1
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Shen X, Chen X, Lu J, Chen Q, Li W, Zhu J, He Y, Guo H, Xu C, Fan X. Pharmacogenetics-based population pharmacokinetic analysis and dose optimization of valproic acid in Chinese southern children with epilepsy: Effect of ABCB1 gene polymorphism. Front Pharmacol 2022; 13:1037239. [PMID: 36506519 PMCID: PMC9733833 DOI: 10.3389/fphar.2022.1037239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: The aim of this study was to establish a population pharmacokinetic (PPK) model of valproic acid (VPA) in pediatric patients with epilepsy in southern China, and provide guidance for individualized medication of VPA therapy. Methods: A total of 376 VPA steady-state trough concentrations were collected from 103 epileptic pediatric patients. The PPK parameter values for VPA were calculated by using the nonlinear mixed-effects modeling (NONMEM) method, and a one-compartment model with first-order absorption and elimination processes was applied. Covariates included demographic information, concomitant medications and selected gene polymorphisms. Goodness-of-fit (GOF), bootstrap analysis, and visual predictive check (VPC) were used for model evaluation. In addition, we used Monte Carlo simulations to propose dose recommendations for different subgroup patients. Results: A significant effect of the patient age and ABCB1 genotypes was observed on the VPA oral clearance (CL/F) in the final PPK model. Compared with patients with the ABCB1 rs3789243 AA genotype, CL/F in patients with GG and AG genotypes was increased by 8% and reduced by 4.7%, respectively. The GOF plots indicated the satisfactory predictive performance of the final model, and the evaluation by bootstrap and VPC showed that a stable model had been developed. A table of individualized dosing regimens involving age and ABCB1 genotype was constructed based on the final PPK model. Conclusion: This study quantitatively investigated the effects of patient age and ABCB1 rs3789243 variants on the pharmacokinetic variability of VPA. The PPK models could be beneficial to individual dose optimization in epileptic children on VPA therapy.
Collapse
Affiliation(s)
- Xianhuan Shen
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jieluan Lu
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qing Chen
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Wenzhou Li
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Jiahao Zhu
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaodong He
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huijuan Guo
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Fan
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
3
|
Kashfi Sadabad R, Xia A, Benkafadar N, Faniku C, Preciado D, Yang S, Valdez TA. Topical Delivery of Elastic Liposomal Vesicles for Treatment of Middle and Inner Ear Diseases. ACS APPLIED BIO MATERIALS 2022; 5:4849-4859. [PMID: 36179346 DOI: 10.1021/acsabm.2c00569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present a topical drug delivery mechanism through the ear canal to the middle and inner ear using liposomal nanoparticles without disrupting the integrity of the tympanic membrane. The current delivery method provides a noninvasive and safer alternative to transtympanic membrane injections, ear tubes followed by ear drops administration, and systemic drug formulations. We investigate the capability of liposomal NPs, particularly transfersomes (TLipo), used as drug delivery vesicles to penetrate the tympanic membrane (TM) and round window membrane (RWM) with high affinity, specificity, and retention time. The TLipo is applied to the ear canal and found to pass through the tympanic membrane quickly in 3 h post drug administration. They are identified in the middle ear cavity 6 h and in the inner ear 24 h after drug administration. We performed cytotoxicity in vitro and ototoxicity in vivo studies. Cell viability shows no significant difference between the applied TLipo concentration and control. Furthermore, auditory brainstem response (ABR) reveals no hearing loss in 1 week and 1 month post-administration. Immunohistochemistry results demonstrate no evidence of hair cell loss in the cochlea at 1 month following TLipo administration. Together, the data suggested that TLipo can be used as a vehicle for topical drug delivery to the middle ear and inner ear.
Collapse
Affiliation(s)
- Raana Kashfi Sadabad
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anping Xia
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nesrine Benkafadar
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chrysovalantou Faniku
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children's National Health System, 111 Michigan Avenue NW, Washington, District of Columbia 20310, United States
| | - Stella Yang
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology─Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Kurabi A, Pak K, Chavez E, Doan J, Ryan AF. A transcytotic transport mechanism across the tympanic membrane. Sci Rep 2022; 12:984. [PMID: 35046419 PMCID: PMC8770641 DOI: 10.1038/s41598-021-04748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Drug treatments for middle ear diseases are currently delivered systemically, or locally after opening the impermeable tympanic membrane (TM). We previously used bacteriophage display to discover novel peptides that are actively transported across the intact TM, with a variety of transport rates. Peptide structures were analyzed for evidence regarding the mechanism for this unexpected transport, which was then tested by the application of chemical inhibitors. Primary sequences indicated that trans-TM peptides share one of two amino acid motifs. Secondary structures revealed that linear configurations associate with higher transport rates than coiled structures. Tertiary analysis indicated that the shared sequence motifs are prominently displayed at the free ends of rapidly transported peptide phage. The shared motifs were evaluated for similarity to known motifs. The highest probability matches were for protein motifs involved in transmembrane transport and exosomes. Overall, structural findings suggest that the shared motifs represent binding sequences. They also implicate transcytosis, a polarized cell transport mechanism consisting of endocytosis, transcellular transport, and exocytosis. Inhibitor studies indicated that macropinocytosis, retrograde transport through Golgi and exocytosis participate in transport across the TM, consistent with transcytosis. This process can be harnessed to noninvasively deliver therapeutics to the middle ear.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, 9500 Gilman Drive, La Jolla, CA, 92093-0666, USA.
- San Diego VA Healthcare System, La Jolla, CA, USA.
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, 9500 Gilman Drive, La Jolla, CA, 92093-0666, USA
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, University of California, 9500 Gilman Drive, La Jolla, CA, 92093-0666, USA
| | - Jennifer Doan
- Department of Biology, University of California, San Diego, USA
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California, 9500 Gilman Drive, La Jolla, CA, 92093-0666, USA
- Department of Neurosciences, University of California, San Diego, USA
- San Diego VA Healthcare System, La Jolla, CA, USA
| |
Collapse
|
5
|
Gonzalez-Covarrubias V, Sánchez-Ibarra H, Lozano-Gonzalez K, Villicaña S, Texis T, Rodríguez-Dorantes M, Cortés-Ramírez S, Lavalle-Gonzalez F, Soberón X, Barrera-Saldaña H. Transporters, TBC1D4, and ARID5B Variants to Explain Glycated Hemoglobin Variability in Patients with Type 2 Diabetes. Pharmacology 2021; 106:588-596. [PMID: 34265779 DOI: 10.1159/000517462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Genetic variants could aid in predicting antidiabetic drug response by associating them with markers of glucose control, such as glycated hemoglobin (HbA1c). However, pharmacogenetic implementation for antidiabetics is still under development, as the list of actionable markers is being populated and validated. This study explores potential associations between genetic variants and plasma levels of HbA1c in 100 patients under treatment with metformin. METHODS HbA1c was measured in a clinical chemistry analyzer (Roche), genotyping was performed in an Illumina-GSA array and data were analyzed using PLINK. Association and prediction models were developed using R and a 10-fold cross-validation approach. RESULTS We identified genetic variants on SLC47A1, SLC28A1, ABCG2, TBC1D4, and ARID5B that can explain up to 55% of the interindividual variability of HbA1c plasma levels in diabetic patients under treatment. Variants on SLC47A1, SLC28A1, and ABCG2 likely impact the pharmacokinetics (PK) of metformin, while the role of the two latter can be related to insulin resistance and regulation of adipogenesis. CONCLUSIONS Our results confirm previous genetic associations and point to previously unassociated gene variants for metformin PK and glucose control.
Collapse
Affiliation(s)
| | | | | | - Sergio Villicaña
- Pharmacogenomics Laboratory, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | - Tomas Texis
- Pharmacogenomics Laboratory, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | | | | | - Fernando Lavalle-Gonzalez
- University Hospital Dr. José E. González, Endocrinology, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Xavier Soberón
- Instituto de Biotecnología, Universidad Autónoma de México, UNAM, Cuernavaca, Mexico
| | - Hugo Barrera-Saldaña
- Genetics Laboratory, Vitagénesis, Monterrey, Mexico.,Medicine and Health Sciences Department, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
6
|
Flegel WA, Srivastava K, Sissung TM, Goldspiel BR, Figg WD. Pharmacogenomics with red cells: a model to study protein variants of drug transporter genes. Vox Sang 2021; 116:141-154. [PMID: 32996603 PMCID: PMC9108996 DOI: 10.1111/vox.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among the 1,191 genes tested on the platform, 12 genes are expressed in the red cell membrane: ABCC1, ABCC4, ABCC5, ABCG2, CFTR, SLC16A1, SLC19A1, SLC29A1, ATP7A, CYP4F3, EPHX1 and FLOT1. These genes represent 5 ATP-binding cassette proteins, 3 solute carrier proteins, 1 ATP transport protein and 3 genes associated with drug metabolism and adverse drug reactions. Only ABCG2 and SLC29A1 encode blood group systems, JR and AUG, respectively. We propose red cells as an ex vivo model system to study the effect of heritable variants in genes encoding the transport proteins on the pharmacokinetics of drugs. Altered pharmacodynamics in red cells could also cause adverse reactions, such as haemolysis, hitherto unexplained by other mechanisms.
Collapse
Affiliation(s)
- Willy Albert Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tristan Michael Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry Ronald Goldspiel
- Clinical Trials Operations and Informatics Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Douglas Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Distribution of Indian population-specific transporter SNPs among Asians and their physiological consequences. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Momper JD, Yang J, Gockenbach M, Vaida F, Nigam SK. Dynamics of Organic Anion Transporter-Mediated Tubular Secretion during Postnatal Human Kidney Development and Maturation. Clin J Am Soc Nephrol 2019; 14:540-548. [PMID: 30885911 PMCID: PMC6450358 DOI: 10.2215/cjn.10350818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The neonatal and juvenile human kidney can be exposed to a variety of potentially toxic drugs (e.g., nonsteroidal anti-inflammatory drugs, antibiotics, antivirals, diuretics), many of which are substrates of the kidney organic anion transporters, OAT1 (SLC22A6, originally NKT) and OAT3 (SLC22A8). Despite the immense concern about the consequences of drug toxicity in this vulnerable population, the developmental regulation of OATs in the immature postnatal kidney is poorly understood. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Recognizing that today it is difficult to obtain rich data on neonatal kidney handling of OAT probes due to technical, logistic, and ethical considerations, multiple older physiologic studies that used the prototypical organic anion substrate para-aminohippurate (PAH) were reanalyzed in order to provide a quantitative description of OAT-mediated tubular secretion across the pediatric age continuum. Parametric and semiparametric models were evaluated for kidney function outcome variables of interest (maximum tubular secretory capacity of PAH [TmPAH], effective renal plasma flow [ERPF], and GFR). RESULTS Data from 119 neonates, infants, and children ranging in age from 1 day to 11.8 years were used to fit TmPAH, ERPF, and GFR as functions of postnatal age. TmPAH is low in the immediate postnatal period and increases markedly after birth, reaching 50% of the adult value (80 mg/min) at 8.3 years of age. During the first 2 years of life, TmPAH is lower than that of GFR when viewed as the fraction of the adult value. CONCLUSIONS During postnatal human kidney development, proximal tubule secretory function-as measured using PAH, a surrogate for OAT-mediated secretion of organic anion drugs, metabolites, and toxins-is low initially but increases rapidly. Despite developmental differences between species, this overall pattern is roughly consistent with animal studies. The human data raise the possibility that the acquisition of tubular secretory function may not closely parallel glomerular filtration.
Collapse
Affiliation(s)
- Jeremiah D Momper
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences,
| | - Jin Yang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Mary Gockenbach
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Florin Vaida
- Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, School of Medicine, and
| | - Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Clerbaux LA, Coecke S, Lumen A, Kliment T, Worth AP, Paini A. Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:97-108. [PMID: 30015123 PMCID: PMC6162338 DOI: 10.1016/j.scitotenv.2018.07.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/01/2023]
Abstract
Costs, scientific and ethical concerns related to animal tests for regulatory decision-making have stimulated the development of alternative methods. When applying alternative approaches, kinetics have been identified as a key element to consider. Membrane transporters affect the kinetic processes of absorption, distribution, metabolism and excretion (ADME) of various compounds, such as drugs or environmental chemicals. Therefore, pharmaceutical scientists have intensively studied transporters impacting drug efficacy and safety. Besides pharmacokinetics, transporters are considered as major determinant of toxicokinetics, potentially representing an essential piece of information in chemical risk assessment. To capture the applicability of transporter data for kinetic-based risk assessment in non-pharmaceutical sectors, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) created a survey with a view of identifying the improvements needed when using in vitro and in silico methods. Seventy-three participants, from different sectors and with various kinds of expertise, completed the survey. The results revealed that transporters are investigated mainly during drug development, but also for risk assessment purposes of food and feed contaminants, industrial chemicals, cosmetics, nanomaterials and in the context of environmental toxicology, by applying both in vitro and in silico tools. However, to rely only on alternative methods for chemical risk assessment, it is critical that the data generated by in vitro and in silico methods are scientific integer, reproducible and of high quality so that they are trusted by decision makers and used by industry. In line, the respondents identified various challenges related to the interpretation and use of transporter data from non-animal methods. Overall, it was determined that a combined mechanistically-anchored in vitro-in silico approach, validated against available human data, would gain confidence in using transporter data within an animal-free risk assessment paradigm. Finally, respondents involved primarily in fundamental research expressed lower confidence in non-animal studies to unravel complex transporter mechanisms.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy.
| | - Sandra Coecke
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
10
|
Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2018; 58:593-613. [DOI: 10.1007/s40262-018-0717-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Xu S, Chen Y, Zhao M, Guo Y, Wang Z, Zhao L. Population pharmacokinetics of valproic acid in epileptic children: Effects of clinical and genetic factors. Eur J Pharm Sci 2018; 122:170-178. [PMID: 29981400 DOI: 10.1016/j.ejps.2018.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 01/25/2023]
Abstract
Valproic acid (VPA) is a first-line anti-epileptic drug that is used in the treatment of generalized and partial seizures. Gene variants had been proved to influence the pharmacokinetics (PK) of VPA and contribute to its inter-individual variability (IIV). The aim of this study was to systematically investigate the effects of candidate gene variants (CYPs, UGTs, ABC transporters, and nuclear receptors) on VPA PK in Chinese children with epilepsy. A total of 1065 VPA serum trough concentrations at steady state were collected from 264 epileptic pediatric patients aged 3 months to 16 years. The population pharmacokinetic (PPK) model was developed using a nonlinear mixed effects modelling (NONMEM) approach. For the final PPK model, the oral clearance (CL/F) of VPA was estimated to be 0.259 L/h with IIV of 13.3%. The estimates generated by NONMEM indicated that the VPA CL/F was significantly influenced by patient body weight (increased by an exponent of 0.662), co-administration with carbamazepine (increased CL/F by 22%), and daily dose of VPA (increased by an exponent of 0.22). CL/F in patients with the LEPR rs1137101 variant (668 AG and GG genotypes) was much lower than in patients with the AA genotype (17.8% and 22.6% lower, respectively). However, none of the CYPs or UGTs gene variants was found to influence the PK of VPA in this study. Evaluation by bootstrap and normalized prediction distribution error (NPDE) showed that the final model was stable. The predictive performance was evaluated by goodness-of-fit (GOF) plots and visual predictive checks (VPC), and the results indicated satisfactory precision. Our model suggests a correlation between VPA CL/F and LEPR rs1137101 variants, which might be beneficial in the context of individual dose optimization.
Collapse
Affiliation(s)
- Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
Affiliation(s)
- Vikram Arya
- Division of Clinical Pharmacology 4, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| |
Collapse
|
13
|
Adams SM, Conley YP, Wagner AK, Jha RM, Clark RSB, Poloyac SM, Kochanek PM, Empey PE. The pharmacogenomics of severe traumatic brain injury. Pharmacogenomics 2017; 18:1413-1425. [PMID: 28975867 PMCID: PMC5694019 DOI: 10.2217/pgs-2017-0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
Pharmacotherapy for traumatic brain injury (TBI) is focused on resuscitation, prevention of secondary injury, rehabilitation and recovery. Pharmacogenomics may play a role in TBI for predicting therapies for sedation, analgesia, seizure prevention, intracranial pressure-directed therapy and neurobehavioral/psychiatric symptoms. Research into genetic predictors of outcomes and susceptibility to complications may also help clinicians to tailor therapeutics for high-risk individuals. Additionally, the expanding use of genomics in the drug development pipeline has provided insight to novel investigational and repurposed medications that may be useful in the treatment of TBI and its complications. Genomics in the context of treatment and prognostication for patients with TBI is a promising area for clinical progress of pharmacogenomics.
Collapse
Affiliation(s)
- Solomon M Adams
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yvette P Conley
- Health Promotion & Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy K Wagner
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ruchira M Jha
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert SB Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Patrick M Kochanek
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philip E Empey
- Clinical & Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Pharmacy & Therapeutics, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Wilson NC, Choudhury A, Carstens N, Mavri-Damelin D. Organic Cation Transporter 2 (OCT2/SLC22A2) Gene Variation in the South African Bantu-Speaking Population and Functional Promoter Variants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:169-176. [PMID: 28253084 DOI: 10.1089/omi.2016.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SLC22A2 facilitates the transport of endogenous and exogenous cationic compounds. Many pharmacologically significant compounds are transported by SLC22A2, including the antidiabetic drug metformin, anticancer agent cisplatin, and antiretroviral lamivudine. Genetic polymorphisms in SLC22A2 can modify the pharmacokinetic profiles of such important medicines and could therefore prove useful as precision medicine biomarkers. Since the frequency of SLC22A2 polymorphisms varies among different ethnic populations, we evaluated these in South African Bantu speakers, a majority group in the South African population, who exhibit unique genetic diversity, and we subsequently functionally characterized promoter polymorphisms. We identified 11 polymorphisms within the promoter and 9 single-nucleotide polymorphisms (SNPs) within the coding region of SLC22A2. While some polymorphisms appeared with minor allele frequencies similar to other African and non-African populations, some differed considerably; this was especially notable for three missense polymorphisms. In addition, we functionally characterized two promoter polymorphisms; rs138765638, a three base-pair deletion that bioinformatics analysis suggested could alter c-Ets-1/2, Elk1, and/or STAT4 binding, and rs59695691, an SNP that could abolish TFII-I binding. Significantly higher luciferase reporter gene expression was found for rs138765638 (increase of 37%; p = 0.001) and significantly lower expression for rs59695691 (decrease of 25%; p = 0.038), in comparison to the wild-type control. These observations highlight the importance of identifying and functionally characterizing genetic variation in genes of pharmacological significance. Finally, our data for SLC22A2 attest to the importance of considering genetic variation in different populations for drug safety, response, and global pharmacogenomics, through, for example, projects such as the Human Heredity and Health in Africa initiative.
Collapse
Affiliation(s)
- Nina C Wilson
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | - Ananyo Choudhury
- 2 Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand , Johannesburg, South Africa
| | - Nadia Carstens
- 3 Division of Human Genetics, National Health Laboratory Service , Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
15
|
Abstract
It is well established that variations in genes can alter the pharmacokinetic and pharmacodynamic profile of a drug and immunological responses to it. Early advances in pharmacogenetics were made with traditional genetic techniques such as functional cloning of genes using knowledge gained from purified proteins, and candidate gene analysis. Over the past decade, techniques for analysing the human genome have accelerated greatly as knowledge and technological capabilities have grown. These techniques were initially focussed on understanding genetic factors of disease, but increasingly they are helping to clarify the genetic basis of variable drug responses and adverse drug reactions (ADRs). We examine genetic methods that have been applied to the understanding of ADRs, review the current state of knowledge of genetic factors that influence ADR development, and discuss how the application of genome-wide association studies and next-generation sequencing approaches is supporting and extending existing knowledge of pharmacogenetic processes leading to ADRs. Such approaches have identified single genes that are major contributing genetic risk factors for an ADR, (such as flucloxacillin and drug-induced liver disease), making pre-treatment testing a possibility. They have contributed to the identification of multiple genetic determinants of a single ADR, some involving both pharmacologic and immunological processes (such as phenytoin and severe cutaneous adverse reactions). They have indicated that rare genetic variants, often not previously reported, are likely to have more influence on the phenotype than common variants that have been traditionally tested for. The problem of genotype/phenotype discordance affecting the interpretation of pharmacogenetic screening and the future of genome-based testing applied to ADRs are also discussed.
Collapse
|
16
|
ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. THE PHARMACOGENOMICS JOURNAL 2016; 18:35-42. [PMID: 27845419 DOI: 10.1038/tpj.2016.75] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Neutropenia is a common dose-limiting toxicity associated with irinotecan treatment. Although UGT1A1 variants have been associated with neutropenia, a fraction of neutropenia risk remains unaccounted for. To identify additional genetic markers contributing to variability in irinotecan pharmacokinetics and neutropenia, a regression analysis was performed in 78 irinotecan-treated patients to analyze comprehensively three hepatic efflux transporter genes (ABCB1, ABCC1 and ABCG2). rs6498588 (ABCC1) and rs12720066 (ABCB1) were associated with increased SN-38 exposure, and rs17501331 (ABCC1) and rs12720066 were associated with lower absolute neutrophil count nadir. rs6498588 and a variant in high linkage disequilibrium are located in transcriptionally active regions or are predicted to alter transcription factor binding sites. While enhancer activity was not evident in vitro for genomic regions containing these single-nucleotide polymorphisms, rs6498588 was significantly associated with ABCC1 expression in human liver. These results suggest that genetic variation in ABCC1 and ABCB1 may contribute to irinotecan-induced neutropenia by altering expression of transporters involved in irinotecan metabolite disposition.
Collapse
|
17
|
Generative Topographic Mapping Approach to Modeling and Chemical Space Visualization of Human Intestinal Transporters. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0246-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
McLean C, Wilson A, Kim RB. Impact of Transporter Polymorphisms on Drug Development: Is It Clinically Significant? J Clin Pharmacol 2016; 56 Suppl 7:S40-58. [DOI: 10.1002/jcph.691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/02/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Cheynne McLean
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
| | - Aze Wilson
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
- Department of Medicine; Western University; London, Ontario Canada
| | - Richard B. Kim
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
- Department of Medicine; Western University; London, Ontario Canada
| |
Collapse
|
19
|
Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 2016; 90:1555-84. [PMID: 27165417 DOI: 10.1007/s00204-016-1728-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Multidrug and toxin extrusion (MATE; SLC47A) proteins are membrane transporters mediating the excretion of organic cations and zwitterions into bile and urine and thereby contributing to the hepatic and renal elimination of many xenobiotics. Transported substrates include creatinine as endogenous substrate, the vitamin thiamine and a number of drug agents with in part chemically different structures such as the antidiabetic metformin, the antiviral agents acyclovir and ganciclovir as well as the antibiotics cephalexin and cephradine. This review summarizes current knowledge on the structural and molecular features of human MATE transporters including data on expression and localization in different tissues, important aspects on regulation and their functional role in drug transport. The role of genetic variation of MATE proteins for drug pharmacokinetics and drug response will be discussed with consequences for personalized medicine.
Collapse
|
20
|
Genomewide association study of tenofovir pharmacokinetics and creatinine clearance in AIDS Clinical Trials Group protocol A5202. Pharmacogenet Genomics 2016; 25:450-61. [PMID: 26148204 DOI: 10.1097/fpc.0000000000000156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tenofovir disoproxil fumarate (TDF) causes kidney toxicity in some patients. We carried out genomewide analyses to identify associations with plasma tenofovir clearance and change in creatinine clearance (CrCl) during the first 6 months after initiating therapy among patients randomized to TDF/emtricitabine-containing regimens in AIDS Clinical Trials Group protocol A5202. METHODS Pharmacokinetic analyses involved 501 patients randomized to the tenofovir arm. CrCl analyses involved 1096 patients, including 548 controls randomized to abacavir-containing regimens. All had been randomized to also receive atazanavir/ritonavir or efavirenz. Multivariable linear regression and generalized least squares models were used to test for associations between polymorphisms and tenofovir clearance and CrCl change, with Bonferroni correction. Planned subanalyses considered candidate genes and polymorphisms. RESULTS Median CrCl at baseline was 116 ml/min (interquartile range 99.8-135.5). The median change in CrCl after 6 months was -0.5 ml/min (-10.7 to +10.8) and 2.2 (interquartile range -9.9 to +13.2) in tenofovir and abacavir arms, respectively. In genomewide analyses SLC17A1 rs12662869 was found to be associated with an increase in tenofovir clearance (P=7.1×10). In candidate gene analysis for tenofovir clearance, most polymorphisms evaluated were in ABCC4. In the ABCC4 region, the lowest P-value was for CLDN10 rs12866697 (P=1.4×10). Among African Americans, SLC22A2 rs3127573 was associated with a greater 6-month CrCl increase in the tenofovir arm after correcting for multiple comparisons (P=3.3×10). CONCLUSION Among patients randomized to receive TDF/emtricitabine in A5202, there were no significant genomewide associations with change in CrCl. This study did not replicate polymorphisms previously implicated in tenofovir-associated renal injury.
Collapse
|
21
|
Várady G, Cserepes J, Németh A, Szabó E, Sarkadi B. Cell surface membrane proteins as personalized biomarkers: where we stand and where we are headed. Biomark Med 2014; 7:803-19. [PMID: 24044572 DOI: 10.2217/bmm.13.90] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Personalized medicine requires the development of a wide array of biomarker diagnostic assays, reflecting individual variations and thus allowing tailored therapeutic interventions. Membrane proteins comprise approximately 30% of total human proteins; they play a key role in various physiological functions and pathological conditions, although, currently, only a limited number of membrane proteins are applied as biomarkers. In many normal tissues, cell surface membrane proteins are not easily accessible for diagnostic sampling, and tumor-derived membrane preparations - while serving as potential tumor biomarkers - may not reflect physiological protein expression. In addition to post-translational modifications, which may include glycosylation, phosphorylation and lipid modifications, the trafficking of membrane proteins is also regulated. Moreover, a tight cellular quality control monitors membrane protein maturation, and continuous removal and reinsertion, involving special signaling systems, occurs in many cases. However, cell surface membrane proteins already serve as valuable prognostic and predicative biomarkers, for example, in hematological and immunological diseases, by the determination of the cluster of differentiation markers. In this review, we demonstrate the relevance of cell surface membrane biomarkers in various diseases and call attention to the potential application of red blood cell (erythrocyte) membrane proteins in this regard. Surprisingly, red blood cells express hundreds of membrane proteins, which seem to reflect a general genetic and regulatory background, and may serve as relatively stable and easily accessible personalized membrane biomarkers. Quantitative membrane protein detection in red blood cells by flow cytometry may bring a breakthrough in this regard.
Collapse
Affiliation(s)
- György Várady
- MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
22
|
Pfeifer ND, Hardwick RN, Brouwer KLR. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 2013; 54:509-35. [PMID: 24160696 DOI: 10.1146/annurev-pharmtox-011613-140021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatic efflux transporters include numerous well-known and emerging proteins localized to the canalicular or basolateral membrane of the hepatocyte that are responsible for the excretion of drugs into the bile or blood, respectively. Altered function of hepatic efflux transporters due to drug-drug interactions, genetic variation, and/or disease states may lead to changes in xenobiotic exposure in the hepatocyte and/or systemic circulation. This review focuses on transport proteins involved in the hepatocellular efflux of drugs and metabolites, discusses mechanisms of altered transporter function as well as the interplay between multiple transport pathways, and highlights the importance of considering intracellular unbound concentrations of transporter substrates and/or inhibitors. Methods to evaluate hepatic efflux transport and predict the effects of impaired transporter function on systemic and hepatocyte exposure are discussed, and the sandwich-cultured hepatocyte model to evaluate comprehensively the role of hepatic efflux in the hepatobiliary disposition of xenobiotics is characterized.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| | | | | |
Collapse
|
23
|
Pastor-Anglada M. Transporter pharmacogenetics: do we need function? Do we need motion? Pharmacogenomics 2013; 14:1537-40. [DOI: 10.2217/pgs.13.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marçal Pastor-Anglada
- Laboratory of Molecular Pharmacology & Experimental Therapeutics, Department of Biochemistry & Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona & Oncology Program, National Biomedical Research Institute on Liver & Gastrointestinal Diseases, CIBERehd, Instituto de Salud Carlos III, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Contini V, Rovaris DL, Victor MM, Grevet EH, Rohde LA, Bau CHD. Pharmacogenetics of response to methylphenidate in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review. Eur Neuropsychopharmacol 2013; 23:555-60. [PMID: 22709890 DOI: 10.1016/j.euroneuro.2012.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 01/11/2023]
Abstract
Methylphenidate (MPH) is a first line option in the psychopharmacologic treatment of adults with Attention-Deficit/Hyperactivity Disorder (ADHD). However, there is a considerable proportion of adult patients who do not respond to treatment with MPH or discontinue drug therapy. Since effects of genetic variants in the response to MPH treatment might explain these negative outcomes, we conducted an electronic systematic search of MEDLINE-indexed literature looking for articles containing information about pharmacogenetics of ADHD in adults published until January, 2012. The keywords used were 'ADHD', 'Attention-Deficit/Hyperactivity Disorder' and 'gene' in combination with methylphenidate, amphetamine or atomoxetine. Only 5 pharmacogenetic studies on adult ADHD met inclusion criteria. The results evidenced that most findings obtained so far are negative, and all studies focused on MPH response. There is only one positive result, for a polymorphism at the dopamine transporter gene (DAT1) gene. The current state of the art in adult ADHD implies that pharmacogenetic tests are far from routine clinical practice. However, the integration of these studies with neuroimaging and neuropsychological tests may help to understand mechanisms of drug action and the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Verônica Contini
- ADHD Outpatient Clinic, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Relationship of CYP2D6, CYP3A, POR, and ABCB1 Genotypes With Galantamine Plasma Concentrations. Ther Drug Monit 2013; 35:270-5. [DOI: 10.1097/ftd.0b013e318282ff02] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Noetzli M, Guidi M, Ebbing K, Eyer S, Wilhelm L, Michon A, Thomazic V, Alnawaqil AM, Maurer S, Zumbach S, Giannakopoulos P, von Gunten A, Csajka C, Eap CB. Population Pharmacokinetic Study of Memantine: Effects of Clinical and Genetic Factors. Clin Pharmacokinet 2013; 52:211-23. [DOI: 10.1007/s40262-013-0032-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM. Renal Transporters in Drug Development. Annu Rev Pharmacol Toxicol 2013; 53:503-29. [DOI: 10.1146/annurev-pharmtox-011112-140317] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kari M. Morrissey
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Sophie L. Stocker
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Matthias B. Wittwer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Lu Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158; , , , ,
| |
Collapse
|
28
|
Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker GT, Rostami-Hodjegan A. Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Sedykh A, Fourches D, Duan J, Hucke O, Garneau M, Zhu H, Bonneau P, Tropsha A. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res 2012; 30:996-1007. [PMID: 23269503 DOI: 10.1007/s11095-012-0935-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/11/2012] [Indexed: 02/08/2023]
Abstract
PURPOSE Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. METHODS Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. RESULTS QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71-100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. CONCLUSIONS The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.
Collapse
Affiliation(s)
- Alexander Sedykh
- Laboratory for Molecular Modeling Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina 100K Beard Hall, Chapel Hill, North Carolina, 27599-7568, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. THE PHARMACOGENOMICS JOURNAL 2012; 13:105-9. [PMID: 23044602 DOI: 10.1038/tpj.2012.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical impact of pharmacogenomics remains a hot topic of current research efforts. Although pharmacogenomics of phase I metabolizing enzymes seems to have been well studied, knowledge on the clinical impact of genetic variability of phase II metabolizing enzymes and drug transporters is more limited. This paper reviews data on the pharmacogenomics of phase II metabolizing enzymes as well as of ATP binding cassette transporters and of solute carrier transporters focusing on clinical implications for drug efficacy and drug toxicity. The clinical impact of some of these polymorphisms has been well defined i.e. the association between polymorphisms of organic anion transporter polypeptides and statin induced myopathy. However, as the same drug may be substrate for different enzymes and different transporters, it is difficult to elucidate the impact of each polymorphism. Investigating the impact of multiple polymorphisms might be more clinically meaningful, although methodologically challenging.
Collapse
|
31
|
Nies AT, Schwab M. Organic cation transporter pharmacogenomics and drug-drug interaction. Expert Rev Clin Pharmacol 2012; 3:707-11. [PMID: 22111772 DOI: 10.1586/ecp.10.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, D-70376 Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
32
|
Stieger B, Meier PJ. Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 2012; 12:611-31. [PMID: 21619426 DOI: 10.2217/pgs.11.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article summarizes the impact of the pharmacogenetics of drug transporters expressed in the enterohepatic circulation on the pharmacokinetics and pharmacodynamics of drugs. The role of pharmacogenetics in the function of drug transporter proteins in vitro is now well established and evidence is rapidly accumulating from in vivo pharmacokinetic studies, which suggests that genetic variants of drug transporter proteins can translate into clinically relevant phenotypes. However, a large amount of conflicting information on the clinical relevance of drug transporter proteins has so far precluded the emergence of a clear picture regarding the role of drug transporter pharmacogenetics in medical practice. This is very well exemplified by the case of P-glycoprotein (MDR1, ABCB1). The challenge is now to develop pharmacogenetic models with sufficient predictive power to allow for translation into drug therapy. This will require a combination of pharmacogenetics of drug transporters, drug metabolism and pharmacodynamics of the respective drugs.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | |
Collapse
|
33
|
Silverton L, Dean M, Moitra K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease. ACTA ACUST UNITED AC 2011; 26:169-79. [PMID: 22098604 DOI: 10.1515/dmdi.2011.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- Animals
- Evolution, Molecular
- Genetic Variation
- Humans
- Lipoproteins/genetics
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/genetics
- Pharmacogenetics
Collapse
Affiliation(s)
- Latoya Silverton
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
34
|
Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011; 16:704-14. [PMID: 21624498 DOI: 10.1016/j.drudis.2011.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/04/2011] [Accepted: 05/11/2011] [Indexed: 01/04/2023]
Abstract
All cells necessarily contain tens, if not hundreds, of carriers for nutrients and intermediary metabolites, and the human genome codes for more than 1000 carriers of various kinds. Here, we illustrate using a typical literature example the widespread but erroneous nature of the assumption that the 'background' or 'passive' permeability to drugs occurs in the absence of carriers. Comparison of the rate of drug transport in natural versus artificial membranes shows discrepancies in absolute magnitudes of 100-fold or more, with the carrier-containing cells showing the greater permeability. Expression profiling data show exactly which carriers are expressed in which tissues. The recognition that drugs necessarily require carriers for uptake into cells provides many opportunities for improving the effectiveness of the drug discovery process.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|