1
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2024:10.1007/s11010-024-05145-3. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
2
|
Sullivan H, Liang Y, Worthington K, Luo C, Gianneschi NC, Christman KL. Enzyme-Responsive Nanoparticles for the Targeted Delivery of an MMP Inhibitor to Acute Myocardial Infarction. Biomacromolecules 2023; 24:4695-4704. [PMID: 37695847 PMCID: PMC10646957 DOI: 10.1021/acs.biomac.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness. Using a rat MI model, we observed that these NPs were capable of successfully extravasating into the infarcted region of the heart where they were retained due to the active, enzyme-mediated targeting, remaining detectable after 1 week post administration without increasing macrophage recruitment. Furthermore, in vitro studies show that these NPs demonstrated successful drug release following MMP treatment and maintained drug bioactivity as evidenced by comparable MMP inhibition to free MMPi. This work establishes a targeted NP platform for delivering small-molecule therapeutics to the heart after MI, opening possibilities for myocardial infarction treatment.
Collapse
Affiliation(s)
- Holly
L. Sullivan
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Yifei Liang
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Colin Luo
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Departments
of Materials Science & Engineering, Biomedical Engineering and
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry & Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Karen L. Christman
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Spadaccio C, Nenna A, Rose D, Piccirillo F, Nusca A, Grigioni F, Chello M, Vlahakes GJ. The Role of Angiogenesis and Arteriogenesisin Myocardial Infarction and Coronary Revascularization. J Cardiovasc Transl Res 2022; 15:1024-1048. [PMID: 35357670 DOI: 10.1007/s12265-022-10241-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
Abstract
Surgical myocardial revascularization is associated with long-term survival benefit in patients with multivessel coronary artery disease. However, the exact biological mechanisms underlying the clinical benefits of myocardial revascularization have not been elucidated yet. Angiogenesis and arteriogenesis biologically leading to vascular collateralization are considered one of the endogenous mechanisms to preserve myocardial viability during ischemia, and the presence of coronary collateralization has been regarded as one of the predictors of long-term survival in patients with coronary artery disease (CAD). Some experimental studies and indirect clinical evidence on chronic CAD confirmed an angiogenetic response induced by myocardial revascularization and suggested that revascularization procedures could constitute an angiogenetic trigger per se. In this review, the clinical and basic science evidence regarding arteriogenesis and angiogenesis in both CAD and coronary revascularization is analyzed with the aim to better elucidate their significance in the clinical arena and potential therapeutic use.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA. .,Cardiac Surgery, Golden Jubilee National Hospital & University of Glasgow, Glasgow, UK.
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - David Rose
- Cardiac Surgery, Lancashire Cardiac Centre, Blackpool Victoria Hospital, Blackpool, UK
| | | | | | | | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gus J Vlahakes
- Cardiac Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Mohamed NA, Marei I, Crovella S, Abou-Saleh H. Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1404. [PMID: 35163328 PMCID: PMC8836006 DOI: 10.3390/ijms23031404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.
Collapse
Affiliation(s)
- Nura A. Mohamed
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Isra Marei
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK;
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Doha P.O. Box 24144, Qatar
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Cakir SN, Whitehead KM, Hendricks HKL, de Castro Brás LE. Novel Techniques Targeting Fibroblasts after Ischemic Heart Injury. Cells 2022; 11:cells11030402. [PMID: 35159212 PMCID: PMC8834471 DOI: 10.3390/cells11030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The great plasticity of cardiac fibroblasts allows them to respond quickly to myocardial injury and to contribute to the subsequent cardiac remodeling. Being the most abundant cell type (in numbers) in the heart, and a key participant in the several phases of tissue healing, the cardiac fibroblast is an excellent target for treating cardiac diseases. The development of cardiac fibroblast-specific approaches have, however, been difficult due to the lack of cellular specific markers. The development of genetic lineage tracing tools and Cre-recombinant transgenics has led to a huge acceleration in cardiac fibroblast research. Additionally, the use of novel targeted delivery approaches like nanoparticles and modified adenoviruses, has allowed researchers to define the developmental origin of cardiac fibroblasts, elucidate their differentiation pathways, and functional mechanisms in cardiac injury and disease. In this review, we will first characterize the roles of fibroblasts in the different stages of cardiac repair and then examine novel techniques targeting fibroblasts post-ischemic heart injury.
Collapse
Affiliation(s)
- Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kaitlin M Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Hanifah K L Hendricks
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
6
|
Li J, Zhao Y, Zhu W. Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Exp Ther Med 2022; 23:64. [PMID: 34934435 PMCID: PMC8649855 DOI: 10.3892/etm.2021.10986] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) remains the main cause of mortality worldwide. Despite surgery and medical treatment, the non-regeneration of dead cardiomyocytes and the limited contractile ability of scar tissue can lead to heart failure. Therefore, restoring blood flow in the infarcted area is important for the repair of myocardial injury. The objective of the present review was to summarize the factors influencing angiogenesis after AMI, and to describe the application of angiogenesis for cardiac repair. Collectively, this review may be helpful for relevant studies and to provide insight into future therapeutic applications in clinical practice.
Collapse
Affiliation(s)
- Jiejie Li
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuanyuan Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
7
|
Abstract
Achieving a novel drug delivery system needs site-specificity along with dosage control. Many physical, chemical, mechanical, and biological signals are used for developing these systems, out of which light has been used predominantly in the past decade. Light responsive drug delivery systems have tremendous potential, and their exploration is crucial in developing a precise and controlled delivery system. Spatio-temporal and intensity control of light allows better manipulation of drug delivery vehicles than mechanical, chemical, and biological signals. The use of ultraviolet (UV) and near-infrared (NIR) light has helped in upgrading therapeutic functionalities, while the use of up-conversion nanoparticles (UCNPs) has delivered an extension into theranostic tools. Biomaterials incorporated with photosensitizers can readily respond to changes in light and are vital in achieving clinical success via translational research. Further, the inclusion of biological macromolecules for the transportation of drugs, genes, and proteins has seen a broader application of light-controlled systems. The key objective of this review paper is to summarise the evolution of light-activated targeted drug delivery systems and the importance of biomaterials in developing one.
Collapse
Affiliation(s)
- Mishal Pokharel
- Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| | - Kihan Park
- Mechanical Engineering, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
8
|
Sarathkumar E, Victor M, Menon JA, Jibin K, Padmini S, Jayasree RS. Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery. RSC Adv 2021; 11:34572-34588. [PMID: 35494731 PMCID: PMC9043027 DOI: 10.1039/d1ra06404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
The wide arena of applications opened by nanotechnology is multidimensional. It is already been proven that its prominence can continuously influence human life. The role of stem cells in curing degenerative diseases is another major area of research. Cardiovascular diseases are one of the major causes of death globally. Nanotechnology-assisted stem cell therapy could be used to tackle the challenges faced in the management of cardiovascular diseases. In spite of the positive indications and proven potential of stem cells to differentiate into cardiomyocytes for cardiac repair and regeneration during myocardial infarction, this therapeutic approach still remains in its infancy due to several factors such as non-specificity of injected cells, insignificant survival rate, and low cell retention. Attempts to improve stem cell therapy using nanoparticles have shown some interest among researchers. This review focuses on the major hurdles associated with cardiac stem cell therapy and the role of nanoparticles to overcome the major challenges in this field, including cell modulation, imaging, tracking and gene delivery. This review summarizes the potential challenges present in cardiac stem cell therapy and the major role of nanotechnology to overcome these challenges including cell modulation, tracking and imaging of stem cells.![]()
Collapse
Affiliation(s)
- Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Marina Victor
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | | | - Kunnumpurathu Jibin
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Suresh Padmini
- Sree Narayana Institute of Medical Sciences Kochi Kerala India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| |
Collapse
|
9
|
Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021; 6:2261-2280. [PMID: 33553814 PMCID: PMC7829079 DOI: 10.1016/j.bioactmat.2020.12.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The currently available treatment options are limited to "damage-control" rather than tissue repair. The recent advances in nanomaterials have offered novel approaches to restore tissue function after injury. In particular, carbon nanomaterials (CNMs) have shown significant promise to bridge the gap in clinical translation of biomaterial based therapies. This family of carbon allotropes (including graphenes, carbon nanotubes and fullerenes) have unique physiochemical properties, including exceptional mechanical strength, electrical conductivity, chemical behaviour, thermal stability and optical properties. These intrinsic properties make CNMs ideal materials for use in cardiovascular theranostics. This review is focused on recent efforts in the diagnosis and treatment of heart diseases using graphenes and carbon nanotubes. The first section introduces currently available derivatives of graphenes and carbon nanotubes and discusses some of the key characteristics of these materials. The second section covers their application in drug delivery, biosensors, tissue engineering and immunomodulation with a focus on cardiovascular applications. The final section discusses current shortcomings and limitations of CNMs in cardiovascular applications and reviews ongoing efforts to address these concerns and to bring CNMs from bench to bedside.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sajitha Mathan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weiang Yan
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alireza Rafieerad
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Saravanan Sekaran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Hanna Manego
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery, thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of these NPs from various perspectives including cellular and molecular ones.
Collapse
|
11
|
Liu B, Yang W, Che C, Liu J, Si M, Gong Z, Gao R, Yang G. A Targeted Nano Drug Delivery System of AS1411 Functionalized Graphene Oxide Based Composites. ChemistryOpen 2021; 10:408-413. [PMID: 33605540 PMCID: PMC8015732 DOI: 10.1002/open.202000226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
A novel method for the preparation of antitumor drug vehicles has been optimized. Biological materials of chitosan oligosaccharide (CO) and γ-polyglutamic acid (γ-PGA) have previously been employed as modifiers to covalently modify graphene oxide (GO), which in turn loaded doxorubicin (DOX) to obtain a nano drug delivery systems of graphene oxide based composites (GO-CO-γ-PGA-DOX). The system was not equipped with the ability of initiative targeting, thus resulting into toxicity and side effects on normal tissues or organs. In order to further improve the targeting property of the system, the nucleic acid aptamer NH2 -AS1411 (APT) of targeted nucleolin (C23) was used to conjugate on GO-CO-γ-PGA to yield the targeted nano drug delivery system APT-GO-CO-γ-PGA. The structure, composition, dispersion, particle size and morphology properties of the synthesized complex have been studied using multiple characterization methods. Drug loading and release profile data showed that APT-GO-CO-γ-PGA is provided with high drug loading capacity and is capable of controlled and sustained release of DOX. Cell experimental results indicated that since C23 was overexpressed on the surface of Hela cells but not on the surface of Beas-2B cells, APT-GO-CO-γ-PGA-DOX can target Hela cells and make increase toxicity to Hela cells than Beas-2B cells, and the IC50 value of APT-GO-CO-γ-PGA-DOX was 3.23±0.04 μg/mL. All results proved that APT-GO-CO-γ-PGA can deliver antitumor drugs in a targeted manner, and achieve the effect of reducing poison, which indicated that the targeted carrier exhibits a broad application prospect in the field of biomedicine.
Collapse
Affiliation(s)
- Baoqing Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Wenzhi Yang
- Institution School of Food Science and NutritionUniversity of LeedsWoodhouse LnLeedsLS2 9JTUK
| | - Chengchuan Che
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Jinfeng Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Meiru Si
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Zhijin Gong
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ruixia Gao
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ge Yang
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| |
Collapse
|
12
|
Nanostructured Polymeric, Liposomal and Other Materials to Control the Drug Delivery for Cardiovascular Diseases. Pharmaceutics 2020; 12:pharmaceutics12121160. [PMID: 33260547 PMCID: PMC7760553 DOI: 10.3390/pharmaceutics12121160] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year, representing one third of global mortality. As existing therapies still have limited success, due to the inability to control the biodistribution of the currently approved drugs, the quality of life of these patients is modest. The advent of nanomedicine has brought new insights in innovative treatment strategies. For this reason, several novel nanotechnologies have been developed for both targeted and prolonged delivery of therapeutics to the cardiovascular system tο minimize side effects. In this regard, nanoparticles made of natural and/or synthetic nanomaterials, like liposomes, polymers or inorganic materials, are emerging alternatives for the encapsulation of already approved drugs to control their delivery in a targeted way. Therefore, nanomedicine has attracted the attention of the scientific community as a potential platform to deliver therapeutics to the injured heart. In this review, we discuss the current types of biomaterials that have been investigated as potential therapeutic interventions for CVDs as they open up a host of possibilities for more targeted and effective therapies, as well as minimally invasive treatments.
Collapse
|
13
|
Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:E5952. [PMID: 32824966 PMCID: PMC7504169 DOI: 10.3390/ijms21175952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction causes cardiac tissue damage and the release of damage-associated molecular patterns leads to activation of the immune system, production of inflammatory mediators, and migration of various cells to the site of infarction. This complex response further aggravates tissue damage by generating oxidative stress, but it eventually heals the infarction site with the formation of fibrotic tissue and left ventricle remodeling. However, the limited self-renewal capability of cardiomyocytes cannot support sufficient cardiac tissue regeneration after extensive myocardial injury, thus, leading to an irreversible decline in heart function. Approaches to improve cardiac tissue regeneration include transplantation of stem cells and delivery of inflammation modulatory and wound healing factors. Nevertheless, the harsh environment at the site of infarction, which consists of, but is not limited to, oxidative stress, hypoxia, and deficiency of nutrients, is detrimental to stem cell survival and the bioactivity of the delivered factors. The use of biomaterials represents a unique and innovative approach for protecting the loaded factors from degradation, decreasing side effects by reducing the used dosage, and increasing the retention and survival rate of the loaded cells. Biomaterials with loaded stem cells and immunomodulating and tissue-regenerating factors can be used to ameliorate inflammation, improve angiogenesis, reduce fibrosis, and generate functional cardiac tissue. In this review, we discuss recent findings in the utilization of biomaterials to enhance cytokine/growth factor and stem cell therapy for cardiac tissue regeneration in small animals with myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.S.); (Y.K.); (A.S.); (K.R.); (A.N.)
| |
Collapse
|
14
|
Mendez-Fernandez A, Cabrera-Fuentes HA, Velmurugan B, Irei J, Boisvert WA, Lu S, Hausenloy DJ. Nanoparticle delivery of cardioprotective therapies. CONDITIONING MEDICINE 2020; 3:18-30. [PMID: 34268485 PMCID: PMC8279025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.
Collapse
Affiliation(s)
- Abraham Mendez-Fernandez
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Hector A Cabrera-Fuentes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Russian Federation
- Institute of Physiology, Medical School, Justus-Liebig-University, Germany
| | - Bhaarathy Velmurugan
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Shengjie Lu
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
15
|
Sayed N, Tambe P, Kumar P, Jadhav S, Paknikar KM, Gajbhiye V. miRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis. Nanomedicine (Lond) 2019; 15:163-181. [PMID: 31799897 DOI: 10.2217/nnm-2019-0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Myocardial infarction is a tissue injury that leads to apoptosis of cardiomyocytes. This can be prevented by using miRNAs, but its delivery to cardiomyocytes is a major hurdle. We aimed to deliver miRNAs using poly(amidoamine)-histidine (PAMAM-His) nanocarriers to prevent apoptosis. Materials & methods: The PAMAM-His nanoparticles were synthesized and assessed for their transfection efficiency of miRNAs to prevent apoptosis in hypoxia/reperfusion-induced H9c2 as well as primary cultured cardiomyocytes. Results & conclusion: miRNAs-nanoparticle complexes exerted a significant antiapoptotic effect on the H9c2 and primary rat ventricular cardiomyocytes. Enhanced expression of antiapoptotic genes and decreased expression of proapoptotic genes were observed. PAMAM-His nanoparticles effectively delivered miRNAs to the cardiomyocytes and prevented the hypoxia/reperfusion-induced apoptosis critical in myocardial infarctions.
Collapse
Affiliation(s)
- Nida Sayed
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Prajakta Tambe
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.,Materials Research Centre, Malaviya National Institute of Technology, Jaipur, 302017, India
| | | |
Collapse
|
16
|
Liu B, Che C, Liu J, Si M, Gong Z, Li Y, Zhang J, Yang G. Fabrication and Antitumor Mechanism of a Nanoparticle Drug Delivery System: Graphene Oxide/Chitosan Oligosaccharide/
γ
‐Polyglutamic Acid Composites for Anticancer Drug Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201903145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baoqing Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Chengchuan Che
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Jinfeng Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Meiru Si
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Zhijin Gong
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Yuan Li
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Junming Zhang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Ge Yang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| |
Collapse
|
17
|
Wang F, Wang X, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. NANOSCALE 2019; 11:18052-18064. [PMID: 31576876 DOI: 10.1039/c9nr05758g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials hold promise for the delivery of nucleic acids to facilitate gene therapy in cardiac diseases. However, as much of the in vivo study of nanomaterials was conducted via the "trial and error" method, the understanding of the nanomaterial-mediated delivery in cardiac tissue was limited to the gross efficiency in manipulating the gene expression while little was known about the delivery process and mechanism in particular at the cell level. In this study, small interfering RNA (siRNA) nanoparticles formulated with a polyamidoamine (PAMAM) nanomaterial were applied to the injured heart of zebrafish. The distribution of nanoparticles in cardiomyocytes, endothelial cells, macrophages and leukocytes was quantitatively analyzed with precision at the cell level by using transgenic models. Based on the distribution characteristics, gene silencing effects in a specific group of cells were analyzed to illustrate how siRNA nanoparticles could get potent gene silencing in different cells in vivo. The results elucidated the heterogeneous distribution of siRNA nanoparticles and how nanoparticles could be efficient despite the significant difference in cellular uptake efficiency in different cells. It demonstrated a paradigm and the need to decouple cellular processes to understand nanoparticle-mediated delivery in complex tissue and the investigation/methodology may lead to important information to guide the design of advanced targeted drug-delivery systems in heart.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo J, Xing X, Lv N, Zhao J, Liu Y, Gong H, Du Y, Lu Q, Dong Z. Therapy for myocardial infarction: In vitro and in vivo evaluation of puerarin-prodrug and tanshinone co-loaded lipid nanoparticulate system. Biomed Pharmacother 2019; 120:109480. [PMID: 31562980 DOI: 10.1016/j.biopha.2019.109480] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Nanoparticle systems carrying drugs have already been developed to treat MI. To improve the efficiency of tanshinone (TAN), and to achieve the synergistic effect of TAN and puerarin (PUE), PUE-prodrug and TAN co-loaded solid lipid nanoparticles (SLN) was structured and utilized for MI treatment in the present research. PUE-prodrug was synthesized by an esterification reaction. PUE-prodrug and TAN co-loaded SLN (PUEp/TAN-SLN) were prepared by a single emulsification followed by a solvent evaporation method. The physicochemical properties of SLN were characterized and the in vivo infarct therapy effects were evaluated in MI rats. PUE-prodrug and TAN contained SLN showed a size of 112.6 ± 3.1 nm. The SLN encapsulation reduced the cytotoxicity of drugs and was a safer system. PUEp-SLN exhibited a 1.7-fold increase in comparison to PUE-SLN (21.2 ± 2.1 versus 12.5 ± 1.5 mg/L), in the mean time a 3.4-fold increase compared with free PUE in heart drug concentration (21.2 ± 2.1 versus 6.3 ± 0.9 mg/L). In vivo infarct therapy efficiency of double drugs loaded PUEp/TAN-SLN (17 ± 1.9%) was significantly better than the single drug loaded PUEp-SLN (31 ± 1.6%) and TAN-SLN (40 ± 2.2%). PUE-prodrug contained, double drugs co-loaded SLN can be utilized as promising candidate delivery system for cardioprotective drugs in treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jing Guo
- Department of Interventional Medicine, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Na Lv
- Jinan Lixia District Municipal Center for Disease Control & Prevention, Ji'nan, 250014, Shandong Province, PR China
| | - Jingjie Zhao
- Laboratory of Molecular Biology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Huiping Gong
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Yimeng Du
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China
| | - Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033, Shandong Province, PR China.
| |
Collapse
|
19
|
Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons. Neurochem Res 2019; 44:1549-1566. [PMID: 31093902 DOI: 10.1007/s11064-019-02776-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Collapse
|
20
|
Miragoli M, Ceriotti P, Iafisco M, Vacchiano M, Salvarani N, Alogna A, Carullo P, Ramirez-Rodríguez GB, Patrício T, Esposti LD, Rossi F, Ravanetti F, Pinelli S, Alinovi R, Erreni M, Rossi S, Condorelli G, Post H, Tampieri A, Catalucci D. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 2019; 10:10/424/eaan6205. [PMID: 29343624 DOI: 10.1126/scitranslmed.aan6205] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released. Treatment of a rodent model of diabetic cardiomyopathy by inhalation of CaPs loaded with a therapeutic mimetic peptide that we previously demonstrated to improve myocardial contraction resulted in restoration of cardiac function. Translation to a porcine large animal model provides evidence that inhalation of a peptide-loaded CaP formulation is an effective method of targeted administration to the heart. Together, these results demonstrate that inhalation of biocompatible tailored peptide nanocarriers represents a pioneering approach for the pharmacological treatment of heart failure.
Collapse
Affiliation(s)
- Michele Miragoli
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy. .,Department of Medicine and Surgery, University of Parma, Parma 43126, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Paola Ceriotti
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Marco Vacchiano
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Nicolò Salvarani
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin 13353, Germany.,Berlin Institute of Health, Berlin 10117, Germany
| | - Pierluigi Carullo
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | | | - Tatiana Patrício
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Francesca Rossi
- Institute of Materials for Electronics and Magnetism, National Research Council, Parma 43126, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Marco Erreni
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Humanitas University, Rozzano, Milan 20089, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy.,Humanitas University, Rozzano, Milan 20089, Italy
| | - Heiner Post
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin 13353, Germany.,Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, Mülheim 45468, Germany
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy. .,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| |
Collapse
|
21
|
Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019; 30:733-746. [PMID: 29228781 PMCID: PMC6350062 DOI: 10.1089/ars.2017.7428] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components, and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic, or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of noncommunicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances: Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. CRITICAL ISSUES Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. FUTURE DIRECTIONS The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.
Collapse
Affiliation(s)
- Kye S Kim
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| | - Chul Gyu Song
- 3 Department of Electronic Engineering, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Yao Y, Liao W, Yu R, Du Y, Zhang T, Peng Q. Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine (Lond) 2018; 13:1623-1638. [PMID: 30028249 DOI: 10.2217/nnm-2018-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiac diseases have become the leading cause of death worldwide. Developing efficient strategies to treat such diseases is of great urgency. Stem cell-based regeneration medicine offers a novel approach for heart repair. However, low retention and poor survival rate of engrafted cells limit its applications. Nanomaterials have shown great potentials in addressing above issues due to nanoparticles-bio interactions. Therefore, combining nanomaterials and stem cell therapy is of great interest and significance for heart repair. Herein, we provide a comprehensive understanding of the applications of four types of nanomaterials (nanogels, polymeric nanomaterials, inorganic nanomaterials and exosomes) in stem cell therapy for myocardial repair. In addition, we launch an initial discussion on current problems and more importantly, possible solutions for myocardial repair.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruichao Yu
- Department of Pathophysiology & Molecular Pharmacology, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Zhang S, Li J, Hu S, Wu F, Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int J Nanomedicine 2018; 13:4045-4057. [PMID: 30022826 PMCID: PMC6045899 DOI: 10.2147/ijn.s165590] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading causes of mortality worldwide. Currently, the best treatment options for myocardial infarction focus on the restoration of blood flow as soon as possible, which include reperfusion therapy, percutaneous coronary intervention, and therapeutic thrombolytic drugs. Materials and methods In the present study, we report the development of lipid-polymeric nanocarriers (LPNs) for mitochondria-targeted delivery of tanshinone IIA (TN). D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was linked to the triphenylphosphonium (TPP) cation. The LPNs were fabricated by nanoprecipitation method. LPNs were evaluated in vitro and in vivo in comparison with free drugs and other similar nanocarriers. Results The mean diameter of TN/nanoparticles (NPs) was 89.6 nm, while that of TN/LPNs was 121.3 nm. The zeta potential of TN/NPs and TN/LPNs was −33.6 and −22.3 mV, respectively. Compared with free TN and TN/NPs, TN/LPNs exhibited significantly improved compatibility and therapeutic efficiency. In addition, the in vivo pharmacokinetics, biodistribution, and infarct therapy studies in Sprague Dawley rats showed that TPP-TPGS/TN/LPNs had better efficiency than their nonmodified TN/LPNs counterparts in all respects. Conclusion These results indicated that the TPP-TPGS/TN/LPNs were promising nanocarriers for efficient delivery of cardiovascular drugs and other therapeutic agents for the treatment of CVDs.
Collapse
Affiliation(s)
- Shouwen Zhang
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China,
| | - Jingfang Li
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China,
| | - Shunpeng Hu
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China,
| | - Fangfang Wu
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China,
| | - Xianzhao Zhang
- Department of Cardiology, Linyi People's Hospital, Linyi, People's Republic of China,
| |
Collapse
|
24
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
25
|
Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, Zhang JJ. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol 2017; 314:H278-H284. [PMID: 29101176 DOI: 10.1152/ajpheart.00471.2017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a well-characterized proangiogenic cytokine that has been shown to promote neovascularization in hearts of patients with ischemic heart disease but can also lead to adverse effects depending on the dose and mode of delivery. We investigated whether prolonged exposure to a low dose of VEGF could be achieved by encapsulating VEGF in polylactic coglycolic acid nanoparticles and whether treatment with VEGF-containing nanoparticles improved cardiac function and protected against left ventricular remodeling in the hearts of mice with experimentally induced myocardial infarction. Polylactic coglycolic acid nanoparticles with a mean diameter of ~113 nm were generated via double emulsion and loaded with VEGF; the encapsulation efficiency was 53.5 ± 1.7% (107.1 ± 3.3 ng VEGF/mg nanoparticles). In culture, VEGF nanoparticles released VEGF continuously for at least 31 days, and in a murine myocardial infarction model, VEGF nanoparticle administration was associated with significantly greater vascular density in the peri-infarct region, reductions in infarct size, and improvements in left ventricular contractile function 4 wk after treatment. Thus, our study provides proof of principle that nanoparticle-mediated delivery increases the angiogenic and therapeutic potency of VEGF for the treatment of ischemic heart disease. NEW & NOTEWORTHY Vascular endothelial growth factor (VEGF) is a well-characterized proangiogenic cytokine but has a short half-life and a rapid clearance rate. When encapsulated in nanoparticles, VEGF was released for 31 days and improved left ventricular function in infarcted mouse hearts. These observations indicate that our new platform increases the therapeutic potency of VEGF.
Collapse
Affiliation(s)
- Yasin Oduk
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anton V Borovjagin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
26
|
Qiu J, Cai G, Liu X, Ma D. α vβ 3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother 2017; 96:1418-1426. [PMID: 29079344 DOI: 10.1016/j.biopha.2017.10.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To achieve the combination therapy of acute myocardial ischemia, arginyl-glycyl-aspartic acid (RGD) conjugated lipid was synthesized and RGD modified, salvianolic acid B (Sal B) and panax notoginsenoside (PNS) co-loaded lipid-polymer hybrid nanoparticles (RGD-S/P-LPNs) was fabricated an evaluated. METHODS RGD was conjugated to distearoyl phosphatidylethanolamine-polyethylene glycol (DSPE-PEG-NH2) through amide linkage. Lipid-polymer hybrid nanoparticles (LPNs) were fabricated by nanoprecipitation method. RGD-S/P-LPNs was characterized in terms of morphology, size, charge, drug loading, entrapment, stability, drug release and cytotoxicity in vitro. Cardiac distribution, pharmacokinetics study and infarct therapy effect were evaluated in vivo. RESULTS The LPNs are generally spherical in shape with uniform size distribution, have sizes of 100-200nm and zeta potentials range from -30.7∼ -39.8. In vitro release behaviors of drugs loaded LPNs are in a sustained release manner, which does not exhibit obviously cytotoxicity against H9c2 cardiomyocytes. RGD-S/P-LPNs group shows the most significant cardiac distribution and infarct therapy effect in vivo. CONCLUSION The results illustrated that RGD modified dual drugs co-loaded LPNs are stable, sustained release carriers. Cardiac distribution, pharmacokinetics, and infarct therapy effect results suggested that the RGD-S/P-LPNs could improve the in vivo therapeutic efficacy of the double drugs.
Collapse
Affiliation(s)
- Jie Qiu
- Cardiovascular Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China(1).
| | - Guoqiang Cai
- Cardiovascular Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China(1)
| | - Xinmei Liu
- Cardiovascular Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China(1)
| | - Dongwen Ma
- Cardiovascular Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China(1)
| |
Collapse
|
27
|
Shao M, Yang W, Han G. Protective effects on myocardial infarction model: delivery of schisandrin B using matrix metalloproteinase-sensitive peptide-modified, PEGylated lipid nanoparticles. Int J Nanomedicine 2017; 12:7121-7130. [PMID: 29026305 PMCID: PMC5627750 DOI: 10.2147/ijn.s141549] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Schisandrin B (Sch B) is clinically applied for the treatment of hepatitis and ischemic disease. However, its clinical efficacy is limited due to the poor solubility and low bioavailability. This study aimed to develop matrix metalloproteinase (MMP)-sensitive peptide-modified, polyethylene glycol (PEG)-modified (PEGylated) solid lipid nanoparticles (SLNs) for loading Sch B (MMP-Sch B SLNs), and to evaluate the therapeutic effect in the myocardial infarction model. Methods PEG lipid and MMP-targeting peptide conjugate were synthesized. MMP-Sch B SLNs were prepared by solvent displacement technique. The physicochemical properties and pharmacokinetics of SLNs were investigated. In vivo effects on infarct size was evaluated in rats. Results The successful synthesis of lipid-peptide conjugate was confirmed. MMP-Sch B SLNs had a particle size of 130 nm, a zeta potential of 18.3 mV, and a sustained-release behavior. Higher heart drug concentration and longer blood circulation times were achieved by Sch B loaded SLNs than the drug solution according to the pharmacokinetic and biodistribution results. The best therapeutic efficacy was exhibited by MMP-Sch B SLNs by reducing the infarction size to the greatest extent. Conclusion The modified SLNs may be a good choice for delivery of Sch B for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Mingfeng Shao
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Wenfang Yang
- Department of Internal Medicine, Linyi Hot Spring Hospital of Shandong Coal Mine, Linyi, Shandong, People's Republic of China
| | - Guangying Han
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
28
|
Raso A, Dirkx E. Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Noncoding RNA Res 2017; 2:27-37. [PMID: 30159418 PMCID: PMC6096413 DOI: 10.1016/j.ncrna.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop new therapeutic strategies to stimulate cardiac repair after damage, such as myocardial infarction. Already for more than a century scientist are intrigued by studying the regenerative capacity of the heart. While moving away from the old classification of the heart as a post-mitotic organ, and being inspired by the stem cell research in other scientific fields, mainly three different strategies arose in order to develop regenerative medicine, namely; the use of cardiac stem cells, reprogramming of fibroblasts into cardiomyocytes or direct stimulation of endogenous cardiomyocyte proliferation. MicroRNAs, known to play a role in orchestrating cell fate processes such as proliferation, differentiation and reprogramming, gained a lot of attention in this context the latest years. Indeed, several research groups have independently demonstrated that microRNA-based therapy shows promising results to induce heart tissue regeneration and improve cardiac pump function after myocardial injury. Nowadays, a whole new biotechnology field has been unveiled to investigate the possibilities for efficient, safe and specific delivery of microRNAs towards the heart.
Collapse
Affiliation(s)
| | - Ellen Dirkx
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
29
|
RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother 2017; 89:297-304. [PMID: 28236703 DOI: 10.1016/j.biopha.2017.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CONTEXT Puerarin has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, its rapid elimination half-life in plasma and poor water solubility limits its clinical efficacy. OBJECTIVE RGD modified and PEGylated solid lipid nanoparticles loaded with puerarin (RGD/PEG-PUE-SLN) were developed to improve bioavailability of PUE, to prolong retention time in vivo and to enhance its protective effect on acute myocardial ischemia model. METHODS In the present study, RGD-PEG-DSPE was synthesized. RGD/PEG-PUE-SLN were prepared by the solvent evaporation method with some modifications. The physicochemical properties of NPs were characterized, the pharmacokinetics, biodistribution, pharmacodynamic behavior of RGD/PEG-PUE-SLN were evaluated in acute MI rats. RESULTS The mean diameter, zeta potential, entrapment efficiency and drug loading capacity for RGD/PEG-PUE-SLN were observed as 110.5nm, -26.2mV, 85.7% and 16.5% respectively. PUE from RGD/PEG-PUE-SLN exhibited sustained drug release with a burst release during the initial 12h and a followed sustained release. Pharmacokinetics results indicated that AUC increased from 52.93 (μg/mLh) for free PUE to 176.5 (μg/mLh) for RGD/PEG-PUE-SLN. Similarly, T1/2 increased from 0.73h for free PUE to 2.62h for RGD/PEG-PUE-SLN. RGD/PEG-PUE-SLN exhibited higher drug concentration in the heart and plasma compared with other PUE formulations. It can be clearly seen that the infarct size of RGD/PEG-PUE-SLN is the lowest among all the formulation. CONCLUSION We conclude that RGD modified and PEGylated SLN are promising candidate delivery vehicles for cardioprotective drugs in treatment of myocardial infarction.
Collapse
|