1
|
Bitencourt Brito P, Dalcin Teixeira M, Lehtonen Rodrigues de Souza R, Furtado-Alle L, Viater Tureck L. Olive oil increases the LIPC expression when associated with an Eastern pattern diet: An experimental study with Wistar rats. Gene 2023; 887:147738. [PMID: 37625559 DOI: 10.1016/j.gene.2023.147738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Some nutrigenomic effects of extra virgin olive oil (EVOO) are described in the literature; however, it is unknown whether its interaction with lipid-related genes is independent of the combined diet. In this sense, our objective was to investigate whether EVOO consumption associated with Western or Eastern human-based chow modulates the expression of APOE, APOB, and LIPC genes in rats. In view of this, the hypothesis is that the consumption of olive oil may not have the same nutrigenomic effects, depending on the diet consumed. For this study, 56 female rats were randomly divided into four groups: Western diet with EVOO (WS), Western-diet control (WC), Eastern-diet with EVOO (ES), and Eastern-diet control (EC). After 15 weeks, the animals were anesthetized with an intraperitoneal injection of chloral hydrate 15% (1.5 mL/kg) and euthanized by guillotining, and adipose tissue, liver, and blood were extracted. Triglycerides, cholesterol, and glucose levels were obtained following standard protocols, and relative gene expressions were calculated using the ΔΔCt method after quantitative PCR. The EVOO consumption was associated with LIPC gene expression increase in the liver only in animals fed the Eastern diet, compared to EC and WS animals. The EVOO consumption, combined with the Eastern diet, was associated with decreased triglyceride levels compared to WC. Although final weight and weight gain were similar between groups, WS animals had lower daily energy consumption. Conclusion: Given these results, the authors suggested that the EVOO nutrigenomic effects were restricted to an Eastern human-based diet.
Collapse
Affiliation(s)
- Priscila Bitencourt Brito
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | - Mayza Dalcin Teixeira
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | | | - Lupe Furtado-Alle
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| |
Collapse
|
2
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Rocca C, De Bartolo A, Guzzi R, Crocco MC, Rago V, Romeo N, Perrotta I, De Francesco EM, Muoio MG, Granieri MC, Pasqua T, Mazza R, Boukhzar L, Lefranc B, Leprince J, Gallo Cantafio ME, Soda T, Amodio N, Anouar Y, Angelone T. Palmitate-Induced Cardiac Lipotoxicity Is Relieved by the Redox-Active Motif of SELENOT through Improving Mitochondrial Function and Regulating Metabolic State. Cells 2023; 12:cells12071042. [PMID: 37048116 PMCID: PMC10093731 DOI: 10.3390/cells12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Maria Caterina Crocco
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- STAR Research Infrastructure, University of Calabria, Via Tito Flavio, 87036 Rende, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ida Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Mazza
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | | | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
4
|
Endoplasmic reticulum stress downregulates PGC-1α in skeletal muscle through ATF4 and an mTOR-mediated reduction of CRTC2. Cell Commun Signal 2022; 20:53. [PMID: 35428325 PMCID: PMC9012021 DOI: 10.1186/s12964-022-00865-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) downregulation in skeletal muscle contributes to insulin resistance and type 2 diabetes mellitus. Here, we examined the effects of endoplasmic reticulum (ER) stress on PGC-1α levels in muscle and the potential mechanisms involved. Methods The human skeletal muscle cell line LHCN-M2 and mice exposed to different inducers of ER stress were used. Results Palmitate- or tunicamycin-induced ER stress resulted in PGC-1α downregulation and enhanced expression of activating transcription factor 4 (ATF4) in human myotubes and mouse skeletal muscle. Overexpression of ATF4 decreased basal PCG-1α expression, whereas ATF4 knockdown abrogated the reduction of PCG-1α caused by tunicamycin in myotubes. ER stress induction also activated mammalian target of rapamycin (mTOR) in myotubes and reduced the nuclear levels of cAMP response element-binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), a positive modulator of PGC-1α transcription. The mTOR inhibitor torin 1 restored PCG-1α and CRTC2 protein levels. Moreover, siRNA against S6 kinase, an mTORC1 downstream target, prevented the reduction in the expression of CRTC2 and PGC-1α caused by the ER stressor tunicamycin. Conclusions Collectively, these findings demonstrate that ATF4 and the mTOR-CRTC2 axis regulates PGC-1α transcription under ER stress conditions in skeletal muscle, suggesting that its inhibition might be a therapeutic target for insulin resistant states. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00865-9.
Collapse
|
5
|
Arab Sadeghabadi Z, Abbasalipourkabir R, Mohseni R, Ziamajidi N. Chicoric acid does not restore palmitate-induced decrease in irisin levels in PBMCs of newly diagnosed patients with T2D and healthy subjects. Arch Physiol Biochem 2022; 128:532-538. [PMID: 31855067 DOI: 10.1080/13813455.2019.1702060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Targeting irisin as a myokine/adipokine is a new therapeutic approach in the improvement of insulin-resistance (IR) during type 2 diabetes (T2D). In present study we evaluated the effects of palmitate and chicoric acid (CA) on irisin production in peripheral blood mononuclear cells (PBMCs) of patients with T2D. This study performed on 20 newly diagnosed patients with T2D and 20 healthy subjects. PBMCs treated with palmitate and CA. PPARGC1A and FNDC5 genes expression assessed using qRT-PCR. Irisin levels in cell culture medium measured by ELISA. Palmitate decreased PPARGC1A and FNDC5 genes expression, as well as irisin levels in PBMCs from T2D and healthy volunteers. CA significantly restored palmitate-induced decrease in PPARGC1A gene expression in PBMCs of healthy subjects. Although, FNDC5 gene expression and irisin levels were not induced significantly by CA. In conclusion, palmitate decreases irisin production through down-regulation of PPARGC1A and FNDC5 expressions. However, CA does not effect on irisin pathway.Key pointsPalmitate reduced PPARGC1A and FNDC5 genes expression, as well as irisin secretion in PBMCs.Palmitate-induced decrease in PPARGC1A gene expression significantly has been reversed by CA in PBMCs of healthy subjects.CA did not return palmitate-decreased in FNDC5 gene expression and irisin levels in PBMCs.
Collapse
Affiliation(s)
- Zahra Arab Sadeghabadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
6
|
Rivera ME, Vaughan RA. Comparing the effects of palmitate, insulin, and palmitate-insulin co-treatment on myotube metabolism and insulin resistance. Lipids 2021; 56:563-578. [PMID: 34382222 DOI: 10.1002/lipd.12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
Previous studies have shown various metabolic stressors such as saturated fatty acids (SFA) and excess insulin promote insulin resistance in metabolically meaningful cell types (such as skeletal muscle). Additionally, these stressors have been linked with suppressed mitochondrial metabolism, which is also a common characteristic of skeletal muscle of diabetics. This study characterized the individual and combined effects of excess lipid and excess insulin on myotube metabolism and related metabolic gene and protein expression. C2C12 myotubes were treated with either 500 μM palmitate (PAM), 100 nM insulin (IR), or both (PAM-IR). qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Oxygen consumption was used to measure mitochondrial metabolism. Glycolytic metabolism and insulin-mediated glucose uptake were measured via extracellular acidification rate. Cellular lipid and mitochondrial content were measured using Nile Red and NAO staining, respectively. IR and PAM-IR treatments led to reductions in p-Akt expression. IR treatment reduced insulin mediated glucose metabolism while PAM and PAM-IR treatment showed increases with concurrent reductions in mitochondrial metabolism. All three treatments showed suppression in mitochondrial metabolism. PAM and PAM-IR also showed increases in glycolytic metabolism. While PAM and PAM-IR significantly increased lipid content, expression of inflammatory and lipogenic proteins were unaltered. Lastly, PAM-IR reduced BCAT2 protein expression, a regulator of BCAA metabolism. Both stressors independently reduced insulin signaling, mitochondrial function, and cell metabolism, however, only PAM-IR co-treatment significantly reduced the expression of regulators of metabolism not seen with individual stressors, suggesting an additive effect of stressors on metabolic programming.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, North Carolina, USA
| |
Collapse
|
7
|
Buccoliero C, Dicarlo M, Pignataro P, Gaccione F, Colucci S, Colaianni G, Grano M. The Novel Role of PGC1α in Bone Metabolism. Int J Mol Sci 2021; 22:ijms22094670. [PMID: 33925111 PMCID: PMC8124835 DOI: 10.3390/ijms22094670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.
Collapse
Affiliation(s)
- Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Patrizia Pignataro
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Francesco Gaccione
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (S.C.)
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (C.B.); (P.P.); (F.G.); (G.C.)
- Correspondence:
| |
Collapse
|
8
|
Ferchaud-Roucher V, Zair Y, Aguesse A, Krempf M, Ouguerram K. Omega 3 Improves Both apoB100-containing Lipoprotein Turnover and their Sphingolipid Profile in Hypertriglyceridemia. J Clin Endocrinol Metab 2020; 105:5893579. [PMID: 32805740 DOI: 10.1210/clinem/dgaa459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/08/2020] [Indexed: 01/17/2023]
Abstract
CONTEXT Evidence for an association between sphingolipids and metabolic disorders is increasingly reported. Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) improve apolipoprotein B100 (apoB100)-containing lipoprotein metabolism, but their effects on the sphingolipid content in lipoproteins remain unknown. OBJECTIVES In subjects with hypertriglyceridemia, we analyzed the effect of n-3 LC-PUFAs on the turnover apoB100-containing lipoproteins and on their sphingolipid content and looked for the possible association between these lipid levels and apoB100-containing lipoprotein turnover parameters. METHODS Six subjects underwent a kinetic study before and after n-3 supplementation for 2 months with 1 g of fish oil 3 times day containing 360 mg of eicosapentaenoic acid (EPA) and 240 mg of docosahexaenoic acid (DHA) in the form of triglycerides. We examined apoB100-containing lipoprotein turnover by primed perfusion labeled [5,5,5-2H3]-leucine and determined kinetic parameters using a multicompartmental model. We quantified sphingolipid species content in lipoproteins using mass spectrometry. RESULTS Supplementation decreased very low-density lipoprotein (VLDL), triglyceride, and apoB100 concentrations. The VLDL neutral and polar lipids showed increased n-3 LC-PUFA and decreased n-6 LC-PUFA content. The conversion rate of VLDL1 to VLDL2 and of VLDL2 to LDL was increased. We measured a decrease in total apoB100 production and VLDL1 production. Supplementation reduced the total ceramide concentration in VLDL while the sphingomyelin content in LDL was increased. We found positive correlations between plasma palmitic acid and VLDL ceramide and between VLDL triglyceride and VLDL ceramide, and inverse correlations between VLDL n-3 LC-PUFA and VLDL production. CONCLUSION Based on these results, we hypothesize that the improvement in apoB100 metabolism during n-3 LC-PUFA supplementation is contributed to by changes in sphingolipids.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Yassine Zair
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Audrey Aguesse
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Michel Krempf
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| | - Khadija Ouguerram
- University of Nantes, CHU Nantes, INRAe, UMR 1280 Physiopathology of Nutritional Adaptations, Nantes, France
- CRNH, West Human Nutrition Research Center, Nantes, France
| |
Collapse
|
9
|
Bitsi S. The chemokine CXCL16 can rescue the defects in insulin signaling and sensitivity caused by palmitate in C2C12 myotubes. Cytokine 2020; 133:155154. [PMID: 32535333 DOI: 10.1016/j.cyto.2020.155154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin signaling in the context of chronic low-grade inflammation in skeletal muscle.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Comparative Biomedical Sciences Department, Royal Veterinary College, London NW1 0TU, United Kingdom.
| |
Collapse
|
10
|
Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 2020; 11:2695. [PMID: 32483258 PMCID: PMC7264154 DOI: 10.1038/s41467-020-16537-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism. Obesity and type 2 diabetes (T2D) are metabolic disorders characterized by insulin resistance in skeletal muscle. Here, the authors map skeletal muscle enhancer elements dynamically regulated after exposure to free fatty acid palmitate or inflammatory cytokine TNFα and identify target genes involved in metabolic dysfunction in skeletal muscle.
Collapse
|
11
|
Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress. J Clin Med 2020; 9:jcm9051294. [PMID: 32369900 PMCID: PMC7288314 DOI: 10.3390/jcm9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is considered a well-known pathology that is determined without using alcohol and has emerged as a growing public health problem. Lipotoxicity is known to promote hepatocyte death, which, in the context of NAFLD, is termed lipoapoptosis. The severity of NAFLD correlates with the degree of hepatocyte lipoapoptosis. Protein–tyrosine phosphatases (PTP) including PTP1B and Low molecular weight PTP (LMPTP), are negative regulators of the insulin signaling pathway and are considered a promising therapeutic target in the treatment of diabetes. In this study, we hypothesized that the inhibition of PTP1B and LMPTP may potentially prevent hepatocyte apoptosis, mitochondrial dysfunction and endoplasmic reticulum (ER) stress onset, following lipotoxicity induced using a free fatty acid (FFA) mixture. Methods: HepG2 cells were cultured in the presence or absence of two PTP inhibitors, namely MSI-1436 and Compound 23, prior to palmitate/oleate overloading. Apoptosis, ER stress, oxidative stress, and mitochondrial dynamics were then evaluated by either MUSE or RT-qPCR analysis. Results: The obtained data demonstrate that the inhibition of PTP1B and LMPTP prevents apoptosis induced by palmitate and oleate in the HepG2 cell line. Moreover, mitochondrial dynamics were positively improved following inhibition of the enzyme, with concomitant oxidative stress reduction and ER stress abrogation. Conclusion: In conclusion, PTP’s inhibitory properties may be a promising therapeutic strategy for the treatment of FFA-induced lipotoxicity in the liver and ultimately in the management of the NAFLD condition.
Collapse
|
12
|
Suntar I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, Sobarzo-Sánchez E, Nabavi SF, Shirooie S, Dehpour AR, Xu S, Yousefi B, Majidinia M, Daglia M, D'Antona G, Nabavi SM. Natural products, PGC-1 α , and Duchenne muscular dystrophy. Acta Pharm Sin B 2020; 10:734-745. [PMID: 32528825 PMCID: PMC7276681 DOI: 10.1016/j.apsb.2020.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a transcriptional coactivator that binds to a diverse range of transcription factors. PPARγ coactivator 1 (PGC-1) coactivators possess an extensive range of biological effects in different tissues, and play a key part in the regulation of the oxidative metabolism, consequently modulating the production of reactive oxygen species, autophagy, and mitochondrial biogenesis. Owing to these findings, a large body of studies, aiming to establish the role of PGC-1 in the neuromuscular system, has shown that PGC-1 could be a promising target for therapies targeting neuromuscular diseases. Among these, some evidence has shown that various signaling pathways linked to PGC-1α are deregulated in muscular dystrophy, leading to a reduced capacity for mitochondrial oxidative phosphorylation and increased reactive oxygen species (ROS) production. In the light of these results, any intervention aimed at activating PGC-1 could contribute towards ameliorating the progression of muscular dystrophies. PGC-1α is influenced by different patho-physiological/pharmacological stimuli. Natural products have been reported to display modulatory effects on PPARγ activation with fewer side effects in comparison to synthetic drugs. Taken together, this review summarizes the current knowledge on Duchenne muscular dystrophy, focusing on the potential effects of natural compounds, acting as regulators of PGC-1α.
Collapse
Key Words
- AAV, adeno-associated virus
- AMP, adenosine monophosphate
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- ASO, antisense oligonucleotides
- ATF2, activating transcription factor 2
- ATP, adenosine triphosphate
- BMD, Becker muscular dystrophy
- COPD, chronic obstructive pulmonary disease
- CREB, cyclic AMP response element-binding protein
- CnA, calcineurin a
- DAGC, dystrophin-associated glycoprotein complex
- DGC, dystrophin–glycoprotein complex
- DMD, Duchenne muscular dystrophy
- DRP1, dynamin-related protein 1
- DS, Down syndrome
- ECM, extracellular matrix
- EGCG, epigallocatechin-3-gallate
- ERRα, estrogen-related receptor alpha
- FDA, U. S. Food and Drug Administration
- FGF, fibroblast growth factor
- FOXO1, forkhead box class-O1
- GABP, GA-binding protein
- GPX, glutathione peroxidase
- GSK3b, glycogen synthase kinase 3b
- HCT, hydrochlorothiazide
- HDAC, histone deacetylase
- HIF-1α, hypoxia-inducible factors
- IL, interleukin
- LDH, lactate dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- MD, muscular dystrophy
- MEF2, myocyte enhancer factor 2
- MSCs, mesenchymal stem cells
- Mitochondrial oxidative phosphorylation
- Muscular dystrophy
- MyoD, myogenic differentiation
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NMJ, neuromuscular junctions
- NO, nitric oxide
- NOS, NO synthase
- Natural product
- PDGF, platelet derived growth factor
- PGC-1, peroxisome proliferator-activated receptor γ coactivator 1
- PPARγ activation
- PPARγ, peroxisome proliferator-activated receptor γ
- Peroxisome proliferator-activated receptor γ coactivator 1α
- ROS, reactive oxygen species
- Reactive oxygen species
- SIRT1, silent mating type information regulation 2 homolog 1
- SOD, superoxide dismutase
- SPP1, secreted phosphoprotein 1
- TNF-α, tumor necrosis factor-α
- UCP, uncoupling protein
- VEGF, vascular endothelial growth factor
- cGMP, cyclic guanosine monophosphate
- iPSCs, induced pluripotent stem cells
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
|
13
|
Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules 2020; 10:biom10020347. [PMID: 32102312 PMCID: PMC7072614 DOI: 10.3390/biom10020347] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Julio Manuel Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Adrian Mario Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
- IRSIN, 28040 Madrid, Spain
| | - Ana Belen Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-550-48-00
| |
Collapse
|
14
|
Ye Z, Wang S, Zhang C, Zhao Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne) 2020; 11:617. [PMID: 33013697 PMCID: PMC7506139 DOI: 10.3389/fendo.2020.00617] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
As important metabolic substrates, branched-chain amino acids (BCAAs) and fatty acids (FAs) participate in many significant physiological processes, such as mitochondrial biogenesis, energy metabolism, and inflammation, along with intermediate metabolites generated in their catabolism. The increased levels of BCAAs and fatty acids can lead to mitochondrial dysfunction by altering mitochondrial biogenesis and adenosine triphosphate (ATP) production and interfering with glycolysis, fatty acid oxidation, the tricarboxylic acid cycle (TCA) cycle, and oxidative phosphorylation. BCAAs can directly activate the mammalian target of rapamycin (mTOR) signaling pathway to induce insulin resistance, or function together with fatty acids. In addition, elevated levels of BCAAs and fatty acids can activate the canonical nuclear factor-κB (NF-κB) signaling pathway and inflammasome and regulate mitochondrial dysfunction and metabolic disorders through upregulated inflammatory signals. This review provides a comprehensive summary of the mechanisms through which BCAAs and fatty acids modulate energy metabolism, insulin sensitivity, and inflammation synergistically.
Collapse
Affiliation(s)
- Zhenhong Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Siyu Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Chunmei Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yue Zhao
| |
Collapse
|
15
|
Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res 2019; 68:915-932. [PMID: 31363792 PMCID: PMC6813288 DOI: 10.1007/s00011-019-01273-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Palmitic acid is a saturated fatty acid whose blood concentration is elevated in obese patients. This causes inflammatory responses, where toll-like receptors (TLR), TLR2 and TLR4, play an important role. Nevertheless, palmitic acid is not only a TLR agonist. In the cell, this fatty acid is converted into phospholipids, diacylglycerol and ceramides. They trigger the activation of various signaling pathways that are common for LPS-mediated TLR4 activation. In particular, metabolic products of palmitic acid affect the activation of various PKCs, ER stress and cause an increase in ROS generation. Thanks to this, palmitic acid also strengthens the TLR4-induced signaling. In this review, we discuss the mechanisms of inflammatory response induced by palmitic acid. In particular, we focus on describing its effect on ER stress and IRE1α, and the mechanisms of NF-κB activation. We also present the mechanisms of inflammasome NLRP3 activation and the effect of palmitic acid on enhanced inflammatory response by increasing the expression of FABP4/aP2. Finally, we focus on the consequences of inflammatory responses, in particular, the effect of TNF-α, IL-1β and IL-6 on insulin resistance. Due to the high importance of macrophages and the production of proinflammatory cytokines by them, this work mainly focuses on these cells.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Molecular Biology, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland.
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, School of Medicine in Katowice, Medical University of Silesia, Medyków 18 St., 40-752, Katowice, Poland
| |
Collapse
|
16
|
Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol Reduces Oxidative Stress and Apoptosis in Podocytes via Sir2-Related Enzymes, Sirtuins1 (SIRT1)/Peroxisome Proliferator-Activated Receptor γ Co-Activator 1α (PGC-1α) Axis. Med Sci Monit 2019; 25:1220-1231. [PMID: 30765684 PMCID: PMC6383436 DOI: 10.12659/msm.911714] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background PGC-1α can be activated by deacetylation reactions catalyzed by SIRT1. Resveratrol is currently known as a potent activator of SIRT1. However, it is unknown whether the renal-protective effect of resveratrol is further related to activation of the podocyte SIRT1/PGC-1α pathway. Material/Methods High glucose was used to stimulate mouse podocytes. Resveratrol and PGC-1α siRNA transfection were used to perform co-intervention treatments. The protein and mRNA expression levels of SIRT1, PGC-1α, NRF1, and TFAM were detect by immunofluorescence, Western blot analysis, and qRT-PCR in the podocytes, respectively. DCHF-DA and MitoSOX™ staining were used to monitor the total ROS and mitochondrial ROS levels, respectively. The specific activities of complexes I and III were measured using Complex I and III Assay Kits. Mitochondrial membrane potential and cell apoptosis were measured using JC-1 staining and Annexin V-FITC/PI double-staining, respectively. Results We found that high-glucose stimulation results in time-dependent decreases in the expression of SIRT1, PGC-1α, and its downstream genes NRF1 and mitochondrial transcription factor A (TFAM) for mouse podocytes, and increases ROS levels in cells and mitochondria. Moreover, the expression of nephrin was downregulated and the cell apoptotic rate was increased. Resveratrol treatment can improve abnormalities caused by high-glucose stimulation. In addition, it can also reduce the release of mitochondrial cytochrome C and DIABLO proteins to the cytoplasm and increase respiratory chain complex I and III activity and mitochondrial membrane potential. Conclusions Resveratrol can reduce the oxidative damage and apoptosis of podocytes induced by high-glucose stimulation via SIRT1/PGC-1α-mediated mitochondrial protection.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland)
| | - Yanqing Chi
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland)
| | - Yunzhuo Ren
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland).,Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Chunyang Du
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland).,Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yonghong Shi
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland).,Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
17
|
Johnson MA, Gannon NP, Schnuck JK, Lyon ES, Sunderland KL, Vaughan RA. Leucine, Palmitate, or Leucine/Palmitate Cotreatment Enhances Myotube Lipid Content and Oxidative Preference. Lipids 2019; 53:1043-1057. [DOI: 10.1002/lipd.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/23/2018] [Accepted: 12/23/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Michele A. Johnson
- Department of Exercise Science; High Point University; One University Pkwy, High Point NC 27260 USA
| | - Nicholas P. Gannon
- School of Medicine; Medical College of Wisconsin; 8701 W Watertown Plank Rd, Wauwatosa WI 53226 USA
| | - Jamie K. Schnuck
- School of Medicine; Medical College of Wisconsin; 8701 W Watertown Plank Rd, Wauwatosa WI 53226 USA
| | - Emily S. Lyon
- Department of Exercise Science; High Point University; One University Pkwy, High Point NC 27260 USA
| | - Kyle L. Sunderland
- Department of Exercise Science; High Point University; One University Pkwy, High Point NC 27260 USA
| | - Roger A. Vaughan
- Department of Exercise Science; High Point University; One University Pkwy, High Point NC 27260 USA
| |
Collapse
|
18
|
Zhang T, Chi Y, Kang Y, Lu H, Niu H, Liu W, Li Y. Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress. J Cell Physiol 2018; 234:5033-5043. [PMID: 30187480 DOI: 10.1002/jcp.27306] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Excessive generation of mitochondrial reactive oxygen species (ROS) is considered to be initiating event in the development of diabetic nephropathy (DN). Mitochondrial biosynthesis mediated by coactivator PGC-1α and its downstream transcription factors NRF1 and TFAM may be a key target in maintaining mitochondrial function. Resveratrol (RESV), a natural polyphenolic antioxidant, is a potent SIRT1 agonist. In this study we established diabetes mouse and podocyte exposed to high glucose as in vivo and in vitro models to investigate the efficacy and mechanism of RESV on renoprotection. We found that RESV alleviated proteinuria of diabetic mice, decreased malondialdehyde content while increased Mn-SOD activity in renal cortex, inhibited the apoptosis of glomerular podocytes and renal tubular epithelial cells, ameliorated pathological manifestations, and restored the expression of SIRT1 and PGC-1α in renal tissues of DN mice. In podocytes exposed to high glucose, RESV inhibited excessive ROS production and apoptosis. In addition, RESV decreased mitochondrial ROS production, improved respiratory chain complex I and III activity, elevated mitochondrial membrane potential, and inhibited the release of Cyto C and Diablo in the mitochondria into the cytoplasm. Taken together, our findings suggest that RESV ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| | - Yanqing Chi
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| | - Yingli Kang
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| | - Hua Lu
- Department of Nephrology, Xingtai People's Hospital, Xingtai, China
| | - Honglin Niu
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| | - Wei Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| | - Ying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Kidney Diseases, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links Between Obesity-Induced Brain Insulin Resistance, Brain Mitochondrial Dysfunction, and Dementia. Front Endocrinol (Lausanne) 2018; 9:496. [PMID: 30233495 PMCID: PMC6127253 DOI: 10.3389/fendo.2018.00496] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
It is widely recognized that obesity and associated metabolic changes are considered a risk factor to age-associated cognitive decline. Inflammation and increased oxidative stress in peripheral areas, following obesity, are patently the major contributory factors to the degree of the severity of brain insulin resistance as well as the progression of cognitive impairment in the obese condition. Numerous studies have demonstrated that the alterations in brain mitochondria, including both functional and morphological changes, occurred following obesity. Several studies also suggested that brain mitochondrial dysfunction may be one of underlying mechanism contributing to brain insulin resistance and cognitive impairment in the obese condition. Thus, this review aimed to comprehensively summarize and discuss the current evidence from various in vitro, in vivo, and clinical studies that are associated with obesity, brain insulin resistance, brain mitochondrial dysfunction, and cognition. Contradictory findings and the mechanistic insights about the roles of obesity, brain insulin resistance, and brain mitochondrial dysfunction on cognition are also presented and discussed. In addition, the potential therapies for obese-insulin resistance are reported as the therapeutic strategies which exert the neuroprotective effects in the obese-insulin resistant condition.
Collapse
Affiliation(s)
- Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Siriporn C. Chattipakorn ;
| |
Collapse
|
20
|
Li D, Wang X, Huang Q, Li S, Zhou Y, Li Z. Cardioprotection of CAPE-oNO 2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro. Redox Biol 2017; 15:62-73. [PMID: 29220696 PMCID: PMC5725281 DOI: 10.1016/j.redox.2017.11.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) could ameliorate myocardial ischemia/reperfusion injury (MIRI) by various mechanisms, but there hadn’t been any reports on that CAPE could regulate silent information regulator 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro phenethyl ester (CAPE-oNO2) on MIRI and the possible mechanism based on the positive control of CAPE. The SD rats were subjected to left coronary artery ischemia /reperfusion (IR) and the H9c2 cell cultured in hypoxia/reoxygenation (HR) to induce the MIRI model. Prior to the procedure, vehicle, CAPE or CAPE-oNO2 were treated in the absence or presence of a SIRT1 inhibitor nicotinamide (NAM) and an eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME). In vivo, CAPE and CAPE-oNO2 conferred a cardioprotective effect as shown by reduced myocardial infarct size, cardiac marker enzymes and structural abnormalities. From immunohistochemical and sirius red staining, above two compounds ameliorated the TNF-α release and collagen deposition of IR rat hearts. They could agitate SIRT1 and eNOS expression, and consequently enhance NO release and suppress NF-κB signaling, to reduce the malondialdehyde content and cell necrosis. In vitro, they could inhibit HR-induced H9c2 cell apoptosis and ROS generation by activating SIRT1/eNOS pathway and inhabiting NF-κB expression. Emphatically, CAPE-oNO2 presented the stronger cardioprotection than CAPE both in vivo and in vitro. However, NAM and L-NAME eliminated the CAPE-oNO2-mediated cardioprotection by restraining SIRT1 and eNOS expression, respectively. It suggested that CAPE-oNO2 ameliorated MIRI by suppressing the oxidative stress, inflammatory response, fibrosis and necrocytosis via the SIRT1/eNOS/NF-κB pathway. CAPE-oNO2 exerting cardioprotective potential was firstly synthesized. IR-induced ROS increase aggravates inflammation, fibrosis and necrocytosis. The SIRT1/eNOS/NF-κB pathway is contributed to MIRI both in vivo and in vitro.
Collapse
Affiliation(s)
- Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road Beibei, Chongqing 400716, PR China
| | - Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road Beibei, Chongqing 400716, PR China
| | - Qin Huang
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road Beibei, Chongqing 400716, PR China
| | - Sai Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road Beibei, Chongqing 400716, PR China
| | - You Zhou
- College of Biotechnology, Southwest University, Chongqing 400716, PR China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road Beibei, Chongqing 400716, PR China.
| |
Collapse
|
21
|
Supruniuk E, Mikłosz A, Chabowski A. The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol 2017; 8:923. [PMID: 29187824 PMCID: PMC5694779 DOI: 10.3389/fphys.2017.00923] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Botteri G, Montori M, Gumà A, Pizarro J, Cedó L, Escolà-Gil JC, Li D, Barroso E, Palomer X, Kohan AB, Vázquez-Carrera M. VLDL and apolipoprotein CIII induce ER stress and inflammation and attenuate insulin signalling via Toll-like receptor 2 in mouse skeletal muscle cells. Diabetologia 2017; 60:2262-2273. [PMID: 28835988 PMCID: PMC6078195 DOI: 10.1007/s00125-017-4401-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
AIM/HYPOTHESIS Here, our aim was to examine whether VLDL and apolipoprotein (apo) CIII induce endoplasmic reticulum (ER) stress, inflammation and insulin resistance in skeletal muscle. METHODS Studies were conducted in mouse C2C12 myotubes, isolated skeletal muscle and skeletal muscle from transgenic mice overexpressing apoCIII. RESULTS C2C12 myotubes exposed to VLDL showed increased levels of ER stress and inflammatory markers whereas peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and AMP-activated protein kinase (AMPK) levels were reduced and the insulin signalling pathway was attenuated. The effects of VLDL were also observed in isolated skeletal muscle incubated with VLDL. The changes caused by VLDL were dependent on extracellular signal-regulated kinase (ERK) 1/2 since they were prevented by the ERK1/2 inhibitor U0126 or by knockdown of this kinase by siRNA transfection. ApoCIII mimicked the effects of VLDL and its effects were also blocked by ERK1/2 inhibition, suggesting that this apolipoprotein was responsible for the effects of VLDL. Skeletal muscle from transgenic mice overexpressing apoCIII showed increased levels of some ER stress and inflammatory markers and increased phosphorylated ERK1/2 levels, whereas PGC-1α levels were reduced, confirming apoCIII effects in vivo. Finally, incubation of myotubes with a neutralising antibody against Toll-like receptor 2 abolished the effects of apoCIII on ER stress, inflammation and insulin resistance, indicating that the effects of apoCIII were mediated by this receptor. CONCLUSIONS/INTERPRETATION These results imply that elevated VLDL in diabetic states can contribute to the exacerbation of insulin resistance by activating ERK1/2 through Toll-like receptor 2.
Collapse
Affiliation(s)
- Gaia Botteri
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Marta Montori
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Anna Gumà
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Biochemistry and Molecular Biology and IBUB, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Lídia Cedó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Emma Barroso
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Biomedicina de la Universidad de Barcelona (IBUB), University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
23
|
Oleate Prevents Palmitate-Induced Atrophy via Modulation of Mitochondrial ROS Production in Skeletal Myotubes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2739721. [PMID: 28947926 PMCID: PMC5602654 DOI: 10.1155/2017/2739721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022]
Abstract
Accumulation of saturated fatty acids contributes to lipotoxicity-related insulin resistance and atrophy in skeletal muscle. Conversely, unsaturated fatty acids like docosahexaenoic acid were proven to preserve muscle mass. However, it is not known if the most common unsaturated oleate will protect skeletal myotubes against palmitate-mediated atrophy, and its specific mechanism remains to be elucidated. Therefore, we investigated the effects of oleate on atrophy-related factors in palmitate-conditioned myotubes. Exposure of myotubes to palmitate, but not to oleate, led to an induction of fragmented nuclei, myotube loss, atrophy, and mitochondrial superoxide in a dose-dependent manner. Treatment of oleate to myotubes attenuated production of palmitate-induced mitochondrial superoxide in a dose-dependent manner. The treatment of oleate or MitoTEMPO to palmitate-conditioned myotubes led to inhibition of palmitate-induced mRNA expression of proinflammatory (TNF-α and IL6), mitochondrial fission (Drp1 and Fis1), and atrophy markers (myostatin and atrogin1). In accordance with the gene expression data, our immunocytochemistry experiment demonstrated that oleate and MitoTEMPO prevented or attenuated palmitate-mediated myotube shrinkage. These results provide a mechanism indicating that oleate prevents palmitate-mediated atrophy via at least partial modulation of mitochondrial superoxide production.
Collapse
|
24
|
Lu J, Wang QH, Huang LH, Dong HY, Lin LJ, Tan JM. Correlation of CDC42 Activity with Cell Proliferation and Palmitate-Mediated Cell Death in Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells. Stem Cells Dev 2017; 26:1283-1292. [PMID: 28548571 DOI: 10.1089/scd.2017.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RHO GTPases regulate cell migration, cell-cycle progression, and cell survival in response to extracellular stimuli. However, the regulatory effects of RHO GTPases in mesenchymal stromal cells (MSCs) are unclear. Herein, we show that CDC42 acts as an essential factor in regulating cell proliferation and also takes part in lipotoxic effects of palmitate in human umbilical cord Wharton's jelly derived MSCs (hWJ-MSCs). Cultured human bone marrow, adipose tissue, and hWJ-MSC derived cells had varying pro-inflammatory cytokine secretion levels and cell death rates when treated by palmitate. Strikingly, the proliferation rate of these types of MSCs correlated with their sensitivity to palmitate. A glutathione-S-transferase pull-down assay demonstrated that hWJ-MSCs had the highest activation of CDC42, which was increased by palmitate treatment in a time-dependent manner. We demonstrated that palmitate-induced synthesis of pro-inflammatory cytokines and cell death was attenuated by shRNA against CDC42. In CDC42 depleted hWJ-MSCs, population-doubling levels were notably decreased, and phosphorylation of ERK1/2 and p38 MAPK was reduced. Our data therefore suggest a mechanistic role for CDC42 activity in hWJ-MSC proliferation and identified CDC42 activity as a promising pharmacological target for ameliorating lipotoxic cell dysfunction and death.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Qing-Hua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Liang-Hu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Hui-Yue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Ling-Jing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Jian-Ming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| |
Collapse
|
25
|
Capel F, Cheraiti N, Acquaviva C, Hénique C, Bertrand-Michel J, Vianey-Saban C, Prip-Buus C, Morio B. Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2000-2010. [PMID: 27725263 DOI: 10.1016/j.bbalip.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/10/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023]
Abstract
Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (-47 and -28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (-30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA β-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial β-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ.
Collapse
Affiliation(s)
- Frédéric Capel
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Naoufel Cheraiti
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme, Centre de Biologie et Pathologie Est, CHU de Lyon, France.
| | - Carole Hénique
- Institut Cochin, Département d'Endocrinologie, Métabolisme and Diabète, INSERM U1016/CNRS UMR8104/UMR-S8104, Bâtiment Faculté, 24 rue du faubourg Saint Jacques, 75014 Paris, France.
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic, MetaboHUB, INSERM UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France University of Toulouse, UMR1048, Paul Sabatier University, France.
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme, Centre de Biologie et Pathologie Est, CHU de Lyon, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme and Diabète, INSERM U1016/CNRS UMR8104/UMR-S8104, Bâtiment Faculté, 24 rue du faubourg Saint Jacques, 75014 Paris, France.
| | - Béatrice Morio
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand CEDEX 1, France; INRA UMR1397, Laboratoire CarMeN, Inserm UMR1060, Université Lyon 1, INSA de Lyon, Faculté de Médecine Lyon Sud, BP 12, 165 Chemin du Grand Revoyet, 69921 Oullins Cedex, France.
| |
Collapse
|
26
|
Maruyama H, Kiyono S, Kondo T, Sekimoto T, Yokosuka O. Palmitate-induced Regulation of PPARγ via PGC1α: a Mechanism for Lipid Accumulation in the Liver in Nonalcoholic Fatty Liver Disease. Int J Med Sci 2016; 13:169-78. [PMID: 26941577 PMCID: PMC4773281 DOI: 10.7150/ijms.13581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
The aim was to examine the effect of free fatty acids on the regulation of PPARγ-PGC1α pathway, and the effect of PPARγ/PGC1α in NAFLD. The mRNA and protein expression of PGC1α and phospho/total PPARγ were examined in Huh7 cells after the palmitate/oleate treatment with/without the transfection with siRNA against PGC1a. The palmitate content, mRNA and protein expression of PGC1α and PPARγ in the liver were examined in the control and NAFLD mice. Palmitate (500 μM), but not oleate, increased protein expression of PGC1α and phospho PPARγ (PGC1α, 1.42-fold, P=0.038; phospho PPARγ, 1.56-fold, P=0.022). The palmitate-induced PPARγ mRNA expression was reduced after the transfection (0.46‑fold), and the protein expressions of PGC1α (0.52-fold, P=0.019) and phospho PPARγ (0.43-fold, P=0.011) were suppressed in siRNA-transfected cells. The palmitate (12325.8 ± 1758.9 μg/g vs. 6245.6 ± 1182.7 μg/g, p=0.002), and mRNA expression of PGC1α (11.0 vs. 5.5, p=0.03) and PPARγ (4.3 vs. 2.2, p=0.0001) in the liver were higher in high-triglyceride liver mice (>15.2 mg/g) than in low-triglyceride liver mice (<15.2 mg/g). The protein expressions of both PGC1α and PPARγ were higher in the NAFLD group than in the controls (PGC1α, 1.41-fold, P=0.035; PPARγ, 1.39-fold, P=0.042), and were higher in the high-triglyceride liver group (PGC1α, 1.52-fold, p=0.03; PPARγ, 1.22-fold, p=0.05) than in the low-triglyceride liver group. In conclusion, palmitate appear to up-regulate PPARγ via PGC1α in Huh7 cells, and both PGC1α and PPARγ are up-regulated in the NAFLD mice liver, suggesting an effect on lipid metabolism leading to intrahepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Takayuki Kondo
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Tadashi Sekimoto
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku, Chiba, 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuou-ku, Chiba, 260-8670, Japan
| |
Collapse
|
27
|
A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death Dis 2015; 6:e1944. [PMID: 26512955 PMCID: PMC5399178 DOI: 10.1038/cddis.2015.306] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.
Collapse
|
28
|
Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin. Biochimie 2015; 118:141-50. [PMID: 26344902 DOI: 10.1016/j.biochi.2015.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
Excessive saturated free fatty acids (SFFAs; e.g. palmitate) in blood are a pathogenic factor in diabetes, obesity, cardiovascular disease and liver failure. In contrast, monounsaturated free fatty acids (e.g. oleate) prevent the toxic effect of SFFAs in various types of cells. The mechanism is poorly understood and involvement of the mTOR complex is untested. In the present study, we demonstrate that oleate preconditioning, as well as coincubation, completely prevented palmitate-induced markers of inflammatory signaling, insulin resistance and cytotoxicity in C2C12 myotubes. We then examined the effect of palmitate and/or oleate on the mammalian target of rapamycin (mTOR) signal path and whether their link is mediated by AMP-activated protein kinase (AMPK). Palmitate decreased the phosphorylation of raptor and 4E-BP1 while increasing the phosphorylation of p70S6K. Palmitate also inhibited phosphorylation of AMPK, but did not change the phosphorylated levels of mTOR or rictor. Oleate completely prevented the palmitate-induced dysregulation of mTOR components and restored pAMPK whereas alone it produced no signaling changes. To understand this more, we show activation of AMPK by metformin also prevented palmitate-induced changes in the phosphorylations of raptor and p70S6K, confirming that the mTORC1/p70S6K signaling pathway is responsive to AMPK activity. By contrast, inhibition of AMPK phosphorylation by Compound C worsened palmitate-induced changes and correspondingly blocked the protective effect of oleate. Finally, metformin modestly attenuated palmitate-induced insulin resistance and cytotoxicity, as did oleate. Our findings indicate that palmitate activates mTORC1/p70S6K signaling by AMPK inhibition and phosphorylation of raptor. Oleate reverses these effects through a metformin-like facilitation of AMPK.
Collapse
|
29
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Khan MP, Singh AK, Joharapurkar AA, Yadav M, Shree S, Kumar H, Gurjar A, Mishra JS, Tiwari MC, Nagar GK, Kumar S, Ramachandran R, Sharan A, Jain MR, Trivedi AK, Maurya R, Godbole MM, Gayen JR, Sanyal S, Chattopadhyay N. Pathophysiological Mechanism of Bone Loss in Type 2 Diabetes Involves Inverse Regulation of Osteoblast Function by PGC-1α and Skeletal Muscle Atrogenes: AdipoR1 as a Potential Target for Reversing Diabetes-Induced Osteopenia. Diabetes 2015; 64:2609-23. [PMID: 25633418 DOI: 10.2337/db14-1611] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes is associated with increased fracture risk and delayed fracture healing; the underlying mechanism, however, remains poorly understood. We systematically investigated skeletal pathology in leptin receptor-deficient diabetic mice on a C57BLKS background (db). Compared with wild type (wt), db mice displayed reduced peak bone mass and age-related trabecular and cortical bone loss. Poor skeletal outcome in db mice contributed high-glucose- and nonesterified fatty acid-induced osteoblast apoptosis that was associated with peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) downregulation and upregulation of skeletal muscle atrogenes in osteoblasts. Osteoblast depletion of the atrogene muscle ring finger protein-1 (MuRF1) protected against gluco- and lipotoxicity-induced apoptosis. Osteoblast-specific PGC-1α upregulation by 6-C-β-d-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF), an adiponectin receptor 1 (AdipoR1) agonist, as well as metformin in db mice that lacked AdipoR1 expression in muscle but not bone restored osteopenia to wt levels without improving diabetes. Both GTDF and metformin protected against gluco- and lipotoxicity-induced osteoblast apoptosis, and depletion of PGC-1α abolished this protection. Although AdipoR1 but not AdipoR2 depletion abolished protection by GTDF, metformin action was not blocked by AdipoR depletion. We conclude that PGC-1α upregulation in osteoblasts could reverse type 2 diabetes-associated deterioration in skeletal health.
Collapse
Affiliation(s)
- Mohd Parvez Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Abhishek Kumar Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | - Manisha Yadav
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sonal Shree
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anagha Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jay Sharan Mishra
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mahesh Chandra Tiwari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Geet Kumar Nagar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anupam Sharan
- Vinayak Cosmetic Surgery & Laser Centre, Lucknow, Uttar Pradesh, India
| | | | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Madan Madhav Godbole
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jiaur Rahaman Gayen
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
31
|
Rosiglitazone, but not epigallocatechin-3-gallate, attenuates the decrease in PGC-1α protein levels in palmitate-induced insulin-resistant C2C12 cells. Lipids 2015; 50:521-8. [PMID: 25893813 DOI: 10.1007/s11745-015-4016-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/27/2015] [Indexed: 01/29/2023]
Abstract
Alteration of lipid metabolism is an important mechanism for the treatment of insulin resistance. PGC-1α, a key regulator of mitochondrial biogenesis and function, plays an important role in the improvement of insulin sensitivity by increasing fatty acids β-oxidation. In the present study, the effects of epigallocatechin-3-gallate (EGCG), an anti-obesity agent and enhancer of lipid catabolism, on PGC-1α protein expression was examined and compared with anti-diabetic drug rosiglitazone (RGZ). After differentiation of C2C12 myoblasts to myotubes, insulin resistance was induced by palmitate treatment. Then the expression of the PGC-1a gene and glucose uptake were evaluated before and after treatment with RGZ and EGCG. Palmitate treatment significantly decreased PGC-1α protein expression in C2C12 cells (P < 0.05). RGZ could restore the expression of PGC-1α in palmitate treated cells (P > 0.05), while EGCG had no significant effect on the expression of this gene (P < 0.05). RGZ and EGCG significantly improved glucose uptake (by 2- and 1.54-fold, respectively) in myotubes treated with palmitate. These data suggest that RGZ and EGCG both exert their anti-diabetic activity by increasing insulin sensitivity, but with different molecular mechanisms. This effect of RGZ, unlike EGCG, is mediated, at least partly, by increasing PGC-1α protein expression.
Collapse
|
32
|
Lassance L, Haghiac M, Minium J, Catalano P, Hauguel-de Mouzon S. Obesity-induced down-regulation of the mitochondrial translocator protein (TSPO) impairs placental steroid production. J Clin Endocrinol Metab 2015; 100:E11-8. [PMID: 25322273 PMCID: PMC4283024 DOI: 10.1210/jc.2014-2792] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Low concentrations of estradiol and progesterone are hallmarks of adverse pregnancy outcomes as is maternal obesity. During pregnancy, placental cholesterol is the sole source of sex steroids. Cholesterol trafficking is the limiting step in sex steroid biosynthesis and is mainly mediated by the translocator protein (TSPO), present in the mitochondrial outer membrane. OBJECTIVE The objective of the study was to investigate the effects of maternal obesity in placental sex steroid biosynthesis and TSPO regulation. DESIGN/PARTICIPANTS One hundred forty-four obese (body mass index 30-35 kg/m(2)) and 90 lean (body mass index 19-25 kg/m(2)) pregnant women (OP and LP, respectively) recruited at scheduled term cesarean delivery. Placenta and maternal blood were collected. SETTING This study was conducted at MetroHealth Medical Center (Cleveland, Ohio). MAIN OUTCOME MEASURES Maternal metabolic components (fasting glucose, insulin, leptin, estradiol, progesterone, and total cholesterol) and placental weight were measured. Placenta (mitochondria and membranes separated) and cord blood cholesterol values were verified. The expression and regulation of TSPO and mitochondrial function were analyzed. RESULTS Plasma estradiol and progesterone concentrations were significantly lower (P < .04) in OP as compared with LP women. Maternal and cord plasma cholesterol were not different between groups. Placental citrate synthase activity and mitochondrial DNA, markers of mitochondrial density, were unchanged, but the mitochondrial cholesterol concentrations were 40% lower in the placenta of OP. TSPO gene and protein expressions were decreased 2-fold in the placenta of OP. In vitro trophoblast activation of the innate immune pathways with lipopolysaccharide and long-chain saturated fatty acids reduced TSPO expression by 2- to 3-fold (P < .05). CONCLUSION These data indicate that obesity in pregnancy impairs mitochondrial steroidogenic function through the negative regulation of mitochondrial TSPO.
Collapse
Affiliation(s)
- Luciana Lassance
- Department of Reproductive Biology, Center for Reproductive Health, MetroHealth Medical Center, Cleveland, Ohio 44109-1998
| | | | | | | | | |
Collapse
|
33
|
Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther 2014; 352:346-57. [PMID: 25503387 DOI: 10.1124/jpet.114.221085] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1β) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis.
Collapse
Affiliation(s)
- Joshua A Smith
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - L Jay Stallons
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Justin B Collier
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Kenneth D Chavin
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
34
|
Tsuchiya A, Nagaya H, Kanno T, Nishizaki T. Oleic acid stimulates glucose uptake into adipocytes by enhancing insulin receptor signaling. J Pharmacol Sci 2014; 126:337-43. [PMID: 25391857 DOI: 10.1254/jphs.14182fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The present study investigated cis-unsaturated free fatty acid (FFA)-regulated glucose uptake. In the cell-free assay of protein tyrosine phosphatase 1B (PTP1B), cis-unsaturated FFAs such as linoleic, linolenic, and oleic acid significantly suppressed PTP1B activity in a concentration (1 - 100 μM)-dependent manner, with the highest potential for oleic acid. Oleic acid (1 μM) stimulated insulin (0.1 nM)-induced phosphorylation of the insulin receptor at Tyr1185 and increased insulin (0.1 nM)-induced phosphorylation of Akt at Thr308 and Ser473 in differentiated 3T3-L1-GLUT4myc adipocytes. In the föerster resonance energy transfer analysis, oleic acid activated Rac1 in PC-12 cells, which is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1) inhibitor BX912, or the Akt inhibitor MK2206. Oleic acid (1 μM) significantly increased insulin (0.1 nM)-stimulated glucose uptake in 3T3-L1-GLUT4myc adipocytes, although oleic acid by itself had no effect on the glucose uptake. Taken together, the results of the present study show that oleic acid enhances insulin receptor signaling through a pathway along an insulin receptor/PI3K/PDK1/Akt/Rac1 axis in association with PTP1B inhibition and facilitates insulin-induced glucose uptake into adipocytes.
Collapse
Affiliation(s)
- Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
35
|
Lager S, Jansson T, Powell TL. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. Am J Physiol Cell Physiol 2014; 307:C738-44. [PMID: 25143349 DOI: 10.1152/ajpcell.00196.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.
Collapse
Affiliation(s)
- Susanne Lager
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas Jansson
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Theresa L Powell
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
36
|
Zhang M, Niu X, Hu J, Yuan Y, Sun S, Wang J, Yu W, Wang C, Sun D, Wang H. Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions. PLoS One 2014; 9:e110580. [PMID: 25313561 PMCID: PMC4196990 DOI: 10.1371/journal.pone.0110580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/15/2014] [Indexed: 01/04/2023] Open
Abstract
Aim The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions. Methods Primary cardiomyocytes which were isolated from neonatal mouse were randomized to be treated with lentivirus carrying Lin28a siRNA, Lin28acDNA 72 h before H/R (9 h/2 h). Cardiomyocytes biomarkers release (LDH and CK), cardiomyocytes apoptosis, mitochondria biogenesis and morphology, intracellular reactive oxygen species (ROS) production, ATP content and inflammatory cytokines levels after H/R injury in high glucose/high fat conditions were compared between groups. The target proteins of Lin28a were examined by western blot analysis. Results Our results revealed that Lin28a cDNA transfection (overexpression) significantly inhibited cardiomyocyte apoptotic index, improved mitochondria biogenesis, increased ATP production and reduced ROS production as compared with the H/R group in HG/HF conditions. Lin28a siRNA transfection (knockdown) rendered the cardiomyocytes more susceptible to H/R injury as evidenced by increased apoptotic index, impaired mitochondrial biogenesis, decreased ATP production and increased ROS level. Interestingly, these effects of Lin28a were blocked by pretreatment with the PI3K inhibitor wortmannin. Lin28a overexpression increased, while Lin28a knockdown inhibited IGF1R, Nrf-1, Tfam, p-IRS-1, p-Akt, p-mTOR, p-p70s6k, p-AMPK expression levels after H/R injury in HG/HF conditions. Moreover, pretreatment with wortmannin abolished the effects of Lin28a on the expression levels of p-AKT, p-mTOR, p-p70s6k, p-AMPK. Conclusions The present results suggest that Lin28a inhibits cardiomyocytes apoptosis by enhancing mitochondrial biogenesis and function under high glucose/high fat conditions. The mechanism responsible for the effects of Lin28a is associated with the PI3K/Akt dependent pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianqiang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuan Yuan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuhong Sun
- Department of Cardiology, Corps Hospital, Chinese People’s Armed Police Forces, Xi’an, China
| | - Jiaxing Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjun Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chen Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (DS); (HW)
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (DS); (HW)
| |
Collapse
|
37
|
Teodoro BG, Baraldi FG, Sampaio IH, Bomfim LHM, Queiroz AL, Passos MA, Carneiro EM, Alberici LC, Gomis R, Amaral FG, Cipolla-Neto J, Araújo MB, Lima T, Akira Uyemura S, Silveira LR, Vieira E. Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle. J Pineal Res 2014; 57:155-67. [PMID: 24981026 DOI: 10.1111/jpi.12157] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/27/2014] [Indexed: 01/02/2023]
Abstract
Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.
Collapse
Affiliation(s)
- Bruno G Teodoro
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, Brazil; Federal Institute of Science Education and Technology of São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gorgani-Firuzjaee S, Ahmadi S, Meshkani R. Palmitate induces SHIP2 expression via the ceramide-mediated activation of NF-κB, and JNK in skeletal muscle cells. Biochem Biophys Res Commun 2014; 450:494-9. [DOI: 10.1016/j.bbrc.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 11/17/2022]
|
39
|
Li J, Ke W, Zhou Q, Wu Y, Luo H, Zhou H, Yang B, Guo Y, Zheng Q, Zhang Y. Tumour necrosis factor-α promotes liver ischaemia-reperfusion injury through the PGC-1α/Mfn2 pathway. J Cell Mol Med 2014; 18:1863-73. [PMID: 24898700 PMCID: PMC4196661 DOI: 10.1111/jcmm.12320] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/07/2014] [Indexed: 11/27/2022] Open
Abstract
Tumour necrosis factor (TNF)-α has been considered to induce ischaemia-reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor-γ co-activator (PGC)-1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC-1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF-α had increased TNF-α levels and resulted in down-regulation of PGC-1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF-α by neutralizing antibody reversed PGC-1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC-1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF-α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral-Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF-α. However, there was no up-regulation of PGC-1α. These findings suggest that PGC-1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF-α-induced hepatic IRI. Inhibition of the TNF-α or PGC-1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology Surgery, Cancer Institute, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kwon B, Lee HK, Querfurth HW. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1402-13. [PMID: 24732014 DOI: 10.1016/j.bbamcr.2014.04.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
Elevated circulating levels of saturated free fatty acids (sFFAs; e.g. palmitate) are known to provoke inflammatory responses and cause insulin resistance in peripheral tissue. By contrast, mono- or poly-unsaturated FFAs are protective against sFFAs. An excess of sFFAs in the brain circulation may also trigger neuroinflammation and insulin resistance, however the underlying signaling changes have not been clarified in neuronal cells. In the present study, we examined the effects of palmitate on mitochondrial function and viability as well as on intracellular insulin and nuclear factor-κB (NF-κB) signaling pathways in Neuro-2a and primary rat cortical neurons. We next tested whether oleate preconditioning has a protective effect against palmitate-induced toxicity. Palmitate induced both mitochondrial dysfunction and insulin resistance while promoting the phosphorylation of mitogen-activated protein kinases and nuclear translocation of NF-κB p65. Oleate pre-exposure and then removal was sufficient to completely block subsequent palmitate-induced intracellular signaling and metabolic derangements. Oleate also prevented ceramide-induced insulin resistance. Moreover, oleate stimulated ATP while decreasing mitochondrial superoxide productions. The latter were associated with increased levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Inhibition of protein kinase A (PKA) attenuated the protective effect of oleate against palmitate, implicating PKA in the mechanism of oleate action. Oleate increased triglyceride and blocked palmitate-induced diacylglycerol accumulations. Oleate preconditioning was superior to docosahexaenoic acid (DHA) or linoleate in the protection of neuronal cells against palmitate- or ceramide-induced cytotoxicity. We conclude that oleate has beneficial properties against sFFA and ceramide models of insulin resistance-associated damage to neuronal cells.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Henry W Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
41
|
Xiao L, Zhu X, Yang S, Liu F, Zhou Z, Zhan M, Xie P, Zhang D, Li J, Song P, Kanwar YS, Sun L. Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 2014; 63:1366-80. [PMID: 24353183 PMCID: PMC3964498 DOI: 10.2337/db13-1412] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rap1b ameliorates high glucose (HG)-induced mitochondrial dysfunction in tubular cells. However, its role and precise mechanism in diabetic nephropathy (DN) in vivo remain unclear. We hypothesize that Rap1 plays a protective role in tubular damage of DN by modulating primarily the mitochondria-derived oxidative stress. The role and precise mechanisms of Rap1b on mitochondrial dysfunction and of tubular cells in DN were examined in rats with streptozotocin (STZ)-induced diabetes that have Rap1b gene transfer using an ultrasound microbubble-mediated technique as well as in renal proximal epithelial tubular cell line (HK-2) exposed to HG ambiance. The results showed that Rap1b expression decreased significantly in tubules of renal biopsies from patients with DN. Overexpression of a constitutively active Rap1b G12V notably ameliorated renal tubular mitochondrial dysfunction, oxidative stress, and apoptosis in the kidneys of STZ-induced rats, which was accompanied with increased expression of transcription factor C/EBP-β and PGC-1α. Furthermore, Rap1b G12V also decreased phosphorylation of Drp-1, a key mitochondrial fission protein, while boosting the expression of genes related to mitochondrial biogenesis and antioxidants in HK-2 cells induced by HG. These effects were imitated by transfection with C/EBP-β or PGC-1α short interfering RNA. In addition, Rap1b could modulate C/EBP-β binding to the endogenous PGC-1α promoter and the interaction between PGC-1α and catalase or mitochondrial superoxide dismutase, indicating that Rap1b ameliorates tubular injury and slows the progression of DN by modulation of mitochondrial dysfunction via C/EBP-β-PGC-1α signaling.
Collapse
Affiliation(s)
- Li Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Diabetes Center, Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhan
- Department of Pathology, Northwestern University, Chicago, IL
- Department of Medicine, Northwestern University, Chicago, IL
| | - Ping Xie
- Department of Pathology, Northwestern University, Chicago, IL
- Department of Medicine, Northwestern University, Chicago, IL
| | - Dongshan Zhang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Panai Song
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Chicago, IL
- Department of Medicine, Northwestern University, Chicago, IL
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author: Lin Sun,
| |
Collapse
|
42
|
Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 2014; 29:19-36. [PMID: 24557875 DOI: 10.1007/s11011-013-9435-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage. This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways. Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage. It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.
Collapse
|
43
|
Turco AA, Guescini M, Valtucci V, Colosimo C, De Feo P, Mantuano M, Stocchi V, Riccardi G, Capaldo B. Dietary fat differentially modulate the mRNA expression levels of oxidative mitochondrial genes in skeletal muscle of healthy subjects. Nutr Metab Cardiovasc Dis 2014; 24:198-204. [PMID: 24368080 DOI: 10.1016/j.numecd.2013.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Different types of dietary fats exert differential effects on glucose and lipid metabolism. Our aim was to evaluate the impact of different dietary fats on the expression of skeletal muscle genes regulating mitochondrial replication and function in healthy subjects. METHODS AND RESULTS Ten healthy subjects (age 29 ± 3 years; BMI 25.0 ± 3 kg/m(2)) received in a random order a test meal with the same energy content but different composition in macronutrients and quality of fat: Mediterranean (MED) meal, SAFA meal (Lipid 66%, saturated 36%) and MUFA meal (Lipid 63%, monounsaturated 37%). At fast and after 180 min, a fine needle aspiration was performed from the vastus lateralis for determination of mitochondrial gene expression by quantitative PCR. No difference in glucose and triglyceride response was observed between the three meals, while NEFA levels were significantly higher following fat-rich meals compared to MED meal (p < 0.002-0.0001). MED meal was associated with an increased expression, albeit not statistically significant, of some genes regulating both replication and function. Following MUFA meal, a significant increase in the expression of PGC1β (p = 0.02) and a reduction in the transcription factor PPARδ (p = 0.006) occurred with no change in the expression of COX and GLUT4 genes. In contrast, SAFA meal was associated with a marked reduction in the expression of COX (p < 0.001) PFK (p < 0.003), LPL (p = 0.002) and GLUT4 (p = 0.009) genes. CONCLUSION Dietary fats differentially modulate gene transcriptional profile since saturated, but not monounsaturated fat, downregulate the expression of genes regulating muscle glucose transport and oxidation.
Collapse
Affiliation(s)
- A A Turco
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - M Guescini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - V Valtucci
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - C Colosimo
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - P De Feo
- Department of Internal Medicine, University of Perugia, Italy
| | - M Mantuano
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - V Stocchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - G Riccardi
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - B Capaldo
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
44
|
Free Fatty Acids and Skeletal Muscle Insulin Resistance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:267-92. [DOI: 10.1016/b978-0-12-800101-1.00008-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R. Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med 2013; 65:1435-1446. [PMID: 24120971 DOI: 10.1016/j.freeradbiomed.2013.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signaling pathway and is considered a promising therapeutic target in the treatment of diabetes. However, the role of PTP1B in palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells has not been studied. Here we investigate the effects of PTP1B modulation on mitochondrial function and apoptosis and elucidate the underlying mechanisms in skeletal muscle cells. PTP1B inhibition significantly reduced palmitate-induced mitochondrial dysfunction and apoptosis in C2C12 cells, as these cells had increased expression levels of PGC-1α, Tfam, and NRF-1; enhanced ATP level and cellular viability; decreased TUNEL-positive cells; and decreased caspase-3 and -9 activity. Alternatively, overexpression of PTP1B resulted in mitochondrial dysfunction and apoptosis in these cells. PTP1B silencing improved mitochondrial dysfunction by an increase in the expression of SIRT1 and a reduction in the phosphorylation of p65 NF-κB. The protection from palmitate-induced apoptosis by PTP1B inhibition was also accompanied by a decrease in protein level of serine palmitoyl transferase, thus resulting in lower ceramide content in muscle cells. Exogenous addition of C2-ceramide to PTP1B-knockdown cells led to a reduced generation of reactive oxygen species (ROS), whereas PTP1B overexpression demonstrated an elevated ROS production in myotubes. In addition, PTP1B inhibition was accompanied by decreased JNK phosphorylation and increased insulin-stimulated Akt (Ser473) phosphorylation, whereas overexpression of PTP1B had the opposite effect. The overexpression of PTP1B also induced the nuclear localization of FOXO-1, but in contrast, suppression of PTP1B reduced palmitate-induced nuclear localization of FOXO-1. In summary, our results indicate that PTP1B modulation results in (1) alterations in mitochondrial function by changes in the activity of SIRT1/NF-κB/PGC-1α pathways and (2) changes in apoptosis that result from either a direct effect of PTP1B on the insulin signaling pathway or an indirect influence on ceramide content, ROS generation, JNK activation, and FOXO-1 nuclear translocation.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Pasalar
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| |
Collapse
|
46
|
Cornall LM, Mathai ML, Hryciw DH, McAinch AJ. The therapeutic potential of GPR43: a novel role in modulating metabolic health. Cell Mol Life Sci 2013; 70:4759-70. [PMID: 23852543 PMCID: PMC11113592 DOI: 10.1007/s00018-013-1419-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/09/2013] [Accepted: 06/28/2013] [Indexed: 02/07/2023]
Abstract
GPR43 is a receptor for short-chain fatty acids. Preliminary data suggest a putative role for GPR43 in regulating systemic health via processes including inflammation, carcinogenesis, gastrointestinal function, and adipogenesis. GPR43 is involved in secretion of gastrointestinal peptides, which regulate appetite and gastrointestinal motility. This suggests GPR43 may have a role in weight control. Moreover, GPR43 regulates plasma lipid profile and inflammatory processes, which further indicates that GPR43 could have the ability to modulate the etiology and pathogenesis of metabolic diseases such as obesity, type 2 diabetes mellitus, and cardiovascular disease. This review summarizes the current evidence regarding the ability of GPR43 to mediate both systemic and tissue specific functions and how GPR43 may be modulated in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Lauren M Cornall
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia,
| | | | | | | |
Collapse
|
47
|
Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Semin Immunopathol 2013; 36:27-53. [DOI: 10.1007/s00281-013-0406-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
|
48
|
Harte AL, Tripathi G, Piya MK, Barber TM, Clapham JC, Al-Daghri N, Al-Disi D, Kumsaiyai W, Saravanan P, Fowler AE, O'Hare JP, Kumar S, McTernan PG. NFκB as a potent regulator of inflammation in human adipose tissue, influenced by depot, adiposity, T2DM status, and TNFα. Obesity (Silver Spring) 2013; 21:2322-30. [PMID: 23408599 DOI: 10.1002/oby.20336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Central obesity and sub-clinical inflammation increase metabolic risk, this study examined the intracellular inflammatory pathways in adipose tissue (AT) that contribute to this risk. DESIGN AND METHODS This study therefore addressed the influence of NFκB and JNK activation in human abdominal subcutaneous (AbdSc) and omental (Om) AT, the effect of adiposity, T2DM status and the role of TNFα in vitro, using molecular biology techniques. RESULTS Our data showed NFκB activity is increased in Om AT versus AbdSc AT (P<0.01), which was reversed with respect to depot specific activation of JNK (P<0.01). However, T2DM status appeared to preferentially activate NFκB (P<0.001) over JNK. Furthermore, in vitro studies showed recombinant human (rh) TNFα treated AbdSc adipocytes increased NFκB activity over time (2-48 h, P<0.05) whilst JNK activity reduced (2 h, 4 h, P<0.05); inhibitor studies supported a preferential role for NFκB as a modulator of TNFα secretion. CONCLUSIONS These studies suggest distinct changes in NFκB and JNK activation, dependent upon AT depot, adiposity and T2DM status, with in vitro use of rh TNFα leading to activation of NFκB. Consequently NFκB appears to play a central role in inflammatory mediated metabolic disease over JNK, highlighting NFκB as a potential key target for therapeutic intervention.
Collapse
Affiliation(s)
- Alison L Harte
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25:1939-48. [DOI: 10.1016/j.cellsig.2013.06.007] [Citation(s) in RCA: 582] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
|
50
|
Brodeur MR, Bouvet C, Barrette M, Moreau P. Palmitic acid increases medial calcification by inducing oxidative stress. J Vasc Res 2013; 50:430-41. [PMID: 24080574 DOI: 10.1159/000354235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/05/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aortic medial calcification is a cellular-regulated process leading to arterial stiffness. Although epidemiological studies have suggested an association between the saturation of fatty acids (FA) and arterial stiffness, there is no evidence that saturated FA can induce arterial calcification. This study investigated the capacity of palmitic acid (PA) to induce medial calcification and the signaling pathway(s) implicated in this process. METHODS Rat aortic segments and vascular smooth muscle cells (VSMC) were exposed to calcification medium supplemented with PA. In vivo, rats were treated with warfarin to induce calcification and fed a PA-enriched diet. RESULTS In vitro and ex vivo, palmitate increases calcification and ROS production. Palmitate increases extracellular-signal-regulated kinase (ERK1/2) phosphorylation and osteogenic gene expression. Inhibition of NADPH oxidase with apocynin or an siRNA prevents these effects. ERK1/2 inhibition attenuates the amplification of osteogenic gene expression and calcification induced by palmitate. In vivo, a PA-enriched diet amplified medial calcification and pulse wave velocity (PWV). These effects are mediated by ROS production as indicated by the inhibition of calcification and PWV normalization in rats concomitantly treated with apocynin. CONCLUSION ROS induction by palmitate leads to ERK1/2 phosphorylation and subsequently induces the osteogenic differentiation of VSMC. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Mathieu R Brodeur
- Laboratoire de Pharmacologie Vasculaire, Faculté de Pharmacie, Université de Montréal, Montréal, Qué., Canada
| | | | | | | |
Collapse
|