible mechanisms were proposed based on the findings of the enzyme-linked immunosorbent assay and Western blotting assay. A protective role of Hsp22 against LPS-induced myocardial injury emerged, as evidenced from decreased levels of creatinine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and enhanced cardiac function. The post-LPS administration-caused spike in inflammatory cytokines (IL-1β, IL-6, TNF-α and NLRP3) was attenuated by the Hsp22 pre-treatment. In addition, superoxide dismutase (SOD) activity and B-cell lymphoma-2 (Bcl2) levels were augmented by Hsp22 treatment resulting in lowering of LPS-induced oxidative stress and cardiomyocyte apoptosis. In summary, the suppression of LPS-induced myocardial injury by Hsp22 overexpression via targeting of inflammation, oxidative stress, and apoptosis in cardiomyocytes paves the way for this protein to be employed in the therapy of SIMD.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Long-Long Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-an Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int J Pharm 2021; 609:121137. [PMID: 34592396 DOI: 10.1016/j.ijpharm.2021.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that develops in about 5 per 1000 people. Over the past years, substantial progresses in knowledge of the disease's pathophysiology, effective diagnosis methods, early detection, and efficient treatment strategies have been made. Notably, nanotechnology has emerged as a game-changer in the efficacious management of many diseases, especially for RA. Joint replacement, photothermal therapy (PTT), photodynamic therapy (PDT), RA diagnosis, and treatment monitoring are nano-based avenues in RA management. Here, we present a brief overview of the pathogenesis of RA, risk factors, conventional diagnostic methods and treatment approaches, and then discuss the role of nanomedicine in RA diagnosis, treatment, and treatment monitoring with an emphasis on functional characteristics distinctive from other RA therapeutics.
Collapse
Affiliation(s)
- Parastou Rahimizadeh
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Zahra Rezaieyazdi
- Rheumatic Disease Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Faezeh Behzadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
28
|
Rehman A, John P, Bhatti A. Biogenic Selenium Nanoparticles: Potential Solution to Oxidative Stress Mediated Inflammation in Rheumatoid Arthritis and Associated Complications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2005. [PMID: 34443836 PMCID: PMC8401564 DOI: 10.3390/nano11082005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammation-mediated disorder having systematic complications. RA triggers a self-directed inflammatory and immunological cascade that culminates in joint destruction. Though a range of treatment options are available, none of them are without adverse effects and this has led researchers to search for alternative solutions. Nanomedicine has emerged as a powerful therapeutic alternative, and selenium (Se) is an essential micronutrient trace element that has a crucial role in human health and disease. Selenium nanoparticles (SeNPs) derived from biological sources, such as plants, bacteria, fungi, and proteins, have exhibited remarkable candidate properties and toxicological profiles, and hence have shown potential to be used as antirheumatic agents. The potential of SeNPs can be attributed to the effect of functional groups bound to them, concentration, and most importantly to their nano range size. The antirheumatic effect of SeNPs is considerable due to its potential in amelioration of oxidative stress-mediated inflammation via downregulation of radical and nonradical species, markers of inflammation, and upregulation of inherent antioxidant defenses. The size and concentration impact of SeNPs has been shown in the subsequent antioxidant and anti-inflammatory properties. Moreover, the article emphasizes the role of these biogenic SeNPs as a notable option in the nanomedicine arena that needs to be further studied as a prospective remedial alternative to cure RA and medication-related adverse events.
Collapse
Affiliation(s)
| | - Peter John
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.R.); (A.B.)
| | | |
Collapse
|
29
|
Ilić N, Kosanović M, Gruden-Movsesijan A, Glamočlija S, Sofronić-Milosavljević L, Čolić M, Tomić S. Harnessing immunomodulatory mechanisms of Trichinella spiralis to design novel nanomedical approaches for restoring self-tolerance in autoimmunity. Immunol Lett 2021; 238:57-67. [PMID: 34363897 DOI: 10.1016/j.imlet.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The rapid increase in the prevalence of autoimmune diseases in recent decades, especially in developed countries, coincided with improved living conditions and healthcare. Part of this increase could be ascribed to the lack of exposure to infectious agents like helminths that co-evolved with us and display potent immune regulatory actions. In this review we discussed many investigations, including our own, showing that Trichinella spiralis via its excretory-secretory products attenuate Th1/Th17 immunopathological response in autoimmunity and potentiate the protective Th2 and or regulatory T cell response, acting as an effective induction of tolerogenic dendritic cells (DCs), and probably mimicking the autoantigen in some diseases. A recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that inducing a complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. Indeed, different artificial nanomedical approaches discussed here suggested that co-delivery of multiple signals via nanoparticles is the most promising strategy for the treatment of autoimmune diseases. Although a long way is ahead of us before we could completely replicate natural nano-delivery systems which are both safe and potent in restoring self-tolerance, a clear path is being opened from a careful examination of parasite-host interactions.
Collapse
Affiliation(s)
- Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Maja Kosanović
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Sofija Glamočlija
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Ljiljana Sofronić-Milosavljević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia; Medical Faculty Foča, University of East Sarajevo, Bosnia and Hercegovina; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia.
| |
Collapse
|
30
|
Kumar V, Leekha A, Kaul A, Mishra AK, Verma AK. Role of folate-conjugated glycol-chitosan nanoparticles in modulating the activated macrophages to ameliorate inflammatory arthritis: in vitro and in vivo activities. Drug Deliv Transl Res 2021; 10:1057-1075. [PMID: 32363539 DOI: 10.1007/s13346-020-00765-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activated macrophages are the primary targets in rheumatoid arthritis (RA) management. So, we report efficacious, dual-functional Methotrexate (MTX) loaded folate-conjugated pH-responsive glycol-chitosan nanoparticles (MFGCN) prepared by nano-precipitation and zero-order cross-linking reaction for targeting inflamed arthritic tissue. Physical characterization by DLS, SEM and TEM indicated a spherical, smooth morphology with a diameter ~ 300 nm. 1H NMR and FTIR indicated folic acid conjugation to GC by zero-order cross-linkers. In vitro release kinetics in PBS showed pH-responsive and sustained release behaviour of MFGCN. Enhanced cellular uptake and cytotoxicity of MFGCN in LPS(+)RAW and activated peritoneal macrophages (Mϕ) were observed when compared to LPS(-)RAW cells. MFGCN-induced mitochondrial membrane potential (MMP) perturbations indicated apoptosis. Oxidative stress was evident by significant increase in ROS and RNS, 4 h post incubation with MFGCN. Negligible hemolysis by FGCN and MFGCN on rat RBC's indicated biocompatibility. In vivo biodistribution of MFGCN in adjuvant-induced arthritis (AIA) rats indicated RA targetability. Prolonged blood circulation coupled with higher concentrations of 99mTc-MFGCN at the arthritic site was observed post 24 h of injection. The gamma scintigraphic image confirmed accumulation of radiolabelled MFGCN in arthritic paw when compared to the non-inflamed paw, confirming the selective uptake of 99mTc-MFGCN by folate-overexpressing macrophages in the arthritic synovium thereby proving its targeted efficacy and theranostic potential. In AIA rats, MFGCN lowers arthritic signs, improves antioxidant response and decreases pro-inflammatory cytokines, suggesting its potential in targeting activated macrophages of synovium. Graphical abstract.
Collapse
Affiliation(s)
- Vijay Kumar
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankita Leekha
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anita Kamra Verma
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
31
|
Anita C, Munira M, Mural Q, Shaily L. Topical nanocarriers for management of Rheumatoid Arthritis: A review. Biomed Pharmacother 2021; 141:111880. [PMID: 34328101 DOI: 10.1016/j.biopha.2021.111880] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease manifested by chronic joint inflammation leading to severe disability and premature mortality. With a global prevalence of about 0.3%-1% RA is 3-5 times more prevalent in women than in men. There is no known cure for RA; the ultimate goal for treatment of RA is to provide symptomatic relief. The treatment regimen for RA involves frequent drug administration and high doses of NSAIDs such as indomethacin, diclofenac, ibuprofen, celecoxib, etorcoxib. These potent drugs often have off target effects which drastically decreases patient compliance. Moreover, conventional non-steroidal anti-inflammatory have many formulation challenges like low solubility and permeability, poor bioavailability, degradation by gastrointestinal enzymes, food interactions and toxicity. To overcome these barriers, researchers have turned to topical route of drug administration, which has superior patience compliance and they also bypass the first past effect experienced with conventional oral administration. Furthermore, to enhance the permeation of drug through the layers of the skin and reach the site of inflammation, nanosized carriers have been designed such as liposomes, nanoemulsions, niosomes, ethosomes, solid lipid nanoparticles and transferosomes. These drug delivery systems are non-toxic and have high drug encapsulation efficiency and they also provide sustained release of drug. This review discusses the effect of formulation composition on the physiochemical properties of these nanocarriers in terms of particle size, surface charge, drug entrapment and also drug release profile thus providing a landscape of topically used nanoformulations for symptomatic treatment of RA.
Collapse
Affiliation(s)
- Chando Anita
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai 400056, India
| | - Momin Munira
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai 400056, India; Shri C. B. Patel Research Centre, Vile Parle (West), Mumbai 400056, India.
| | - Quadros Mural
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai 400056, India
| | - Lalka Shaily
- Department of Regulatory Affairs, Rusan Pharma Limited, Charkop, Kandivali (West), Mumbai 400067, India
| |
Collapse
|
32
|
Assali M, Shawahna R, Alhawareen R, Najajreh H, Rabaya O, Faroun M, Zyoud A, Hilal H. Self-assembly of diclofenac prodrug into nanomicelles for enhancing the anti-inflammatory activity. RSC Adv 2021; 11:22433-22438. [PMID: 35480812 PMCID: PMC9034210 DOI: 10.1039/d1ra03804d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed for the treatment of various types of inflammatory conditions. Diclofenac is a very common NSAID that is utilized to relieve pain and reduce fever and, most importantly, inflammation. However, it suffers from low water solubility and a low dissolution profile. Therefore, we aim to develop a new drug delivery system based on the synthesis of amphiphilic structures that are capable of self assembling into nano-micelles which will be a water-soluble delivery system for the diclofenac. The amphiphilic structure consists of a hydrophilic moiety of triethylene glycol (TEG), polyethylene glycol PEG 400, or PEG 600 linked with the hydrophobic drug diclofenac through an ester linkage. The diclofenac derivatives were successfully synthesized as confirmed by nuclear magnetic resonance. Moreover, the formation of the micellar structure of the synthesized amphiphilic derivatives was confirmed by atomic force microscopy obtaining a spherical shape of the micelles with average diameters of 200 nm for Dic-PEG400-Dic, and 110 nm for Dic-PEG600-Dic. The critical micelle concentration has been determined as 2.7 × 10-3 mg mL-1 for Dic-PEG400-Dic, and 1 × 10-4 mg mL-1 for Dic-PEG600-Dic. The in vitro diclofenac release profile by esterase enzyme was conducted and showed almost complete conversion to free diclofenac within 35 h in the case of Dic-PEG400-Dic micelles and more than 85% of Dic-PEG600-Dic micelles. Then the anti-inflammatory activity was determined by testing the TNF-α production in LPS-stimulated Balb/c mice. Diclofenac micelles significantly suppressed TNF-α production after a 5 mg kg-1 dose was given. The developed micelles showed TNF-α inhibition up to 87.4% and 84% after 48 hours of treatment in the case of Dic-PEG400-Dic and Dic-PEG600-Dic micelles respectively in comparison to 42.3% in the case of diclofenac alone. Dic-PEG400-Dic micelles showed the most potent anti-inflammatory activity with improved TNF-α suppression through time progress. Therefore, the developed nano-micelles provide a facile synthetic approach to enhance diclofenac water solubility, improve the anti-inflammatory effect and achieve a sustained release profile to get better patient compliance.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Ramzi Shawahna
- Department of Physiology, Pharmacology, and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Raeda Alhawareen
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Haifa Najajreh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Oraib Rabaya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Maryam Faroun
- The Nanotechnology Research Laboratory, Materials Engineering Department, Al-Quds University East Jerusalem Palestine
| | - Ahed Zyoud
- Department of Chemistry, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Hikmat Hilal
- Department of Chemistry, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| |
Collapse
|
33
|
Chen L, Wang Y, Sun L, Yan J, Mao H. Nanomedicine Strategies for Anti-Inflammatory Treatment of Noninfectious Arthritis. Adv Healthc Mater 2021; 10:e2001732. [PMID: 33870656 DOI: 10.1002/adhm.202001732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Noninfectious arthritis (NIA) comprises a class of chronic and progressive inflammatory disorders that require early-stage management to prevent disease progression. The most common forms include osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and gouty arthritis. Current treatments involve nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs and glucocorticoids to alleviate clinical symptoms, although regular use of these can result in a high risk of chronic kidney disease and heart failure, as well as severe adverse gastrointestinal effects. Nanomedicine offers unique opportunities to address these challenges and improve therapeutic efficacy due to its ability to deliver therapeutics locally in a sustained manner, thus extending the half-life, improving bioavailability, and reducing the side effects of these agents. This review includes a comprehensive analysis of the mechanisms of various treatment options for NIA and highlights recent progress and emerging strategies in treating NIA with nanomedicine platforms, particularly related to long-term biosafety and nonspecific targeting in designing nanomedicine delivery systems.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Yuanzheng Wang
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
| | - Li Sun
- Department of Orthopedics Guizhou Provincial People's Hospital Guiyang Guizhou 550000 China
| | - Jerry Yan
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering School of Medicine Johns Hopkins University Baltimore MD 21205 USA
| | - Hai‐Quan Mao
- Translational Tissue Engineering Center Johns Hopkins School of Medicine Baltimore MD 21287 USA
- Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Department of Biomedical Engineering School of Medicine Johns Hopkins University Baltimore MD 21205 USA
- Department of Materials Science and Engineering Whiting School of Engineering Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
34
|
Zhang Q, Li D, Zhong J, Wu Y, Shi Y, Yang H, Zhao L, Yang K, Lin J. SPECT imaging and highly efficient therapy of rheumatoid arthritis based on hyperbranched semiconducting polymer nanoparticles. Biomater Sci 2021; 9:1845-1854. [PMID: 33463632 DOI: 10.1039/d0bm02037k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease. Although significant progress has been made in clinical treatment, joint inflammation may continue or worsen, and may even progress to the end-stage that requires joint replacement. Traditional therapy using methotrexate (MTX) would cause serious off-target systemic toxicities. Therefore, it is crucial to effectively and specifically deliver MTX to targeted inflamed joints to decrease its adverse systemic toxicities and improve its therapeutic index. Herein, we develop multifunctional nanocarriers for diagnostic radioisotope (99mTc) labeling and therapeutic targeted drug (MTX) delivery by using PEGylated hyperbranched semiconducting polymer nanoparticles (HSP-PEG-NPs) as carriers. Upon intravenous administration, the nanoparticles can extravasate through the turbulent blood-joint barrier and access the inflamed joints. In vivo SPECT/CT imaging shows high accumulation in the inflamed joints of mice with RA after intravenous injection of HSP-PEG-NPs with 99mTc labeling (99mTc-HSP-PEG). In vivo therapeutic evaluations suggest that MTX@HSP-PEG-NPs significantly alleviate RA with a high therapeutic index and relatively low adverse systemic toxicities in comparison with free MTX at the same dose. Our study shows that HSP-PEG-NPs could serve as multifunctional vehicles to deliver radioisotopes for in vivo imaging, and MTX for RA treatment, highlighting the innovative development of the nanoparticle-based RA treatment strategy for clinical applications.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Daochang Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jing Zhong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yanglin Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Yucheng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| |
Collapse
|
35
|
He L, Qin X, Fan D, Feng C, Wang Q, Fang J. Dual-Stimuli Responsive Polymeric Micelles for the Effective Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21076-21086. [PMID: 33913684 DOI: 10.1021/acsami.1c04953] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The nontargeted distribution and uncontrolled in vivo release of drugs impede their efficacy in the treatment of rheumatoid arthritis (RA). Delivering drugs to arthritic joints and releasing drugs on demand are a feasible solution to achieve the effective treatment of RA. In this paper, we report a facile method to assemble dual-stimuli responsive polymeric micelles from polyethylene glycol-phenylboric acid-triglycerol monostearate (PEG-PBA-TGMS, PPT) conjugates with the aim of delivering dexamethasone (Dex) to arthritic joints and controlling the release of Dex by inflammatory stimuli. We show that the release of Dex from the PPT micelles is accelerated in response to acidic pH and overexpressed matrix metalloproteinases. In an adjuvant-induced arthritis model, the PPT micelles preferentially accumulate in arthritic joints and show an excellent therapeutic efficacy after being intravenously administrated. Our results highlight the potential of the dual stimuli-responsive micelles as a promising therapeutic option for the effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chenglan Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Florida 32816, United States
| |
Collapse
|
36
|
Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021; 11:1158-1174. [PMID: 34094826 PMCID: PMC8144894 DOI: 10.1016/j.apsb.2021.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing understanding of the pathogenesis of rheumatoid arthritis (RA) has remarkably promoted the development of effective therapeutic regimens of RA. Nevertheless, the inadequate response to current therapies in a proportion of patients, the systemic toxicity accompanied by long-term administration or distribution in non-targeted sites and the comprised efficacy caused by undesirable bioavailability, are still unsettled problems lying across the full remission of RA. So far, these existing limitations have inspired comprehensive academic researches on nanomedicines for RA treatment. A variety of versatile nanocarriers with controllable physicochemical properties, tailorable drug release pattern or active targeting ability were fabricated to enhance the drug delivery efficiency in RA treatment. This review aims to provide an up-to-date progress regarding to RA treatment using nanomedicines in the last 5 years and concisely discuss the potential application of several newly emerged therapeutic strategies such as inducing the antigen-specific tolerance, pro-resolving therapy or regulating the immunometabolism for RA treatments.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Chai LX, Fan XX, Zuo YH, Zhang B, Nie GH, Xie N, Xie ZJ, Zhang H. Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B 2021; 8:1841-1851. [PMID: 32016224 DOI: 10.1039/c9tb02538c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation of the joints of the body. Although liposomes are a promising drug delivery vehicle, there is still a challenge of using conventional liposomes for the treatment of RA due to their short circulation time and physicochemical instability in blood vessels. Here, we report the formation of polymerized stealth liposomes composed of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-poly(ethyleneglycol) (DSPE-PEG2000) with a thin-film hydration method, in which DC8,9PC molecules are cross-linked in the bilayer of the liposomes by UV irradiation and the PEG chains present at the surface of the liposomes provide a stealth layer. We demonstrate that the polymerized stealth liposomes are stable and show long circulation time in blood vessels. They can be internalized by cells without significant toxicity. After being injected into arthritic rats, the polymerized stealth liposomes with loaded dexamethasone (Dex) show long blood circulation time and accumulate preferentially in inflamed joints, consequently suppressing the level of proinflammatory cytokines (TNF-α and IL-1β) in joint tissues, reducing the swelling of inflamed joints and alleviating the progression of RA. We believe that polymerized stealth liposomes can be used as a promising drug delivery vehicle for various therapeutic applications.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China. and Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Florida 32816, USA.
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center and Department of Materials Science and Engineering, University of Central Florida, Florida 32816, USA.
| |
Collapse
|
39
|
Wei Y, Yan L, Luo L, Gui T, Jang B, Amirshaghaghi A, You T, Tsourkas A, Qin L, Cheng Z. Phospholipase A 2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. SCIENCE ADVANCES 2021; 7:7/15/eabe6374. [PMID: 33827816 PMCID: PMC8026133 DOI: 10.1126/sciadv.abe6374] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any notable clinical success, in part, due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in the articular cartilage in human and mouse OA cartilage tissues. We hypothesize that the inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop an sPLA2-responsive and nanoparticle (NP)-based interventional platform for OA management, we incorporated an sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar NPs (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lijun Luo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bian Jang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianyan You
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Hyaluronic Acid-Coated MTX-PEI Nanoparticles for Targeted Rheumatoid Arthritis Therapy. CRYSTALS 2021. [DOI: 10.3390/cryst11040321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA); however, long-term and high-dose usage of MTX for patients can cause many side effects and toxic reactions. To address these difficulties, selectively delivering MTX to the inflammatory site of a joint is promising in the treatment of RA. In this study, we prepared MTX-PEI@HA nanoparticles (NPs), composed of hyaluronic acid (HA) as the hydrophilic negative electrical shell, and MTX-linked branched polyethyleneimine (MTX-PEI) NPs as the core. MTX-PEI@HA NPs were prepared in the water phase by a one-pot method. The polymeric NPs were selectively internalized via CD44 receptor-mediated endocytosis in the activated macrophages. In the in vivo mice mode study, treatment with MTX-PEI@HA NPs mitigated inflammatory arthritis with notable safety at a high dose of MTX. We highlight the distinct advantages of aqueous-synthesized NPs coated with HA for arthritis-selective targeted delivery, thus verifying MTX-PEI@HA NPs as a promising MTX-based nanoplatform for treatment of RA.
Collapse
|
41
|
Mabrouk AA, Tadros MI, El-Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: Insights into the implementation of nanotechnology and mucoadhesion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Lima AC, Campos CF, Cunha C, Carvalho A, Reis RL, Ferreira H, Neves NM. Biofunctionalized Liposomes to Monitor Rheumatoid Arthritis Regression Stimulated by Interleukin-23 Neutralization. Adv Healthc Mater 2021; 10:e2001570. [PMID: 33103383 DOI: 10.1002/adhm.202001570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Indexed: 12/27/2022]
Abstract
Even after the revolution of rheumatoid arthritis (RA) treatment with biologic agents, this debilitating disease remains a major clinical problem. The outstanding outcomes of the systemic administration of antibodies (Abs) are narrowed by the risk of serious side effects and limited efficacy due to their short half-life. Interleukin-23 (IL-23) is a crucial pro-inflammatory cytokine involved in inflammation that potently enhances the generation of T-helper type-17 (Th17) cells. Hence, in this work, anti-IL-23 Abs are immobilized at the surface of liposomes to increase their therapeutic efficacy, being gold nanoparticles (AuNPs) incorporated to allow monitoring the biodistribution of the liposomes after systemic administration as well as due to their anti-inflammatory and antioxidant effects. A stable monodispersed liposomes' suspension with around 130 nm is produced and efficiently biofunctionalized with anti-IL-23 Abs. IL-23 capture and neutralization capacity are confirmed using activated macrophages. Biological assays demonstrate their hemocompatibility and cytocompatibility with human articular chondrocytes, macrophages, and endothelial cells. Moreover, the neutralization of IL-23 by the biofunctionalized liposomes efficiently decreases the production of IL-17A by peripheral blood mononuclear cells of healthy donors and RA patients who are activated to Th17 differentiation. Therefore, the developed formulation may be a promising strategy to treat RA.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Cláudia F. Campos
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Cristina Cunha
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Agostinho Carvalho
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Helena Ferreira
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga Guimarães 4805‐017 Portugal
| |
Collapse
|
43
|
Zhao J, Chen X, Ho KH, Cai C, Li CW, Yang M, Yi C. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Sharma M, Chaudhary D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management. Int J Pharm 2020; 594:120176. [PMID: 33326825 DOI: 10.1016/j.ijpharm.2020.120176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Bromelain, a cysteine protease exhibits promising potential in amelioration of wide variety of inflammatory disorders. Its denaturation or aggregation in gastric milieu depletes its therapeutic potential along with unpredictable prophylactic hypersensitivity reactions. Hence, efficient carrier system to improve bromelain's stability and avoid related side effects is of utmost importance. Therefore, present investigation was undertaken to prepare bromelain loaded nanostructured lipid carriers (Br-NCs) with high drug loading, stability and efficacy in rheumatoid arthritis management. Br-NCs fabricated via double emulsion solvent evaporation method were characterized for physical properties, morphology and stability. Optimized batch exhibited spherical shape, nanometric size (298.23 nm) and entrapment efficiency ~77% with sustained release behavior and improved gastric stability. Br-NCs exhibited 4.63-folds improvement in shelf-life compared to bromelain at room temperature. The protective potential of orally administered Br-NCs in rheumatoid arthritis was evaluated via assessing arthritis severity in wistar rats along with biochemical, hematological and immunological parameters. Br-NCs remarkably (p < 0.05) diminished paw edema, joint stiffness, mechanical allodynia and tissue damage along with alleviation of oxidative stress and immunological markers. Radiological joint alterations were also notably preserved with Br-NCs. Thus, preclinical studies distinctly manifested that Br-NCs formulation opens new avenue for development of novel effective therapeutic modality for rheumatoid arthritis management.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India.
| | - Deepika Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| |
Collapse
|
45
|
Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats: design and in vivo evaluation. Inflammopharmacology 2020; 29:107-121. [PMID: 33179175 DOI: 10.1007/s10787-020-00776-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that can effectively control the pain and inflammation caused by rheumatoid arthritis (RA), but its usage is limited due to severe adverse effects. For this reason, making more specific formulations of this drug can be considered. The aim of the present study was designing a novel nano-sized indomethacin delivery system. MATERIALS AND METHODS Indomethacin-loaded dextran stearate polymeric micelles were prepared by dialysis method. Particle size and zeta potential of micelles were measured by a zeta sizer instrument. Drug release from micelles was investigated in phosphate buffer medium pH 7.4 and then the best formulation regarding physical properties and drug release was selected for animal studies. Arthritis was induced by complete Freund's adjuvant injection in rats. Then, the animals were randomly assigned into the model, the indomethacin solution and the polymeric micelles groups. The clinical effects of polymeric micelle formulation were assessed by measuring arthritis index, animal paw edema and measuring biochemical parameters including myeloperoxidase (MPO) activity, lipid peroxidation (LPO), glutathione (GSH), total antioxidant capacity (TAC), TNF-α, IL-17 and IL-1β. RESULTS Paw edema was attenuated following the administration of indomethacin-loaded polymeric micelles. Based on the findings of the present study, the use of indomethacin-loaded polymeric micelles could improve inflammatory symptoms, decrease arthritis index and decrease the diameter of the paw in arthritic rats in a significant manner (p ≤ 0.05). In addition, the use of polymeric micelles like indomethacin solution significantly reduced (p ≤ 0.05) the activity of MPO, LPO, TNF-α, IL-17 and IL-1β, and made a significant increase (p ≤ 0.05) in glutathione and TAC content and ameliorated structural changes in the paw tissue compared to the control group. CONCLUSION Our findings demonstrated that indomethacin-loaded dextran stearate polymeric micelles can provide more effective therapeutic effects in control of inflammation in arthritis in rat.
Collapse
|
46
|
Poonia N, Lather V, Kaur B, Kirthanashri SV, Pandita D. Optimization and Development of Methotrexate- and Resveratrol-Loaded Nanoemulsion Formulation Using Box-Behnken Design for Rheumatoid Arthritis. Assay Drug Dev Technol 2020; 18:356-368. [PMID: 33052698 DOI: 10.1089/adt.2020.989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methotrexate (MTX) is the first line of choice for the management of rheumatoid arthritis (RA) and has been reported for its low bioavailability and side effects. Combination therapy has been widely investigated to overcome bioavailability issues and to reduce adverse effects associated with monotherapy. Various phytoconstituents such as resveratrol (RSV) and curcumin have been found to possess potent anti-inflammatory activity via downregulating the signaling of cytokines (interleukin [IL]-1, IL-6, and tumor necrosis factor alpha) and nuclear factor kappa B signaling. The prime objective of this study was to develop transdermal gel containing MTX-RSV loaded nanoemulsions (NEs) to overcome bioavailability issues and adverse effects of RA monotherapy. The NEs optimized by using Box-Behnken Design were incorporated within gel, and an in vitro skin permeation study performed on rat skin by using vertical Franz diffusion cells exhibited controlled drug release up to 48 h. Subsequently, anti-inflammatory and potential anti-arthritic activities of the combination in nanocarrier were assessed in rats and showed 78.76 ± 4.16% inhibition in inflammation and better anti-arthritic effects. Consequently, integration of dual delivery with nanotechnology can hopefully produce successful therapeutic options for rheumatic diseases.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, Jan Nayak Chaudhary Devi Lal Memorial College of Pharmacy, Sirsa, India
| | - Viney Lather
- Amity Institute of Pharmacy and Amity University Uttar Pradesh, Noida, India
| | - Baljeet Kaur
- Department of Pharmaceutics, Jan Nayak Chaudhary Devi Lal Memorial College of Pharmacy, Sirsa, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, New Delhi, India
| |
Collapse
|
47
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
48
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
49
|
Yan F, Zhong Z, Wang Y, Feng Y, Mei Z, Li H, Chen X, Cai L, Li C. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology 2020; 18:115. [PMID: 32819405 PMCID: PMC7441703 DOI: 10.1186/s12951-020-00675-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) show powerful treatment effect on rheumatoid arthritis (RA). However, the clinical application is limited by their nonspecific distribution after systemic administration, serious adverse reactions during long-term administration. To achieve better treatment, reduce side effect, we here established a biomimetic exosome (Exo) encapsulating dexamethasone sodium phosphate (Dex) nanoparticle (Exo/Dex), whose surface was modified with folic acid (FA)-polyethylene glycol (PEG)-cholesterol (Chol) compound to attain FPC-Exo/Dex active targeting drug delivery system. RESULTS The size of FPC-Exo/Dex was 128.43 ± 16.27 nm, with a polydispersity index (PDI) of 0.36 ± 0.05, and the Zeta potential was - 22.73 ± 0.91 mV. The encapsulation efficiency (EE) of the preparation was 10.26 ± 0.73%, with drug loading efficiency (DLE) of 18.81 ± 2.05%. In vitro study showed this system displayed enhanced endocytosis and excellent anti-inflammation effect against RAW264.7 cells by suppressing pro-inflammatory cytokines and increasing anti-inflammatory cytokine. Further biodistribution study showed the fluorescence intensity of FPC-Exo/Dex was stronger than other Dex formulations in joints, suggesting its enhanced accumulation to inflammation sites. In vivo biodistribution experiment displayed FPC-Exo/Dex could preserve the bone and cartilage of CIA mice better and significantly reduce inflamed joints. Next in vivo safety evaluation demonstrated this biomimetic drug delivery system had no obvious hepatotoxicity and exhibited desirable biocompatibility. CONCLUSION The present study provides a promising strategy for using exosome as nanocarrier to enhance the therapeutic effect of GCs against RA.
Collapse
Affiliation(s)
- Feili Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yao Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Xiang Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Engineering Research Center in Biomaterials, Sichuan University, 610064, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
50
|
Facile functionalization of Teriflunomide-loaded nanoliposomes with Chondroitin sulphate for the treatment of Rheumatoid arthritis. Carbohydr Polym 2020; 250:116926. [PMID: 33049840 DOI: 10.1016/j.carbpol.2020.116926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/26/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
This research aims to coat Teriflunomide (TEF) loaded conventional nanoliposomes (CON-TEF-LIPO) with Chondroitin sulphate (CS) to produce CS-TEF-LIPO for the effective treatment of Rheumatoid arthritis (RA). Both CON-TEF-LIPO and CS-TEF-LIPO were produced, characterized and evaluated for their active targeting potential towards CD44 receptors. Cell cytotoxicity, cell viability and intracellular uptake study on differentiated U937 and MG-63 cells demonstrated the active targeting of CS-TEF-LIPO towards CD44 receptors. Furthermore, in vivo pharmacodynamic, biochemical, radiological and histopathological studies performed in adjuvant induced arthritic (AIA) rat model showed a significant (P < 0.05) reduction in inflammation in arthritic rat paw in CS-TEF-LIPO group compared to TEF and CON-TEF-LIPO groups. Moreover, liver toxicity study revealed that CS-TEF-LIPO showed no signs of toxicity and biodistribution study revealed the accumulation of CS-TEF-LIPO in synovial region of arthritic rat. Taken together, results suggest that CS-TEF-LIPO could provide a new insight for an effective treatment of RA.
Collapse
|