1
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Zhang P, Yang J, Liu X, Huang C, Tao Y, Shen P, Bai Z, Xiao C, Zhou L, Li G, Zhang L, Zhou W, Gao Y. FBP1 orchestrates keratinocyte proliferation/differentiation and suppresses psoriasis through metabolic control of histone acetylation. Cell Death Dis 2024; 15:392. [PMID: 38834617 PMCID: PMC11150480 DOI: 10.1038/s41419-024-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ju Yang
- Department of Dermatology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, 610083, China
| | - Xiong Liu
- Department of Information, The PLA Center for Disease Control and Prevention, Beijing, China
| | - Congshu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhang
- Department of Information, The PLA Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Prabhakar PK, Batiha GES. Potential Therapeutic Targets for the Management of Diabetes Mellitus Type 2. Curr Med Chem 2024; 31:3167-3181. [PMID: 37125833 DOI: 10.2174/0929867330666230501172557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 05/02/2023]
Abstract
Diabetes is one of the lifelong chronic metabolic diseases which is prevalent globally. There is a continuous rise in the number of people suffering from this disease with time. It is characterized by hyperglycemia, which leads to severe damage to the body's system, such as blood vessels and nerves. Diabetes occurs due to the dysfunction of pancreatic β -cell which leads to the reduction in the production of insulin or body cells unable to use insulin produce efficiently. As per the data shared International diabetes federation (IDF), there are around 415 million affected by this disease worldwide. There are a number of hit targets available that can be focused on treating diabetes. There are many drugs available and still under development for the treatment of type 2 diabetes. Inhibition of gluconeogenesis, lipolysis, fatty acid oxidation, and glucokinase activator is emerging targets for type 2 diabetes treatment. Diabetes management can be supplemented with drug intervention for obesity. The antidiabetic drug sale is the second-largest in the world, trailing only that of cancer. The future of managing diabetes will be guided by research on various novel targets and the development of various therapeutic leads, such as GLP-1 agonists, DPP-IV inhibitors, and SGLT2 inhibitors that have recently completed their different phases of clinical trials. Among these therapeutic targets associated with type 2 diabetes, this review focused on some common therapeutic targets for developing novel drug candidates of the newer generation with better safety and efficacy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Division of Research and Development, Lovely Professional University, Phagwara (Punjab) 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
4
|
Untargeted Metabolomics Based Prediction of Therapeutic Potential for Apigenin and Chrysin. Int J Mol Sci 2023; 24:ijms24044066. [PMID: 36835484 PMCID: PMC9967419 DOI: 10.3390/ijms24044066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The prominent flavonoids apigenin and chrysin have been demonstrated to have systemic benefits. Our previous work was first to establish the impact of apigenin and chrysin on cellular transcriptome. In the current study, we have revealed the ability of apigenin and chrysin to alter the cellular metabolome based on our untargeted metabolomics. Based on our metabolomics data, both these structurally related flavonoids demonstrate diverging and converging properties. Apigenin demonstrated the potential to possess anti-inflammatory and vasorelaxant properties through the upregulation of intermediate metabolites of alpha-linolenic acid and linoleic acid pathways. Chrysin, on the other hand, exhibited abilities to inhibit protein and pyrimidine synthesis along with downregulation of gluconeogenesis pathways based on the altered metabolites detected. Chrysin-mediated metabolite changes are mostly due to its ability to modulate L-alanine metabolism and the urea cycle. On the other hand, both the flavonoids also demonstrated converging properties. Apigenin and chrysin were able to downregulate metabolites involved in cholesterol biosynthesis and uric acid synthesis, namely 7-dehydrocholesterol and xanthosine, respectively. This work will provide understanding regarding the diverse therapeutic potential of these naturally occurring flavonoids and help us in curbing an array of metabolic complications.
Collapse
|
5
|
Khodadadi M, Jafari-Gharabaghlou D, Zarghami N. An update on mode of action of metformin in modulation of meta-inflammation and inflammaging. Pharmacol Rep 2022; 74:310-322. [PMID: 35067907 DOI: 10.1007/s43440-021-00334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activation, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflammation, aging, and inflammaging.
Collapse
Affiliation(s)
- Meysam Khodadadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
St Aubin CR, Fisher AL, Hernandez JA, Broderick TL, Al-Nakkash L. Mitigation of MAFLD in High Fat-High Sucrose-Fructose Fed Mice by a Combination of Genistein Consumption and Exercise Training. Diabetes Metab Syndr Obes 2022; 15:2157-2172. [PMID: 35911503 PMCID: PMC9329575 DOI: 10.2147/dmso.s358256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Metabolic dysfunction-associated fatty liver disease (MAFLD) is fueled by escalations in both sedentary behavior and caloric intake and is noted in obese type 2 diabetic (T2DM) patients. This study aimed to examine the effects of exercise and the phytoestrogen genistein in mice fed a high fat (60% fat) high sugar (55% fructose with 45% sucrose), HFHS diet. METHODS Male C57BL/6J mice were assigned to five groups: HFHS, HFHS with genistein (600 mg/kg diet, HFHS+Gen), HFHS with moderate exercise (HFHS+Ex), and HFHS with combined genistein and moderate exercise (HFHS-Gen+Ex). Control lean mice were fed standard chow and water. Exercise consisted of 30-minute sessions of treadmill running five days/week for the 12-week study duration. Body weight was assessed weekly. Liver, kidney, fecal pellets and serum were extracted at the end of the study and maintained at -80°C. RESULTS After 12 weeks of treatment, mice in the HFHS group had the highest hepatic lipid content. Plasma levels of glucose, insulin, leptin, cholesterol, amylin, and total fat content were significantly elevated in HFHS mice compared to control mice. HFHS feeding increased protein expression of carnitine palmitoyltransferase 1b (CPT-1b isoform) in gastrocnemius, CPT1a, glucose transporter protein 2 (GLUT2), glucocorticoid receptor (GR), and fructose 1,6-bisphosphate 1 (FBP1) expression in liver. Exercise alone had minor effects on these metabolic abnormalities. Genistein alone resulted in improvements in body weight, fat content, amylin, insulin sensitivity, and liver histopathology, GR, FBP1, and acetyl-CoA carboxylase 1 (ACC1). Combination treatment resulted in additional metabolic improvements, including reductions in hepatic lipid content and lipid area, alanine transferase activity, CPT1b, and CPT1a. CONCLUSION Our results indicate that a HFHS diet is obesogenic, inducing metabolic perturbations consistent with T2DM and MAFLD. Genistein alone and genistein combined with moderate intensity exercise were effective in reducing MAFLD and the aberrations induced by chronic HFHS feeding.
Collapse
Affiliation(s)
- Chaheyla R St Aubin
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Amy L Fisher
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Jose A Hernandez
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Tom L Broderick
- Department of Physiology, College of Graduate Studies Midwestern University, Glendale, AZ, 85308, USA
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies Midwestern University, Glendale, AZ, 85308, USA
- Correspondence: Layla Al-Nakkash, Department of Physiology, College of Graduate Studies, Midwestern University, 19555 North 59th Avenue, Glendale, AZ, 85308, USA, Tel +1 623 572 3719, Fax +1 623 572 3673, Email
| |
Collapse
|
7
|
Hyun Kim J, Ofori S, Mertens RT, Parkin S, Awuah SG. Water-Soluble Gold(III)-Metformin Complex Alters Mitochondrial Bioenergetics in Breast Cancer Cells. ChemMedChem 2021; 16:3222-3230. [PMID: 34159760 PMCID: PMC8526394 DOI: 10.1002/cmdc.202100233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Indexed: 12/30/2022]
Abstract
Chemical control of mitochondrial dynamics and bioenergetics can unravel fundamental biological mechanisms and therapeutics for several diseases including, diabetes and cancer. We synthesized stable, water-soluble gold(III) complexes (Auraformin) supported by biguanide metformin or phenylmetformin for efficacious inhibition of mitochondrial respiration. The new compounds were characterized following the reaction of [C N]-cyclometalated gold(III) compounds with respective biguanides. Auraformin is solution stable in a physiologically relevant environment. We show that auraformin decreases mitochondrial respiration efficiently in comparison to the clinically used metformin by 100-fold. The compound displays significant mitochondrial uptake and induces antiproliferative activity in the micromolar range. Our results shed light on the development of new scaffolds as improved inhibitors of mitochondrial respiration.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY 40506, USA
| |
Collapse
|
8
|
Oleuropein Ameliorates Advanced Stage of Type 2 Diabetes in db/ db Mice by Regulating Gut Microbiota. Nutrients 2021; 13:nu13072131. [PMID: 34206641 PMCID: PMC8308455 DOI: 10.3390/nu13072131] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.
Collapse
|
9
|
Blocking Aerobic Glycolysis by Targeting Pyruvate Dehydrogenase Kinase in Combination with EGFR TKI and Ionizing Radiation Increases Therapeutic Effect in Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13050941. [PMID: 33668151 PMCID: PMC7956357 DOI: 10.3390/cancers13050941] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) patients harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) inevitably develop resistance to targeted EGFR tyrosine kinase inhibitors (TKI) therapy. To support malignant features associated with cancer development and therapy resistance, the cancer cells adapt their metabolic rate and pathways. As an example, aerobic glycolysis, where the cells use glycolysis in the presence of oxygen, is frequently seen. Here we show that targeting aerobic glycolysis represents a promising strategy in cancer therapeutics. Abstract Increased glycolytic activity is a hallmark of cancer initiation and progression and is often observed in non-small cell lung cancer (NSCLC). Pyruvate dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative phosphorylation, and activation of PDH is known to inhibit glycolytic activity. As part of a standard therapeutic regimen, patients with NSCLC harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) are treated with EGFR tyrosine kinase inhibitors (EGFR TKIs). Independent of good initial response, development of resistance to this therapy is inevitable. In the presented work, we propose that inhibition of glycolysis will add to the therapeutic effects and possibly prevent development of resistance against both EGFR TKIs and ionizing radiation in NSCLC. Analysis of transcriptome data from two independent NSCLC patient cohorts identified increased expression of pyruvate dehydrogenase kinase 1 (PDHK1) as well as upregulated expression of genes involved in glucose metabolism in tumors compared to normal tissue. We established in vitro models of development of resistance to EGFR TKIs to study metabolism and determine if targeting PDHK would prevent development of resistance to EGFR TKIs in NSCLC cells. The PDHK1 inhibitor dichloroacetate (DCA) in combination with EGFR TKIs and/or ionizing radiation was shown to increase the therapeutic effect in our NSCLC cell models. This mechanism was associated with redirected metabolism towards pyruvate oxidation and reduced lactate production, both in EGFR TKI sensitive and resistant NSCLC cells. Using DCA, the intracellular pool of pyruvate available for lactic fermentation becomes limited. Consequently, pyruvate is redirected to the mitochondria, and reinforces mitochondrial activity. Addition of DCA to cell culture deacidifies the extracellular microenvironment as less lactate is produced and excreted. In our study, we find that this redirection of metabolism adds to the therapeutic effect of EGFR TKI and ionizing radiation in NSCLC.
Collapse
|
10
|
Han X, Huang Y, Wei L, Chen H, Guo Y, Tang Z, Hu W, Xia Q, Wang Q, Yan J, Ren Y. Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1,6-bisphosphatase. Bioorg Med Chem 2020; 28:115624. [PMID: 32828433 DOI: 10.1016/j.bmc.2020.115624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 μM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5-55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.
Collapse
Affiliation(s)
- Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Haifeng Chen
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zilong Tang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qinfei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
11
|
Xu YX, Huang YY, Song RR, Ren YL, Chen X, Zhang C, Mao F, Li XK, Zhu J, Ni SS, Wan J, Li J. Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2020; 203:112500. [PMID: 32711108 DOI: 10.1016/j.ejmech.2020.112500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), as a key rate-limiting enzyme in the gluconeogenesis (GNG) pathway, represents a practical therapeutic strategy for type 2 diabetes (T2D). Our previous work first identified cysteine residue 128 (C128) was an important allosteric site in the structure of FBPase, while pharmacologically targeting C128 attenuated the catalytic ability of FBPase. Herein, ten approved cysteine covalent drugs were selected for exploring FBPase inhibitory activities, and the alcohol deterrent disulfiram displayed superior inhibitory efficacy among those drugs. Based on the structure of lead compound disulfiram, 58 disulfide-derived compounds were designed and synthesized for investigating FBPase inhibitory activities. Optimal compound 3a exhibited significant FBPase inhibition and glucose-lowering efficacy in vitro and in vivo. Furthermore, 3a covalently modified the C128 site, and then regulated the N125-S124-S123 allosteric pathway of FBPase in mechanism. In summary, 3a has the potential to be a novel FBPase inhibitor for T2D therapy.
Collapse
Affiliation(s)
- Yi-Xiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yun-Yuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rong-Rong Song
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Liang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xiao-Kang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuai-Shuai Ni
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 South Wan Ping Road, Shanghai, 200032, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Huang Y, Xu Y, Song R, Ni S, Liu J, Xu Y, Ren Y, Rao L, Wang Y, Wei L, Feng L, Su C, Peng C, Li J, Wan J. Identification of the New Covalent Allosteric Binding Site of Fructose-1,6-bisphosphatase with Disulfiram Derivatives toward Glucose Reduction. J Med Chem 2020; 63:6238-6247. [PMID: 32375478 DOI: 10.1021/acs.jmedchem.0c00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructose 1,6-bisphosphatase (FBPase) has attracted substantial interest as a target associated with cancer and type 2 diabetes. Herein, we found that disulfiram and its derivatives can potently inhibit FBPase by covalently binding to a new C128 allosteric site distinct from the original C128 site in APO FBPase. Further identification of the allosteric inhibition mechanism reveals that the covalent binding of a fragment of 214 will result in the movement of C128 and the dissociation of helix H4 (123-128), which in turn allows S123 to more easily form new hydrogen bonds with K71 and D74 in helix H3 (69-72), thereby inhibiting FBPase activity. Notably, both disulfiram and 212 might moderately reduce blood glucose output in vivo. Therefore, our current findings not only identify a new covalent allosteric site of FBPase but also establish a structural foundation and provide a promising way for the design of covalent allosteric drugs for glucose reduction.
Collapse
Affiliation(s)
- Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixiang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rongrong Song
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200237, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanhong Xu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yingjie Wang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
13
|
The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress. Exp Mol Med 2020; 52:485-496. [PMID: 32203098 PMCID: PMC7156669 DOI: 10.1038/s12276-020-0402-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle is a major organ for glucose disposal and thermogenesis. While hepatic fructose-1,6-bisphosphatase is well known as a key enzyme for gluconeogenesis, the role of muscle fructose-1,6-bisphosphatase 2 (Fbp2) in glucose disposal and thermogenesis is unknown. Here, using Fbp2 knockout (KO) mice, we assessed the physiological role of Fbp2 in energy and glucose metabolism and thermogenesis. In vivo assessments of energy metabolism, glucose metabolism, and thermogenesis were performed by indirect calorimetry, hyperinsulinemic-euglycemic clamp, and cold challenge studies, respectively. Under both feeding and fasting conditions, Fbp2 KO mice showed similar phenotypes regarding energy and glucose metabolism compared to wild-type (WT) mice. However, Fbp2 KO mice were severely intolerant to cold challenge under fasting conditions. Mechanistically, the cold-induced intramuscular conversion of lactate to glycogen (glyconeogenesis) is completely abolished in the KO muscle, which leads to a lack of glycogen source for thermogenesis in Fbp2 KO mice. The cold-intolerant phenotype of KO mice disappeared after feeding, and the KO mice were equally as cold tolerant as the WT mice and survived during the cold challenge for three weeks. Taken together, these data demonstrate that Fbp2 is essential for muscle thermogenesis by replenishing the intramuscular glycogen pool through glyconeogenesis when the exogenous glucose source is limited. These data imply the physiological importance of Fbp2 in thermal homeostasis and suggest a potential novel therapy targeted to increase glycogen replenishment upon cold stress. When simple sugars in the diet are scarce, skeletal muscle can still generate heat under cold conditions thanks to an enzyme that converts a metabolic byproduct into complex carbohydrates. A team led by Hui-Young Lee and Cheol Soo Choi from Gachon University’s Lee Gil Ya Cancer and Diabetes Institute in Incheon, South Korea, showed that, under fasting conditions, mice lacking a muscle form of enzyme called fructose-1,6-bisphosphatase 2 (Fbp2) could not respond to cold exposure by the usual process of converting lactate, which builds up in muscles during intense activity, into glycogen, a type of complex sugar involved in heat production not related to shivering. After a meal, however, the same mice could adapt to extreme cold without any problem. The findings highlight the importance of Fbp2 in thermal regulation under fasting conditions.
Collapse
|
14
|
Tiwari P, Katyal A, Khan MF, Ashraf GM, Ahmad K. Lead Optimization Resources in Drug Discovery for Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 19:754-774. [PMID: 30834844 DOI: 10.2174/1871530319666190304121826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes, defined as a chronic metabolic syndrome, exhibits global prevalence and phenomenal rise worldwide. The rising incidence accounts for a global health crisis, demonstrating a profound effect on low and middle-income countries, particularly people with limited healthcare facilities. METHODS Highlighting the prevalence of diabetes and its socio-economic implications on the population across the globe, the article aimed to address the emerging significance of computational biology in drug designing and development, pertaining to identification and validation of lead molecules for diabetes treatment. RESULTS The drug discovery programs have shifted the focus on in silico prediction strategies minimizing prolonged clinical trials and expenses. Despite technological advances and effective drug therapies, the fight against life-threatening, disabling disease has witnessed multiple challenges. The lead optimization resources in computational biology have transformed the research on the identification and optimization of anti-diabetic lead molecules in drug discovery studies. The QSAR approaches and ADMET/Toxicity parameters provide significant evaluation of prospective "drug-like" molecules from natural sources. CONCLUSION The science of computational biology has facilitated the drug discovery and development studies and the available data may be utilized in a rational construction of a drug 'blueprint' for a particular individual based on the genetic organization. The identification of natural products possessing bioactive properties as well as their scientific validation is an emerging prospective approach in antidiabetic drug discovery.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, MG Institute of Management and Technology, Lucknow-Kanpur Road, Lucknow, India
| | - Ashish Katyal
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Mohd F Khan
- Department of Biotechnology, Utkarsh School of Management and Technology, Bareilly, India.,Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
15
|
Huang Y, Wei L, Han X, Chen H, Ren Y, Xu Y, Song R, Rao L, Su C, Peng C, Feng L, Wan J. Discovery of novel allosteric site and covalent inhibitors of FBPase with potent hypoglycemic effects. Eur J Med Chem 2019; 184:111749. [DOI: 10.1016/j.ejmech.2019.111749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 12/21/2022]
|
16
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Singh S, Harmalkar DS, Choi Y, Lee K. Fructose-1,6-bisphosphatase Inhibitors: A Review of Recent (2000- 2017) Advances and Structure-Activity Relationship Studies. Curr Med Chem 2019; 26:5542-5563. [DOI: 10.2174/0929867325666180831133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
:
Diabetes mellitus, commonly referred to as diabetes, is the 8th leading cause of
death worldwide. As of 2015, approximately 415 million people were estimated to be diabetic
worldwide, type 2 diabetes being the most common accounting for approximately 90-95% of
all diagnosed cases with increasing prevalence. Fructose-1,6-bisphosphatase is one of the important
therapeutic targets recently discovered to treat this chronic disease. In this focused
review, we have highlighted recent advances and structure-activity relationship studies in the
discovery and development of different fructose-1,6-bisphosphatase inhibitors reported since
the year 2000.
Collapse
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | | | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
18
|
Fructose 1,6- bisphosphatase: getting the message across. Biosci Rep 2019; 39:BSR20190124. [PMID: 30804231 PMCID: PMC6400660 DOI: 10.1042/bsr20190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Fructose 1,6-bisphosphatase (FBPase) is a key enzyme in gluconeogenesis. It is a potential drug target in the treatment of type II diabetes. The protein is also associated with a rare inherited metabolic disease and some cancer cells lack FBPase activity which promotes glycolysis facilitating the Warburg effect. Thus, there is interest in both inhibiting the enzyme (for diabetes treatment) and restoring its activity (in relevant cancers). The mammalian enzyme is tetrameric, competitively inhibited by Fructose 2,6-bisphosphate and negatively allosterically regulated by AMP. This allosteric regulation requires information transmission between the AMP binding site and the active site of the enzyme. A recent paper by Topaz et al. (Bioscience Reports (2019) 39, pii:BSR20180960) has added additional detail to our understanding of this information transmission process. Two residues in the AMP binding site (Lys112 and Tyr113) were shown to be involved in initiating the message between the two sites. This tyrosine residue has recently be shown to be important with protein’s interaction with the antidiabetic drug metformin. A variant designed to increase metal ion affinity (M248D) resulted in a five-fold increase in enzymatic activity. Interestingly alterations of two residues at the subunit interfaces (Tyr164 and Met177) resulted in increased responsiveness to AMP. Overall, these findings may have implications in the design of novel FBPase inhibitors or activators.
Collapse
|
19
|
Liu GM, Zhang YM. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:36. [PMID: 29556139 PMCID: PMC5845355 DOI: 10.1186/s12935-018-0533-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Metabolic reprogramming is an emerging hallmark of cancer. Glucose homeostasis is reciprocally controlled by the catabolic glycolysis and anabolic gluconeogenesis pathways. Previous studies have mainly focused on catabolic glycolysis, but recently, FBPase, a rate-limiting enzyme in gluconeogenesis, was found to play critical roles in tumour initiation and progression in several cancer types. Here, we review recent ideas and discoveries that illustrate the clinical significance of FBPase expression in various cancers, the mechanism through which FBPase influences cancer, and the mechanism of FBPase silencing. Furthermore, we summarize some of the drugs targeting FBPase and discuss their potential use in clinical applications and the problems that remain unsolved.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| | - Yao-Ming Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| |
Collapse
|
20
|
Kaur R, Dahiya L, Kumar M. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem 2017; 141:473-505. [DOI: 10.1016/j.ejmech.2017.09.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/27/2022]
|
21
|
A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More? Indian J Clin Biochem 2017; 33:121-131. [PMID: 29651202 DOI: 10.1007/s12291-017-0668-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of diabetes mellitus, a chronic metabolic disease characterized by hyperglycemia, is growing worldwide. The majority of the cases belong to type 2 diabetes mellitus (T2DM). Globally, India ranks second in terms of diabetes prevalence among adults. Currently available classes of therapeutic agents are used alone or in combinations but seldom achieve treatment targets. Diverse pathophysiology and the need of therapeutic agents with more favourable pharmacokinetic-pharmacodynamics profile make newer drug discoveries in the field of T2DM essential. A large number of molecules, some with novel mechanisms, are in pipeline. The essence of this review is to track and discuss these potential agents, based on their developmental stages, especially those in phase 3 or phase 2. Unique molecules are being developed for existing drug classes like insulins, DPP-4 inhibitors, GLP-1 analogues; and under newer classes like dual/pan PPAR agonists, dual SGLT1/SGLT2 inhibitors, glimins, anti-inflammatory agents, glucokinase activators, G-protein coupled receptor agonists, hybrid peptide agonists, apical sodium-dependent bile acid transporter (ASBT) inhibitors, glucagon receptor antagonists etc. The heterogeneous clinical presentation and therapeutic outcomes in phenotypically similar patients is a clue to think beyond the standard treatment strategy.
Collapse
|
22
|
Inborn Errors of Fructose Metabolism. What Can We Learn from Them? Nutrients 2017; 9:nu9040356. [PMID: 28368361 PMCID: PMC5409695 DOI: 10.3390/nu9040356] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
Fructose is one of the main sweetening agents in the human diet and its ingestion is increasing globally. Dietary sugar has particular effects on those whose capacity to metabolize fructose is limited. If intolerance to carbohydrates is a frequent finding in children, inborn errors of carbohydrate metabolism are rare conditions. Three inborn errors are known in the pathway of fructose metabolism; (1) essential or benign fructosuria due to fructokinase deficiency; (2) hereditary fructose intolerance; and (3) fructose-1,6-bisphosphatase deficiency. In this review the focus is set on the description of the clinical symptoms and biochemical anomalies in the three inborn errors of metabolism. The potential toxic effects of fructose in healthy humans also are discussed. Studies conducted in patients with inborn errors of fructose metabolism helped to understand fructose metabolism and its potential toxicity in healthy human. Influence of fructose on the glycolytic pathway and on purine catabolism is the cause of hypoglycemia, lactic acidosis and hyperuricemia. The discovery that fructose-mediated generation of uric acid may have a causal role in diabetes and obesity provided new understandings into pathogenesis for these frequent diseases.
Collapse
|
23
|
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15:786-804. [PMID: 27516169 DOI: 10.1038/nrd.2016.151] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Collapse
Affiliation(s)
- Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
25
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
26
|
Zhao Y, Tang Z, Zhu X, Wang X, Wang C, Zhang W, Xia N, Wang S, Huang J, Cui S. TAB3 involves in hepatic insulin resistance through activation of MAPK pathway. Gen Comp Endocrinol 2015; 224:228-34. [PMID: 26320856 DOI: 10.1016/j.ygcen.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Insulin resistance is often accompanied by chronic inflammatory responses. The mitogen-activated protein kinase (MAPK) pathway is rapidly activated in response to many inflammatory cytokines. But the functional role of MAPKs in palmitate-induced insulin resistance has yet to be clarified. In this study, we found that transforming growth factor β-activated kinase binding protein-3 (TAB3) was up-regulated in insulin resistance. Considering the relationship between transforming growth factor β-activated kinase (TAK1) and MAPK pathway, we assumed TAB3 involved in insulin resistance through activation of MAPK pathway. To certify this hypothesis, we knocked down TAB3 in palmitate treated HepG2 cells and detected subsequent biological responses. Importantly, TAB3 siRNA directly reversed insulin sensitivity by improving insulin signal transduction. Moreover, silencing of TAB3 could facilitate hepatic glucose uptake, reverse gluconeogenesis and improve ectopic fat accumulation. Meanwhile, we found that the positive effect of knocking down TAB3 was more significant when insulin resistance occurred. All these results indicate that TAB3 acts as a negative regulator in insulin resistance through activation of MAPK pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Xiaohui Zhu
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Xueqin Wang
- Department of Endocrinology, Nantong First People's Hospital, 6 Hai'erxiang Road, Nantong 226001, Jiangsu Province, China
| | - Cuifang Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Wanlu Zhang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Nana Xia
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Suxin Wang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Jieru Huang
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Shiwei Cui
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
27
|
Zhang J, Wang J, Xing H, Li Q, Zhao Q, Li J. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells. Mol Cell Biochem 2015; 411:331-40. [PMID: 26546081 DOI: 10.1007/s11010-015-2595-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Lung cancer is the most common type of malignant tumor, but the molecular mechanisms for lung cancer progression remains to be elusive. Here, we demonstrated that FBP1 (Fructose-1, 6-bisphosphatase) was frequently down-regulated in lung cancer tissues and cells, and FBP1 down-regulation was associated with poor prognosis in lung cancer patients. Restored FBP1 expression inhibited glucose uptake and lactate production, but induced oxygen consumption. Restored FBP1 expression also inhibited lung cancer cells proliferation and invasion under hypoxia in vitro, and inhibited lung cancer growth in vivo. Moreover, we confirmed DNA methylation in the promoter contributed to the decrease of FBP1 expression in lung cancer cells. We identified Zinc finger E-box-binding homeobox 1 (ZEB1) bond to FBP1 promoter to enhance DNA methylation in lung cancer cells. Our findings indicate that the down-regulation of FBP1 is a critical oncogenic event in lung cancer progression.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China
| | - Jiangtao Wang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China
| | - Hui Xing
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China
| | - Qingfeng Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Qianfeng Zhao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Jinzhou Road 136#, Xiangyang, 441021, Hubei, People's Republic of China
| |
Collapse
|
28
|
Bie J, Liu S, Li Z, Mu Y, Xu B, Shen Z. Discovery of novel indole derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase. Eur J Med Chem 2014; 90:394-405. [PMID: 25461330 DOI: 10.1016/j.ejmech.2014.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 11/30/2022]
Abstract
A series of novel indole derivatives was designed and synthesized as inhibitors of fructose-1,6-bisphosphatase (FBPase). The most potent compound 14c was identified with an IC50 value of 0.10 μM by testing the inhibitory activity against recombinant human FBPase. The structure-activity relationships were investigated on the substitution at 4- and 5-position of the indole scaffold. The binding interactions of the title compounds at AMP binding site of FBPase were predicted using CDOCKER algorithm.
Collapse
Affiliation(s)
- Jianbo Bie
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Zhanmei Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Yongzhao Mu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China.
| | - Zhufang Shen
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
29
|
Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 2014; 307:E859-71. [PMID: 25205823 DOI: 10.1152/ajpendo.00165.2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
30
|
Liao BR, He HB, Yang LL, Gao LX, Chang L, Tang J, Li JY, Li J, Yang F. Synthesis and structure-activity relationship of non-phosphorus-based fructose-1,6-bisphosphatase inhibitors: 2,5-Diphenyl-1,3,4-oxadiazoles. Eur J Med Chem 2014; 83:15-25. [PMID: 24946215 DOI: 10.1016/j.ejmech.2014.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/03/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022]
Abstract
With the aim of discovering a novel class of non-phosphorus-based fructose-1,6-bisphosphatase (FBPase) inhibitors, a series of 2,5-diphenyl-1,3,4-oxadiazoles were synthesized based on the hit compound (1) resulting from a high-throughput screening (HTS). Structure-activity relationship (SAR) studies led to the identification of several compounds with comparable inhibitory activities to AMP, the natural allosteric inhibitor of FBPase. Notably, compound 22 and 27b, bearing a terminal carboxyl or 1H-tetrazole, demonstrated remarkable inhibition to gluconeogenesis (GNG). In addition, both inhibition and binding mode to the enzyme were investigated by enzymatic kinetics and in silico experiments for representative compounds 16 and 22.
Collapse
Affiliation(s)
- Ben-Ren Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Hai-Bing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China; Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, China
| | - Ling-Ling Yang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Li-Xin Gao
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Liang Chang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Jing-Ya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
31
|
Asenjo JL, Ludwig HC, Droppelmann CA, Cárcamo JG, Concha II, Yáñez AJ, Cárdenas ML, Cornish-Bowden A, Slebe JC. Subunit interactions in pig-kidney fructose-1,6-bisphosphatase: Binding of substrate induces a second class of site with lowered affinity and catalytic activity. Biochim Biophys Acta Gen Subj 2014; 1840:1798-807. [DOI: 10.1016/j.bbagen.2013.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
32
|
DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel Agents for the Treatment of Type 2 Diabetes. Diabetes Spectr 2014; 27:100-12. [PMID: 26246766 PMCID: PMC4522879 DOI: 10.2337/diaspect.27.2.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Brief Impaired insulin secretion, increased hepatic glucose production, and decreased peripheral glucose utilization are the core defects responsible for the development and progression of type 2 diabetes. However, the pathophysiology of this disease also includes adipocyte insulin resistance (increased lipolysis), reduced incretin secretion/sensitivity, increased glucagon secretion, enhanced renal glucose reabsorption, and brain insulin resistance/neurotransmitter dysfunction. Although current diabetes management focuses on lowering blood glucose, the goal of therapy should be to delay disease progression and eventual treatment failure. Recent innovative treatment approaches target the multiple pathophysiological defects present in type 2 diabetes. Optimal management should include early initiation of combination therapy using multiple drugs with different mechanisms of action. This review examines novel therapeutic options that hold particular promise.
Collapse
|
33
|
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, Kahn M, Perler BK, Puchowicz MA, Manchem VP, Bhanot S, Still CD, Gerhard GS, Petersen KF, Cline GW, Shulman GI, Samuel VT. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 2013; 62:2183-94. [PMID: 23423574 PMCID: PMC3712050 DOI: 10.2337/db12-1311] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat-fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Naoki Kumashiro
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sara A. Beddow
- Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sachin K. Majumdar
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer L. Cantley
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Ioana Fat
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Blas Guigni
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J. Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Bryce K. Perler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Glenn S. Gerhard
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Medical Center, West Haven, Connecticut
- Corresponding author: Varman T. Samuel,
| |
Collapse
|
34
|
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013; 23:316-31. [PMID: 23453623 PMCID: PMC3703516 DOI: 10.1016/j.ccr.2013.01.022] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 09/25/2012] [Accepted: 01/29/2013] [Indexed: 01/09/2023]
Abstract
The epithelial-mesenchymal transition (EMT) enhances cancer invasiveness and confers tumor cells with cancer stem cell (CSC)-like characteristics. We show that the Snail-G9a-Dnmt1 complex, which is critical for E-cadherin promoter silencing, is also required for the promoter methylation of fructose-1,6-biphosphatase (FBP1) in basal-like breast cancer (BLBC). Loss of FBP1 induces glycolysis and results in increased glucose uptake, macromolecule biosynthesis, formation of tetrameric PKM2, and maintenance of ATP production under hypoxia. Loss of FBP1 also inhibits oxygen consumption and reactive oxygen species production by suppressing mitochondrial complex I activity; this metabolic reprogramming results in an increased CSC-like property and tumorigenicity by enhancing the interaction of β-catenin with T-cell factor. Our study indicates that the loss of FBP1 is a critical oncogenic event in EMT and BLBC.
Collapse
Affiliation(s)
- Chenfang Dong
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Tingting Yuan
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yadi Wu
- Department of Molecular and Biomedical Pharmacology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yifan Wang
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Teresa W.M. Fan
- Center for Regulatory and Environmental Analytical Metabolomics, Department of Chemistry and J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Sumitra Miriyala
- Graduate Center for Toxicology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Yiwei Lin
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Jun Yao
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jian Shi
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Pawel Lorkiewicz
- Center for Regulatory and Environmental Analytical Metabolomics, Department of Chemistry and J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Daret St Clair
- Graduate Center for Toxicology, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - B. Mark Evers
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Department of Surgery, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, KY 40506
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
| |
Collapse
|
35
|
Imam MU, Ismail M. Nutrigenomic effects of germinated brown rice and its bioactives on hepatic gluconeogenic genes in type 2 diabetic rats and HEPG2 cells. Mol Nutr Food Res 2013; 57:401-11. [PMID: 23307605 DOI: 10.1002/mnfr.201200429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
SCOPE Chronic sustained hyperglycemia underlies the symptomatology and complications of type 2 diabetes mellitus, and dietary components contribute to it. Germinated brown rice (GBR) improves glycemic control but the mechanisms involved are still the subject of debate. We now show one mechanism by which GBR lowers blood glucose. METHODS AND RESULTS Effects of GBR, brown rice, and white rice (WR) on fasting plasma glucose and selected genes were studied in type 2 diabetic rats. GBR reduced plasma glucose and weight more than metformin, while WR worsened glycemia over 4 weeks of intervention. Through nutrigenomic suppression, GBR downregulated gluconeogenic genes (Fbp1 and Pck1) in a manner similar to, but more potently than, metformin, while WR upregulated the same genes. Bioactives (gamma-amino butyric acid, acylated steryl glycoside, oryzanol, and phenolics) were involved in GBR's downregulation of both genes. Plasma glucose, Fbp1 and Pck1 changes significantly affected the weight of rats (p = 0.0001). CONCLUSION The fact that GBR downregulates gluconeogenic genes similar to metformin, but produces better glycemic control in type 2 diabetic rats, suggests other mechanisms are involved in GBR's antihyperglycemic properties. GBR as a staple could potentially provide enhanced glycemic control in type 2 diabetes mellitus better than metformin.
Collapse
Affiliation(s)
- Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
36
|
Aicher TD, Boyd SA, McVean M, Celeste A. Novel therapeutics and targets for the treatment of diabetes. Expert Rev Clin Pharmacol 2012; 3:209-29. [PMID: 22111568 DOI: 10.1586/ecp.10.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvascular complications of insufficiently controlled diabetes (neuropathy, retinopathy and nephropathy) and the marked increased risk of macrovascular events (e.g., stroke and myocardial infarction) have a dire impact on society in both human and economic terms. In Type 1 diabetes total β-cell loss occurs. In Type 2 diabetes, partial β-cell loss occurs before diagnosis, and the progressive β-cell loss during the life of the patient increases the severity of the disease. In patients with diabetes, increased insulin resistance in the muscle and liver are key pathophysiologic defects. In addition, defects in metabolic processes in the fat, GI tract, brain, pancreatic α-cells and kidney are detrimental to the overall health of the patient. This review addresses novel therapies for these deficiencies in clinical and preclinical evaluation, emphasizing their potential to address glucose homeostasis, β-cell mass and function, and the comorbidities of cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Thomas D Aicher
- Principal Research Investigator, Array BioPharma Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only in glucose metabolism or has other metabolic roles is currently unclear. In our recently published study, we examined the importance of liver FBPase in body weight regulation by performing a series of comprehensive physiological and biochemical assessments of energy balance and specific intervention studies in our transgenic mouse line that overexpresses FBPase specifically in the liver. Compared with negative littermates, these FBPase transgenic mice weighed 10% less, had 50% less adiposity, ate 15% less food but did not have altered energy expenditure. Increased circulating leptin and cholecystokinin levels, elevated fatty acid oxidation and reduced appetite stimulating neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), underpinned this phenotype. Blocking the action of FBPase returned food intake and body weight to those of the negative littermates. Our study is the first to identify liver FBPase as a previously unknown regulator of appetite and adiposity. Importantly, this work recognizes the liver as an important organ in appetite and body weight regulation. This commentary will provide further insight and expand on this novel concept that the liver does in fact play an important role in adiposity.
Collapse
|
38
|
Tayyem RF, Zalloum HM, Elmaghrabi MR, Yousef AM, Mubarak MS. Ligand-based designing, in silico screening, and biological evaluation of new potent fructose-1,6-bisphosphatase (FBPase) inhibitors. Eur J Med Chem 2012; 56:70-95. [DOI: 10.1016/j.ejmech.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
39
|
Visinoni S, Khalid NFI, Joannides CN, Shulkes A, Yim M, Whitehead J, Tiganis T, Lamont BJ, Favaloro JM, Proietto J, Andrikopoulos S, Fam BC. The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity. Diabetes 2012; 61:1122-32. [PMID: 22517657 PMCID: PMC3331739 DOI: 10.2337/db11-1511] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only to regulate glucose or has other metabolic consequences is not clear; therefore, the aim of this study was to determine the importance of liver FBPase in body weight regulation. To this end we performed comprehensive physiologic and biochemical assessments of energy balance in liver-specific transgenic FBPase mice and negative control littermates of both sexes. In addition, hepatic branch vagotomies and pharmacologic inhibition studies were performed to confirm the role of FBPase. Compared with negative littermates, liver-specific FBPase transgenic mice had 50% less adiposity and ate 15% less food but did not have altered energy expenditure. The reduced food consumption was associated with increased circulating leptin and cholecystokinin, elevated fatty acid oxidation, and 3-β-hydroxybutyrate ketone levels, and reduced appetite-stimulating neuropeptides, neuropeptide Y and Agouti-related peptide. Hepatic branch vagotomy and direct pharmacologic inhibition of FBPase in transgenic mice both returned food intake and body weight to the negative littermates. This is the first study to identify liver FBPase as a previously unknown regulator of appetite and adiposity and describes a novel process by which the liver participates in body weight regulation.
Collapse
Affiliation(s)
- Sherley Visinoni
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | | | | | - Arthur Shulkes
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Mildred Yim
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jon Whitehead
- Mater Medical Research Institute, Brisbane, Queensland, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Benjamin J. Lamont
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jenny M. Favaloro
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Joseph Proietto
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | | | - Barbara C. Fam
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
- Corresponding author: Barbara C. Fam,
| |
Collapse
|
40
|
Use of quantum mechanics/molecular mechanics-based FEP method for calculating relative binding affinities of FBPase inhibitors for type-2 diabetes. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Ritter L, Davidson L, Henry M, Davis-Gorman G, Morrison H, Frye JB, Cohen Z, Chandler S, McDonagh P, Funk JL. Exaggerated neutrophil-mediated reperfusion injury after ischemic stroke in a rodent model of type 2 diabetes. Microcirculation 2012; 18:552-61. [PMID: 21699626 DOI: 10.1111/j.1549-8719.2011.00115.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We tested the hypothesis that both chronic and acute inflammatory processes contribute to worse reperfusion injury and stroke outcome in an experimental model of T2DM. MATERIALS AND METHODS Twelve- to thirteen-week-old male Zucker Diabetic Fatty (ZDF) rats vs. Zucker Lean Controls (ZLC) rats were tested at baseline and after middle cerebral artery occlusion (ischemia) and reperfusion (I-R). Neutrophil adhesion to the cerebral microcirculation, neutrophil expression of CD11b, infarction size, edema, neurologic function, sICAM, and cerebral expression of neutrophil-endothelial inflammatory genes were measured. RESULTS At baseline, CD11b and sICAM were significantly increased in ZDF vs. ZLC animals (p < 0.05). After I-R, significantly more neutrophil adhesion and cell aggregates were observed in ZDF vs. ZLC (p < 0.05); infarction size, edema, and neurologic function were significantly worse in ZDF vs. ZLC (p < 0.05). CD11b and sICAM-1 remained significantly increased in ZDFs (p < 0.05), and cerebral expression of IL-1β, GRO/KC, E-selectin, and sICAM were significantly induced in ZDF, but not ZLC groups (p < 0.05) after 2.5 hours of reperfusion. CONCLUSION Both sides of the neutrophil-endothelial interface appear to be primed prior to I-R, and remain significantly more activated during I-R in an experimental model of T2DM. Consequently, reperfusion injury appears to play a significant role in poor stroke outcome in T2DM.
Collapse
Affiliation(s)
- Leslie Ritter
- College of Nursing, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Male Zucker diabetic fatty fa/fa (ZDF) rats develop obesity and insulin resistance at a young age, and then with aging, progressively develop hyperglycemia. This hyperglycemia is associated with impaired pancreatic β-cell function, loss of pancreatic β-cell mass, and decreased responsiveness of liver and extrahepatic tissues to the actions of insulin and glucose. Of particular interest are the insights provided by studies of these animals into the mechanism behind the progressive impairment of carbohydrate metabolism. This feature among others, including the development of obesity- and hyperglycemia-related complications, is common between male ZDF rats and humans with type 2 diabetes associated with obesity. We discuss the diabetic features and complications found in ZDF rats and why these animals are widely used as a genetic model for obese type 2 diabetes.
Collapse
Affiliation(s)
- Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | |
Collapse
|
43
|
|
44
|
Yi P, Di YT, Liu W, Hao XJ, Ming Y, Huang DS, Yang J, Yi ZZ, Li ZJ, Yang RD, Zhang JC. Protein-based alignment in 3D-QSAR of FBPase inhibitors. Eur J Med Chem 2011; 46:885-92. [DOI: 10.1016/j.ejmech.2010.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/07/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
|
45
|
Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol 2011:279-301. [PMID: 21484576 DOI: 10.1007/978-3-642-17214-4_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis, has emerged as an important target for the treatment of type 2 diabetes due to the well-recognized role of excessive endogenous glucose production (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of FBPase are expected to fulfill an unmet medical need because the majority of current antidiabetic medications act primarily on insulin resistance or insulin insufficiency and do not reduce gluconeogenesis effectively or in a direct manner. Despite significant challenges, potent and selective inhibitors of FBPase targeting the allosteric site of the enzyme were identified by means of a structure-guided design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration of both fasting and postprandial hyperglycemia without weight gain, incidence of hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore, the combination of CS-917 with representatives of the insulin sensitizer or insulin secretagogue drug classes provided enhanced glycemic control. Subsequent clinical evaluations of CS-917 revealed a favorable safety profile as well as clinically meaningful reductions in fasting glucose levels in patients with T2DM. Future trials of MB07803, a second generation FBPase inhibitor with improved pharmacokinetics, will address whether this novel class of antidiabetic agents can provide safe and long-term glycemic control.
Collapse
|
46
|
Dang Q, Kasibthatla SR, Jiang T, Taplin F, Gibson T, Potter SC, van Poelje PD, Erion MD. Oxazole
phosphonic acids as fructose 1,6-bisphosphatase inhibitors with potent glucose-lowering activity. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00269k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphonic acid-containing oxazoles were discovered as potent inhibitors of fructose 1,6-bisphosphatase. Several oxazoles demonstrated significant glucose-lowering activity in rats after intravenous dosing.
Collapse
Affiliation(s)
- Qun Dang
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | | | - Tao Jiang
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Frank Taplin
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Tony Gibson
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Scott C. Potter
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Paul D. van Poelje
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Mark D. Erion
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| |
Collapse
|
47
|
Dang Q, Liu Y, Cashion DK, Kasibhatla SR, Jiang T, Taplin F, Jacintho JD, Li H, Sun Z, Fan Y, DaRe J, Tian F, Li W, Gibson T, Lemus R, van Poelje PD, Potter SC, Erion MD. Discovery of a series of phosphonic acid-containing thiazoles and orally bioavailable diamide prodrugs that lower glucose in diabetic animals through inhibition of fructose-1,6-bisphosphatase. J Med Chem 2010; 54:153-65. [PMID: 21126019 DOI: 10.1021/jm101035x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oral delivery of previously disclosed purine and benzimidazole fructose-1,6-bisphosphatase (FBPase) inhibitors via prodrugs failed, which was likely due to their high molecular weight (>600). Therefore, a smaller scaffold was desired, and a series of phosphonic acid-containing thiazoles, which exhibited high potency against human liver FBPase (IC(50) of 10-30 nM) and high selectivity relative to other 5'-adenosinemonophosphate (AMP)-binding enzymes, were discovered using a structure-guided drug design approach. The initial lead compound (30j) produced profound glucose lowering in rodent models of type 2 diabetes mellitus (T2DM) after parenteral administration. Various phosphonate prodrugs were explored without success, until a novel phosphonic diamide prodrug approach was implemented, which delivered compound 30j with good oral bioavailability (OBAV) (22-47%). Extensive lead optimization of both the thiazole FBPase inhibitors and their prodrugs culminated in the discovery of compound 35n (MB06322) as the first oral FBPase inhibitor advancing to human clinical trials as a potential treatment for T2DM.
Collapse
Affiliation(s)
- Qun Dang
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., La Jolla, California 92037, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang Y, Xie Z, Zhou G, Zhang H, Lu J, Zhang WJ. Fructose-1,6-bisphosphatase regulates glucose-stimulated insulin secretion of mouse pancreatic beta-cells. Endocrinology 2010; 151:4688-95. [PMID: 20719858 DOI: 10.1210/en.2009-1185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pancreatic β-cells can precisely sense glucose stimulation and accordingly adjust their insulin secretion. Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme, but its physiological significance in β-cells is not established. Here we determined its physiological role in regulating glucose sensing and insulin secretion of β-cells. Considerable FBPase mRNA was detected in normal mouse islets and β-cell lines, although their protein levels appeared to be quite low. Down-regulation of FBP1 in MIN6 cells by small interfering RNA could enhance the glucose-stimulated insulin secretion (GSIS), whereas FBP1-overexpressing MIN6 cells exhibited decreased GSIS. Inhibition of FBPase activity in islet β-cells by its specific inhibitor MB05032 led to significant increase of their glucose utilization and cellular ATP to ADP ratios and consequently enhanced GSIS in vitro. Pretreatment of mice with the MB05032 prodrug MB06322 could potentiate GSIS in vivo and improve their glucose tolerance. Therefore, FBPase plays an important role in regulating glucose sensing and insulin secretion of β-cells and serves a promising target for diabetes treatment.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Obesity & Diabetes Research and Innovation, Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
49
|
Rudnitskaya A, Borkin DA, Huynh K, Török B, Stieglitz K. Rational design, synthesis, and potency of N-substituted indoles, pyrroles, and triarylpyrazoles as potential fructose 1,6-bisphosphatase inhibitors. ChemMedChem 2010; 5:384-9. [PMID: 20069623 DOI: 10.1002/cmdc.200900493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By using computer modeling and lead structures from our earlier SAR results, a broad variety of pyrrole-, indole-, and pyrazole-based compounds were evaluated as potential fructose 1,6-bisphosphatase (FBPase) inhibitors. The docking studies yielded promising structures, and several were selected for synthesis and FBPase inhibition assays: 1-[4-(trifluoromethyl)benzoyl]-1H-indole-5-carboxamide, 1-(alpha-naphthalen-1-ylsulfonyl)-7-nitro-1H-indole, 5-(4-carboxyphenyl)-3-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-pyrazole, 1-(4-carboxyphenylsulfonyl)-1H-pyrrole, and 1-(4-carbomethoxyphenylsulfonyl)-1H-pyrrole were synthesized and tested for inhibition of FBPase. The IC(50) values were determined to be 0.991 and 1.34 microM, and 575, 135, and 32 nM, respectively. The tested compounds were significantly more potent than the natural inhibitor AMP (4.0 microM) by an order of magnitude; indeed, the best inhibitor showed an IC(50) value toward FBPase more than two orders of magnitude better than that of AMP. This level of activity is virtually the same as that of the best currently known FBPase inhibitors. This work shows that such indole derivatives are promising candidates for drug development in the treatment of type II diabetes.
Collapse
Affiliation(s)
- Aleksandra Rudnitskaya
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | | | | | | |
Collapse
|
50
|
Lu M, Patsouris D, Li P, Flores-Riveros J, Frincke JM, Watkins S, Schenk S, Olefsky JM. A new antidiabetic compound attenuates inflammation and insulin resistance in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2010; 298:E1036-48. [PMID: 20159859 PMCID: PMC2867370 DOI: 10.1152/ajpendo.00668.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue macrophage inflammatory pathways contribute to obesity-associated insulin resistance. Here, we have examined the efficacy and mechanisms of action of a novel anti-inflammatory compound (HE3286) in vitro and in vivo. In primary murine macrophages, HE3286 attenuates LPS- and TNFalpha-stimulated inflammation. In Zucker diabetic fatty rats, inflammatory cytokine/chemokine expression was downregulated in liver and adipose tissue by HE3286 treatment, as was macrophage infiltration into adipose tissue. In line with reduced inflammation, HE3286 treatment normalized fasting and fed glucose levels, improved glucose tolerance, and enhanced skeletal muscle and liver insulin sensitivity, as assessed by hyperinsulinemic euglycemic clamp studies. In phase 2 clinical trials, HE3286 treatment led to an enhancement in insulin sensitivity in humans. Gluconeogenic capacity was also reduced by HE3286 treatment, as evidenced by a reduced glycemic response during pyruvate tolerance tests and decreased basal hepatic glucose production (HGP) rates. Since serum levels of gluconeogenic substrates were decreased by HE3286, it indicates that the reduction of both intrinsic gluconeogenic capacity and substrate availability contributes to the decrease in HGP. Lipidomic analysis revealed that HE3286 treatment reduced liver cholesterol and triglyceride content, leading to a feedback elevation of LDL receptor and HMG-CoA reductase expression. Accordingly, HE3286 treatment markedly decreased total serum cholesterol. In conclusion, HE3286 is a novel anti-inflammatory compound, which displays both glucose-lowering and cholesterol-lowering effects.
Collapse
Affiliation(s)
- Min Lu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0673, USA
| | | | | | | | | | | | | | | |
Collapse
|