1
|
Uçan Yarkaç F, Babayiğit O, Gokturk O. Associations between immune-inflammatory markers, age, and periodontal status: a cross-sectional study. Odontology 2024; 112:1296-1306. [PMID: 38443702 DOI: 10.1007/s10266-024-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
Since periodontal disease is associated with many systemic diseases, it is important to evaluate its effects on host responses in elderly individuals. To this end, this study investigated salivary interleukin (IL)-17, IL-18, toll-like receptor (TLR) 2, TLR4, and tumor necrosis factor-alpha (TNF-α) levels in patient groups with different periodontal health statuses and immunologically evaluated the relationship between age and periodontal health status. A total of 60 individuals aged 18-40 years (young individuals) and 60 individuals aged 65 years or older (elderly individuals) were included in this study. According to periodontal disease status, the patients were divided into periodontally healthy, gingivitis, and periodontitis subgroups. Clinical periodontal parameters, including probing depth (PD), clinical attachment level (CAL), plaque index (PI), and gingival index (GI), were recorded. Saliva samples were collected and analyzed using ELISA to determine the levels of IL-17, IL-18, TLR2, TLR4, and TNF-α. Higher clinical periodontal parameter (PD, CAL, PI, and GI) and inflammatory marker (IL-17, IL-18, TNF-α, TLR2, and TLR4) levels were found in patients with periodontitis than those in periodontally healthy individuals and patients with gingivitis (P < 0.05). Salivary inflammatory marker levels were significantly higher in elderly individuals than those in young individuals in all subgroups (P < 0.05). A positive correlation was found between inflammatory marker levels and clinical periodontal parameters, but there was no correlation between TLR2 and PI or GI. This study suggests a significant increase in host response to periodontal disease as the disease progresses, with the levels of cytokines and TLR expression exhibiting an increasing trend with age. Increased IL-17, IL-18, TLR2, TLR4, and TNF-α levels in elderly individuals in all periodontal health subgroups might suggest the role of these cytokines and TLR pathway in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- Fatma Uçan Yarkaç
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey
| | - Osman Babayiğit
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey.
| | | |
Collapse
|
2
|
Pan L, She H, Hu Y, Liu L, Wang H, Zhu L. Toll-like receptor 4 deficiency affects the balance of osteoclastogenesis and osteoblastogenesis in periodontitis. Int Immunopharmacol 2024; 137:112500. [PMID: 38889511 DOI: 10.1016/j.intimp.2024.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Toll-like receptor 4 (TLR4) acts as a double-edged sword in the occurrence and development of periodontitis. While the activation of TLR4 in macrophages aids in clearing local pathogens, it can also disrupt innate immune responses, upsetting microecological balance and accelerating the destruction of periodontal bone tissues. To date, the effects of TLR4 on osteogenesis and osteoclastogenesis in periodontitis have not been comprehensively studied. In this study, we investigated the development of periodontitis in the Tlr4-/- mice by ligating their second molars with silk threads. Compared to wild-type (WT) mice, Tlr4-/- mice demonstrated increased resistance to periodontitis-associated bone destruction, as evidenced by decreased bone resorption and enhanced bone regeneration. Mechanistically, the deletion of Tlr4 not only inhibited osteoclast formation by reducing the expression of NFATc1, CTSK and TRAP, but also enhanced osteogenic abilities through increased expression of OCN, OPN and RUNX2. In conclusion, TLR4 tips the balance of osteoclastogenesis and osteogenesis, thereby promoting periodontal bone destruction in periodontitis.
Collapse
Affiliation(s)
- Lu Pan
- Department of Stomatology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - He She
- Department of Stomatology, Taizhou Fourth People's Hospital, Taizhou, Jiangsu, China
| | - Yong Hu
- Department of Stomatology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Laikui Liu
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.
| | - Lifang Zhu
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
He T, Zou Y, Grender J, Amini P, Kaminski M, Biesbrock AR. Randomized Controlled Trials Assessing Exposure Frequency Effects of Stannous Fluoride on Gingivitis. JDR Clin Trans Res 2024:23800844241263031. [PMID: 39118360 DOI: 10.1177/23800844241263031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To evaluate the exposure frequency effect of 0.454% stannous fluoride (SnF2) toothpaste in controlling gingivitis. METHODS Two randomized controlled trials enrolled generally healthy adults with gingivitis. The study duration was 1 mo (study 1) and 3 mo (study 2). Gingivitis was assessed using the Löe-Silness Gingival Index (LSGI) at baseline, 1 mo (both studies), and 3 mo (study 2); bleeding scores were derived from the LSGI. Study groups consisted of positive control (twice-daily use of 0.454% SnF2 toothpaste), experimental group (brushing in the morning with SnF2 toothpaste and in the evening with 0.76% sodium monofluorophosphate [SMFP] toothpaste), and negative control (twice-daily use of SMFP toothpaste). The primary endpoint was number of bleeding sites. RESULTS Study 1 and study 2 each enrolled and randomized 90 participants; 86 and 89 participants, respectively, completed the trials. At baseline, the mean (SD) number of bleeding sites was 47.6 (18.54) in study 1 and 41.5 (17.84) in study 2. At 3 mo (study 2), the positive control produced 51.3% fewer bleeding sites, and the experimental group produced 32.5% fewer bleeding sites versus the negative control (P < 0.001 for both). At 1 mo, the positive control produced 45.1% (study 1) and 45.8% (study 2) fewer bleeding sites versus the negative control (P < 0.001 for both), and the experimental group produced 33.0% (study 1) and 24.8% (study 2) fewer bleeding sites, respectively, versus the negative control (P ≤ 0.002 for both). The benefit was observed as early as 1 mo and was consistent with 3-mo results. CONCLUSION This research is to our knowledge the first to demonstrate a gingivitis-reduction response effect for the frequency of bioavailable SnF2 toothpaste use, with maximum benefit from twice-daily use, followed by a single-daily exposure versus the negative control. Clinical trial registration numbers: NCT05916508 and NCT05916521. KNOWLEDGE TRANSFER STATEMENT The results of this study can be used by dental professionals to guide their recommendations for therapeutic toothpaste for gingival health. Emphasis on the importance of twice-daily brushing with bioavailable stannous fluoride dentifrice will help patients optimize gingival health benefits achieved via self-care.
Collapse
Affiliation(s)
- T He
- The Procter & Gamble Company, Mason, OH, USA
| | - Y Zou
- The Procter & Gamble Company, Mason, OH, USA
| | - J Grender
- The Procter & Gamble Company, Mason, OH, USA
| | - P Amini
- Silverstone Research Group, Las Vegas, NV, USA
| | - M Kaminski
- The Procter & Gamble Company, Mason, OH, USA
| | | |
Collapse
|
4
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Dalal RK, Kaur M, Khatri K, Patel F, Shaikh H, Bakerywala A. Evaluation of the Circulatory Levels of Heat Shock Protein 60 Levels in Periodontitis and Cardiovascular Disease Patients. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S498-S500. [PMID: 38595534 PMCID: PMC11001097 DOI: 10.4103/jpbs.jpbs_829_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 04/11/2024] Open
Abstract
Introduction HSP is arguably the most thoroughly studied self-antigens connected to Cardio Vascular Diseases (CVD) and periodontal disease. Hence, the major goal of this analysis was to determine the amount of HSP60 in patients' Chronic Periodontitis (CP) patients' serum. Materials and Methods The current investigation involved 100 patients in all. Based on the patients' periodontal and cardiovascular health, the patients were divided. The patients were made aware that this research had no direct bearing on disease treatment or cure. Results In contrast to periodontal disease, which had a mean serum HSP60 of 59.94 ng/dl, CVD had a mean serum HSP60 of 85.98 ng/dl. When compared to periodontal disease, the CVD increased significantly (P < 0.05, 0.03). Discussion and Conclusion We emphasize the function of HSP60 in the pathophysiology of individuals with chronic periodontitis based on the findings of the current investigation. Serum HSP60 concentrations can serve as a biomarker for periodontal inflammation. More longitudinal and interventional research with a larger sample size is required to validate the present findings. In periodontal therapies, targeting HSP60 may enhance results.
Collapse
Affiliation(s)
- Rakshit K. Dalal
- Private Practitioner, Dalal Dental Clinic, Mumbai, Maharashtra, India
| | - Manpreet Kaur
- Certified Dental Assistant, Cedarview Dentistry Clinic, Nepean, ON K2J OV2, Canada
| | - Komal Khatri
- Private Practitioner, Nusmile Dentistry and Orthodontics, Kalol, Gujarat, India
| | - Foram Patel
- Georgia Southern University, Statesboro, GA, United States of America
| | - Heena Shaikh
- Healthcare Leadership, Mississauga, Ontario, Canada
| | - Arifa Bakerywala
- Department of Pediatric Dentistry, Tufts University School of Dental Medicine, Massachusetts, United States of America
| |
Collapse
|
6
|
Mougeot JLC, Beckman MF, Morton DS, Noll J, Steuerwald NM, Brennan MT, Bahrani Mougeot F. Human oral mucosa and oral microbiome interactions following supragingival plaque reconstitution in healthy volunteers: a diet-controlled balanced design proof-of-concept model to investigate oral pathologies. J Oral Microbiol 2023; 15:2246279. [PMID: 37621744 PMCID: PMC10446812 DOI: 10.1080/20002297.2023.2246279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Changes in the oral microbiome may contribute to oral pathologies, especially in patients undergoing cancer therapy. Interactions between oral microbiome and oral mucosa may exacerbate inflammation. We determined whether probiotic-controlled plaque formation could impact proximal oral mucosa gene expression profiles in healthy volunteers. A 3-weeks balanced sample collection design from healthy volunteers (HVs) was implemented. At Week-1 plaques samples and labial mucosa brush biopsies were obtained from HVs in the morning (N = 4) and/or in the afternoon (N = 4), and groups were flipped at Week-3. A fruit yogurt and tea diet were given 2-4hrs before sample collection. mRNA gene expression analysis was completed using RNA-Seq and DESeq2. Bacterial taxa relative abundance was determined by 16S HOMINGS. Bacterial diversity changes and metabolic pathway enrichment were determined using PRIMERv7 and LEfSe programs. Alpha- and beta-diversities did not differ morning (AM) vs. afternoon (PM). The most affected KEGG pathway was Toll-like receptor signaling in oral mucosa. Eighteen human genes and nine bacterial genes were differentially expressed in plaque samples. Increased activity for 'caries-free' health-associated calcifying Corynebacterium matruchotii and reduced activity for Aggregatibacter aphrophilus, an opportunistic pathogen, were observed. Microbial diversity was not altered after 8 hours plaque formation in healthy individuals as opposed to gene expression.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Micaela F. Beckman
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Darla S. Morton
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Jenene Noll
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Nury M. Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael T. Brennan
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine and Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
7
|
Silva C, Requicha J, Dias I, Bastos E, Viegas C. Genomic Medicine in Canine Periodontal Disease: A Systematic Review. Animals (Basel) 2023; 13:2463. [PMID: 37570272 PMCID: PMC10417655 DOI: 10.3390/ani13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic medicine has become a growing reality; however, it is still taking its first steps in veterinary medicine. Through this approach, it will be possible to trace the genetic profile of a given individual and thus know their susceptibility to certain diseases, namely periodontal disease. This condition is one of the most frequently diagnosed in companion animal clinics, especially in dogs. Due to the limited existing information and the lack of comprehensive studies, the objective of the present study was to systematically review the existing scientific literature regarding genomic medicine in canine periodontal disease and determine which genes have already been studied and their probable potential. This study followed the recommendations of the PRISMA 2020 methodology. Canine periodontal disease allied to genomic medicine were the subjects of this systematic review. Only six articles met all of the inclusion criteria, and these were analyzed in detail. These studies described genetic variations in the following genes: interleukin-6, interleukin-10, interleukin-1, lactotransferrin, toll-like receptor 9, and receptor activator of nuclear factor-kappa B. Only in two of them, namely interleukin-1 and toll-like receptor 9 genes, may the identified genetic variations explain the susceptibility that certain individuals have to the development of periodontal disease. It is necessary to expand the studies on the existing polymorphic variations in genes and their relationship with the development of periodontal disease. Only then will it be possible to fully understand the biological mechanisms that are involved in this disease and that determine the susceptibility to its development.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Estela Bastos
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Alaqla A, Hu Y, Huang S, Ruiz S, Kawai T, Han X. TLR9 Signaling Is Required for the Porphyromonas gingivalis-Induced Activation of IL-10-Expressing B Cells. Int J Mol Sci 2023; 24:6693. [PMID: 37047666 PMCID: PMC10094902 DOI: 10.3390/ijms24076693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune cell pattern-recognition receptors such as Toll-like receptors (TLRs) play important roles in the regulation of host responses to periodontal pathogens. Our previous studies have demonstrated that immune regulatory B cells were activated by TLRs and alleviated periodontitis inflammation and bone loss. The purpose of this study is to determine the role of TLR9 signaling in the activation and IL-10 production of the primed-immune B cells in vitro. Wild-type (WT) and TLR9 knockout (TLR9KO) mice (C57BL/6 background, n = 5) were pre-immunized intraperitoneally with 1 × 108 formalin-fixed P. gingivalis and boosted once with 1 × 107 formalin-fixed P. gingivalis. Isolated splenocytes and purified B cells from each mouse were cultured with 1 × 108 formalin-fixed P. gingivalis for 48 h. Immunocytochemistry was performed to detect CD45+ IL-10+ cells. Levels of IL-10 expression and secretion in splenocytes and B cells were detected using qRT-PCR and ELISA, respectively. After stimulation with fixed P. gingivalis, the percentage of CD45+ IL-10+ B cells and the level of IL-10 expression were significantly increased (p < 0.01) in splenocytes and purified B cells isolated from WT mice. However, these changes were not observed in splenocytes and purified B cells from TLR9KO mice when the cells were treated with fixed P. gingivalis. The percentage of CD45+ IL-10+ B cells was significantly reduced in splenocytes and purified B cells from TLR9KO mice compared to those from WT mice when challenged with P. gingivalis. IL-10 expression in B cells from TLR9KO mice was significantly decreased compared to those from WT mice at both the mRNA and protein levels. Additionally, P. gingivalis-induced up-regulation of TNF-α mRNA expressions were consistently observed in B cells from both WT and TLR9KO mice. P. gingivalis-induced B10 activation and IL-10 production during adaptive responses by primed B cells requires TLR9 signaling and can be achieved independent of T-cell help.
Collapse
Affiliation(s)
- Ali Alaqla
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shengyuan Huang
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| |
Collapse
|
9
|
Effects of oral administration of Bifidobacterium animalis subsp. lactis HN019 on the treatment of plaque-induced generalized gingivitis. Clin Oral Investig 2023; 27:387-398. [PMID: 36305963 PMCID: PMC9614197 DOI: 10.1007/s00784-022-04744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/02/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES This double-blind, randomized, placebo-controlled clinical trial evaluated the adjuvant effects of Bifidobacterium lactis HN019 on the treatment of plaque-induced generalized gingivitis. MATERIALS AND METHODS Sixty patients were submitted to professional supragingival scaling and prophylaxis. They were randomly assigned to test (probiotic lozenges containing B. lactis HN019, n = 30) or control (placebo lozenges, n = 30) groups. Lozenges were consumed twice a day for 8 weeks. Bleeding on probing (BoP), Gingival Index (GI), Plaque Index (PI), probing depth (PD), and clinical attachment level (CAL) were evaluated at baseline and after 2 and 8 weeks. Gingival crevicular fluid (GCF) was collected at baseline and at 8 weeks for analysis of the inflammatory mediators IL-1β, IL-1α, IL-8, MCP-1, and MIP-1β. Data were statistically analyzed (p < 0.05). RESULTS After 8 weeks, both groups showed reduction in the percentage of PI, with no significant difference between groups (p = 0.7423). The test group presented a lower percentage of BoP and a higher percentage of sites with GI ≤ 1 when compared with the control group at the end of the study (p < 0.0001). At 8 weeks, the test group had a greater number of patients without generalized gingivitis than the control group (20 and 11 patients, respectively; p < 0.05). The test group presented significantly lower levels of IL-1α, IL-1β, and MCP-1 in GCF than the control group at the end of the study (p < 0.05). CONCLUSION The adjunct use of B. lactis HN019 promotes additional clinical and immunological benefits in the treatment of generalized gingivitis. CLINICAL RELEVANCE B. lactis HN019 can be an efficient and side-effect-free adjunct strategy in the treatment of generalized gingivitis.
Collapse
|
10
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
11
|
Tamura T, Zhai R, Takemura T, Ouhara K, Taniguchi Y, Hamamoto Y, Fujimori R, Kajiya M, Matsuda S, Munenaga S, Fujita T, Mizuno N. Anti-Inflammatory Effects of Geniposidic Acid on Porphyromonas gingivalis-Induced Periodontitis in Mice. Biomedicines 2022; 10:biomedicines10123096. [PMID: 36551860 PMCID: PMC9775215 DOI: 10.3390/biomedicines10123096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Periodontal disease is predominantly caused by the pathogenic bacterium Porphyromonas gingivalis that produces inflammation-inducing factors in the host. Eucommia ulmoides is a plant native to China that has been reported to reduce blood pressure, promote weight loss, and exhibit anti-inflammatory effects. Geniposidic acid (GPA) is the major component of E. ulmoides. Herein, we investigated the effects of GPA on P. gingivalis-induced periodontitis by measuring the inflammatory responses in human gingival epithelial cells (HGECs) after P. gingivalis stimulation and GPA addition in a P. gingivalis-induced periodontitis mouse model. We found that GPA addition suppressed interleukin (IL)-6 mRNA induction (33.8% suppression), IL-6 production (69.2% suppression), toll-like receptor (TLR) 2 induction, and mitogen-activated protein kinase (MAPK) phosphorylation in HGECs stimulated by P. gingivalis. Inoculation of mice with GPA inhibited P. gingivalis-induced alveolar bone resorption (25.6% suppression) by suppressing IL-6 and TLR2 production in the serum and gingiva. GPA suppressed osteoclast differentiation of bone marrow cells induced by M-CSF and sRANKL in mice (56.7% suppression). GPA also suppressed the mRNA expression of OSCAR, NFATc1, c-Fos, cathepsin K, and DC-STAMP. In summary, GPA exerts an anti-inflammatory effect on periodontal tissue and may be effective in preventing periodontal disease.
Collapse
Affiliation(s)
- Tetsuya Tamura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ruoqi Zhai
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tasuku Takemura
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-82-257-5663; Fax: +81-82-257-5664
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryousuke Fujimori
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihito Kajiya
- Department of Innovation and Precision Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Syuichi Munenaga
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
12
|
Ptasiewicz M, Bębnowska D, Małkowska P, Sierawska O, Poniewierska-Baran A, Hrynkiewicz R, Niedźwiedzka-Rystwej P, Grywalska E, Chałas R. Immunoglobulin Disorders and the Oral Cavity: A Narrative Review. J Clin Med 2022; 11:jcm11164873. [PMID: 36013115 PMCID: PMC9409910 DOI: 10.3390/jcm11164873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The oral mucosa is a mechanical barrier against the penetration and colonization of microorganisms. Oral homeostasis is maintained by congenital and adaptive systems in conjunction with normal oral flora and an intact oral mucosa. Components contributing to the defense of the oral cavity include the salivary glands, innate antimicrobial proteins of saliva, plasma proteins, circulating white blood cells, keratinocyte products of the oral mucosa, and gingival crevicular fluid. General disturbances in the level of immunoglobulins in the human body may be manifested as pathological lesions in the oral mucosa. Symptoms of immunoglobulin-related general diseases such as mucous membrane pemphigoid (MMP), pemphigus vulgaris (PV), linear IgA bullous dermatosis (LABD), Epidermolysis Bullosa Aquisita (EBA), and Hyper-IgE syndrome (HIES) may appear in the oral cavity. In this review, authors present selected diseases associated with immunoglobulins in which the lesions appear in the oral cavity. Early detection and treatment of autoimmune diseases, sometimes showing a severe evolution (e.g., PV), allow the control of their dissemination and involvement of skin or other body organs. Immunoglobulin disorders with oral manifestations are not common, but knowledge, differentiation and diagnosis are essential for proper treatment.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Ezhilarasan D, Varghese SS. Porphyromonas gingivalis and dental stem cells crosstalk amplify inflammation and bone loss in the periodontitis niche. J Cell Physiol 2022; 237:3768-3777. [PMID: 35926111 DOI: 10.1002/jcp.30848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Periodontitis is the sixth most prevalent disease, and almost 3.5 billion people are affected globally by dental caries and periodontal diseases. The microbial shift from a symbiotic microbiota to a dysbiotic microbiota in the oral cavity generally initiates periodontal disease. Pathogens in the periodontal microenvironment interact with stem cells to modulate their regenerative potential. Therefore, this review focuses on the interaction between microbes and stem cells in periodontitis conditions. Microbes direct dental stem cells to secrete a variety of pro-inflammatory cytokines and chemokines, which increase the inflammatory burden in the damaged periodontal tissue, which further aggravates periodontitis. Microbial interaction also decreases the osteogenic differentiation potential of dental stem cells by downregulating alkaline phosphatase, runt-related transcription factor 2, type 1 collagen, osteocalcin, osteopontin, and so on. Microbe and stem cell interaction amplifies pro-inflammatory cytokine signaling in the periodontitis niche, decreasing the osteogenic commitment of dental stem cells. A clear understanding of microbial stem cell interactions is crucial in designing regenerative therapies using stem cells in the management of periodontitis.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sheeja S Varghese
- Department of Periodontology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Effect of Coffee on Lipopolysaccharide-Induced Immortalized Human Oral Keratinocytes. Foods 2022; 11:foods11152199. [PMID: 35892784 PMCID: PMC9330743 DOI: 10.3390/foods11152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common inflammatory disease that is strongly influenced by dietary habits. Coffee is one of the most common dietary components; however, current research on the relationship between coffee consumption and periodontitis, as well as its underlying mechanisms, is limited. Based on a previous report, caffeine (CA) and chlorogenic acid (CGA) were formulated into artificial coffee (AC) for this experiment. Cell viability, prostaglandin E2 release, Western blotting, cellular reactive oxygen species (ROS) production, and NF-E2-related factor 2 (Nrf2) translocation analyses were performed to explore the effects of AC on lipopolysaccharide (LPS)-induced immortalized human oral keratinocytes (IHOKs) and elucidate their underlying mechanisms. AC pretreatment attenuated LPS-induced inflammatory mediator release, ROS production, and nuclear factor kappa B translocation in IHOKs. CA and CGA promoted AMP-activated protein kinase phosphorylation and down-regulated the nuclear factor-κB pathways to exert anti-inflammatory effects. Additionally, CGA promoted Nrf2 translocation and heme oxygenase-1 expression and showed anti-oxidative effects. Furthermore, AC, CA, and CGA components showed synergistic effects. Thus, we predict that coffee consumption may be beneficial for alleviating periodontitis. Moreover, the main coffee components CA and CGA seem to play a synergistic role in periodontitis.
Collapse
|
15
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
16
|
Grassi R, Nardi GM, Mazur M, Di Giorgio R, Ottolenghi L, Guerra F. The Dental-BIOfilm Detection TECHnique (D-BioTECH): A Proof of Concept of a Patient-Based Oral Hygiene. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:537. [PMID: 35454375 PMCID: PMC9030559 DOI: 10.3390/medicina58040537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
To date, no strong long-term data have been reported about new innovative clinical protocols to manage oral hygiene. An improper management of oral hygiene may lead to an increase in dental implant failure, and to an increase in infective complications in prosthetic rehabilitation. Personalized techniques are strongly required in dentistry and dental hygiene. A customized and personalized approach to oral hygiene is crucial in ensuring not only effective treatment, but also a careful analysis of the general health status of the patient involved in the therapeutic process. D-BioTECH is an acronym for Dental BIOfilm Detection Technique: it is based on a tailored approach to patients, ensuring that the operator actively interacts with the patient and their specific needs, especially during the domiciliary therapy. D-BioTECH is an approach to preventive care: in D-BioTECH, both dental hygienists and dentists play a central role. The use of a personalized approach to oral hygiene is the first step towards increasing implant and prosthesis survival rate; moreover, personalized medicine is strategic for managing and preventing the biological complications associated with several dental risk factors.
Collapse
Affiliation(s)
- Roberta Grassi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Gianna Maria Nardi
- Department of Dental and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.M.N.); (M.M.); (R.D.G.); (L.O.); (F.G.)
| | - Marta Mazur
- Department of Dental and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.M.N.); (M.M.); (R.D.G.); (L.O.); (F.G.)
| | - Roberto Di Giorgio
- Department of Dental and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.M.N.); (M.M.); (R.D.G.); (L.O.); (F.G.)
| | - Livia Ottolenghi
- Department of Dental and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.M.N.); (M.M.); (R.D.G.); (L.O.); (F.G.)
| | - Fabrizio Guerra
- Department of Dental and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy; (G.M.N.); (M.M.); (R.D.G.); (L.O.); (F.G.)
| |
Collapse
|
17
|
Downregulation of protein and mRNA levels of vimentin in periodontitis – A potential biomarker candidate for periodontal severity? GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Jasim SA, Ahmed NS, Mousa AA, Hmed AA, Sofy AR. Correlation between both genetic polymorphism and serum level of toll-like receptor 4 with viral load and genotype of hepatitis C virus in Iraqi patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Marcano R, Rojo MÁ, Cordoba-Diaz D, Garrosa M. Pathological and Therapeutic Approach to Endotoxin-Secreting Bacteria Involved in Periodontal Disease. Toxins (Basel) 2021; 13:533. [PMID: 34437404 PMCID: PMC8402370 DOI: 10.3390/toxins13080533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that periodontal disease is an inflammatory entity of infectious origin, in which the immune activation of the host leads to the destruction of the supporting tissues of the tooth. Periodontal pathogenic bacteria like Porphyromonas gingivalis, that belongs to the complex net of oral microflora, exhibits a toxicogenic potential by releasing endotoxins, which are the lipopolysaccharide component (LPS) available in the outer cell wall of Gram-negative bacteria. Endotoxins are released into the tissues causing damage after the cell is lysed. There are three well-defined regions in the LPS: one of them, the lipid A, has a lipidic nature, and the other two, the Core and the O-antigen, have a glycosidic nature, all of them with independent and synergistic functions. Lipid A is the "bioactive center" of LPS, responsible for its toxicity, and shows great variability along bacteria. In general, endotoxins have specific receptors at the cells, causing a wide immunoinflammatory response by inducing the release of pro-inflammatory cytokines and the production of matrix metalloproteinases. This response is not coordinated, favoring the dissemination of LPS through blood vessels, as well as binding mainly to Toll-like receptor 4 (TLR4) expressed in the host cells, leading to the destruction of the tissues and the detrimental effect in some systemic pathologies. Lipid A can also act as a TLRs antagonist eliciting immune deregulation. Although bacterial endotoxins have been extensively studied clinically and in a laboratory, their effects on the oral cavity and particularly on periodontium deserve special attention since they affect the connective tissue that supports the tooth, and can be linked to advanced medical conditions. This review addresses the distribution of endotoxins associated with periodontal pathogenic bacteria and its relationship with systemic diseases, as well as the effect of some therapeutic alternatives.
Collapse
Affiliation(s)
- Rosalia Marcano
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| | - M. Ángeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, and IUFI, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Garrosa
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
20
|
Elmanfi S, Yilmaz M, Ong WWS, Yeboah KS, Sintim HO, Gürsoy M, Könönen E, Gürsoy UK. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021; 10:675. [PMID: 34070809 PMCID: PMC8226932 DOI: 10.3390/pathogens10060675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Mustafa Yilmaz
- Department of Periodontology, Faculty of Dentistry, Biruni University, 34010 Istanbul, Turkey;
| | - Wilson W. S. Ong
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Kofi S. Yeboah
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
21
|
Zhao J, Geng W, Wan K, Guo K, Xi F, Xu X, Xiong X, Huang X, Liu J, Kuang X. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. J Int Med Res 2021; 49:300060520981259. [PMID: 33528285 PMCID: PMC7871081 DOI: 10.1177/0300060520981259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To explore the role of lipoxin A4 (LXA4) on inflammasome and inflammatory activity in macrophages activated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) one of the major causative agents of chronic periodontitis. Methods The mouse macrophage cell line RAW264.7 was used to produce an activated inflammation model. Markers of inflammasome and inflammatory activity and autophagy were assessed by ELISA, reverse transcription polymerase chain reaction (RT-PCR), and Western blot assay. Results Markers of inflammasome activity, inflammation and autophagy increased with Pg LPS concentration. They also increased with increasing exposure to Pg LPS up to 12h but decreased at 24h. However, markers of autophagy increased. Phosphorylated NF-κBp65 decreased with LXA4, which was similar to results obtained with the autophagy inducer, rapamycin. Conclusions LXA4 promoted autophagy and inhibited activation of inflammasomes and inflammation markers in macrophage inflammation induced by PgLPS and this action was linked to the phosphorylation of NF-κB.
Collapse
Affiliation(s)
- Jie Zhao
- Affiliated Stomatological Hospital of Nanchang University, China
| | - Wenjing Geng
- Queen Mary College of Nanchang University, China
| | - Kefei Wan
- The Second Clinical Medical College of Nanchang University, China
| | - Kailei Guo
- Undergraduate course of the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Fengjun Xi
- Undergraduate course of the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiangqun Xu
- Hospital of Integrated Traditional Chinese and Western Medicine in Jiangxi province, China
| | - Xiujuan Xiong
- Hospital of Integrated Traditional Chinese and Western Medicine in Jiangxi province, China
| | - Xu Huang
- The Second Clinical Medical College of Nanchang University, China
| | - Jiayi Liu
- School of Basic Medical Sciences, Nanchang University, China
| | - Xiaodong Kuang
- Department of Pathology, School of Basic Medicine, Nanchang University, China
| |
Collapse
|
22
|
Marques CPC, Rodrigues VP, de Carvalho LC, Nichilatti LP, Franco MM, Patrício FJB, Magalhães M, de Andrade MS, Benatti BB. Expression of Toll-like receptors 2 and 4 in the saliva of patients with systemic lupus erythematosus and chronic periodontitis. Clin Rheumatol 2021; 40:2727-2734. [PMID: 33570702 DOI: 10.1007/s10067-020-05560-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the expression of salivary Toll-like receptors (TRL) 2 and 4 in patients with systemic lupus erythematosus (SLE) and chronic periodontitis (CP). METHODS A case-control study was conducted with 77 participants (42 SLE and 35 non-SLE) stratified according to CP diagnosis criteria. Periodontal parameters consisted of clinical attachment level (CAL), probing depth (PD), the visible plaque index (VPI), and the gingival bleeding index (GBI). Salivary TRL 2 and 4 expressions were determined by quantitative real-time polymerase chain reaction (RT-PCR). Statistical analysis included Mann-Whitney U test, Kruskal-Wallis test, Spearman's correlation rank, and multiple linear regression. RESULTS Patients with isolated SLE or CP had higher TLR 2 and TLR 4 expression in their saliva samples (P < 0.05). The group with both SLE and CP had lower TLR 2 and 4 expressions (P < 0.05). TLR 2 and TLR 4 showed significant negative correlations with PD, CAL, and GBI in SLE patients, and a significant positive correlation with periodontal parameters in non-SLE patients. CP was independently associated with reduction of TLR2 and TLR4 expression, even after adjusting for clinical data and current drug use. CONCLUSION Reduced TRL 2 and 4 expression in saliva was associated with the presence of CP in SLE patients. Key Points • Patients affected by isolated CP or SLE had higher TLR2 and TLR4 expression. • TLR under-expression may be associated with a worse periodontal status in SLE. • Abnormalities in TLRs expression may increase the susceptibility to periodontitis.
Collapse
Affiliation(s)
- Consuelo P C Marques
- Dentistry Graduate Program, Federal University of Maranhão, São Luís, Maranhão, Brazil.,School of Medicine, Federal University of Maranhão, Pinheiro, Maranhão, Brazil
| | - Vandilson P Rodrigues
- Dentistry Graduate Program, Federal University of Maranhão, São Luís, Maranhão, Brazil. .,Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), President Dutra Hospital of the Federal University of Maranhão, São Luís, Maranhão, Brazil.
| | | | - Louise P Nichilatti
- School of Medicine, Federal University of Maranhão, Pinheiro, Maranhão, Brazil
| | - Mayra M Franco
- Dentistry Graduate Program, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Fernando José B Patrício
- Laboratory of Genomic Studies and Histocompatibility, President Dutra Hospital of the Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcelo Magalhães
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), President Dutra Hospital of the Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcelo S de Andrade
- Laboratory of Genomic Studies and Histocompatibility, President Dutra Hospital of the Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Bruno B Benatti
- Dentistry Graduate Program, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
23
|
Aksel EG, Akyüz B. Effect of LPS and LTA stimulation on the expression of TLR-pathway genes in PBMCs of Akkaraman lambs in vivo. Trop Anim Health Prod 2021; 53:65. [PMID: 33392825 PMCID: PMC7779097 DOI: 10.1007/s11250-020-02491-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
This is the first study investigating the changes in some gene expressions related to the TLR pathway in vivo in sheep. Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) molecules were administrated separately and in combination to the Akkaraman lambs via intranasal route. For this purpose, 28 lambs were distributed into four groups (LPS, LTA, LPS + LTA, and control, n = 7). Blood samples were collected to isolate the peripheral blood mononuclear cells (PBMCs) at 24 h and on day 7. Expression levels of TLR2, TLR4, MyD88, TRAF6, TNF-α, IL-1ß, IL-6, IL-10, NF-κß, and IFN-γ genes were determined by qRT-PCR. Increases were determined in the expression data of TLR2 [LPS (P < 0.05) and LTA + LPS (P < 0.01)], TLR4 [LTA + LPS (P < 0.05)], TNF-α, IL-10 [LTA + LPS (P < 0.05)], and IFN-γ genes in all groups in the mRNA expression analysis of PBMCs isolated at 24 h whereas decreases were determined in the expression levels of these genes on day 7. The combination of LPS + LTA stimulated lamb PBMCs more effectively than separate administration of LPS and LTA at 24 h. Therefore, this article may contribute to the understanding the host-pathogen interaction of respiratory-transmitted bacterial diseases concerning PBMCs at 24 h and on day 7. Also this study may contribute to the dose adjustment for bacterial vaccine studies in sheep. Experimental application doses will be helpful for in vivo and in vitro drug and vaccine development studies in the fields of pharmacology and microbiology.
Collapse
Affiliation(s)
- Esma Gamze Aksel
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyüz
- Department of Genetic, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
24
|
Elmanfi S, Sintim HO, Zhou J, Gürsoy M, Könönen E, Gürsoy UK. Activation of Gingival Fibroblasts by Bacterial Cyclic Dinucleotides and Lipopolysaccharide. Pathogens 2020; 9:E792. [PMID: 32993127 PMCID: PMC7600373 DOI: 10.3390/pathogens9100792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Jie Zhou
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
25
|
Mekhemar M, Tölle J, Dörfer C, Fawzy El‐Sayed K. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 2020; 47:991-1005. [DOI: 10.1111/jcpe.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Universitätsklinikum SchleswigȐHolstein Ȑ Campus, Kiel
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University Cairo Egypt
| |
Collapse
|
26
|
Peng Y, Li L, Yuan Q, Gu P, You Z, Zhuang A, Bi X. Effect of Bifunctional β Defensin 2-Modified Scaffold on Bone Defect Reconstruction. ACS OMEGA 2020; 5:4302-4312. [PMID: 32149260 PMCID: PMC7057706 DOI: 10.1021/acsomega.9b04249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 05/05/2023]
Abstract
Bone tissue engineering has emerged as an effective alternative treatment to the problem of bone defect. To repair a bone defect, antibiosis and osteogenesis are two essential aspects of the repair process. By searching the literature and performing exploratory experiments, we found that β defensin 2 (BD2), with bifunctional properties of antibiosis and osteogenesis, was a feasible alternative for traditional growth factors. The antimicrobial ability of BD2 against Staphylococcus aureus and Escherichia coli was studied by the spread plate and live/dead staining methods (low effective concentration of 20 ng/mL). BD2 was also demonstrated to enhance osteogenesis, with higher messenger RNA (mRNA) and protein expression of the osteogenic markers collagen I (Col1), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and osteocalcin (Ocn) in vitro (1.5-2.5-fold increase compared with the control group in the most effective concentration group), which was consistent with the alkaline phosphatase (ALP) and alizarin red S (ARS) staining results. We implanted poly(sebacoyl diglyceride) (PSeD) combined with BD2 and rat bone tissue-derived mesenchymal stem cells (rBMSCs) under the back skin of rats and found that the inflammatory response was significantly lower with this combination than with the PSeD/rBMSCs scaffold without BD2 and the pure PSeD group and was similar to the control group. Importantly, when assessed in a critical-sized in vivo rat 8 m diameter calvaria defect model, a scaffold we developed combining bifunctional BD2 with porous organic polymer displayed an osteogenic effect that was 160-200% greater than the control group. The in vivo study results revealed a significant osteogenic response and antimicrobial effect and were consistent with the in vitro results. In summary, BD2 displayed a great potential of simultaneously promoting bone regeneration and preventing infection and could provide a viable alternative to traditional growth factors applied in bone defect repair.
Collapse
Affiliation(s)
- Yiyu Peng
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Lunhao Li
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Qingyue Yuan
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Ping Gu
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of
Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint
Laboratory of Advanced Fiber and Low-dimension Materials (Donghua
University), College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
- E-mail: . Tel: 18930843344. Fax: +8621-63134218 (A.Z.)
| | - Xiaoping Bi
- Department of Ophthalmology,
Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, P. R. China
- E-mail: . Tel: +8621-63135606. Fax: +8621-63134218 (X.B.)
| |
Collapse
|
27
|
Sukumaran SK, Vadakkekuttical RJ, Kanakath H. Comparative evaluation of the effect of curcumin and chlorhexidine on human fibroblast viability and migration: An in vitro study. J Indian Soc Periodontol 2020; 24:109-116. [PMID: 32189837 PMCID: PMC7069105 DOI: 10.4103/jisp.jisp_173_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022] Open
Abstract
Background and Objective: Chemical plaque control acts as an adjunct to mechanical periodontal therapy. Chlorhexidine (CHX) is considered as the gold standard in chemical plaque control, but the main concern is about its fibroblast cytotoxicity. Curcumin, a lipophilic polyphenol, may offer as a promising antiplaque agent. This study was conducted to compare the effect of curcumin (0.003%, 0.03%, 0.06%, 0.1%, and 0.12%) and CHX (0.03%, 0.06%, 0.1%, 0.12%, and 0.2%) on gingival fibroblast cell viability and wound healing at different time periods (1, 2, 4, 6, 8, and 10 min). Materials and Methods: The minimum inhibitory concentration (MIC50) was determined before the evaluation of cytotoxicity and wound healing property. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and morphological examination by direct invert microscopy were carried out to determine cytotoxicity. Wound healing was evaluated by scratch wound assay. Results and Discussion: The MIC50 of CHX and curcumin was at 0.1% and 0.003%, respectively. The mean percentage of fibroblast viability at different concentrations of CHX and curcumin at each time period showed a significant difference. Curcumin exhibited less cytotoxicity as compared to CHX at all concentrations and at varying time periods. There was a significant difference between mean percentage of fibroblast viability at MIC50 of CHX (0.1%) and curcumin (0.003%) at different time periods. The difference between percentage wound healing at antibacterial concentrations of CHX and curcumin at varying time periods was significant. Conclusion: The antibacterial concentration of curcumin (0.003%) exhibits less fibroblast cytotoxicity and excellent wound healing property as compared to CHX. Curcumin may offer as a promising chemical plaque control agent which is less cytotoxic, cost-effective, safe, easily available, and with a possibly beneficial effect on wound healing.
Collapse
Affiliation(s)
| | - Rosamma Joseph Vadakkekuttical
- Department of Periodontics, Government Dental College, Affiliated to Kerala University of Health Sciences, Calicut, Kerala, India
| | - Harikumar Kanakath
- Department of Periodontics, Government Dental College, Affiliated to Kerala University of Health Sciences, Calicut, Kerala, India
| |
Collapse
|
28
|
Biesbrock A, He T, DiGennaro J, Zou Y, Ramsey D, Garcia‐Godoy F. The effects of bioavailable gluconate chelated stannous fluoride dentifrice on gingival bleeding: Meta-analysis of eighteen randomized controlled trials. J Clin Periodontol 2019; 46:1205-1216. [PMID: 31562774 PMCID: PMC6899529 DOI: 10.1111/jcpe.13203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AIM To estimate gingivitis effects of a bioavailable gluconate chelated 0.454% stannous fluoride (SnF2 ) family of dentifrices in adult subjects versus positive (triclosan) and negative (NaF or MFP) controls when used ≤3 months. MATERIALS AND METHODS A meta-analysis evaluated bioavailable gluconate chelated SnF2 dentifrices versus a negative or positive control for gingival bleeding. RESULTS In 18 randomized controlled trials (RCTs) with 2,890 subjects assessing SnF2 paste versus a negative or positive control, the average number of bleeding sites was reduced by 51% and 31%, respectively. The average change (95% CI) in number of bleeding sites was -16.3 (-27.8, -4.9) versus the negative control and -3.6 (-5.4, -1.8) versus the positive control. Subjects with localized or generalized gingivitis had 3.7 times better odds (95% CI [2.8, 5.0]) of shifting to generally healthy using SnF2 versus a negative control and 2.8 times better odds (95% CI [2.1, 3.9]) of shifting to generally healthy using SnF2 versus a positive control. The individual study risk of bias was deemed to be low in all categories of bias. CONCLUSION This meta-analysis demonstrates significant gingivitis benefits of bioavailable SnF2 dentifrices when used ≤3 months versus positive (triclosan) and negative (NaF or MFP) controls.
Collapse
Affiliation(s)
| | - Tao He
- The Procter & Gamble CompanyMasonOHUSA
| | | | | | | | | |
Collapse
|
29
|
Shang L, Deng D, Buskermolen JK, Roffel S, Janus MM, Krom BP, Crielaard W, Gibbs S. Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Front Cell Infect Microbiol 2019; 9:282. [PMID: 31448244 PMCID: PMC6692492 DOI: 10.3389/fcimb.2019.00282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
The balance between the host and microbe is pivotal for oral health. A dysbiotic oral microbiome and the subsequent host inflammatory response are causes for the most common dental problems, such as periodontitis and caries. Classically, toll-like receptors (TLRs) are known to play important roles in host-microbe interactions by recognizing pathogens and activating innate immunity. However, emerging evidence suggests that commensals may also exploit TLRs to induce tolerance to the benefit of the host, especially in oral mucosa which is heavily colonized by abundant microbes. How TLRs and downstream signaling events are affected by different oral microbial communities to regulate host responses is still unknown. To compare such human host-microbe interactions in vitro, we exposed a reconstructed human gingiva (RHG) to commensal or pathogenic (gingivitis, cariogenic) multi-species oral biofilms cultured from human saliva. These biofilms contain in vivo like phylogenic numbers and typical bacterial genera. After 24 h biofilm exposure, TLR protein and gene expression of 84 TLR pathway related genes were investigated. Commensal and pathogenic biofilms differentially regulated TLR protein expression. Commensal biofilm up-regulated the transcription of a large group of key genes, which are involved in TLR signaling, including TLR7, the MyD88-dependent pathway (CD14, MyD88, TIRAP, TRAF6, IRAKs), MyD88-independent pathway (TAB1, TBK1, IRF3), and their downstream signaling pathways (NF-κB and MAPK pathways). In comparison, gingivitis biofilm activated fewer genes (e.g., TLR4) and cariogenic biofilm suppressed CD14, IRAK4, and IRF3 transcription. Fluorescence in situ hybridization staining showed the rRNA of the topically applied and invaded bacteria, and histology showed that the biofilms had no obvious detrimental effect on RHG morphology. These results show an important role of TLR signaling pathways in regulating host-microbe interactions: when a sterile gingival tissue is exposed to commensals, a strong immune activation occurs which may prime the host against potential challenges in order to maintain oral host-microbe homeostasis. In contrast, pathogenic biofilms stimulate a weaker immune response which might facilitate immune evasion thus enabling pathogens to penetrate undetected into the tissues.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kees Buskermolen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen Marga Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bastiaan Philip Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Afrasiabi S, Pourhajibagher M, Bahador A. The Photomodulation Activity of Metformin Against Oral Microbiome. J Lasers Med Sci 2019; 10:241-250. [PMID: 31749953 PMCID: PMC6817791 DOI: 10.15171/jlms.2019.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Periodontitis is one of the most common inflammatory diseases of the periodontium, which results in the inflammatory destruction of supporting structures around teeth and is closely associated with the development of systemic disease. Due to a wide variety of antibiotic resistance periodontopathic bacteria, photodynamic therapy (PDT) is a non-invasive adjunctive therapeutic modality that is capable of destroying the whole range of microbes. Metformin (Metf) is an antidiabetic drug, and recent studies suggest that cancer patients who receive Metf and are exposed to radiotherapy and chemotherapy show better outcomes. Our surveys in this review introduce Metf as a potent stimulus in increasing the efficacy of PDT in the induction of destruction in microbial cells.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
AlQallaf H, Hamada Y, Blanchard S, Shin D, Gregory R, Srinivasan M. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS One 2018; 13:e0200231. [PMID: 30571680 PMCID: PMC6301611 DOI: 10.1371/journal.pone.0200231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
Chronic periodontitis is a common inflammatory disease initiated by a complex microbial biofilm and mediated by the host response causing destruction of the supporting tissues of the teeth. Host recognition of pathogens is mediated by toll-like receptors (TLRs) that bind conserved molecular patterns shared by large groups of microorganisms. The oral epithelial cells respond to most periodontopathic bacteria via TLR-2 and TLR-4. In addition to the membrane-associated receptors, soluble forms of TLR-2 (sTLR-2) and TLR-4 (sTLR-4) have been identified and are thought to play a regulatory role by binding microbial ligands. sTLR-2 has been shown to arise from ectodomain shedding of the extracellular domain of the membrane receptor and sTLR-4 is thought to be an alternate spliced form. Many studies have previously reported the presence of elevated numbers of viable exfoliated epithelial cells in the saliva of patients with chronic periodontitis. The objective of this study was to investigate the potential value of salivary sTLR-2 and sTLR-4 together with the paired epithelial cell-associated TLR-2/4 mRNA as diagnostic markers for chronic periodontitis. Unstimulated whole saliva was collected after obtaining informed consent from 40 individuals with either periodontitis or gingivitis. The sTLR-2 and sTLR4 in saliva was measured by enzyme-linked immunosorbent assay. The TLR-2 and TLR-4 transcript in the epithelial cells in saliva was measured by real time polymerase chain reaction. While levels of sTLR-2 exhibited an inverse correlation, sTLR-4 positively correlated with clinical parameters in the gingivitis cohort. Interestingly, both correlations were lost in the periodontitis cohort indicating a dysregulated host response. On the other hand, while the sTLR-2 and the paired epithelial cell associated TLR-2 mRNA exhibited a direct correlation (r2 = 0.62), that of sTLR4 and TLR-4 mRNA exhibited an inverse correlation (r2 = 0.53) in the periodontitis cohort. Collectively, assessments of salivary sTLR2 and sTLR4 together with the respective transcripts in the epithelial cells could provide clinically relevant markers of disease progression from gingivitis to periodontitis.
Collapse
Affiliation(s)
- Hawra AlQallaf
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Yusuke Hamada
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Steven Blanchard
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Daniel Shin
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Richard Gregory
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
32
|
Gonçalves-Anjo N, Leite-Pinheiro F, Ribeiro R, Requicha JF, Lourenço AL, Dias I, Viegas C, Bastos E. Toll-like receptor 9 gene in Periodontal Disease - A promising biomarker. Gene 2018; 687:207-211. [PMID: 30465884 DOI: 10.1016/j.gene.2018.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Periodontal Disease is an infectious and inflammatory disorder triggered mainly by periodontopathogenic bacteria, however, as a multifactorial disease, several factors modulate its progression, namely, genetic factors. Toll-like receptors (TLR) recognize molecular patterns present in pathogens and trigger an immune response against them. Thus, sequences variants in TLR genes seem to have the potential to modify the predisposition to Periodontal Disease and its progression. Based on this fact, TLR9 gene were analysed in a case-control study. DNA was obtained from 90 dogs (50 control and 40 cases) and a fragment of TLR9 gene was amplified by PCR and sequenced. The variants were identified by comparison with the dog wild type sequences. Our results suggest that rs375556098 and rs201959275 polymorphisms in the TLR9 gene are good candidates to become biomarkers of the canine predisposition to Periodontal Disease. It's important to notice that these polymorphic sites exist in Human exactly in the same codon. Since the dog is the best animal model to replicate the pathophysiological mechanisms of human Periodontal Disease, these results can potentially be extrapolated to humans.
Collapse
Affiliation(s)
- Nuno Gonçalves-Anjo
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Fátima Leite-Pinheiro
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ricardo Ribeiro
- Tumor & Microenvironment Interactions Group, i3S/INEB Institute for Research and Innovation in Health/Institute of Biomedical Engineering, University of Porto, Porto, Portugal; Laboratory of Genetics & ISAMB, Faculty of Medicine, University of Lisboa, Lisbon, Portugal; Department of Clinical Pathology, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - João Filipe Requicha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's Research Group, PT Government Associated Laboratory - Biomaterials, Biodegradables and Biomimetics, University of Minho, Department of Polymer Engineering, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Ana Luísa Lourenço
- Department of Animal Science, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's Research Group, PT Government Associated Laboratory - Biomaterials, Biodegradables and Biomimetics, University of Minho, Department of Polymer Engineering, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's Research Group, PT Government Associated Laboratory - Biomaterials, Biodegradables and Biomimetics, University of Minho, Department of Polymer Engineering, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
| | - Estela Bastos
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
33
|
Ebersole JL, Kirakodu S, Novak MJ, Orraca L, Stormberg AJ, Gonzalez-Martinez J, Burgos A, Gonzalez OA. Comparative analysis of expression of microbial sensing molecules in mucosal tissues with periodontal disease. Immunobiology 2018; 224:196-206. [PMID: 30470434 DOI: 10.1016/j.imbio.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Host-derived pattern recognition receptors (PRRs) are necessary for effective innate immune engagement of pathogens that express microbial-associated molecular patterns (MAMP) ligands for these PRRs. This study used a nonhuman primate model to evaluate the expression of these sensing molecules in gingival tissues. Macaca mulatta aged 12-24 with a healthy periodontium (n = 13) or periodontitis (n = 11) provided gingival tissues for assessment of naturally-occurring periodontitis. An additional group of animals (12-23 years; n = 18) was subjected to a 5 month longitudinal study examining the initiation and progression of periodontitis, RNA was isolated and microarray analysis conducted for gene expression of the sensing PRRs. The results demonstrated increased expression of various PRRs in naturally-occurring established periodontitis. Selected PRRs also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. The longitudinal model demonstrated multiple TLRs, as well as selected other PRRs that were significantly increased by 2 weeks during initiation of the lesion. While gene expression levels of various PRRs correlated with BOP and PD at baseline and resolution of disease, few correlated with these clinical parameters during initiation and progression of the lesion. These findings suggest that the levels of various PRRs are affected in established periodontitis lesions, and that PRR expression increased most dramatically during the initiation of the disease process, presumably in response to the juxtaposed microbial challenge to the tissues and goal of reestablishing homeostasis.
Collapse
Affiliation(s)
- J L Ebersole
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States.
| | - S Kirakodu
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - A J Stormberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - O A Gonzalez
- Center for Oral Health Research, University of Kentucky, Lexington, KY, United States; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Li K, Lv G, Pan L. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4. Int J Biol Macromol 2018; 119:249-254. [DOI: 10.1016/j.ijbiomac.2018.07.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
|
35
|
Lv K, Wang G, Shen C, Zhang X, Yao H. Role and mechanism of the nod-like receptor family pyrin domain-containing 3 inflammasome in oral disease. Arch Oral Biol 2018; 97:1-11. [PMID: 30315987 DOI: 10.1016/j.archoralbio.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To summarize evidence and data from experimental studies regarding the role and mechanism of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of several representative oral diseases. MATERIALS AND METHODS A literature search of PubMed and EBSCO was performed. The literature was searched using a combination of keywords, e.g., NLRP3 inflammasome, inflammation, microorganisms, oral inflammatory diseases, and oral immunological diseases. RESULTS The initiation and activation of the NLRP3 inflammasome are associated with the pathogenesis and progression of several representative oral diseases, including periodontitis, oral lichen planus, dental pulp disease, and oral cavity squamous cell carcinoma. CONCLUSIONS The NLRP3 inflammasome plays a crucial role in the progression of inflammatory and adaptive immune responses. The possible role of the NLRP3 inflammasome in several oral diseases, including not only periodontitis and pulpitis but also mucosal diseases and oral cavity squamous cell carcinoma, may involve the aberrant regulation of inflammatory and immune responses. Understanding the cellular and molecular biology of the NLRP3 inflammasome is necessary because the NLRP3 inflammasome may be a potential therapeutic target for the treatment and prevention of oral inflammatory and immunological diseases.
Collapse
Affiliation(s)
- Kejia Lv
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Guohua Wang
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Chenlu Shen
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xia Zhang
- Department of Stomatology, Affiliated Yinzhou People Hospital, College of Medicine, Ningbo University, China
| | - Hua Yao
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, China.
| |
Collapse
|
36
|
Muniz FWMG, Montagner F, Jacinto RC, Rösing CK, Gomes BPFA. Correlation between crestal alveolar bone loss with intracanal bacteria and apical lesion area in necrotic teeth. Arch Oral Biol 2018; 95:1-6. [PMID: 30025275 DOI: 10.1016/j.archoralbio.2018.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to analyze the correlation between crestal alveolar bone loss with the presence of some bacterial species in root canals and the apical lesion area of necrotic teeth. DESIGN Data from 20 patients with diagnosis of pulp necrosis and acute apical abscesses, without active periodontal diseases, were evaluated. Patients with history of antibiotic usage three months prior to the study, with exposed pulp cavity, and with probing depth >3 mm were not included. The root size, the distance between the bone crest to the tooth apex in the mesial and distal surfaces, and the apical lesion area were measured from standard periapical radiographies by a calibrated examiner. Root canal samples were collected using sterilized paper points. In multirooted teeth, the largest root canal was sampled. Culture, microbial isolation and identification by phenotypic methods were performed. Spearman correlation and exact Fischer test were calculated between higher/lower existing bone crests, according to the median and the presence of specific bacteria. RESULTS No statistically significant differences were found between occurrence of pathogenic bacteria, such as Porphyromonas gingivalis, Porphyromonas endodontalis, and Prevotella intermedia, and groups with higher/lower degree of bone loss (p > 0.05). A negative significant correlation was found between Parvimonas micra and periodontal bone loss (p = 0.02). Additionally, no statistically significant association was found between crestal bone loss and the apical lesion area. CONCLUSIONS It was concluded that, in patients without active periodontitis, the presence of pathogenic bacteria in the root canal was not correlated with periodontal bone loss.
Collapse
Affiliation(s)
- Francisco Wilker M G Muniz
- Department of Periodontology, Faculty of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil.
| | - Francisco Montagner
- Department of Endodontics, Faculty of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| | - Rogério C Jacinto
- Department of Endodontics, Araçatuba Dental School, State University of São Paulo, Rua José Bonifácio, 1193, Araçatuba, São Paulo, 16015-050, Brazil.
| | - Cassiano K Rösing
- Department of Periodontology, Faculty of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Avenida Limeira, 901, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
37
|
Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F. Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. C R Biol 2018; 341:315-324. [PMID: 30032779 DOI: 10.1016/j.crvi.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Toll-like receptors (TLRs) are a major group of proteins that recognize molecular components of infectious agents, known as pathogen associated molecular patterns (PAMPs). The structure of these genes is similar and characterized by the presence of an ectodomain, a signal transmembrane segment and a highly conserved cytoplasmic domain. The latter domain is homologous to the human interleukin-1 receptor (IL1R) and human IL-18 receptor (IL-18R) and designated TIR domain. The latter domain of the TLR genes was suggested to be very conservative and its evolution is driven by purifying selection. Variability and evolution of the TIR sequences of TLR2 gene were studied in three hare populations from Tunisia with different ecological characteristics (NT-North Tunisia with Mediterranean, CT-Central Tunisia with semi-arid, and ST-South Tunisia with arid climate). Sequencing of a 372bp fragment of TIR2 revealed 25 alleles among 110 hares. Twenty variable nucleotide positions were detected, of which 7 were non-synonymous. The highest variability was observed in CT, with 16 polymorphic positions. In ST, only 4 polymorphic nucleotide positions were detected with all diversity values lower than those recorded for the other two populations. By using several approaches, no positive selection was detected. However, evidence of purifying selection was found at two positions. The logistic models of the most common TIR2 protein variant that we run to examine whether its occurrence was affected by climatic variation independent of the geographic sample location suggested only a longitudinal effect. Finally, the mapping of the non-synonymous mutations to the inferred tertiary protein structure showed that they were all localized in the different loop regions. Among all non-synonymous substitutions, three were suggested to be deleterious as evidenced by PROVEAN analysis. The observed patterns of variability characterized by low genetic diversity in ST might suggest that the TIR region was more affected, than other markers, by genetic drift or/and that these patterns were shaped by different selective pressures under different ecological conditions. Notably, this low diversity was not detected by other (putatively neutral) microsatellite markers analysed in the course of other studies. But low diversity was also found for two MHC class II adaptive immune genes. As expected from functionally important regions, the evolution of the TIR2 domain is mainly driven by purifying selection. However, the occurrence of deleterious non-synonymous substitutions might highlight the flexible evolution of the TIR genes and/or their interactions with other proteins.
Collapse
Affiliation(s)
- Asma Awadi
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia.
| | - Hichem Ben Slimen
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja, Beja 9000, University of Jendouba, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Jonas Kahlen
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Mohamed Makni
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
38
|
Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement Ther Med 2018; 38:11-18. [DOI: 10.1016/j.ctim.2018.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
|
39
|
Renn TY, Huang YK, Feng SW, Wang HW, Lee WF, Lin CT, Burnouf T, Chen LY, Kao PF, Chang HM. Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res 2018; 64. [PMID: 29274168 DOI: 10.1111/jpi.12464] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Periodontitis (PD) is an inflammatory disease characterized by gingival inflammation and resorption of alveolar bone. Impaired receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) signaling caused by enhanced production of pro-inflammatory cytokines plays an essential role in the pathogenesis of PD. Considering melatonin possesses significant anti-inflammatory property, this study aimed to determine whether prophylactic treatment with melatonin would effectively normalize RANKL/OPG signaling, depress toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88)-mediated pro-inflammatory cytokine activation, and successfully suppress the pathogenesis of PD. PD was induced in adult rats by placing the ligature at molar subgingival regions. Fourteen days before PD induction, 10, 50, or 100 mg/kg of melatonin was intraperitoneally injected for consecutive 28 days. Biochemical and enzyme-linked immunosorbent assay were used to detect TLR4/MyD88 activity, RANKL, OPG, interleukin 1β, interleukin 6, and tumor necrosis factor-α levels, respectively. The extent of bone loss, bone mineral intensity, and calcium intensity was further evaluated by scanning electron microscopy, micro-computed tomography, and energy-dispersive X-ray spectroscopy. Results indicated that high RANKL/OPG ratio, TLR4/MyD88 activity, and pro-inflammatory cytokine levels were detected following PD. Impaired biochemical findings paralleled well with severe bone loss and reduced calcium intensity. However, in rats pretreated with melatonin, all above parameters were successfully returned to nearly normal levels with maximal change observed in rats receiving 100 mg/kg. As prophylactic treatment with melatonin effectively normalizes RANKL/OPG signaling by depressing TLR4/MyD88-mediated pro-inflammatory cytokine production, dietary supplement with melatonin may serve as an advanced strategy to strengthen oral health to counteract PD-induced destructive damage.
Collapse
Affiliation(s)
- Ting-Yi Renn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kai Huang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wei Wang
- School of Dentistry - Master and PhD Program, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pan-Fu Kao
- Department of Nuclear Medicine, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hung-Ming Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
40
|
Narayan I, Gowda TM, Mehta DS, Kumar BT. Estimation of Toll-like receptor 9 in gingival tissues of patients with chronic periodontitis with or without hyperlipidemia and its association with the presence of Porphyromonas gingivalis. J Indian Soc Periodontol 2018; 22:298-303. [PMID: 30131620 PMCID: PMC6077972 DOI: 10.4103/jisp.jisp_124_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Recent evidence suggests the interactions between bacterial DNA and nucleic acid receptors to play a role in inflammatory tissue destruction. The current study aims to evaluate the expression of Toll-like receptor 9 (TLR9) in periodontal disease associated with or without hyperlipidemia and to associate it with the presence of Porphyromonas gingivalis. Materials and Methods: Thirty participants in the age range of 25–50 years were randomly recruited and divided into three groups, i.e., healthy (Group I), chronic periodontitis without hyperlipidemia (Group II), and chronic periodontitis with hyperlipidemia (Group III). The gingival tissue samples were analyzed for TLR9 using immunohistochemistry, and plaque samples were analyzed for P. gingivalis using polymerase chain reaction. Results: The TLR9-positive cell ratio in gingival connective tissue for Group II and Group III was 0.95 ± 0.03 and 0.94 ± 0.03, respectively, which was significantly higher than that of Group I, with P < 0.001 (0.88 ± 0.04). These groups also demonstrated significantly higher presence of P. gingivalis as compared to Group I with P < 0.001. There was a positive association between TLR9 in gingival connective tissue and presence of P. gingivalis. Conclusion: The results of this study reveal a potential role of TLR9 in chronic periodontitis, in association with P. gingivalis. Furthermore, these variables do not show an appreciable change in hyperlipidemics suggesting a weak relation between TLR9 and lipid levels.
Collapse
Affiliation(s)
- Ipshita Narayan
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | | | - Dhoom Singh Mehta
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Baron Tarun Kumar
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India.,Department of Periodontics, Bapuji Implant Center, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
41
|
Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000 2017; 76:51-67. [DOI: 10.1111/prd.12146] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
|
42
|
Sumedha S, Kotrashetti VS, Nayak RS, Nayak A, Raikar A. Immunohistochemical localization of TLR2 and CD14 in gingival tissue of healthy individuals and patients with chronic periodontitis. Biotech Histochem 2017; 92:487-497. [PMID: 28910171 DOI: 10.1080/10520295.2017.1357192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We used immunohistochemistry to quantify and compare the expression of Toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) in gingival tissues of both healthy individuals and patients with chronic periodontitis. We also correlated the expression of TLR2 and CD14 with the histological grades of chronic periodontitis. We examined 30 gingival specimens from chronic periodontitis patients and 10 from healthy individuals. Tissues from both groups were immunostained with antibodies against TLR2 and CD14. TLR2 and CD14 were expressed by endothelial cells, fibroblasts, lymphocytes and plasma cells. The immunohistochemical expression of TLR2 and CD14 was significantly greater in inflammatory cells of the chronic periodontitis group than in healthy individuals. Expression of these molecules was greater in the inflammatory cells of connective tissue adjacent to pocket epithelium in both groups. The expression of TLR2 and CD14 was greatest in the periodontitis group that was classified as severe grade, followed by moderate and mild grades, which suggests a role of TLR2 and CD14 in the pathogenesis of chronic periodontitis. The positive correlation of TLR2 and CD14 expression levels with the severity grades of chronic periodontitis suggests that they are correlated also with disease severity; therefore, they may be useful for predicting disease progression. Our findings are consistent with the possibility that CD14 acts as a co-receptor for TLR2.
Collapse
Affiliation(s)
- S Sumedha
- a Departments of Oral Pathology and Microbiology
| | | | - R S Nayak
- a Departments of Oral Pathology and Microbiology
| | - A Nayak
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| | - A Raikar
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| |
Collapse
|
43
|
Liu C, Mo L, Niu Y, Li X, Zhou X, Xu X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front Physiol 2017; 8:439. [PMID: 28690552 PMCID: PMC5481360 DOI: 10.3389/fphys.2017.00439] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS) and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Li
- Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
44
|
Akbal E, Koçak E, Köklü S, Ergül B, Akyürek Ö, Yılmaz FM. Serum Toll-Like Receptor-2, Toll-Like Receptor-4 Levels in Patients with HBeAg-Negative Chronic Viral Hepatitis B. Viral Immunol 2017; 30:278-282. [PMID: 28414577 DOI: 10.1089/vim.2016.0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) may play an important role in hepatitis-B pathogenesis. However, serum TLR-2 and TLR-4 levels and their association with serum liver enzymes, hepatitis B virus (HBV) DNA, quantitative HBsAg levels, and liver biopsy findings, are unknown. A total of naive 40 HBeAg (-) chronic hepatitis B (CHB) patients and 20 healthy control subjects were recruited in this study. Liver tests, HBV DNA, serum TLR-2 and TLR-4, and quantitative HBsAg levels were evaluated among all groups. The relationship among TLR-2, TLR-4, quantitative HBsAg levels and liver tests, and liver histological findings were investigated with correlation analysis. Serum TLR-2 and TLR-4 levels in HBeAg (-) CHB patients were higher than in the control group. There was a positive correlation between serum TLR-2, TLR-4, and HBV DNA and ALT levels. We have further demonstrated that serum TLR-2 levels are correlated with AST and quantitative HBsAg levels. However, TLRs levels were not linked to the liver biopsy findings. TLR can have an important role in hepatitis B pathogenesis. Liver injury in CHB may cause elevated TLR-2 and TLR-4 levels.
Collapse
Affiliation(s)
- Erdem Akbal
- 1 Department of Gastroenterology, Florence Nightingale Hospital, Faculty of Medicine, İstanbul Bilim University , İstanbul, Turkey
| | - Erdem Koçak
- 1 Department of Gastroenterology, Florence Nightingale Hospital, Faculty of Medicine, İstanbul Bilim University , İstanbul, Turkey
| | - Seyfettin Köklü
- 2 Department of Gastroenterology, Faculty of Medicine, Hacettepe University , Ankara, Turkey
| | - Bilal Ergül
- 3 Department of Gastroenterology, Kırşehir State Hospital , Kırşehir, Turkey
| | - Ömer Akyürek
- 4 Department of Internal Medicine, Medova Hospital , Konya, Turkey
| | - Fatma Meriç Yılmaz
- 5 Department of Medical Biochemistry, Numune Education and Research Hospital , Ankara, Turkey
| |
Collapse
|
45
|
Schueller K, Riva A, Pfeiffer S, Berry D, Somoza V. Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals. Front Microbiol 2017; 8:416. [PMID: 28360899 PMCID: PMC5350107 DOI: 10.3389/fmicb.2017.00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases.
Collapse
Affiliation(s)
- Katharina Schueller
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
| | - Alessandra Riva
- Department of Health Sciences, Università degli Studi di MilanoMilan, Italy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Stefanie Pfeiffer
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
| | - David Berry
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of ViennaVienna, Austria
- Research Network “Chemistry Meets Microbiology”, University of ViennaVienna, Austria
- Christian Doppler Laboratory for Bioactive Aroma Compounds, University of ViennaVienna, Austria
| |
Collapse
|
46
|
Evaluation of chemerin and its receptors, ChemR23 and CCRL2, in gingival tissues with healthy and periodontitis. Odontology 2017; 106:29-36. [PMID: 28233070 DOI: 10.1007/s10266-017-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Chemerin is a chemoattractant protein that directs inflammatory cells that express its receptor chemokine receptor-like 1 (ChemR23) towards sites of inflammation. C-C chemokine receptor-like 2 (CCRL2), is the other receptor of chemerin, improves the interaction between chemerin and ChemR23. The aim of this study was to evaluate the expression of chemerin and its receptors in gingival tissues with healthy and periodontitis. Tissue biopsy samples were obtained from 20 patients with chronic periodontitis and from the gingiva of 20 healthy individuals undergoing a crown lengthening process. Quantitative real-time PCR (qPCR) was used to examine the mRNA expression of chemerin, ChemR23 and CCRL2. Additionally, protein expression was measured by immunohistochemistry. Both qPCR and immunohistochemistry results revealed that the expression of chemerin and ChemR23 was significantly higher in tissues with periodontitis than in healthy tissues (P = 0.001 and, P = 0.015, respectively). There were no significant differences between healthy tissues and those with periodontitis in terms of mRNA expression of CCRL2, whereas a more intense staining was observed in tissues with periodontitis. The mRNA expression levels of chemerin showed a positive correlation with plaque index, gingival index, probing pocket depth and clinical attachment level (r = 0.448, r = 0.460, r = 0.439 and, r = 0.459, respectively, P < 0.01). To the best of our knowledge, this study is the first to examine the expression of chemerin, ChemR23 and CCRL2 in gingival tissues. Our study suggests that chemerin may play a role in the pathogenesis of periodontitis by causing chemoattraction of immune cells that direct ChemR23 receptors to the site of inflammation.
Collapse
|
47
|
Mekhemar MK, Adam-Klages S, Kabelitz D, Dörfer CE, Fawzy El-Sayed KM. TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells. Cell Immunol 2017; 326:60-67. [PMID: 28093098 DOI: 10.1016/j.cellimm.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
During therapeutic application, mesenchymal stem cells (MSCs) may interact with their environment via their expressed toll-like-receptors (TLRs) leading to pro- or anti-inflammatory immune responses. The present study aimed to describe the gingival margin-derived stem/progenitor cells' (G-MSCs) TLR-induced immune regulatory response to specific TLR agonists. Gingival cells were obtained, immunomagnetically sorted via anti-STRO-1 antibodies and seeded out to achieve colony forming units (CFUs). G-MSCs were investigated for stem cell characteristics and TLR expression. Specific TLR agonists were applied and m-RNA expression of pro- and anti-inflammatory factors was analyzed via real-time polymerase chain reaction. G-MSCs showed all characteristics of stem/progenitor cells. All TLR agonists induced pro-inflammatory cytokines, except for the TLR3 agonist, which significantly promoted the anti-inflammatory response. (p⩽0.05, Wilcoxon-Signed-Ranks-Test). TLR-induced immunomodulation by G-MSCs could impact their therapeutic potential in vivo. Two distinctive pro-inflammatory and an anti-inflammatory TLR-induced phenotypes of G-MSCs become noticeable in this study.
Collapse
Affiliation(s)
- Mohamed K Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany.
| | - Sabine Adam-Klages
- Universitätsklinikum Schleswig Holstein, Institut für Immunologie, Kiel, Germany.
| | - Dietrich Kabelitz
- Universitätsklinikum Schleswig Holstein, Institut für Immunologie, Kiel, Germany.
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany.
| | - Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt.
| |
Collapse
|
48
|
Innate Immune Response of Human Embryonic Stem Cell-Derived Fibroblasts and Mesenchymal Stem Cells to Periodontopathogens. Stem Cells Int 2016; 2016:8905365. [PMID: 27642305 PMCID: PMC5014959 DOI: 10.1155/2016/8905365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Periodontitis involves complex interplay of bacteria and host immune response resulting in destruction of supporting tissues of the tooth. Toll-like receptors (TLRs) play a role in recognizing microbial pathogens and eliciting an innate immune response. Recently, the potential application of multipotent stem cells and pluripotent stem cells including human embryonic stem cells (hESCs) in periodontal regenerative therapy has been proposed. However, little is known about the impact of periodontopathogens on hESC-derived progenies. This study investigates the effects of heat-killed periodontopathogens, namely, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, on TLR and cytokine expression profile of hESC-derived progenies, namely, fibroblasts (hESC-Fib) and mesenchymal stem cells (hESC-MSCs). Additionally, the serotype-dependent effect of A. actinomycetemcomitans on hESC-derived progenies was explored. Both hESC-Fib and hESC-MSCs constitutively expressed TLR-2 and TLR-4. hESC-Fib upon exposure to periodontopathogens displayed upregulation of TLRs and release of cytokines (IL-1β, IL-6, and IL-8). In contrast, hESC-MSCs were largely nonresponsive to bacterial challenge, especially in terms of cytokine production. Further, exposure of hESC-Fib to A. actinomycetemcomitans serotype c was associated with higher IL-8 production than serotype b. In contrast, the hESC-MSCs displayed no serotype-dependent response. Differential response of the two hESC progenies implies a phenotype-dependent response to periodontopathogens and supports the concept of immunomodulatory properties of MSCs.
Collapse
|
49
|
Sun JY, Li DL, Dong Y, Zhu CH, Liu J, Li JD, Zhou T, Gou JZ, Li A, Zang WJ. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis. Int Immunopharmacol 2016; 36:86-93. [DOI: 10.1016/j.intimp.2016.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 01/07/2023]
|
50
|
Ilango P, Mahalingam A, Parthasarathy H, Katamreddy V, Subbareddy V. Evaluation of TLR2 and 4 in Chronic Periodontitis. J Clin Diagn Res 2016; 10:ZC86-9. [PMID: 27504418 DOI: 10.7860/jcdr/2016/18353.8027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periodontal disease is the major cause of adult tooth loss and is commonly characterized by a chronic inflammation caused by infection due to oral bacteria. Members of Toll-Like Receptor (TLR) family recognize conserved microbial structures, such as bacterial lipopolysaccharides and activate signalling pathways that result in immune responses against microbial infections. AIM The aim of the present study was to assess the mRNA expression of Toll-Like Receptor 2 and 4 in tissues with or without chronic periodontitis. MATERIALS AND METHODS Gingival tissue samples were collected from controls (30 subjects with healthy periodontal tissues) and experimental group (30 subjects with chronic periodontitis). Total RNA was extracted and RT-PCR was done for evaluation of TLR-2 and TLR-4. Mann Whitney U-test, Pearson Chi-square Test was used for statistics. RESULTS The results showed that there is a significant (p-value= 0.004) association between TLR-4 and the experimental group comprising of chronic periodontitis patients in comparison to the insignificant (p-value= 0.085) TLR-2 expression. CONCLUSION This study concludes that TLR-2 and TLR-4 expressed in the gingival tissues recognize different bacterial cell wall components thus helping us to associate its potential in diagnosing periodontal disease. Hence, in the future, these scientific findings can pave the way in using TLR as a diagnostic biomarker for periodontal disease.
Collapse
Affiliation(s)
- Paavai Ilango
- Reader, Department of Periodontology, Priyadarshini Dental College and Hospital , Pandur, Tamil Nadu, India
| | - Arulpari Mahalingam
- Reader, Department of Pedodontics, Thai Moogambigai Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Harinath Parthasarathy
- Professor, Department of Periodontology, SRM Dental College and Hospital , Chennai, Tamil Nadu, India
| | - Vineela Katamreddy
- Reader, Department of Periodontology, Indira Gandhi Institute of Dental Sciences , Pondicherry, Tamil Nadu, India
| | - Venkat Subbareddy
- Reader, Department of Periodontology, CKS Teja Dental College and Hospital , Tirupathi, Andhra Pradesh, India
| |
Collapse
|