1
|
Kim YW, Ko EA, Jang J, Jeong S, Kim D, Suh JS, Lee SY, Lim I, Jung SC, Kim JH, Zhou T, Bang H, Ko JH. Transcriptomic evidence for atopic dermatitis as a systemic disease in NC/Nga mice. BMC Immunol 2024; 25:74. [PMID: 39516721 PMCID: PMC11544999 DOI: 10.1186/s12865-024-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In the current study, we evaluated whether atopic dermatitis (AD) affects the entire body rather than being limited to skin barrier damage and inflammation. We hypothesized that medium-term exposure of distant organs to systemic inflammatory cytokines in sub-chronic inflammatory skin diseases has detrimental effects on distant tissues. RESULTS Our findings demonstrated the dysregulation of genes and pathways associated with inflammation and the skin barrier, as well as genes and pathways involved in muscle development that respond to chemicals or stress in muscle tissues, all of which were reversed by hydrocortisone (Hc) administration. The expression of Ces1d showed significant differences during disease onset and after treatment in both skin and skeletal muscle, suggesting that Ces1d is likely responsible for the alleviation of subchronic AD. CONCLUSIONS Using NC/Nga mice with AD-like symptoms, we compared the transcriptomes of the skeletal muscle (a tissue that is relatively distant from the skin) with those of the skin (the lesion induction site) before and after disease induction, after which Hc was administered. Although further study is needed to better understand the effects of Ces1d on AD, skeletal muscle was associated with AD pathogenesis, and AD-like symptoms appeared to affect the body in a systemic manner. Given the importance of evidence-based medicine and the development of precision medicine, our findings provide insights into the mechanisms of AD onset and progression.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jehee Jang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea
| | - Seohyun Jeong
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea
| | - Donghyeon Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Soo Suh
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Se-Yeon Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, 06973, Republic of Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Oh HG, Jung M, Jeong SY, Kim J, Han SD, Kim H, Lee S, Lee Y, You H, Park S, Kim EA, Kim TM, Kim S. Improvement of androgenic alopecia by extracellular vesicles secreted from hyaluronic acid-stimulated induced mesenchymal stem cells. Stem Cell Res Ther 2024; 15:287. [PMID: 39256806 PMCID: PMC11389250 DOI: 10.1186/s13287-024-03906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/β-catenin signaling pathway (β-catenin and phosphorylated GSK3β) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/β-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-β, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/β-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by β-catenin stabilization and an increase in phosphorylated GSK3β. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular β-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hyun Geun Oh
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Minyoung Jung
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Seon-Yeong Jeong
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Jimin Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Sang-Deok Han
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Hongduk Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea
| | - Seulki Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Yejin Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Haedeun You
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Somi Park
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Eun A Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Tae Min Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
| | - Soo Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea.
| |
Collapse
|
3
|
Kim AR, Jeon SG, Kim HR, Hong H, Yoon YW, Lee BM, Yoon CH, Choi SJ, Jang MH, Yang BG. Preventive and Therapeutic Effects of Lactiplantibacillus plantarum HD02 and MD159 through Mast Cell Degranulation Inhibition in Mouse Models of Atopic Dermatitis. Nutrients 2024; 16:3021. [PMID: 39275335 PMCID: PMC11396792 DOI: 10.3390/nu16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
As the relationship between the gut microbiome and allergies becomes better understood, targeted strategies to prevent and treat allergies through gut microbiome modulation are being increasingly developed. In the study presented herein, we screened various probiotics for their ability to inhibit mast cell degranulation and identified Lactiplatibacillus plantarum HD02 and MD159 as effective candidates. The two strains significantly attenuated vascular permeability induced by mast cell degranulation in a passive cutaneous anaphylaxis (PCA) model and, in the MC903-induced murine atopic dermatitis (AD) model, demonstrated comparable preventive effects against allergies, reducing blood levels of MCPT-1 (mast cell protease-1) and total IgE. In the house dust mite (HDM)-induced murine AD model, both L. plantarum HD02 and MD159 showed therapeutic effects, with L. plantarum HD02 demonstrating superior efficacy. Nevertheless, L. plantarum MD159 better suppressed transepidermal water loss (TEWL). Furthermore, L. plantarum HD02 and MD159 significantly increased the number of splenic Foxp3+ regulatory T cells, with L. plantarum MD159 having a more pronounced effect. However, only L. plantarum HD02 achieved a reduction in immune cells in the draining lymph nodes. Our findings highlight L. plantarum HD02 and MD159 as promising candidates for the prevention and treatment of allergies, demonstrating significant efficacy in suppressing mast cell degranulation, reducing the number of allergy biomarkers, and modulating immune responses in experimental models of AD. Their distinct mechanisms of action suggest potential complementary roles in addressing allergic diseases, underscoring their therapeutic promise in clinical applications.
Collapse
Affiliation(s)
- A-Ram Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Seong-Gak Jeon
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Hyung-Ran Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Heeji Hong
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| | - Yong Won Yoon
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Byung-Min Lee
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Chung Hoo Yoon
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Soo Jin Choi
- Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Republic of Korea
| | - Myoung Ho Jang
- Research Institute, GI Innovation Inc., Seoul 05855, Republic of Korea
| | - Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea
| |
Collapse
|
4
|
Shim KS, Song HK, Park M, Kim HJ, Jang S, Kim T, Kim KM. Reynoutria japonica consisted of emodin-8-β-D-glucoside ameliorates Dermatophagoides farinae extract-induced atopic dermatitis-like skin inflammation in mice by inhibiting JAK/STAT signaling. Biomed Pharmacother 2024; 176:116765. [PMID: 38788600 DOI: 10.1016/j.biopha.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-β-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo, Jeollanam-do 58762, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.
| |
Collapse
|
5
|
Wei M, Yang H, Shao Z, Wan H, Wang Y, Chen W. Effect of Chloroquine on Type 2 Inflammatory Response in MC903-Induced Atopic Dermatitis Mice. Clin Cosmet Investig Dermatol 2024; 17:1093-1105. [PMID: 38765196 PMCID: PMC11102162 DOI: 10.2147/ccid.s440308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/31/2024] [Indexed: 05/21/2024]
Abstract
Introduction Atopic dermatitis (AD) is a chronic, non-infectious inflammatory dermatosis. Chloroquine (CQ) has long been proven to possess anti-inflammatory properties. Objective This paper aims to investigate the impact of CQ on type 2 inflammatory response in MC903-induced AD mice. Methods An AD mouse model was established via MC903 induction. After CQ treatment, AD mice were intraperitoneally injected with polyinosinic: polycyclic acid [poly (I:C)] or Nigericin. Dermatitis severity was scored, and the thickness of the left ear was measured. The pathological changes in mouse skin tissues were observed by H&E staining. The number of mast cells was counted via TB staining. The content of peripheral blood T-helper 2 (Th2) cells and levels of immunoglobulin E (IgE), thymic stromal-derived lymphopoietin (TSLP), interleukin (IL)-4, IL-13, interferon (IFN)-γ, IL-1β, and IL-18 were assessed by flow cytometry and ELISA. The levels of toll-like receptor 3 (TLR3), NLRP3, ASC, and cleaved caspase-1 proteins in skin tissues were determined by Western blot. Results CQ treatment abated dermatitis severity and left ear thickness in AD mice, alleviated skin damage, reduced mast cell number, diminished IgE, TSLP, IL-4, and IL-13 levels, and peripheral blood Th2 cell content, with no significant changes in IFN-γ level. CQ alleviated type 2 inflammatory response in AD mice by inhibiting the activation of TLR3. CQ suppressed NLRP3 inflammasome activation. Activating TLR3/NLRP3 annulled CQ-mediated alleviation on type 2 inflammatory response in AD mice. Conclusion CQ alleviated type 2 inflammatory response in AD mice by inhibiting TLR3 activation and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mingjing Wei
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Huixue Yang
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Zhengchao Shao
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Haoyue Wan
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Yiheng Wang
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| | - Wenqi Chen
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, People’s Republic of China
| |
Collapse
|
6
|
Sahara S, Ueno A, Wakita N, Iwai M, Uda J, Nakaoji K, Hamada K, Maeda A, Kaneda Y, Fujimoto M. (S)-(-)-blebbistatin O-benzoate has the potential to improve atopic dermatitis symptoms in NC/Nga mice by upregulating epidermal barrier function and inhibiting type 2 alarmin cytokine induction. PLoS One 2024; 19:e0302781. [PMID: 38713650 PMCID: PMC11075858 DOI: 10.1371/journal.pone.0302781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/11/2024] [Indexed: 05/09/2024] Open
Abstract
Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- Shunya Sahara
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Ayumi Ueno
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Natsuki Wakita
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Miki Iwai
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Junki Uda
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Koich Nakaoji
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Kazuhiko Hamada
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, Japan
| | - Akito Maeda
- Office of Management and Planning, Osaka University, Suita, Osaka, Japan
| | - Yasufumi Kaneda
- Vice President Office, Osaka University, Suita, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Tian L, Wang M, Wang Y, Li W, Yang Y. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway. Genes Genomics 2024; 46:333-340. [PMID: 37837514 DOI: 10.1007/s13258-023-01457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Atopic dermatitis (AD) is an inflammatory skin disease. Naringenin (Nar) possesses an anti-inflammatory property. This paper attempts to discuss the functional mechanism of Nar in AD mice through the Janus kinase 2 (JAK2)/signal transducer and activation of transcription 3 (STAT3) pathway. METHODS Mouse models of DNFB-induced AD were established and treated with Nar, followed by intraperitoneal injection with the JAK2/STAT3 pathway activator Coumermycin A1. Dermatitis severity was scored and the thickness of right ear was measured. The pathological changes in dorsal skin tissues were observed by HE staining. The number of infiltrated mast cells and eosinophilic granulocytes was counted by TB staining. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues were measured by ELISA. The levels of p-JAK2, JAK2, p-STAT3, and STAT3 were determined by Western blot. RESULTS Nar decreased dermatitis scores and right ear thickness, alleviated skin lesions, and reduced the number of infiltrated mast cells and eosinophilic granulocytes in AD mice. The serum IgE level and levels of TNF-α, IL-6, IFN-γ, IL-12, and IL-5 in dorsal skin tissues of AD mice were diminished after Nar treatment in a dose-dependent manner. Nar inhibited the activation of the JAK2/STAT3 pathway. The activation of the JAK2/STAT3 pathway partially nullified the therapeutic function of Nar on AD mice. CONCLUSION Nar protects mice from AD by inhibiting inflammation and promoting immune responses through the inhibition of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Limin Tian
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Mengjie Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Yangxingyun Wang
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Wei Li
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China
| | - Yuenan Yang
- Dermatology Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Kunqu District, Baotou City, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
8
|
Asano K, Watanabe Y, Miyamoto M, Toutani M, Mizobuchi S. Oral Ingestion of Yuzu Seed Oil Suppresses the Development of Atopic Dermatitis-like Skin Lesions in NC/Nga Mice. Int J Mol Sci 2024; 25:2689. [PMID: 38473936 DOI: 10.3390/ijms25052689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Long-term oral ingestion of unheated yuzu seed oil in humans reduces lipid peroxides in the blood. Moreover, yuzu seed oil contains limonin, which can induce antioxidant and anti-inflammatory effects by activating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Previously, Nrf2 has been shown to reduce atopic dermatitis (AD). Therefore, we hypothesized that ingesting unheated yuzu seed oil can regulate AD through Nrf2. An AD model was established using NC/Nga mice through repeated local exposure to mite antigens. Unheated and purified yuzu seed oil (100 µL/mice) or water (control, 100 µL/mice) was administered orally once a day using a gastric cannula for rodents for 28 days. On day 28, mice in the unheated yuzu seed oil group exhibited significantly lower clinical skin severity scores and ear thickness than those in the purified yuzu seed oil and water groups. Serum histamine levels remained unaltered among the three AD-induced groups. Serum Dermatophagoides farina body (Dfb)-specific immunoglobulin E (IgE) levels were significantly lower in the unheated yuzu seed oil group. Oral ingestion of yuzu seed oil in NC/Nga AD model mice significantly suppressed dermatitis deterioration and decreased serum IgE levels. Clinical trials (n = 41) have already confirmed that unheated yuzu oil is safe for long-term intake, further suggesting its potential use in improving AD symptoms.
Collapse
Affiliation(s)
- Kimito Asano
- Kochi-Umajimura Yuzu Health Research Course, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
- Umajimura Agricultural Cooperative, Kochi 781-6201, Japan
| | - Yoshiya Watanabe
- Kochi-Umajimura Yuzu Health Research Course, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Mio Miyamoto
- Kochi-Umajimura Yuzu Health Research Course, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | | | - Shunji Mizobuchi
- Kochi-Umajimura Yuzu Health Research Course, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| |
Collapse
|
9
|
Jin SE, Seo CS, Jeon WY, Oh YJ, Shin HK, Jeong HG, Ha H. Evodiae Fructus extract suppresses inflammatory response in HaCaT cells and improves house dust mite-induced atopic dermatitis in NC/Nga mice. Sci Rep 2024; 14:472. [PMID: 38172219 PMCID: PMC10764943 DOI: 10.1038/s41598-023-50257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
This study was conducted to assess the effect of Evodiae Fructus 70% ethanol extract (EFE) on the pathology of atopic dermatitis using in vitro and in vivo models. The major compounds in EFE were identified by ultra-performance liquid chromatography with tandem mass spectrometry as rutaecarpine, evodiamine, evodol, dehydroevodiamine, limonin, synephrine, evocarpine, dihydroevocarpine, and hydroxyevodiamine. EFE significantly decreased chemokine levels in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells. In house dust mite-treated NC/Nga mice, topical application of EFE significantly decreased the dermatitis score, epidermal hyperplasia and thickening, mast cell infiltration, and plasma levels of histamine and corticosterone. Thymic stromal lymphopoietin, CD4+ T cells, interleukin-4, and intercellular adhesion molecule-1 expression in the lesioned skin was reduced in the treated mice. The mechanism of EFE was elucidated using transcriptome analysis, followed by experimental validation using Western blotting in HaCaT cells. EFE down-regulated the activation of Janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in HaCaT cells. EFE improves atopic dermatitis-like symptoms by suppressing inflammatory mediators, cytokines, and chemokines by regulating the JAK-STAT and MAPK signaling pathways, suggesting its use as a potential agent for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Seong Eun Jin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yong Jin Oh
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Hyekyung Ha
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
10
|
Komori T, Hisaoka T, Kotaki A, Iwamoto M, Miyajima A, Esashi E, Morikawa Y. Blockade of OSMRβ signaling ameliorates skin lesions in a mouse model of human atopic dermatitis. FASEB J 2024; 38:e23359. [PMID: 38102969 DOI: 10.1096/fj.202301529r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus and eczematous skin lesions. Although IL-31, a type 2 helper T (Th2)-derived cytokine, is important to the development of pruritus and skin lesions in AD, the blockade of IL-31 signaling does not improve the skin lesions in AD. Oncostatin M (OSM), a member of IL-6 family of cytokines, plays important roles in the regulation of various inflammatory responses through OSM receptor β subunit (OSMRβ), a common receptor subunit for OSM and IL-31. However, the effects of OSM on the pathogenesis of AD remain to be elucidated. When AD model mice were treated with OSM, skin lesions were exacerbated and IL-4 production was increased in the lymph nodes. Next, we investigated the effects of the monoclonal antibody (mAb) against OSMRβ on the pathogenesis of AD. Treatment with the anti-OSMRβ mAb (7D2) reduced skin severity score in AD model mice. In addition to skin lesions, scratching behavior was decreased by 7D2 mAb with the reduction in the number of OSMRβ-positive neurons in the dorsal root ganglia of AD model mice. 7D2 mAb also reduced the serum concentration of IL-4, IL-13, and IgE as well as the gene expressions of IL-4 and IL-13 in the lymph nodes of AD model mice. Blockade of both IL-31 and OSM signaling is suggested to suppress both pruritus and Th2 responses, resulting in the improvement of skin lesions in AD. The anti-OSMRβ mAb may be a new therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Tomoko Hisaoka
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Ayumi Kotaki
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Miki Iwamoto
- Department of Pediatrics, Kainan Municipal Medical Center, Kainan, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eiji Esashi
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
11
|
Gwon MG, Leem J, An HJ, Gu H, Bae S, Kim JH, Park KK. The decoy oligodeoxynucleotide against HIF-1α and STAT5 ameliorates atopic dermatitis-like mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102036. [PMID: 37799329 PMCID: PMC10550406 DOI: 10.1016/j.omtn.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease caused by an immune disorder. Mast cells are known to be activated and granulated to maintain an allergic reaction, including rhinitis, asthma, and AD. Although hypoxia-inducible factor-1 alpha (HIF-1α) and signal transducer and activator of transcription 5 (STAT5) play crucial roles in mast cell survival and granulation, their effects need to be clarified in allergic disorders. Thus, we designed decoy oligodeoxynucleotide (ODN) synthetic DNA, without open ends, containing complementary sequences for HIF-1α and STAT5 to suppress the transcriptional activities of HIF-1α and STAT5. In this study, we demonstrated the effects of HIF-1α/STAT5 ODN using AD-like in vivo and in vitro models. The HIF-1α/STAT5 decoy ODN significantly alleviated cutaneous symptoms similar to AD, including morphology changes, immune cell infiltration, skin barrier dysfunction, and inflammatory response. In the AD model, it also inhibited mast cell infiltration and degranulation in skin tissue. These results suggest that the HIF-1α/STAT5 decoy ODN ameliorates the AD-like disorder and immunoglobulin E (IgE)-induced mast cell activation by disrupting HIF-1α/STAT5 signaling pathways. Taken together, these findings suggest the possibility of HIF-1α/STAT5 as therapeutic targets and their decoy ODN as a potential therapeutic tool for AD.
Collapse
Affiliation(s)
- Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyemin Gu
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Seongjae Bae
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Jong Hyun Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| |
Collapse
|
12
|
Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel) 2023; 12:1954. [PMID: 38001807 PMCID: PMC10669798 DOI: 10.3390/antiox12111954] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases whose prevalence has increased worldwide in recent decades. These disorders contribute to patients' decreased quality of life (QoL) and constitute a socioeconomic burden. New therapeutic options for AD and psoriasis based on natural compounds are being investigated. These include resveratrol (3,5,40-trihydroxystilbene) and its derivatives, which are produced by many plant species, including grapevines. Resveratrol has gained interest since the term "French Paradox", which refers to improved cardiovascular outcomes despite a high-fat diet in the French population, was introduced. Resveratrol and its derivatives have demonstrated various health benefits. In addition to anti-cancer, anti-aging, and antibacterial effects, there are also anti-inflammatory and antioxidant effects that can affect the molecular pathways of inflammatory skin disorders. A comprehensive understanding of these mechanisms may help develop new therapies. Numerous in vivo and in vitro studies have been conducted on the therapeutic properties of natural compounds. However, regarding resveratrol and its derivatives in treating AD and psoriasis, there are still many unexplained mechanisms and a need for clinical trials. Considering this, in this review, we discuss and summarize the most critical research on resveratrol and its derivatives in animal and cell models mimicking AD and psoriasis.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Division of Biomedical Science, Medical University of Lodz, 7/9 Zeligowskiego St., 90-752 Lodz, Poland
| |
Collapse
|
13
|
Fassett MS, Braz JM, Castellanos CA, Salvatierra JJ, Sadeghi M, Yu X, Schroeder AW, Caston J, Munoz-Sandoval P, Roy S, Lazarevsky S, Mar DJ, Zhou CJ, Shin JS, Basbaum AI, Ansel KM. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci Immunol 2023; 8:eabi6887. [PMID: 37831760 PMCID: PMC10890830 DOI: 10.1126/sciimmunol.abi6887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/18/2023] [Indexed: 10/15/2023]
Abstract
Despite robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the consequences of disrupting Il31 and its receptor Il31ra in a mouse model of house dust mite (HDM)-induced allergic dermatitis. Il31-deficient mice displayed a deficit in HDM dermatitis-associated scratching, consistent with its well-established role as a pruritogen. In contrast, Il31 deficiency increased the number and proportion of cutaneous type 2 cytokine-producing CD4+ T cells and serum IgE in response to HDM. Furthermore, Il4ra+ monocytes and macrophages capable of fueling a feedforward type 2 inflammatory loop were selectively enriched in Il31ra-deficient HDM dermatitis skin. Thus, IL-31 is not strictly a proinflammatory cytokine but rather an immunoregulatory factor that limits the magnitude of type 2 inflammatory responses in skin. Our data support a model wherein IL-31 activation of IL31RA+ pruritoceptors triggers release of calcitonin gene-related protein (CGRP), which can mediate neurogenic inflammation, inhibit CD4+ T cell proliferation, and reduce T cell production of the type 2 cytokine IL-13. Together, these results illustrate a previously unrecognized neuroimmune pathway that constrains type 2 tissue inflammation in the setting of chronic cutaneous allergen exposure and may explain paradoxical dermatitis flares in atopic patients treated with anti-IL31RA therapy.
Collapse
Affiliation(s)
- Marlys S Fassett
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Carlos A Castellanos
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | | | - Mahsa Sadeghi
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Xiaobing Yu
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Anesthesiology, University of California, San Francisco, CA, USA
| | | | - Jaela Caston
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Priscila Munoz-Sandoval
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA 94143, USA
| | - Suparna Roy
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Steven Lazarevsky
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Darryl J Mar
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Connie J Zhou
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| |
Collapse
|
14
|
Nakayama K, Tetsu H, Nishijo T, Yuki T, Miyazawa M. Tolerogenic phenotype of dendritic cells is induced after hapten sensitization followed by attenuated contact hypersensitivity response in atopic dermatitis model NC/Nga mice. Biochem Biophys Res Commun 2023; 678:24-32. [PMID: 37611349 DOI: 10.1016/j.bbrc.2023.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are common inflammatory diseases. We previously reported attenuated contact hypersensitivity (CHS) responses in AD model mice using 2,4-dinitrofluorobenzene, reflecting clinical experiments. However, previous studies have not addressed the commonality of findings across haptens and mechanisms focused on dendritic cells (DCs). Thus, this study evaluated CHS responses to fluorescein isothiocyanate (FITC) and DC migration and maturation in the sensitization phase of CHS in AD. CHS responses to FITC were compared between NC/Nga mice without and with AD induction (non-AD and AD mice, respectively). T-cell responses and DC migration and maturation after FITC-induced sensitization were examined in the draining lymph nodes of non-AD and AD mice. AD mice demonstrated reduced CHS responses to FITC under decreased T-cell proliferation following sensitization and interferon-γ production by hapten-specific T cells compared with non-AD mice. In addition, the number of FITC+CD11c+MHC class IIhigh migratory DCs 24 h after FITC sensitization was comparable between non-AD and AD mice. However, FITC+CD11c+MHC class IIhigh migratory DCs in AD mice exhibited lower expression levels of CD80 and CD86 and higher expression levels of PD-L1 and mRNA of transforming growth factor beta than non-AD mice. These findings suggest that attenuated CHS responses may be hapten-independent and the induction of the tolerogenic phenotype of hapten-bearing DCs can contribute to reduced T-cell proliferation after sensitization and CHS responses in AD.
Collapse
Affiliation(s)
- Kanako Nakayama
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan.
| | - Hiroe Tetsu
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| |
Collapse
|
15
|
Komuro M, Mizugaki H, Nagane M, Morimoto M, Fukuyama T, Ogihara K, Naya Y, Yokomori E, Kaneshima K, Kawakami Y, Kamiie J, Shibata Y, Suzuki M, Shimizu T, Kawashima N, Okamoto M, Ikeda T, Yamashita T. Ganglioside GM3 deficiency enhances mast cell sensitivity. FEBS J 2023; 290:4268-4280. [PMID: 37098812 DOI: 10.1111/febs.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
Mast cells are a significant source of cytokines and chemokines that play a role in pathological processes. Gangliosides, which are complex lipids with a sugar chain, are present in all eukaryotic cell membranes and comprise lipid rafts. Ganglioside GM3, the first ganglioside in the synthetic pathway, is a common precursor of the specifying derivatives and is well known for its various functions in biosystems. Mast cells contain high levels of gangliosides; however, the involvement of GM3 in mast cell sensitivity is unclear. Therefore, in this study, we elucidated the role of ganglioside GM3 in mast cells and skin inflammation. GM3 synthase (GM3S)-deficient mast cells showed cytosolic granule topological changes and hyperactivation upon IgE-DNP stimulation without affecting proliferation and differentiation. Additionally, inflammatory cytokine levels increased in GM3S-deficient bone marrow-derived mast cells (BMMC). Furthermore, GM3S-KO mice and GM3S-KO BMMC transplantation showed increased skin allergic reactions. Besides mast cell hypersensitivity caused by GM3S deficiency, membrane integrity decreased and GM3 supplementation rescued this loss of membrane integrity. Additionally, GM3S deficiency increased the phosphorylation of p38 mitogen-activated protein kinase. These results suggest that GM3 increases membrane integrity, leading to the suppression of the p38 signalling pathway in BMMC and contributing to skin allergic reaction.
Collapse
Affiliation(s)
- Mariko Komuro
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hinano Mizugaki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Masaki Nagane
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Misako Morimoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kikumi Ogihara
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yuko Naya
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Emi Yokomori
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kimika Kaneshima
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Yasushi Kawakami
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuki Shibata
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Mira Suzuki
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takuto Shimizu
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mariko Okamoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Teruo Ikeda
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | |
Collapse
|
16
|
Kang SJ, Gu NY, Byeon JS, Hyun BH, Lee J, Yang DK. Immunomodulatory effects of canine mesenchymal stem cells in an experimental atopic dermatitis model. Front Vet Sci 2023; 10:1201382. [PMID: 37529178 PMCID: PMC10390254 DOI: 10.3389/fvets.2023.1201382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multi-lineage cells, suggesting their future applicability in regenerative medicine and biotechnology. The immunomodulatory properties of MSCs make them a promising replacement therapy in various fields of animal research including in canine atopic dermatitis (AD), a skin disease with 10-15% prevalence. We investigated the immunomodulatory effects of MSCs in an experimental canine AD model induced by Dermatophagoides farinae extract ointment. Canine adipose tissue-derived MSCs (cAT-MSCs) were differentiated into mesodermal cell lineages at the third passage. Alterations in immunomodulatory factors in control, AD, and MSC-treated AD groups were evaluated using flow cytometric analysis, enzyme-linked immunosorbent assay, and quantitative reverse transcription PCR. In the MSC-treated AD group, the number of eosinophils decreased, and the number of regulatory T cells (Tregs) increased compared to those in the AD group. In addition, the immunoglobulin E (IgE) and prostaglandin E2 levels were reduced in the MSC-treated AD group compared to those in the AD group. Furthermore, the filaggrin, vascular endothelial growth factor, and interleukin-5 gene expression levels were relatively higher in the MSC-treated AD group than in the AD group, however, not significantly. cAT-MSCs exerted immunomodulatory effects in an AD canine model via a rebalancing of type-1 and -2 T helper cells that correlated with increased levels of Tregs, IgE, and various cytokines.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Na-Yeon Gu
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jeong Su Byeon
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Bang-Hun Hyun
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jienny Lee
- Division of Regenerative Medicine Safety Management, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Dong-Kun Yang
- Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
17
|
Umehara Y, Trujillo-Paez JV, Yue H, Peng G, Nguyen HLT, Okumura K, Ogawa H, Niyonsaba F. Calcitriol, an Active Form of Vitamin D3, Mitigates Skin Barrier Dysfunction in Atopic Dermatitis NC/Nga Mice. Int J Mol Sci 2023; 24:ijms24119347. [PMID: 37298299 DOI: 10.3390/ijms24119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Atopic dermatitis and psoriasis are prevalent chronic inflammatory skin diseases that are characterized by dysfunctional skin barriers and substantially impact patients' quality of life. Vitamin D3 regulates immune responses and keratinocyte differentiation and improves psoriasis symptoms; however, its effects on atopic dermatitis remain unclear. Here, we investigated the effects of calcitriol, an active form of vitamin D3, on an NC/Nga mouse model of atopic dermatitis. We observed that the topical application of calcitriol decreased the dermatitis scores and epidermal thickness of NC/Nga mice with atopic dermatitis compared to untreated mice. In addition, both stratum corneum barrier function as assessed by the measurement of transepidermal water loss and tight junction barrier function as evaluated by biotin tracer permeability assay were improved following calcitriol treatment. Moreover, calcitriol treatment reversed the decrease in the expression of skin barrier-related proteins and decreased the expression of inflammatory cytokines such as interleukin (IL)-13 and IL-33 in mice with atopic dermatitis. These findings suggest that the topical application of calcitriol might improve the symptoms of atopic dermatitis by repairing the dysfunctional epidermal and tight junction barriers. Our results suggest that calcitriol might be a viable therapeutic agent for the treatment of atopic dermatitis in addition to psoriasis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts Global Health Studies, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
18
|
Kim SW, Kim JH. Establishing an experimental model for canine atopic dermatitis through epicutaneous application of Dermatophagoides farinae. Front Vet Sci 2022; 9:1015915. [PMID: 36337184 PMCID: PMC9632614 DOI: 10.3389/fvets.2022.1015915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 08/03/2023] Open
Abstract
There is no established protocol for the development of an experimental canine atopic dermatitis model in laboratory beagles. This study aimed to establish an experimental model that mimics spontaneous canine atopic dermatitis (CAD) clinically, immunologically, and microbiologically, by repeated epicutaneous applications of mite antigens and to describe the entire process including sensitization and provocation in detail for reproducibility. Six intact male laboratory beagle dogs aged 14 months were included in this study. During the sensitization and provocation phase, the house dust mite (HDM) paste consisted of Dermatophagoides farinae (Der f ) and mineral oil, which was applied focally to the 10 × 10 cm area of the right groin as evenly as possible. Further, 120 mg of Der f was applied to each dog twice a week for 12 weeks during the sensitization phase and 25 mg and 120 mg was applied to each dog for the first 2 weeks and subsequent 2 weeks, respectively, during the provocation phase. Thereafter, the applied area was covered with a dressing. Skin lesions including erythema, hyperpigmentation, excoriation, and lichenification were induced and exacerbated gradually through the experimental time course in all six dogs. The canine atopic dermatitis extent and severity index (CADESI) score and transepidermal water loss (TEWL) significantly increased after sensitization and provocation. IL-13 and IL-31 levels increased significantly after provocation as a result of the activation of the T helper-2 (Th2) response. On the contrary, the IL-10 levels decreased significantly after sensitization, which suggested a suppression of Tregs activity. After the completion of provocation, skin microbiome analysis showed that Firmicutes was the most abundant phylum, which indicated bacterial dysbiosis. This study demonstrated that epicutaneous application of HDM in beagle dogs resulted in the elevation of serum HDM-specific IgE levels and clinical atopic scores, a high TEWL, and microbiome dysbiosis resembling spontaneous CAD. These results suggest that this tailored protocol of epicutaneous exposure to Der f may provide support for the development of the experimental CAD model in laboratory beagles.
Collapse
|
19
|
Zhang Q, Wang H, Ran C, Lyu Y, Li F, Yao Y, Xing S, Wang L, Chen S. Anti-inflammatory effects of amarogentin on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like mice and in HaCat cells. Animal Model Exp Med 2022. [PMID: 36131559 DOI: 10.1002/ame2.12260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Amarogentin (AMA) is a secoiridoid glycoside extracted from Swertia and Gentiana roots and exhibits many biological effects such as antioxidative, anti-inflammatory, and antitumor activities. Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by disorders in the regulation of multiple inflammatory cytokines. No effective cure has been found for AD now. METHODS We constructed the HaCat and splenocyte model and tested the inhibitory effect of AMA on IL-4, IL-6, and IL-13 secretions using enzyme-linked immunosorbent assay (ELISA). The AD mouse model was constructed and treated with AMA, the severity of skin lesions was observed, epidermal tissue was collected, and epidermal thickness and mast cell infiltration were observed using hematoxylin and eosin and toluidine blue staining, respectively. The expression of kallikrein-related peptidase 7 (KLK7) and filaggrin (FLG) was detected using immunostaining and Western blot analysis. The mRNA expression of KLK7 and FLG was detected using quantitative polymerase chain reaction (qPCR). Blood immunoglobulin E (IgE) secretion was detected. RESULTS AMA inhibited IL-6 secreted by tumor necrosis factor (TNF)-α-induced HaCaT cells and reduced IL-4 and IL-13 secreted by phytohemagglutinin (PHA)-induced primary cells in the mice spleen. It was found that the treatment of AMA with 2,4-dinitrochlorobenzene-induced AD-like mice could promote the recovery of dermatitis, reduce the score of dermatitis severity and the scratching frequency, treat the skin lesions, reduce the epidermal thickness, decrease the infiltration of mast cells, reduce the IgE level in serum, decrease the expression levels of AD-related cytokines, increase protein and mRNA expression of FLG, and reduce the protein and mRNA expression of KLK7 in the skin tissues of AD-like mice. CONCLUSION In conclusion, AMA inhibits inflammatory response at the cellular level, and AMA reduces the validation response of specific dermatitis mice, relieves pruritus, and repairs the damaged skin barrier.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, The Sixth Affiliated Hospital of Shenzhen University and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Hanlin Wang
- Department of Immunology, Shenzhen University Health Science Center, Shenzhen, China
| | - Cheng Ran
- Department of Otolaryngology, Affiliate Hospital of Hebei University, Baoding, China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Fei Li
- Department of Dermatology, The Sixth Affiliated Hospital of Shenzhen University and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yihang Yao
- Department of Immunology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shaojun Xing
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Wang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Si Chen
- Department of Immunology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
20
|
Bong SK, Park NJ, Lee SH, Lee JW, Kim AT, Liu X, Kim SM, Yang MH, Kim YK, Kim SN. Trifuhalol A Suppresses Allergic Inflammation through Dual Inhibition of TAK1 and MK2 Mediated by IgE and IL-33. Int J Mol Sci 2022; 23:ijms231710163. [PMID: 36077570 PMCID: PMC9456157 DOI: 10.3390/ijms231710163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Sim-Kyu Bong
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Sang Heon Lee
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaoyong Liu
- Haizhibao Deutschland GmbH, Heiliggeistgasse 28, 85354 Freising, Germany
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Korea
| | - Min Hye Yang
- College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
21
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
22
|
Peng G, Tsukamoto S, Ikutama R, Le Thanh Nguyen H, Umehara Y, Trujillo-Paez JV, Yue H, Takahashi M, Ogawa T, Kishi R, Tominaga M, Takamori K, Kitaura J, Kageyama S, Komatsu M, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Human-β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J Clin Invest 2022; 132:156501. [PMID: 35834333 PMCID: PMC9435650 DOI: 10.1172/jci156501] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Human β-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4– and IL-13–mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3–mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3–mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.
Collapse
Affiliation(s)
- Ge Peng
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Tsukamoto
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Juan V Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryoma Kishi
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Mitsutoshi Tominaga
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Jiro Kitaura
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Lee CH, Yang H, Yoon Park JH, Kim JE, Lee KW. Orobol from enzyme biotransformation attenuates Dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Funct 2022; 13:4592-4599. [PMID: 35355022 DOI: 10.1039/d1fo04362e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orobol, a metabolite of genistein, is rare in natural soybean. Several studies have revealed the immune-controlling effects of orobol on inflammatory diseases. Furthermore, a few studies have demonstrated that orobol decreases pro-inflammatory compounds resulting in the alleviation of allergic reactions. However, the relationship between orobol and atopic dermatitis (AD) in animal models has not been revealed. Therefore, we sought to investigate the effects of orobol on AD-like symptoms. AD-like symptoms and skin lesions were induced by repeated topical application of Dermatophagoides farinae extract (DFE) on the skin of NC/Nga mice. Topical application of orobol attenuated DFE-induced AD-like symptoms and transepidermal water loss and increased skin hydration. Histopathological analysis revealed that orobol alleviated DFE-induced eosinophil and mast cell infiltration into the skin. These observations occurred concomitantly with the downregulation of inflammatory markers including serum TARC, MDC, and IgE. In addition, orobol alleviated dorsal Th2 cytokines such as IL-4 and IL-13. Pre-treatment of orobol decreased the activity of the MAPKs and NF-κB signalling cascade in the TNFα/IFNγ-induced HaCaT cell line. These results suggest that orobol, a natural dietary isoflavone, has therapeutic efficacy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chang Hyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Yang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institute of Convergence Technology, Seoul National University, 8 Gyeonggi-do, 16229, Suwon, Republic of Korea
| |
Collapse
|
24
|
Komuro M, Nagane M, Fukuyama T, Luo X, Hiraki S, Miyanabe M, Ishikawa M, Niwa C, Murakami H, Okamoto M, Yamashita T. Sphingomyelin maintains the cutaneous barrier via regulation of the STAT3 pathway. FASEB J 2022; 36:e22111. [DOI: 10.1096/fj.202100721rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mariko Komuro
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
- Center for Human and Animal Symbiosis Science Azabu University Sagamihara Japan
| | - Tomoki Fukuyama
- Laboratory of Pharmacology, School of Veterinary Medicine Azabu University Sagamihara Japan
| | | | | | | | - Miyuki Ishikawa
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Chiaki Niwa
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Hironobu Murakami
- Laboratory of Animal Health 2, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Mariko Okamoto
- Laboratory of Veterinary Immunology, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| |
Collapse
|
25
|
Gil TY, Jin BR, An HJ. Peucedanum japonicum Thunberg alleviates atopic dermatitis-like inflammation via STAT/MAPK signaling pathways in vivo and in vitro. Mol Immunol 2022; 144:106-116. [PMID: 35219015 DOI: 10.1016/j.molimm.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic, pruritic inflammatory skin disorder that exhibits clinical relapse. The disruption of the skin barrier increases the symptoms of AD, which is accompanied by a reduction in skin integrity. As an immune barrier, the skin plays a crucial role in regulating the inflammatory responses in AD. In this study, we used murine atopic dermatitis model using 2,4-dinitrochlorobenzen (DNCB), which is one of haptens to disrupt the skin barrier and generate the inflammation. As the small molecule, DNCB is easily penetrate the epidermis and binds to tissue proteins provoking immune responses. We evaluated the effects of an aqueous extract of Peucedanum japonicum Thunberg (PJT) in an experimental model of AD by measuring the mRNA and protein expression of cytokines and their related biomarkers. We examined the dorsal skin lesions, transepidermal water loss (TEWL), scratching behavior, expression of molecules related to skin barrier integrity, and histological changes in a murine model of DNCB- induced AD. We found out the down-regulatory effects of PJT on the AD-like symptoms or inflammatory dorsal lesions. For in vitro study, we used a mixture of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in human keratinocytes. The protein and mRNA expressions of skin barrier molecules and inflammatory markers were measured with western blotting and qRT-PCR assays, respectively. As a result, PJT alleviated the AD-like symptoms, and suppressed the inflammation caused by a TNF-α and IFN-γ in human keratinocytes. The regulatory effects of PJT appeared to be mediated via the mitogen-activated protein kinase (MAPK) and signal transducers and activators of transcription (STAT) signaling pathways both in vivo and in vitro. Altogether, the results indicated that PJT could serve as a promising therapeutic candidate for suppressing AD by inhibiting inflammation and improving the integrity of the skin barrier.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
26
|
Yang B, Ryu JS, Rim C, Shin JU, Kwon MS. Possible role of arginase 1 positive microglia on depressive/anxiety-like behaviors in atopic dermatitis mouse model. Arch Pharm Res 2022; 45:11-28. [DOI: 10.1007/s12272-022-01369-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
|
27
|
Effects of the dipeptide L-glutamic acid-L-tryptophan on dermatitis in mice and human keratinocytes. Heliyon 2022; 8:e08729. [PMID: 35036609 PMCID: PMC8752900 DOI: 10.1016/j.heliyon.2022.e08729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are inflammatory eczematous skin diseases caused by various factors. Here, we report that topical application of the dipeptide, L-glutamic acid-L-tryptophan (L-Glu-L-Trp), improved symptoms in both ACD and AD in mice. Using a mouse model of ACD induced by repeated application of 2,4-dinitorofluorbenzene (DNFB), we demonstrated that L-Glu-L-Trp attenuated DNFB-induced skin thickening. In addition, quantification of cytokines in serum revealed that L-Glu-L-Trp suppressed the DNFB-induced increase in the interleukin (IL)-22 level. Moreover, L-Glu-L-Trp attenuated mite antigen extract-induced AD model symptoms such as the increase of skin thickening and elevation of serum IL-22. We also confirmed that the dipeptide structure rather than the individual amino acid components was important for the therapeutic effects of L-Glu-L-Trp. Furthermore, we showed that IL-22 decreased the expression level of filaggrin mRNA in human epidermal keratinocytes, and L-Glu-L-Trp attenuated that effect. These results suggested that the topical application of the dipeptide, L-Glu-L-Trp, to the skin may be useful for treating ACD and AD.
Collapse
|
28
|
Hyodo F, Eto H, Naganuma T, Koyasu N, Elhelaly AE, Noda Y, Kato H, Murata M, Akahoshi T, Hashizume M, Utsumi H, Matsuo M. In Vivo Dynamic Nuclear Polarization Magnetic Resonance Imaging for the Evaluation of Redox-Related Diseases and Theranostics. Antioxid Redox Signal 2022; 36:172-184. [PMID: 34015957 DOI: 10.1089/ars.2021.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance:In vivo molecular and metabolic imaging is an emerging field in biomedical research that aims to perform noninvasive detection of tissue metabolism in disease states and responses to therapeutic agents. The imbalance in tissue oxidation/reduction (Redox) states is related to the onset and progression of several diseases. Tissue redox metabolism provides biomarkers for early diagnosis and drug treatments. Thus, noninvasive imaging of redox metabolism could be a useful, novel diagnostic tool for diagnosis of redox-related disease and drug discovery. Recent Advances:In vivo dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) is a technique that enables the imaging of free radicals in living animals. DNP enhances the MRI signal by irradiating the target tissue or solution with the free radical molecule's electron paramagnetic resonance frequency before executing pulse sequence of the MRI. In vivo DNP-MRI with redox-sensitive nitroxyl radicals as the DNP redox contrast agent enables the imaging of the redox metabolism on various diseases. Moreover, nitroxyl radicals show antioxidant effects that suppress oxidative stress. Critical Issues: To date, considerable progress has been documented preclinically in the development of animal imaging systems. Here, we review redox imaging of in vivo DNP-MRI with a focus on the recent progress of this system and its uses in patients with redox-related diseases. Future Directions: This technique could have broad applications in the study of other redox-related diseases, such as cancer, inflammation, and neurological disorders, and facilitate the evaluation of treatment response as a theranostic tool. Antioxid. Redox Signal. 36, 172-184.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | | | | | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan.,Graduate School of Medicine, Disaster and Emergency Medicine, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Graduate School of Medicine, Disaster and Emergency Medicine, Kyushu University, Fukuoka, Japan
| | | | - Hideo Utsumi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
29
|
Song HK, Park SH, Kim HJ, Jang S, Kim T. Alpinia officinarum water extract inhibits the atopic dermatitis-like responses in NC/Nga mice by regulation of inflammatory chemokine production. Biomed Pharmacother 2021; 144:112322. [PMID: 34656059 DOI: 10.1016/j.biopha.2021.112322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Alpinia officinarum (AO) has been traditionally used in Asia as an herbal medicine to treat inflammatory and internal diseases. However, the therapeutic effect of AO on atopic dermatitis (AD) is unclear. Therefore, we examined whether Alpinia officinarum water extract (AOWex) affects AD in vivo and in vitro. Oral administration of AOWex to NC/Nga mice with Dermatophagoies farina extract (DfE)-induced AD-like symptoms significantly reduced the severity of clinical dermatitis, epidermal thickness, and mast cell infiltration into the skin and ear tissue. Decreased total serum IgE, macrophage-derived chemokine (MDC), and regulated on activation, normal T-cell expressed and secreted (RANTES) levels were observed in DfE-induced NC/Nga mice in the AOWex-treated group. These effects were confirmed in vitro using HaCaT cells. Treatment with AOWex inhibited the expression of proinflammatory chemokines such as MDC, RANTES, IP-10 and I-TAC in interferon-γ and tumor necrosis factor-α-stimulated HaCaT cells. The anti-inflammatory effects of AOWex were due to its inhibitory action on MAPK phosphorylation (ERK and JNK), NF-κB, and STAT1. Furthermore, galangin, protocatechuic acid, and epicatechin from AOWex were identified as candidate anti-AD compounds. These results suggest that AOWex exerts therapeutic effects against AD by alleviating AD-like skin lesions, suppressing inflammatory mediators, and inhibiting major signaling molecules.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Sun Haeng Park
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seol Jang
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
30
|
Oh JS, Lee SJ, Choung SY. Lithospermum erythrorhizon Alleviates Atopic Dermatitis-like Skin Lesions by Restoring Immune Balance and Skin Barrier Function in 2.4-Dinitrochlorobenzene-Induced NC/Nga Mice. Nutrients 2021; 13:nu13093209. [PMID: 34579088 PMCID: PMC8470668 DOI: 10.3390/nu13093209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
The incidence of atopic dermatitis (AD), a disease characterized by an abnormal immune balance and skin barrier function, has increased rapidly in developed countries. This study investigated the anti-atopic effect of Lithospermum erythrorhizon (LE) using NC/Nga mice induced by 2,4-dinitrochlorobenzene. LE reduced AD clinical symptoms, including inflammatory cell infiltration, epidermal thickness, ear thickness, and scratching behavior, in the mice. Additionally, LE reduced serum IgE and histamine levels, and restored the T helper (Th) 1/Th2 immune balance through regulation of the IgG1/IgG2a ratio. LE also reduced the levels of AD-related cytokines and chemokines, including interleukin (IL)-1β, IL-4, IL-6, tumor necrosis factor-α (TNF-α), thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, regulated on activation, normal T cell expressed and secreted, and monocyte chemoattractant protein-1 in the serum. Moreover, LE modulated AD-related cytokines and chemokines expressed and secreted by Th1, Th2, Th17, and Th22 cells in the dorsal skin and splenocytes. Furthermore, LE restored skin barrier function by increasing pro-filaggrin gene expression and levels of skin barrier-related proteins filaggrin, involucrin, loricrin, occludin, and zonula occludens-1. These results suggest that LE is a potential therapeutic agent that can alleviate AD by modulating Th1/Th2 immune balance and restoring skin barrier function.
Collapse
Affiliation(s)
- Jin-Su Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | | | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
31
|
Immunohistopathological Analysis of Immunoglobulin E-Positive Epidermal Dendritic Cells with House Dust Mite Antigens in Naturally Occurring Skin Lesions of Adult and Elderly Patients with Atopic Dermatitis. Dermatopathology (Basel) 2021; 8:426-441. [PMID: 34563036 PMCID: PMC8482222 DOI: 10.3390/dermatopathology8030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The immunopathogenic role of house dust mite (HDM) allergens in the development of skin lesions in atopic dermatitis (AD) has not yet been precisely clarified. We immunohistopathologically evaluated the localization of immunoglobulin E (IgE)-positive epidermal dendritic cells with HDM antigens in the skin lesions of patients with IgE-allergic AD. Using double-immunofluorescence and single-immunochemical staining methods, we analyzed biopsy specimens from the skin lesions of six patients with IgE-allergic AD and HDM allergy and 11 control subjects with inflammatory skin disorders. Inflammatory dendritic epidermal cells (IDECs; CD11c+ and CD206+ cells) were markedly observed in the central area of the spongiotic epidermis of skin lesions in all AD patients. Furthermore, IgE-positive IDECs with HDM antigens in the central areas of the spongiosis were found in four of the six (66.7%) AD patients. Langerhans cells (LCs; CD207+ cells) with HDM antigens were also observed in the peripheral areas of the spongiosis. Infiltration of CD4+ and CD8+ T cells in association with IgE-positive IDECs and LCs with HDM antigens was seen in the spongiotic epidermis. An IgE-mediated delayed-type hypersensitivity reaction, in combination with IgE-bearing dendritic cells, specific T cells, keratinocytes, and HDM antigens, may lead to spongiotic tissue formation in eczematous dermatitis in AD.
Collapse
|
32
|
Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness. Proc Natl Acad Sci U S A 2021; 118:2021386118. [PMID: 33602818 DOI: 10.1073/pnas.2021386118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pruritus is a common symptom of inflammatory skin conditions, including atopic dermatitis (AD). Although primary sensory neurons that transmit pruritic signals are well-cataloged, little is known about the neuronal alterations that occur as a result of skin disruption in AD. To address this question, we examined the molecular and behavioral consequences of challenging Grhl3 PAR2/+ mice, which overexpress PAR2 in suprabasal keratinocytes, with serial topical application of the environmental allergen house dust mite (HDM). We monitored behavior and used RNA sequencing, qPCR, and in situ hybridization to evaluate gene expression in trigeminal ganglia (TG), before and after HDM. We found that neither Grhl3 PAR2/+ nor wild-type (WT) mice exhibited spontaneous scratching, and pruritogen-induced acute scratching did not differ. In contrast, HDM exacerbated scratching in Grhl3 PAR2/+ mice. Despite the absence of scratching in untreated Grhl3 PAR2/+ mice, several TG genes in these mice were up-regulated compared to WT. HDM treatment of the Grhl3 PAR2/+ mice enhanced up-regulation of this set of genes and induced additional genes, many within the subset of TG neurons that express TRPV1. The same set of genes was up-regulated in HDM-treated Grhl3 PAR2/+ mice that did not scratch, but at lesser magnitude. Finally, we recorded comparable transcriptional changes in IL31Tg mice, demonstrating that a common genetic program is induced in two AD models. Taken together, we conclude that transcriptional changes that occur in primary sensory neurons in dermatitis-susceptible animals underlie a genetic priming that not only sensitizes the animal to chronic allergens but also contributes to pruritus in atopic skin disease.
Collapse
|
33
|
Anti-inflammatory effects of a novel phosphodiesterase-4 inhibitor, AA6216, in mouse dermatitis models. Eur J Pharmacol 2021; 906:174258. [PMID: 34139195 DOI: 10.1016/j.ejphar.2021.174258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is commonly treated with corticosteroids. However, these drugs have long-term adverse effects, representing an unmet need for new treatments. AD is associated with dysregulation of phosphodiesterase 4 (PDE4) activity in inflammatory cells and the topical PDE4 inhibitor, crisaborole, is approved by the US FDA for mild-to-moderate AD. In this study, we compared the effects of a novel PDE4 inhibitor, AA6216, with those of crisaborole on skin inflammation. We found that AA6216 is a more potent inhibitor of PDE4 and of cytokine production (TNF-α, IL-12/23p40, IL-4, IL-13, and IFN-γ) by human peripheral blood mononuclear cells (PBMCs) stimulated by phytohemagglutinin (PHA) or anti-CD3 antibodies, with IC50 values ranging from 5.9 to 47 nM. AA6216 also significantly suppressed skin inflammation in three mouse models of dermatitis. In acute and chronic oxazolone-induced dermatitis models, topical AA6216 exhibited stronger inhibitory effects on ear inflammation and cytokine production (TNFα, IL-1β, and IL-4) in skin lesions compared with crisaborole. In a Dermatophagoides farinae-induced dermatitis model, AA6216 significantly reduced the dermatitis score, based on the development of erythema/hemorrhage, scarring/dryness, edema, and excoriation/erosion, compared with a clinically used topical AD drug, tacrolimus. These results suggest the possibility that AA6216 is a novel and effective topical therapeutic agent for the treatment of dermatitis including AD.
Collapse
|
34
|
Zhang Q, Jiang H, Liu M, Li X, Zhou M, Lyu Y, Huang J, Chen S, Wang L. Therapeutic effects of quinine in a mouse model of atopic dermatitis. Mol Med Rep 2021; 23:313. [PMID: 34240224 PMCID: PMC7974254 DOI: 10.3892/mmr.2021.11952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that seriously affects quality of life. Quinine is a bitter taste receptor agonist that exhibits antimalarial effects. The aim of the present study was to examine the therapeutic effects of quinine in AD‑like mice. AD was induced with 2,4‑dinitrochlorobenzene, and the mice were treated with 10 mg/kg quinine for 1, 4 and 7 days. A total of 60 BALB/c mice were divided into the following groups: Healthy, AD‑like, AD‑like + quinine and healthy + quinine, with 1, 4 and 7 days groups for each treatment. Blood was extracted from all mice and ELISA was performed to detect immunoglobulin E (IgE) levels. H&E‑stained tissue sections were prepared from skin lesions on the backs of the mice and pathological changes were observed. Cytokines were detected via ELISA, and the filaggrin (FLG) and kallikrein‑7 (KLK7) proteins were detected via western blotting and immunohistochemistry. IKKα and NF‑κB mRNA were analyzed via reverse transcription‑quantitative PCR. Quinine ameliorated skin damage in the AD‑like mice, reduced IgE expression in the blood, inhibited expression of IKKα and NF‑κB, reduced cytokine secretion, reduced KLK7 expression, reduced scratching frequency, increased FLG expression and repaired the skin barrier. These results suggested that quinine exhibited therapeutic effects in AD‑like mice.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Dinitrochlorobenzene/toxicity
- Disease Models, Animal
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Immunoglobulin E/blood
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mice, Inbred BALB C
- NF-KappaB Inhibitor alpha/genetics
- NF-KappaB Inhibitor alpha/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Quinine/pharmacology
- Quinine/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction/drug effects
- Skin/drug effects
- Skin/pathology
- Mice
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Hongjing Jiang
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
- Department of Microbiology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, P.R. China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, P.R. China
| | - Murong Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Guangdong and Hong Kong Joint Research Center for Optical Fiber Sensors, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yansi Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jingkai Huang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Si Chen
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
- Department of Immunology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Li Wang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
35
|
The Wound Healing Peptide, AES16-2M, Ameliorates Atopic Dermatitis In Vivo. Molecules 2021; 26:molecules26041168. [PMID: 33671791 PMCID: PMC7926726 DOI: 10.3390/molecules26041168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide materials have recently been considered for use in various industrial fields. Because of their efficacy, safety, and low cost, therapeutic peptides are studied for various diseases, including atopic dermatitis (AD). AD is a common inflammatory skin disease impairing the patient's quality of life. Various therapies, such as treatments with corticosteroids, calcineurin inhibitors, and antibody drugs, have been applied, but numerous side effects have been reported, including skin atrophy, burning, and infection. In the case of antibody drugs, immunogenicity against the drugs can be a problem. To overcome these side effects, small peptides are considered therapeutic agents. We previously identified the small wound healing peptide AES16-2M with a sequence of REGRT, and examined its effects on AD in this study. Interestingly, the administration of AES16-2M downregulated the AD disease score, ear thickness, serum IgE, and thymic stromal lymphopoietin (TSLP) in AD mice. The thickness of the epidermal layer was also improved by AES16-2M treatment. In addition, quantities of IL-4-, IL-13-, and IL-17-producing CD4 T cells from peripheral lymph nodes and spleens were reduced by injection of AES16-2M. Furthermore, the expression of TSLP was significantly reduced in AES16-2M-treated human keratinocytes. Therefore, these results suggest that AES16-2M can be a novel candidate for AD treatment.
Collapse
|
36
|
Ludwig L, Tsukui T, Kageyama M, Farias M. Evaluation of sensitization to the crude extract of Dermatophagoides farinae and its derived allergens, Der f 2 and Zen 1, in dogs with atopic dermatitis in Southern Brazil. Vet Immunol Immunopathol 2021; 234:110199. [PMID: 33662650 DOI: 10.1016/j.vetimm.2021.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Atopic dermatitis is associated with the production of IgE antibodies against environmental allergens and allergens of the house dust miteDermatophagoides farinae are frequently implicated in the disease. OBJECTIVES We aimed to observe the allergen-specific IgE against crudeD. farinae, Der f 2 and Zen 1 in dogs with atopic dermatitis and report if these dogs are in contact with material that could shelter mite allergens. METHODS 100 dogs with clinical diagnosis of atopic dermatitis were included after exclusion of other forms of pruritic skin disease and dogs that already received specific or non-specific immunotherapy. These dogs were of different breeds and ages and they were presented at a veterinary teaching hospital and a private service of veterinary dermatology, both located in Curitiba, Southern Brazil. At the time of anamnesis, some questions were applied to know the possibility of these dogs having had contact with furniture and textile material which could shelter house dust mites. Sera samples were obtained and further analyzed by ELISA assay to measure serum IgE levels against these allergens with an established cut-off of 0.200 IgE optical density. RESULTS The allergen-specific IgE positivity against crudeD. farinae (92 %) and Zen 1 (77 %) was higher than Der f 2 (56 %). There was a correlation in sensitization to crude D. farinae and Zen 1 that was not observed between crude D. farinae and Der f 2 and Der f 2 and Zen 1. The sensitization to D. farinae and its allergens was associated with an unrestricted exposition to furniture and textile material. CONCLUSION & CLINICAL RELEVANCE: dogs with atopic dermatitis are frequently sensitized to D. farinae and its allergens, Der f 2 and Zen 1, may be considered major allergens in these dogs. Zen 1 may be the main allergen responsible for the sensitization to crude D. farinae.
Collapse
Affiliation(s)
- L Ludwig
- Department of Veterinary Medicine, School of Life and Sciences, Pontifical Catholic University of Paraná, 1155 Imaculada Conceição Street, 80215901, Curitiba, PR, Brazil.
| | - T Tsukui
- Central Research Laboratory, ZENOAQ, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - M Kageyama
- Central Research Laboratory, ZENOAQ, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - M Farias
- Department of Veterinary Medicine, School of Life and Sciences, Pontifical Catholic University of Paraná, 1155 Imaculada Conceição Street, 80215901, Curitiba, PR, Brazil; Dermatovet Veterinary Clinic, 85 Carmelo Rangel Street, 80440050, Curitiba, PR, Brazil
| |
Collapse
|
37
|
Gil TY, Hong CH, An HJ. Anti-Inflammatory Effects of Ellagic Acid on Keratinocytes via MAPK and STAT Pathways. Int J Mol Sci 2021; 22:ijms22031277. [PMID: 33525403 PMCID: PMC7865693 DOI: 10.3390/ijms22031277] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is characterized by an impaired skin barrier and intense itchiness, which decreases the individual’s quality of life. No fully effective therapeutic agents have prevailed for AD due to an insufficient grasp of the complex etiology. Ellagic acid (EA), a natural compound, has anti-inflammatory properties in chronic diseases. The effects of EA on AD have not yet been explored. The present study investigated the effects of EA on TNF-α/IFN-γ-stimulated HaCaT keratinocytes and house dust mite-induced AD-like skin lesions in NC/Nga mice. Treatment with EA suppressed inflammatory responses in keratinocytes by regulating critical inflammatory signaling pathways, such as mitogen-activated protein kinases and signal transducers and activators of transcription. In vivo studies using a DfE-induced AD mouse model showed the effects of EA administration through ameliorated skin lesions via decremented histological inflammatory reactions. These results suggest that EA could be a potential therapeutic alternative for the treatment of AD by inhibiting inflammatory signaling pathways.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Korea;
| | - Chul-Hee Hong
- Department of Korean Meidicne Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Korea;
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Korea;
- Correspondence: or
| |
Collapse
|
38
|
Shiraki Y, Shoji J, Inada N, Tomioka A, Yamagami S. IL-1α antibody inhibits dose-dependent exacerbation of eosinophilic inflammation by crude house-dust-mite antigen in the conjunctiva of an atopic keratoconjunctivitis mouse model. Curr Eye Res 2021; 46:1115-1124. [PMID: 33428487 DOI: 10.1080/02713683.2021.1874022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate whether crude house-dust-mite antigen exacerbates eosinophilic inflammation in the conjunctival tissues of an atopic keratoconjunctivitis mouse model in a dose-dependent manner. MATERIALS AND METHODS An atopic keratoconjunctivitis mouse model was established by percutaneous sensitization and crude house-dust-mite antigen application in NC/Nga mice. To assess the dose-dependent response, conjunctival specimens from groups that were administered high- (High-HDM) or low-dose house-dust-mite antigen (Low-HDM) following percutaneous sensitization and the control without house-dust-mite antigen administration (control group) were evaluated. Histological examination and immunofluorescence staining were performed to determine eosinophil density and the number of IL-13-positive cells. Polymerase chain reaction array was used to obtain adaptive and innate immunity-related factor profile, and quantitative polymerase chain reaction was used to determine Il13, Il17a, Ccl11, and Ccl24 expression. Atopic keratoconjunctivitis model mice injected with anti-IL-1α antibody (IL-1α group) or vehicle (vehicle group) to the upper and lower eyelids before atopic keratoconjunctivitis development were evaluated. RESULTS Eosinophil density in the conjunctiva increased with house-dust-mite antigen application in a dose-dependent manner. CD4, CXCL10, CCR6, C3, and IL-13 mRNA levels increased more than 5-fold in the conjunctiva of the High-HDM group animals compared to those in control animals. mRNA expression of Il13 and Ccl11 in the conjunctiva of the High-HDM group animals significantly increased compared with that in the Low-HDM and control group animals. Conversely, the eosinophil density and Il13 mRNA expression significantly decreased in the IL-1α group compared with those in the vehicle group. CONCLUSIONS The house-dust-mite antigen increased eosinophilic infiltration and Il13 mRNA expression in the conjunctiva of an atopic keratoconjunctivitis mouse model in a dose-dependent manner. These inflammatory alterations were partially alleviated by eyelid injection of anti-IL-1α antibody. These findings indicate that IL-1α-induced IL-13 production constitutes a major exacerbating factor for house-dust-mite antigen-induced atopic keratoconjunctivitis.
Collapse
Affiliation(s)
- Yukiko Shiraki
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko Inada
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Akiko Tomioka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Kido‐Nakahara M, Wang B, Ohno F, Tsuji G, Ulzii D, Takemura M, Furue M, Nakahara T. Inhibition of mite-induced dermatitis, pruritus, and nerve sprouting in mice by the endothelin receptor antagonist bosentan. Allergy 2021; 76:291-301. [PMID: 32535962 DOI: 10.1111/all.14451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Endothelin-1 (EDN1) can evoke histamine-independent pruritus in mammals and is upregulated in the lesional epidermis of atopic dermatitis (AD). EDN1 increases the production of interleukin 25 (IL-25) from keratinocytes to accelerate T helper type 2 immune deviation. Plasma EDN1 levels are positively correlated with the clinical severity and itch intensity of AD. Therefore, we hypothesized that the inhibition of EDN1 might be useful for treating atopic inflammation and itch and investigated the effects of the topical application of the EDN1 receptor antagonist bosentan on the skin inflammation and itch in a murine AD model. METHODS We analyzed the mite-induced AD-like NC/Nga murine model, which was topically applied with bosentan or ethanol control every day for 3 weeks. We also subjected in vitro primary sensory neuron culture systems to nerve elongation and branching assays after EDN1 stimulation. RESULTS Topical application of bosentan significantly attenuated the development of mite-induced AD-like skin inflammation, dermatitis scores, ear thickness, scratching bouts, and serum level of thymus and activation-regulated chemokine in NC/Nga mice. Bosentan application also significantly reduced the gene expression of Il13, Il17, and Ifng in the treated lesions. Histologically, the number of infiltrated dermal cells, the epidermal EDN1 expression, and the number of intraepidermal nerve fibers were significantly inhibited upon bosentan application. While EDN1 significantly elongated the neurites of dorsal root ganglion cells in a dose- and time-dependent manner, bosentan treatment attenuated this. CONCLUSIONS EDN1 plays a significant role in mite-induced inflammation and itch. Topical bosentan is a potential protective candidate for AD.
Collapse
Affiliation(s)
- Makiko Kido‐Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Bing Wang
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Fumitaka Ohno
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Gaku Tsuji
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Dugarmaa Ulzii
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Department of Dermatology National Dermatology Center of Mongolia Ulaanbaatar Mongolia
| | - Masaki Takemura
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Masutaka Furue
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takeshi Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
40
|
Haruta-Tsukamoto A, Miyahara Y, Funahashi H, Nishimori T, Ishida Y. Perampanel attenuates scratching behavior induced by acute or chronic pruritus in mice. Biochem Biophys Res Commun 2020; 533:1102-1108. [PMID: 33028486 DOI: 10.1016/j.bbrc.2020.09.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
An itch is defined as an unpleasant sensation that evokes a desire to scratch. Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system and has a crucial role in pruriceptive processing in the spinal dorsal horn. It is well known that glutamate exerts its effects by binding to various glutamate receptors including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and that AMPA/kainate receptors play a crucial role in pruriceptive processing; however, the precise role of AMPA receptors remains uncertain. Perampanel, an antiepileptic drug, is an antagonist of AMPA receptors. Pretreatment with perampanel dose-dependently attenuated the induction of scratching, a behavior typically associated with pruritus, by intradermal administration of the pruritogen chloroquine. In addition, the induction of scratching in mice painted with diphenylcyclopropenone and NC/Nga mice treated with Biostir AD, animal models of contact dermatitis and atopic dermatitis, respectively, was dose-dependently alleviated by administration of perampanel. These findings indicate that AMPA receptors play a crucial role in pruriceptive processing in mice with acute or chronic pruritus.
Collapse
Affiliation(s)
- Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki, 889-1692, Japan
| | - Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki, 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki, 889-1692, Japan.
| |
Collapse
|
41
|
Siraitia grosvenorii Residual Extract Attenuates Atopic Dermatitis by Regulating Immune Dysfunction and Skin Barrier Abnormality. Nutrients 2020; 12:nu12123638. [PMID: 33256152 PMCID: PMC7759927 DOI: 10.3390/nu12123638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Atopic dermatitis is a persistent inflammatory skin disorder. Siraitia grosvenorii fruits (monk fruit or nahangwa in Korean, NHG) are used as a natural sweetener and as a traditional medicine for the treatment of asthma and bronchitis. We evaluated the activity of S. grosvenorii residual extract (NHGR) on allergic inflammation of atopic dermatitis in a Dermatophagoides farinae mite antigen extract (DfE)-treated NC/Nga murine model and in vitro. Oral administration of NHGR significantly reduced epidermal hyperplasia and inflammatory cell infiltration in the skin lesions of DfE-induced atopic dermatitis, as well as the dermatitis severity score. NHGR reduced serum immunoglobulin E levels. Splenic concentrations of IFN-γ, interleukin (IL)-4, IL-5, and IL-13 were reduced by NHGR administration. Immunohistofluorescence staining showed that NHGR administration increased the protein levels of claudin-1, SIRT1, and filaggrin in atopic dermatitis skin lesions. In addition, NHGR inhibited the phosphorylation of mitogen-activated protein kinases and decreased filaggrin and chemokine protein expression in TNF-α/IFN-γ-induced human keratinocytes. Moreover, NHGR also inhibited histamine in mast cells. The quantitative analysis of NHGR revealed the presence of grosvenorine, kaempferitrin, and mogrosides. These results demonstrate that NHGR may be an efficient therapeutic agent for the treatment of atopic dermatitis.
Collapse
|
42
|
Kim YH, Kim TH, Kang MS, Ahn JO, Choi JH, Chung JY. Comparison of the presentation of atopic dermatitis induced by trinitrochlorobenzene and house dust mite in NC/Nga mice. J Vet Sci 2020; 21:e59. [PMID: 32735097 PMCID: PMC7402931 DOI: 10.4142/jvs.2020.21.e59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Atopic dermatitis (AD) is a common chronic inflammatory skin disease. To understand AD, there have been many trials establishing AD animal models. Although various trials to establish AD animal models have been existed, even the mechanisms of AD in animal models are not enough clarified. Objectives This study assessed AD characteristics induced in Nishiki-nezumi Cinnamon/Nagoya (Nc/Nga) mice following trinitrochlorobenzene (TNCB) treatment for different periods and house dust mite (HDM) treatment to compare each model's immunological patterns, especially with cytokine antibody array tool. Methods In this study, we exposed Nc/Nga mice to TNCB or HDM extract to induce AD. Nc/Nga mice were divided into 4 groups: control, TNCB 2 weeks-treated, TNCB 8 weeks-treated, and HDM-treated groups. After AD induction, all mice were evaluated by serum immunoglobulin E (IgE) concentration and serum cytokine antibody assays, scoring of skin lesions, scoring of scratching frequency, and histological analysis. Results The results showed significant differences between groups in serum IgE concentration, skin lesion scores, and scratching frequency. The analysis results for serum cytokine antibody arrays showed that in the TNCB 8 weeks- and HDM-treated groups, but not in the TNCB 2 weeks-treated group, expressions of genes related to the immune response were enriched. Among the histological results, the skin lesions in the HDM-treated group were most similar to those of AD. Conclusions We confirmed that immunological pattern of AD mice was markedly different between HDM and TNCB treated groups. In addition, the immunological pattern was quietly different dependent on TNCB treated duration.
Collapse
Affiliation(s)
- Yoon Hwan Kim
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Tae Hyeong Kim
- Department of Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Min Soo Kang
- Department of Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jin Ok Ahn
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jung Hoon Choi
- Department of Anatomy and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea.
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
43
|
Han EJ, Fernando IPS, Kim HS, Jeon YJ, Madusanka DMD, Dias MKHM, Jee Y, Ahn G. Oral Administration of Sargassum horneri Improves the HDM/DNCB-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2020; 12:E2482. [PMID: 32824648 PMCID: PMC7468899 DOI: 10.3390/nu12082482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the protective effects of Sargassum horneri (S. horneri) ethanol extract (SHE) against atopic dermatitis (AD), known as an abnormal immune response in house dust mite (HDM)/2,4-dinitrochlorobenzene (DNCB)-stimulated NC/Nga mice. The oral administration of SHE attenuated the AD symptoms, including the skin dermatitis severity, transepidermal water loss (TEWL), and ear edema in HDM/DNCB-stimulated mice. Moreover, the histological analysis revealed that SHE improved epidermal hyperplasia and hyperkeratosis, and reduced the dermal infiltrations of mast cells and eosinophils. Moreover, SHE downregulated the expression levels of cytokines (interleukin (IL)-6, IL-10, and interferon (IFN)-γ) and chemokines (Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES), Eotaxin, and Thymus and activation-regulated chemokine (TARC)) by decreasing the expression levels of atopic initiators (IL-25 and IL-33) in HDM/DNCB-stimulated skin. The oral administration of SHE decreased the spleen size, reducing expression levels of AD-related cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, and TARC) by regulating the expressions of Tbx21 (T-bet), GATA Binding Protein 3 (GATA-3), and Signal transducer and activator of transcription 3 (STAT3). Moreover, SHE significantly attenuated the serum immunoglobulin (Ig)G1 and IgG2a levels in HDM/DNCB-stimulated mice. Collectively, these results suggest that S. horneri could be an ingredient of functional food against abnormal immune response.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
| | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | | | | | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
44
|
Costello syndrome model mice with a Hras G12S/+ mutation are susceptible to develop house dust mite-induced atopic dermatitis. Cell Death Dis 2020; 11:617. [PMID: 32792500 PMCID: PMC7426869 DOI: 10.1038/s41419-020-02845-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Costello syndrome is an autosomal dominant disorder that is caused by germline HRAS mutations. Patients with Costello syndrome present craniofacial abnormalities, cardiac defects, and cancer predisposition, as well as skin abnormalities, including papillomas, keratosis pilaris, and eczematous dermatitis. However, the mechanisms underlying the dermatological abnormalities remain unclear. Here, we demonstrated that knock-in mice expressing an Hras G12S mutation (HrasG12S/+ mice) are susceptible to develop atopic dermatitis (AD)-like skin lesions, including eczema, pruritus, elevated serum IgE levels, acanthosis, and the infiltration of mast cells, basophils, and type-2 innate lymphoid cells in the dermis, after stimulation with house dust mite allergens (Dermatophagoides farinae, Dfb). Reduced skin barrier function, increased proliferation of phosphorylated ERK (p-ERK)-positive epidermal cells, and increased Th2-type cytokines as well as epithelial cell-derived cytokines, including IL-33, were observed in the skin tissue of HrasG12S/+ mice compared with Hras+/+ mice. Cultured HrasG12S/+ keratinocytes exhibited increased IL-33 expression after Dfb stimulation. PD0325901, an MEK inhibitor, ameliorated AD-like symptoms in HrasG12S/+ mice, showing decreased proliferation of p-ERK-positive epidermal cells and decreased expression of IL-33. Our findings indicate that the epidermis of HrasG12S/+ mice stimulated by Dfb strongly induced IL-33 expression and type-2 innate lymphoid cells, resulting in AD-like skin lesions. These results suggest that the epidermis of HrasG12S/+ mice are prone to development of eczematous dermatitis stimulated with house dust mite allergens.
Collapse
|
45
|
A Comparative Study of Levocetirizine Loaded Vesicular and Matrix Type System for Topical Application: Appraisal of Therapeutic Potential against Atopic Dermatitis. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
46
|
Eberlin S, Silva MSD, Facchini G, Silva GHD, Pinheiro ALTA, Eberlin S, Pinheiro ADS. The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. Altern Lab Anim 2020; 48:10-22. [DOI: 10.1177/0261192920914193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of alternative approaches for safety and efficacy testing that avoid the use of animals is a worldwide trend, which relies on the improvement of current models and tools so that they better reproduce human biology. Human skin from elective plastic surgery is a promising experimental model to test the effects of topically applied products. As the structure of native skin is maintained, including cell population (keratinocytes, melanocytes, Langerhans cells and fibroblasts) and dermal matrix (containing collagen, elastin, glycosaminoglycans, etc.), it most closely matches the effects of substances on in vivo human skin. In this review, we present a collection of results that our group has generated over the last years, involving the use of human skin and scalp explants, demonstrating the feasibility of this model. The development of a test system with ex vivo skin explants, of standard size and thickness, and cultured at the air–liquid interface, can provide an important tool for understanding the mechanisms involved in several cutaneous disorders.
Collapse
|
47
|
Anti-Inflammatory Effects of Alnus Sibirica Extract on In Vitro and In Vivo Models. Molecules 2020; 25:molecules25061418. [PMID: 32244969 PMCID: PMC7145316 DOI: 10.3390/molecules25061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Alnus sibirica extracts (ASex) have long been used in Oriental medicine to treat various conditions. To provide a scientific basis for this application and the underlying mechanism, we investigated the anti-inflammatory effects of ASex in vitro and in vivo. The in vitro model was established using human dermal fibroblasts (HDFs) treated with inflammatory stimulants (lipopolysaccharide, tumor necrosis factor-alpha, interferon-gamma). Lactate dehydrogenase and reverse transcription-polymerase chain reaction showed that ASex inhibited the increased expression of acute-phase inflammatory cytokines. The in vivo model was established by inducing skin inflammation in NC/Nga mice via the repeated application of house dust mite (HDM) ointment to the ears and back of the mice for eight weeks. HDM application increased the severity of skin lesions, eosinophil/mast cell infiltration, and serum immunoglobulin E levels, which were all significantly decreased by ASex treatment, demonstrating the same degree of protection as hydrocortisone. Overall, ASex showed excellent anti-inflammatory effects both in vitro and in vivo, suggesting its potential as an excellent candidate drug to reduce skin inflammation.
Collapse
|
48
|
Jeong NH, Lee S, Choi JK, Choi YA, Kim MJ, Lee HS, Shin TY, Jang YH, Song KS, Kim SH. Polyozellin alleviates atopic dermatitis-like inflammatory and pruritic responses in activated keratinocytes and mast cells. Biomed Pharmacother 2019; 122:109743. [PMID: 31918284 DOI: 10.1016/j.biopha.2019.109743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Polyozellus multiplex is an edible mushroom that offers beneficial pharmacological effects against intestinal inflammation and cancer. Previous studies have demonstrated that polyozellin, a major component of P. multiplex, has therapeutic activities against inflammation, cancer, and oxidative stress-related disorders. This study aimed to determine the pharmacological effects of polyozellin on inflammatory and pruritic responses, the major symptoms of atopic dermatitis (AD), and to define its underlying mechanism of action. Our results showed that polyozellin inhibited the expression of inflammatory cytokines and chemokines through blockade of signal transducer and activator of transcription 1 and nuclear factor-κB in activated keratinocytes, the major cells involved in AD progression. Based on the histological and immunological analyses, oral treatment with polyozellin attenuated the Dermatophagoides farinae extract (DFE)/2,4-dinitrochlorobenzene (DNCB)-induced atopic inflammatory symptoms in the skin. Pruritus is an unpleasant sensation for AD patients that causes scratching behavior and ultimately exacerbates the severity of AD. To find a possible explanation for the anti-pruritic effects of polyozellin, we investigated its effects on mast cells and mast cell-derived histamines. Oral treatment with polyozellin reduced the DFE/DNCB-induced tissue infiltration of mast cells, the serum histamine levels, and the histaminergic scratching behaviors. Additionally, polyozellin decreased the immunoglobulin E-stimulated degranulation of mast cells. Taken together, the findings of this study provide us with novel insights into the potential pharmacological targets of polyozellin for treating AD by inhibiting the inflammatory and pruritic responses.
Collapse
Affiliation(s)
- Na-Hee Jeong
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Young-Ae Choi
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyung-Sik Song
- GHAM BioPharm Co. Ltd., College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Kanemaru K, Noguchi E, Tahara-Hanaoka S, Mizuno S, Tateno H, Denda-Nagai K, Irimura T, Matsuda H, Sugiyama F, Takahashi S, Shibuya K, Shibuya A. Clec10a regulates mite-induced dermatitis. Sci Immunol 2019; 4:4/42/eaax6908. [DOI: 10.1126/sciimmunol.aax6908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
House dust mite (HDM) is a major allergen that causes allergic diseases such as atopic dermatitis. However, the regulatory mechanisms of HDM-induced immune responses are incompletely understood. NC/Nga mice are an inbred strain that is more susceptible to HDM and develops more severe dermatitis than other strains. Using whole-exome sequencing, we found that NC/Nga mice carry a stop-gain mutation inClec10a, which encodes a C-type lectin receptor, Clec10a (MGL1/CD301a). The repair of this gene mutation using the CRISPR-Cas9 system ameliorated HDM-induced dermatitis, indicating that the Clec10a mutation is responsible for hypersensitivity to HDM in NC/Nga mice. Similarly,Clec10a−/−mice on the C57BL/6J background showed exacerbated HDM-induced dermatitis. Clec10a expressed on skin macrophages inhibits HDM-induced Toll-like receptor 4 (TLR4)–mediated inflammatory cytokine production through the inhibitory immunoreceptor tyrosine activating motif in its cytoplasmic portion. We identified asialoglycoprotein receptor 1 (Asgr1) as a functional homolog of mouse Clec10a in humans. Moreover, we found that a mucin-like molecule in HDM is a ligand for mouse Clec10a and human Asgr1. Skin application of the ligand ameliorated a TLR4 ligand-induced dermatitis in mice. Our findings suggest that Clec10a in mice and Asgr1 in humans play an important role in skin homeostasis against inflammation associated with HDM-induced dermatitis.
Collapse
|
50
|
Lee MH, Lee YS, Kim HJ, Han CH, Kang SU, Kim CH. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep 2019; 9:13510. [PMID: 31534179 PMCID: PMC6751194 DOI: 10.1038/s41598-019-49938-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Non-thermal plasma (NTP) has many functional activities such as, sterilization, wound healing and anti-cancer activity. Despite of its wide spread biomedical application, the effect of NTP on immune cells and allergic response has not been well studied. In this study, we determined whether NTP suppresses mast cell activation, which is important for allergic response, and ameliorates an atopic dermatitis (AD)-like skin inflammatory disease in mice. Exposure to NTP-treated medium during mast cell activation inhibited the expression and production of IL-6, TNF-α and suppressed NF-κB activation. We also investigated whether NTP treatment ameliorates house dust mite (HDM)-induced AD-like skin inflammation in mice. NTP treatment inhibited increases in epidermal thickness and recruitment of mast cells and eosinophils, which are important cell types in AD pathogenesis. In addition, Th2 cell differentiation was induced by application of HDM and the differentiation was also inhibited in the draining lymph node of NTP-treated mice. Finally, the expression of AD-related cytokines and chemokines was also decreased in NTP-treated mice. Taken together, these results suggest that NTP might be useful in the treatment of allergic skin diseases, such as AD.
Collapse
Affiliation(s)
- Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|