1
|
Aluko EO, David UE, Ojetola AA, Fasanmade AA. Aqueous extract of Peristrophe bivalvis (L.) Merr. leaf reversed the detrimental effects of nitric oxide synthase inhibitor on blood lipid profile and glucose level. PLoS One 2024; 19:e0308338. [PMID: 39240961 PMCID: PMC11379291 DOI: 10.1371/journal.pone.0308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 09/08/2024] Open
Abstract
There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME). Male Wistar rats (150-170 g, n=30) were randomly divided into two groups: control (CT, n=5) and L-NAME pretreated (n=25). CT received 5 mL/kg of distilled water [DW]) while L-NAME pretreated group received 60 mg/kg of L-NAME (L-NAME60) for eight weeks. After eight weeks, the L-NAME pretreated group was randomly subdivided into L-NAME group (LN), L-NAME recovery group (LRE), L-NAME ramipril group (LRA), and L-NAME APB group (LAPB). The groups received L-NAME60+DW, DW, L-NAME60+10 mg/kg ramipril, and L-NAME60+APB (200 mg/kg), respectively, for five weeks. Serum NO, lipid profile, cyclic guanosine monophosphate (cGMP), and insulin were measured by spectrophotometry, assay kits, and ELISA, respectively. Data were analysed using ANOVA at p < 0.05. At the eighth week, a fall in FBG and an increase in triglyceride, total cholesterol, and low-density lipoprotein cholesterol were recorded in L8 compared to CT. The same effects were also noticed in the thirteenth week in LN. However, FBG was significantly increased and lipid levels were decreased in LAPB compared to LN. A significant increase was observed in cGMP level in LAPB compared to LN. The study showed that APB corrected the hyperlipidemia and hypoglycemia caused by L-NAME, and this effect might be via the activation of cGMP.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Physiology Department, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa-Ibom State, Nigeria
| | - Ubong Edem David
- Physiology Unit, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Abodunrin Adebayo Ojetola
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Adesoji Adedipe Fasanmade
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
Liu J, Aylor KW, Liu Z. Liraglutide and Exercise Synergistically Attenuate Vascular Inflammation and Enhance Metabolic Insulin Action in Early Diet-Induced Obesity. Diabetes 2023; 72:918-931. [PMID: 37074396 PMCID: PMC10281235 DOI: 10.2337/db22-0745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Inflammation-induced vascular insulin resistance is an early event in diet-induced obesity and contributes to metabolic insulin resistance. To examine whether exercise and glucagon-like peptide 1 (GLP-1) receptor agonism, alone or in combination, modulate vascular and metabolic insulin actions during obesity development, we performed a euglycemic insulin clamp in adult male rats after 2 weeks of high-fat diet feeding with either access to a running wheel (exercise), liraglutide, or both. Rats exhibited increased visceral adiposity and blunted microvascular and metabolic insulin responses. Exercise and liraglutide alone each improved muscle insulin sensitivity, but their combination fully restored insulin-mediated glucose disposal rates. The combined exercise and liraglutide intervention enhanced insulin-mediated muscle microvascular perfusion, reduced perivascular macrophage accumulation and superoxide production in the muscle, attenuated blood vessel inflammation, and improved endothelial function, along with increasing endothelial nucleus translocation of NRF2 and increasing endothelial AMPK phosphorylation. We conclude that exercise and liraglutide synergistically enhance the metabolic actions of insulin and reduce vascular oxidative stress and inflammation in the early stage of obesity development. Our data suggest that early combination use of exercise and GLP-1 receptor agonism might be an effective strategy in preventing vascular and metabolic insulin resistance and associated complications during the development of obesity. ARTICLE HIGHLIGHTS Inflammation-induced vascular insulin resistance occurs early in diet-induced obesity and contributes to metabolic insulin resistance. We examined whether exercise and GLP-1 receptor agonism, alone or in combination, modulate vascular and metabolic insulin actions during obesity development. We found that exercise and liraglutide synergistically enhanced the metabolic actions of insulin and reduced perimicrovascular macrophage accumulation, vascular oxidative stress, and inflammation in the early stage of obesity development. Our data suggest that early combination use of exercise and a GLP-1 receptor agonist might be an effective strategy in preventing vascular and metabolic insulin resistance and associated complications during the development of obesity.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
3
|
Aluko EO, Nna VU, Fasanmade AA. Angiotensin converting enzyme inhibitor potentiates the hypoglycaemic effect of NG-nitro-L-arginine methyl ester (L-NAME) in rats. Arch Physiol Biochem 2022; 128:1524-1532. [PMID: 32584611 DOI: 10.1080/13813455.2020.1780263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The inhibition of renin angiotensin system pathway has been largely documented to be effective in the control of cardiovascular events. The present study investigated the effect of angiotensin converting enzyme (ACE) inhibitor on fasting blood glucose level in hypertension induced by the inhibition of nitric oxide synthase (NOS) in male Wistar rats. Hypertension was induced by the inhibition of NOS using a non-selective NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). The blockade of NOS resulted in an increase in blood pressure, ACE, angiotensin II and endothelin-1 levels, and a decrease in fasting blood glucose and nitric oxide (NO) levels. The hypertensive rats treated with ACE inhibitor (ramipril) recorded a decrease in blood pressure, ACE, angiotensin II, endothelin-1, NO and fasting blood glucose levels, and an increase in prostacyclin level. In conclusion, ACE inhibitor potentiated the hypoglycaemic effect of NOS inhibitor and this effect is independent of NO and pancreatic insulin release.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Department of Physiology, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | | |
Collapse
|
4
|
Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab 2022; 322:E293-E306. [PMID: 35128961 PMCID: PMC8897003 DOI: 10.1152/ajpendo.00240.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Insulin increases muscle microvascular perfusion, which contributes to its metabolic action in muscle, but this action is impaired in obesity. Metformin improves endothelial function beyond its glucose lowering effects. We aim to examine whether metformin could prevent microvascular insulin resistance and endothelial dysfunction during the development of obesity. Adult male rats were fed a high-fat diet (HFD) with or without simultaneous metformin administration for either 2 or 4 wk. Insulin's metabolic and microvascular actions were determined using a combined euglycemic-hyperinsulinemic clamp and contrast-enhanced ultrasound approach. Compared with chow-fed controls, HFD feeding increased body adiposity without excess body weight gain, and this was associated with a marked decrease in insulin-mediated whole body glucose disposal and abolishment of insulin-induced muscle microvascular recruitment. Simultaneous administration of metformin fully rescued insulin-induced muscle microvascular recruitment as early as 2 wk and normalized insulin-mediated whole body glucose disposal at week 4. The divergent responses between insulin's microvascular and metabolic actions seen at week 2 were accompanied with reduced endothelial oxidative stress and vascular inflammation, and improved endothelial function and vascular insulin signaling in metformin-treated rats. In conclusions, metformin could prevent the development of microvascular insulin resistance and endothelial dysfunction by alleviating endothelial oxidative stress and vascular inflammation during obesity development.NEW & NOTEWORTHY Muscle microvascular insulin action contributes to insulin-mediated glucose use. Microvascular insulin resistance is an early event in diet-induced obesity and is associated with vascular inflammation. Metformin effectively reduces endothelial oxidative stress, improves endothelial function, and prevents microvascular insulin resistance during obesity development. These may contribute to metformin's salutary diabetes prevention and cardiovascular protective actions.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
5
|
Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: the endothelium comes of age. J Mol Cell Biol 2021; 13:500-512. [PMID: 33787922 PMCID: PMC8530521 DOI: 10.1093/jmcb/mjab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Endothelium, acting as a barrier, protects tissues against factors that provoke insulin resistance and type 2 diabetes and itself responds to the insult of insulin resistance inducers with altered function. Endothelial insulin resistance and vascular dysfunction occur early in the evolution of insulin resistance-related disease, can co-exist with and even contribute to the development of metabolic insulin resistance, and promote vascular complications in those affected. The impact of endothelial insulin resistance and vascular dysfunction varies depending on the blood vessel size and location, resulting in decreased arterial plasticity, increased atherosclerosis and vascular resistance, and decreased tissue perfusion. Women with insulin resistance and diabetes are disproportionately impacted by cardiovascular disease, likely related to differential sex-hormone endothelium effects. Thus, reducing endothelial insulin resistance and improving endothelial function in the conduit arteries may reduce atherosclerotic complications, in the resistance arteries lead to better blood pressure control, and in the microvasculature lead to less microvascular complications and more effective tissue perfusion. Multiple diabetes therapeutic modalities, including medications and exercise training, improve endothelial insulin action and vascular function. This action may delay the onset of type 2 diabetes and/or its complications, making the vascular endothelium an attractive therapeutic target for type 2 diabetes and potentially type 1 diabetes.
Collapse
MESH Headings
- Age Factors
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/ethnology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Comorbidity
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Exercise
- Female
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Male
- Racial Groups
- Risk Factors
- Sex Factors
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University, New Brunswick, NJ, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Research, Rutgers University, New Brunswick, NJ, USA
| | - Jane E B Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Judith G Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Abstract
This review takes an inclusive approach to microvascular dysfunction in diabetes mellitus and cardiometabolic disease. In virtually every organ, dynamic interactions between the microvasculature and resident tissue elements normally modulate vascular and tissue function in a homeostatic fashion. This regulation is disordered by diabetes mellitus, by hypertension, by obesity, and by dyslipidemia individually (or combined in cardiometabolic disease), with dysfunction serving as an early marker of change. In particular, we suggest that the familiar retinal, renal, and neural complications of diabetes mellitus are late-stage manifestations of microvascular injury that begins years earlier and is often abetted by other cardiometabolic disease elements (eg, hypertension, obesity, dyslipidemia). We focus on evidence that microvascular dysfunction precedes anatomic microvascular disease in these organs as well as in heart, muscle, and brain. We suggest that early on, diabetes mellitus and/or cardiometabolic disease can each cause reversible microvascular injury with accompanying dysfunction, which in time may or may not become irreversible and anatomically identifiable disease (eg, vascular basement membrane thickening, capillary rarefaction, pericyte loss, etc.). Consequences can include the familiar vision loss, renal insufficiency, and neuropathy, but also heart failure, sarcopenia, cognitive impairment, and escalating metabolic dysfunction. Our understanding of normal microvascular function and early dysfunction is rapidly evolving, aided by innovative genetic and imaging tools. This is leading, in tissues like the retina, to testing novel preventive interventions at early, reversible stages of microvascular injury. Great hope lies in the possibility that some of these interventions may develop into effective therapies.
Collapse
Affiliation(s)
- William B Horton
- Division of Endocrinology and Metabolism, Department of Medicine
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
7
|
Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur Geriatr Med 2021; 12:45-59. [PMID: 33387359 DOI: 10.1007/s41999-020-00433-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE In 2018, the SARCUS working group published a first article on the standardization of the use of ultrasound to assess muscle. Recommendations were made for patient positioning, system settings and components to be measured. Also, shortcomings in knowledge were mentioned. An important issue that still required standardization was the definition of anatomical landmarks for many muscles. METHODS A systematic search was performed in Medline, SCOPUS and Web of Sciences looking for all articles describing the use of ultrasound in the assessment of muscle not described in the first recommendations, published from 01/01/2018 until 31/01/2020. All relevant terms used for older people, ultrasound and muscles were used. RESULTS For 39 muscles, different approaches for ultrasound assessment were found that likely impact the values measured. Standardized anatomical landmarks and measuring points were proposed for all muscles/muscle groups. Besides the five already known muscle parameters (muscle thickness, cross-section area, pennation angle, fascicle length and echo-intensity), four new parameters are discussed (muscle volume, stiffness, contraction potential and microcirculation). The former SARCUS article recommendations are updated with this new information that includes new muscle groups. CONCLUSIONS The emerging field of ultrasound assessment of muscle mass only highlights the need for a standardization of measurement technique. In this article, guidelines are updated and broadened to provide standardization instructions for a large number of muscles.
Collapse
|
8
|
Koc Yildirim E, Dedeoglu Z, Kaya M, Uner AG. The effect of swimming training on adrenomedullin levels, oxidative stress variables, and gastrocnemius muscle contractile properties in hypertensive rats. Clin Exp Hypertens 2020; 43:131-137. [PMID: 32985250 DOI: 10.1080/10641963.2020.1825726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction/Aim: Regular exercise may have beneficial effects on high blood-pressure, as shown in different types of experimental hypertension models in rats. The present study aims to investigate the effects of 6-week swimming training on blood pressure, oxidative stress variables of selected tissues, serum adrenomedullin (ADM) levels, and in situ muscle contraction in rats with hypertension induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of endothelial nitric oxide synthases (eNOs). Materials and Methods: Twenty-six male Sprague Dawley, 8 weeks of age, rats were randomly divided into four groups: (I) normotensive (C), (II) normotensive + exercise (E), (III) hypertensive (L), and (IV) hypertensive + exercise (LE). Hypertension was induced by the oral administration of L-NAME (60 mg/kg) for 6 weeks. Exercise was performed 5 times (1-h each) per week for 6 weeks. At the end of the experiment, blood and tissue samples (the gastrocnemius muscle, heart, kidney, and thoracic aorta) were collected following contractile properties of the gastrocnemius muscle in situ weredetermined. In the collected tissues, oxidative stress (e.g., lipid oxidation and antioxidant enzyme activity) and serum ADM levels were measured. 6-week L-NAME administration per se (Group L) led to a significant increase in systolic and diastolic blood pressure compared to other groups. Results: Importantly, 6-week exercise caused a protective effect of high blood pressure in the rats received L-NAME (Group LE). The level of ADM was lower in the rats received L-NAME than that of the control group. L-NAME increased lipid peroxidation in the thoracic aorta and decreased superoxide dismutase in the heart, kidney and muscle, and decreased catalase and glutathione in the heart. However, the exercise intervention did not have protective effect on the L-NAME-mediated oxidative damage in the collected tissues. Conclusion: In conclusion, 6-week exercise intervention rescued rats from high blood pressure, but did not have ameliorative effect on the decreased ADM levels.
Collapse
Affiliation(s)
- Ece Koc Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Zahide Dedeoglu
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Mehmet Kaya
- Department of Zootechny, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Aykut G Uner
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| |
Collapse
|
9
|
McConell GK, Wadley GD, Le Plastrier K, Linden KC. Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V ̇ O 2 peak in endurance trained men. J Physiol 2020; 598:3859-3870. [PMID: 32588910 PMCID: PMC7540472 DOI: 10.1113/jp277619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Key points AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Abstract AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. Indeed, AMPK is activated during exercise and activation of AMPK by 5‐aminoimidazole‐4‐carboxyamide‐ribonucleoside (AICAR) increases skeletal muscle glucose uptake and fat oxidation. However, we have previously shown that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we examined whether there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. Eleven untrained (UT; V˙O2peak = 37.9 ± 5.6 ml.kg−1 min−1) and seven endurance trained (ET; V˙O2peak = 61.8 ± 2.2 ml.kg−1 min−1) males completed 120 min of cycling exercise at 66 ± 4% V˙O2peak (UT: 100 ± 21 W; ET: 190 ± 15 W). Muscle biopsies were obtained at rest and following 30 and 120 min of exercise. Muscle glycogen was significantly (P < 0.05) higher before exercise in ET and decreased similarly during exercise in the ET and UT individuals. Exercise significantly increased calculated skeletal muscle free AMP content and more so in the UT individuals. Exercise significantly (P < 0.05) increased skeletal muscle AMPK α2 activity (4‐fold), AMPK αThr172 phosphorylation (2‐fold) and ACCβ Ser222 phosphorylation (2‐fold) in the UT individuals but not in the ET individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Glenn D Wadley
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - Kelly C Linden
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Science, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
10
|
Attrill E, Ramsay C, Ross R, Richards S, Sutherland BA, Keske MA, Eringa E, Premilovac D. Metabolic-vascular coupling in skeletal muscle: A potential role for capillary pericytes? Clin Exp Pharmacol Physiol 2019; 47:520-528. [PMID: 31702069 DOI: 10.1111/1440-1681.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
The matching of capillary blood flow to metabolic rate of the cells within organs and tissues is a critical microvascular function which ensures appropriate delivery of hormones and nutrients, and the removal of waste products. This relationship is particularly important in tissues where local metabolism, and hence capillary blood flow, must be regulated to avoid a mismatch between nutrient demand and supply that would compromise normal function. The consequences of a mismatch in microvascular blood flow and metabolism are acutely apparent in the brain and heart, where a sudden cessation of blood flow, for example following an embolism, acutely manifests as stroke or myocardial infarction. Even in more resilient tissues such as skeletal muscle, a short-term mismatch reduces muscle performance and exercise tolerance, and can cause intermittent claudication. In the longer-term, a microvascular-metabolic mismatch in skeletal muscle reduces insulin-mediated muscle glucose uptake, leading to disturbances in whole-body metabolic homeostasis. While the notion that capillary blood flow is fine-tuned to meet cellular metabolism is well accepted, the mechanisms that control this function and where and how different parts of the vascular tree contribute to capillary blood flow regulation remain poorly understood. Here, we discuss the emerging evidence implicating pericytes, mural cells that surround capillaries, as key mediators that match tissue metabolic demand with adequate capillary blood flow in a number of organs, including skeletal muscle.
Collapse
Affiliation(s)
- Emily Attrill
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Ciaran Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Renee Ross
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Stephen Richards
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Michelle A Keske
- The Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Vic., Australia
| | - Etto Eringa
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
11
|
Kolka CM. The vascular endothelium plays a role in insulin action. Clin Exp Pharmacol Physiol 2019; 47:168-175. [PMID: 31479553 DOI: 10.1111/1440-1681.13171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
The endocrine system relies on the vasculature for delivery of hormones throughout the body, and the capillary microvasculature is the site where the hormones cross from the blood into the target tissue. Once considered an inert wall, various studies have now highlighted the functions of the capillary endothelium to regulate transport and therefore affect or maintain the interstitial environment. The role of the capillary may be clear in areas where there is a continuous endothelium, yet there also appears to be a role of endothelial cells in tissues with a sinusoidal structure. Here we focused on the most common endocrine disorder, diabetes, and several of the target organs associated with the disease, including skeletal muscle, liver and pancreas. However, it is important to note that the ability of hormones to cross the endothelium to reach their target tissue is a component of all endocrine functions. It is also a consideration in organs throughout the body and may have greater impact for larger hormones with target tissues containing a continuous endothelium. We noted that the blood levels do not always equal interstitial levels, which is what the cells are exposed to, and discussed how this may change in diseases such as obesity and insulin resistance. The capillary endothelium is, therefore, an essential and understudied aspect of endocrinology and metabolism that can be altered in disease, which may be an appropriate target for treatment.
Collapse
Affiliation(s)
- Cathryn M Kolka
- Department of Biomedical Science, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Muscle Insulin Resistance and the Inflamed Microvasculature: Fire from Within. Int J Mol Sci 2019; 20:ijms20030562. [PMID: 30699907 PMCID: PMC6387226 DOI: 10.3390/ijms20030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin is a vascular hormone and regulates vascular tone and reactivity. Muscle is a major insulin target that is responsible for the majority of insulin-stimulated glucose use. Evidence confirms that muscle microvasculature is an important insulin action site and critically regulates insulin delivery to muscle and action on myocytes, thereby affecting insulin-mediated glucose disposal. Insulin via activation of its signaling cascade in the endothelial cells increases muscle microvascular perfusion, which leads to an expansion of the endothelial exchange surface area. Insulin’s microvascular actions closely couple with its metabolic actions in muscle and blockade of insulin-mediated microvascular perfusion reduces insulin-stimulated muscle glucose disposal. Type 2 diabetes is associated with chronic low-grade inflammation, which engenders both metabolic and microvascular insulin resistance through endocrine, autocrine and paracrine actions of multiple pro-inflammatory factors. Here, we review the crucial role of muscle microvasculature in the regulation of insulin action in muscle and how inflammation in the muscle microvasculature affects insulin’s microvascular actions as well as metabolic actions. We propose that microvascular insulin resistance induced by inflammation is an early event in the development of metabolic insulin resistance and eventually type 2 diabetes and its related cardiovascular complications, and thus is a potential therapeutic target for the prevention or treatment of obesity and diabetes.
Collapse
|
13
|
Frank S, Jbaily A, Hinshaw L, Basu R, Basu A, Szeri AJ. Modeling the acute effects of exercise on insulin kinetics in type 1 diabetes. J Pharmacokinet Pharmacodyn 2018; 45:829-845. [PMID: 30392154 DOI: 10.1007/s10928-018-9611-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023]
Abstract
Our objective is to develop a physiology-based model of insulin kinetics to understand how exercise alters insulin concentrations in those with type 1 diabetes (T1D). We reveal the relationship between the insulin absorption rate ([Formula: see text]) from subcutaneous tissue, the insulin delivery rate ([Formula: see text]) to skeletal muscle, and two physiological parameters that characterize the tissue: the perfusion rate (Q) and the capillary permeability surface area (PS), both of which increase during exercise because of capillary recruitment. We compare model predictions to experimental observations from two pump-wearing T1D cohorts [resting subjects ([Formula: see text]) and exercising subjects ([Formula: see text])] who were each given a mixed-meal tolerance test and a bolus of insulin. Using independently measured values of Q and PS from literature, the model predicts that during exercise insulin concentration increases by 30% in plasma and by 60% in skeletal muscle. Predictions reasonably agree with experimental observations from the two cohorts, without the need for parameter estimation by curve fitting. The insulin kinetics model suggests that the increase in surface area associated with exercise-induced capillary recruitment significantly increases [Formula: see text] and [Formula: see text], which explains why insulin concentrations in plasma and skeletal muscle increase during exercise, ultimately enhancing insulin-dependent glucose uptake. Preventing hypoglycemia is of paramount importance in determining the proper insulin dose during exercise. The presented model provides mechanistic insight into how exercise affects insulin kinetics, which could be useful in guiding the design of decision support systems and artificial pancreas control algorithms.
Collapse
Affiliation(s)
- Spencer Frank
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Abdulrahman Jbaily
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ling Hinshaw
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA
| | - Rita Basu
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA.,Department of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ananda Basu
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA.,Department of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew J Szeri
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Russell RD, Hu D, Greenaway T, Sharman JE, Rattigan S, Richards SM, Keske MA. Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people. Am J Physiol Endocrinol Metab 2018; 315:E307-E315. [PMID: 29763373 DOI: 10.1152/ajpendo.00448.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Department of Health and Human Performance, College of Health Affairs, University of Texas Rio Grande Valley , Brownsville, Texas
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Timothy Greenaway
- Royal Hobart Hospital , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen M Richards
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition. Deakin University , Geelong, Victoria , Australia
| |
Collapse
|
15
|
Tan AW, Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Patrie JT, Aylor KW, Basu A, Liu Z. GLP-1 and Insulin Recruit Muscle Microvasculature and Dilate Conduit Artery Individually But Not Additively in Healthy Humans. J Endocr Soc 2018; 2:190-206. [PMID: 29568814 PMCID: PMC5841186 DOI: 10.1210/js.2017-00446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN Healthy adults underwent three study protocols in random order. SETTING Clinical Research Unit at the University of Virginia. METHODS Overnight-fasted participants received an intravenous infusion of GLP-1 (1.2 pmol/kg/min) or normal saline for 150 minutes with or without a 2-hour euglycemic insulin clamp (1 mU/kg/min) superimposed from 30 minutes onward. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity, and flow; brachial artery diameter, flow velocity, and blood flow; and pulse wave velocity (PWV) were measured. RESULTS GLP-1 significantly increased skeletal and cardiac muscle MBV and microvascular blood flow (MBF) after 30 minutes; these remained elevated at 150 minutes. Insulin also increased skeletal and cardiac muscle MBV and MBF. Addition of insulin to GLP-1 did not further increase skeletal and cardiac muscle MBV and MBF. GLP-1 and insulin increased brachial artery diameter and blood flow, but this effect was not additive. Neither GLP-1, insulin, nor GLP-1 and insulin altered PWV. Combined GLP-1 and insulin infusion did not result in higher whole-body glucose disposal. CONCLUSION GLP-1 and insulin at physiological concentrations acutely increase skeletal and cardiac muscle microvascular perfusion and dilate conduit artery in healthy adults; these effects are not additive. Thus, GLP-1 and insulin may regulate skeletal and cardiac muscle endothelial surface area and nutrient delivery under physiological conditions.
Collapse
Affiliation(s)
- Alvin W.K. Tan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433
| | - Sharmila C. Subaran
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Matthew A. Sauder
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Linda A. Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Dale E. Fowler
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - James T. Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Ananda Basu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
16
|
Yan F, Yuan Z, Wang N, Carey RM, Aylor KW, Chen L, Zhou X, Liu Z. Direct Activation of Angiotensin II Type 2 Receptors Enhances Muscle Microvascular Perfusion, Oxygenation, and Insulin Delivery in Male Rats. Endocrinology 2018; 159:685-695. [PMID: 29186390 PMCID: PMC5774251 DOI: 10.1210/en.2017-00585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023]
Abstract
Angiotensin II receptors regulate muscle microvascular recruitment and the delivery of nutrients, oxygen, and insulin to muscle. Although angiotensin type 1 receptor antagonism increases muscle microvascular perfusion and insulin action, angiotensin type 2 receptor blockade markedly restricts muscle microvascular blood volume and decreases muscle delivery of insulin. To examine the effects of direct type 2 receptor stimulation using Compound 21 (C21) on microvascular perfusion, insulin delivery and action, and tissue oxygenation in muscle, overnight-fasted adult male rats were infused with C21 systemically. C21 potently increased microvascular blood volume without altering microvascular flow velocity or blood pressure, resulting in a net increase in microvascular blood flow in muscle. This was associated with a substantial increase in muscle interstitial oxygen saturation and insulin delivery into the skeletal and cardiac muscle. These effects were neutralized by coinfusion of the type 2 receptor antagonist or nitric oxide synthase inhibitor. Superimposing C21 infusion on insulin infusion increased insulin-mediated whole body glucose disposal by 50%. C21 significantly relaxed the preconstricted distal saphenous artery ex vivo. We have concluded that direct type 2 receptor stimulation markedly increases muscle microvascular perfusion through nitric oxide biosynthesis and enhances insulin delivery and action in muscle. These findings provide a physiologic mechanistic insight into type 2 receptor modulation of insulin action and suggest that type 2 receptor agonists might have therapeutic potential in the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- Fei Yan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Endocrinology, Shandong University Qilu Hospital, Jinan, Shandong 250000, China
| | - Zhaoshun Yuan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
- Department of Endocrinology, Shantou University First Affiliated Hospital, Shantou, Guangdong 515041, China
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| | - Li Chen
- Department of Endocrinology, Shandong University Qilu Hospital, Jinan, Shandong 250000, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22903
| |
Collapse
|
17
|
Mertz KH, Bülow J, Holm L. Contrast-enhanced ultrasound using bolus injections of contrast agent for assessment of postprandial microvascular blood volume in human skeletal muscle. Clin Physiol Funct Imaging 2017; 38:864-871. [DOI: 10.1111/cpf.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/05/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Kenneth H. Mertz
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
| | - Jacob Bülow
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
| | - Lars Holm
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
- School of Sport; Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| |
Collapse
|
18
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
19
|
Irace C, Messiniti V, Tassone B, Cortese C, Barrett EJ, Gnasso A. Evidence for congruent impairment in micro and macrovascular function in type 1 diabetes. PLoS One 2017; 12:e0187525. [PMID: 29131837 PMCID: PMC5683560 DOI: 10.1371/journal.pone.0187525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/21/2017] [Indexed: 01/22/2023] Open
Abstract
Diabetes affects large and small vessels through mechanisms only partially known. In the present study, we evaluated the function of capillaries and large arteries in subjects with type 1 diabetes mellitus (T1DM) to study the effect of chronic hyperglycemia in the absence of other cardiovascular risk factors. Twenty-five subjects with T1DM and 12 healthy age-matched controls were enrolled. Nine patients had mild or moderate retinopathy. Contrast enhanced ultrasound was used to measure perfusion of the deep forearm flexor muscle of the non-dominant arm at rest (baseline) and after an ischemic stimulus (reactive hyperemia). Perfusion was expressed as Video Intensity (VI) in arbitrary unit (a.u.)/mm2. The time to reach peak VI after ischemia was also recorded. The function of large arteries was evaluated using flow-mediated vasodilation (FMD). VI was significantly lower in T1DM compared to control subjects both at baseline (0.22±0.16 vs 0.44±0.35 a.u./mm2, p<0.05), and after ischemia (0.33±0.24 vs 0.68±0.46 a.u./mm2, p<0.05). The time to reach peak VI after ischemia was markedly longer in T1DM (5.6±2.2 vs 4.0±1.7 seconds, p<0.02). These differences were more marked in T1DM subjects with retinopathy. FMD was lower in TIDM patients compared to controls (5.4±6.4 vs 10.7±4.5%, p<0.01). The present findings demonstrate that T1DM patients have defective peripheral skeletal muscle perfusion both at rest and after ischemia compared with control subjects. Low muscle perfusion associates with low FMD of the brachial artery. Furthermore, T1DM subjects with retinopathy have the least muscle perfusion and blunted response to hyperemia compared to T1DM without retinopathy.
Collapse
Affiliation(s)
- Concetta Irace
- Department of Health Science, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valentina Messiniti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Bruno Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Claudio Cortese
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Agostino Gnasso
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
20
|
Russell RD, Hu D, Greenaway T, Blackwood SJ, Dwyer RM, Sharman JE, Jones G, Squibb KA, Brown AA, Otahal P, Boman M, Al-Aubaidy H, Premilovac D, Roberts CK, Hitchins S, Richards SM, Rattigan S, Keske MA. Skeletal Muscle Microvascular-Linked Improvements in Glycemic Control From Resistance Training in Individuals With Type 2 Diabetes. Diabetes Care 2017; 40:1256-1263. [PMID: 28687542 DOI: 10.2337/dc16-2750] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/16/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Insulin increases glucose disposal in part by enhancing microvascular blood flow (MBF) and substrate delivery to myocytes. Insulin's microvascular action is impaired with insulin resistance and type 2 diabetes. Resistance training (RT) improves glycemic control and insulin sensitivity, but whether this improvement is linked to augmented skeletal muscle microvascular responses in type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS Seventeen (11 male and 6 female; 52 ± 2 years old) sedentary patients with type 2 diabetes underwent 6 weeks of whole-body RT. Before and after RT, participants who fasted overnight had clinical chemistries measured (lipids, glucose, HbA1c, insulin, and advanced glycation end products) and underwent an oral glucose challenge (OGC) (50 g × 2 h). Forearm muscle MBF was assessed by contrast-enhanced ultrasound, skin MBF by laser Doppler flowmetry, and brachial artery flow by Doppler ultrasound at baseline and 60 min post-OGC. A whole-body DEXA scan before and after RT assessed body composition. RESULTS After RT, muscle MBF response to the OGC increased, while skin microvascular responses were unchanged. These microvascular adaptations were accompanied by improved glycemic control (fasting blood glucose, HbA1c, and glucose area under the curve [AUC] during OGC) and increased lean body mass and reductions in fasting plasma triglyceride, total cholesterol, advanced glycation end products, and total body fat. Changes in muscle MBF response after RT significantly correlated with reductions in fasting blood glucose, HbA1c, and OGC AUC with adjustment for age, sex, % body fat, and % lean mass. CONCLUSIONS RT improves OGC-stimulated muscle MBF and glycemic control concomitantly, suggesting that MBF plays a role in improved glycemic control from RT.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville, TX
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Timothy Greenaway
- Royal Hobart Hospital, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Sarah J Blackwood
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee M Dwyer
- School of Medicine, University of Tasmania, Hobart, Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kathryn A Squibb
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Aascha A Brown
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Meg Boman
- Royal Hobart Hospital, Hobart, Australia
| | | | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Christian K Roberts
- Geriatric Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Samuel Hitchins
- School of Medicine, University of Tasmania, Hobart, Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia .,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
21
|
Meijer RI, Gray SM, Aylor KW, Barrett EJ. Pathways for insulin access to the brain: the role of the microvascular endothelial cell. Am J Physiol Heart Circ Physiol 2016; 311:H1132-H1138. [PMID: 27591216 DOI: 10.1152/ajpheart.00081.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/26/2016] [Indexed: 02/08/2023]
Abstract
Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125I-TyrA14-insulin clearance. We further confirmed that 125I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding.
Collapse
Affiliation(s)
- Rick I Meijer
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Sarah M Gray
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Eugene J Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and .,Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| |
Collapse
|
22
|
Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK. Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice. Am J Physiol Endocrinol Metab 2016; 310:E838-45. [PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
Abstract
Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
Collapse
Affiliation(s)
- Yet Hoi Hong
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Clinical Exercise Science Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia; Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; and
| | - Christine Yang
- Cellular and Molecular Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew C Betik
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Clinical Exercise Science Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Glenn K McConell
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Clinical Exercise Science Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Velasco A, Solow E, Price A, Wang Z, Arbique D, Arbique G, Adams-Huet B, Schwedhelm E, Lindner JR, Vongpatanasin W. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans. Am J Physiol Heart Circ Physiol 2016; 311:H118-24. [PMID: 27199121 PMCID: PMC4967201 DOI: 10.1152/ajpheart.00237.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
Abstract
Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level.
Collapse
Affiliation(s)
- Alejandro Velasco
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Solow
- Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Price
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhongyun Wang
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debbie Arbique
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary Arbique
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edzard Schwedhelm
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health and Science University, Portland, Oregon
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
24
|
Kusters YHAM, Barrett EJ. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism. Am J Physiol Endocrinol Metab 2016; 310:E379-87. [PMID: 26714849 PMCID: PMC4888529 DOI: 10.1152/ajpendo.00443.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022]
Abstract
We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism.
Collapse
Affiliation(s)
- Yvo H A M Kusters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Eugene J Barrett
- Department of Medicine, Pediatrics, and Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
25
|
Echeverría-Rodríguez O, Gallardo-Ortíz IA, Villalobos-Molina R. Does exercise increase insulin sensitivity through angiotensin 1-7? Acta Physiol (Oxf) 2016; 216:3-6. [PMID: 26485319 DOI: 10.1111/apha.12619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- O. Echeverría-Rodríguez
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| | - I. A. Gallardo-Ortíz
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| | - R. Villalobos-Molina
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| |
Collapse
|
26
|
Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity. Clin Sci (Lond) 2015; 129:1025-36. [PMID: 26265791 PMCID: PMC4613534 DOI: 10.1042/cs20150143] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023]
Abstract
Obesity and diabetes are associated with inflammation, endothelial dysfunction and insulin resistance in the muscle microvasculature. Inflammation-induced microvascular insulin resistance is an early event and plays a causative role in the development of metabolic insulin resistance in diet-induced obesity. Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications.
Collapse
|
27
|
Sato H, Ishikawa M, Sugai H, Funaki A, Kimura Y, Sumitomo M, Ueno K. Sex hormones influence expression and function of peroxisome proliferator-activated receptor γ in adipocytes: pathophysiological aspects. Horm Mol Biol Clin Investig 2015; 20:51-61. [PMID: 25415639 DOI: 10.1515/hmbci-2014-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/01/2014] [Indexed: 01/02/2023]
Abstract
Abstract Adipose tissue plays important roles not only in storing fat but also in maintaining metabolic homeostasis by regulating hundreds of biological signaling events and the secretion of various cytokines. One of the central regulators of adipocyte differentiation is peroxisome proliferator-activated receptor γ (PPARγ), which promotes downstream transcriptional activities, such as adiponectin. Disruption of homeostasis leads to the onset of metabolic diseases such as type 2 diabetes and other triggers for metabolic syndrome. Males and post-menopausal females are more likely to be affected with metabolic diseases than pre-menopausal females, suggesting that sex hormones might be involved in the pathogenesis and development of metabolic diseases. Indeed, 17β-estradiol, testosterone, dihydrotestosterone, and their receptors clearly play a role in adipose regulation: they can alter fat distribution and can modify the expression and activities of PPARγ and its downstream adipocytokines. Furthermore, sex hormones affect inflammatory factors such as nitric oxygen, nitric oxygen synthase, and their surrounding components. Sex hormones are also suggested to be involved with sex differences in the efficacy of the PPARγ agonist thiazolidinediones. Therefore, thorough investigation of how sex hormone-dependent regulation of metabolic homeostasis occurs is necessary in order to develop individualized clinical therapies optimized with regard to each patient's biological condition and drug sensitivities.
Collapse
|
28
|
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA Department of Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Zhao L, Fu Z, Wu J, Aylor KW, Barrett EJ, Cao W, Liu Z. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses. J Physiol 2015; 593:4067-79. [PMID: 26108677 DOI: 10.1113/jp270371] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/18/2015] [Indexed: 01/14/2023] Open
Abstract
Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin's microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats.
Collapse
Affiliation(s)
- Lina Zhao
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Jing Wu
- Department of Endocrinology, Central South University Xiangya Hospital, Hunan, China
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Wenhong Cao
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
30
|
Barrett EJ, Keske MA, Rattigan S, Eringa EC. CrossTalk proposal: De novo capillary recruitment in healthy muscle is necessary. J Physiol 2015; 592:5129-31. [PMID: 25448178 DOI: 10.1113/jphysiol.2014.282137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eugene J Barrett
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Stephen Rattigan
- University of Tasmania, Hobart, Tasmania, Australia VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bradley EA, Zhang L, Genders AJ, Richards SM, Rattigan S, Keske MA. Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside. Cardiovasc Diabetol 2015; 14:91. [PMID: 26194188 PMCID: PMC4509722 DOI: 10.1186/s12933-015-0251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR. METHODS Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R'g) was determined radioisotopically with (14)C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles. RESULTS AICAR did not affect blood glucose, or lower leg R'g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R'g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R'g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R'g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion. CONCLUSIONS AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
Collapse
Affiliation(s)
- Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Lei Zhang
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | - Amanda J Genders
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| |
Collapse
|
32
|
John D, Lyden K, Bassett DR. A Physiological Perspective on Treadmill and Sit-to-Stand Workstations. ERGONOMICS IN DESIGN 2015. [DOI: 10.1177/1064804615585411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active workstations, such as treadmill and sit-to-stand workstations, enable office employees to break prolonged sitting with bouts of light-intensity walking and/or standing. Compared with sitting, walking and/or standing accumulated during the workday using these workstations will increase muscle contractions, which may influence blood flow, energy expenditure, metabolism, musculoskeletal health, and brain function. Physiological responses when using treadmill and sit-to-stand workstations may vary due to differences in muscle contraction type (dynamic vs. static) and may thus affect cardio-metabolic and musculoskeletal health and brain function in different ways.
Collapse
|
33
|
Zheng C, Liu Z. Vascular function, insulin action, and exercise: an intricate interplay. Trends Endocrinol Metab 2015; 26:297-304. [PMID: 25735473 PMCID: PMC4450131 DOI: 10.1016/j.tem.2015.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow, and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action, and the vasculature contributes to exercise-mediated insulin sensitization in muscle.
Collapse
Affiliation(s)
- Chao Zheng
- Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Hong YH, Betik AC, Premilovac D, Dwyer RM, Keske MA, Rattigan S, McConell GK. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2015; 308:R862-71. [DOI: 10.1152/ajpregu.00412.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, NG-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction.
Collapse
Affiliation(s)
- Yet Hoi Hong
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Andrew C. Betik
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Dino Premilovac
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia; and
| | - Renee M. Dwyer
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia; and
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle A. Keske
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia; and
| | - Stephen Rattigan
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia; and
| | - Glenn K. McConell
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Shim CY, Kim S, Chadderdon S, Wu M, Qi Y, Xie A, Alkayed NJ, Davidson BP, Lindner JR. Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. Am J Physiol Endocrinol Metab 2014; 307:E1097-104. [PMID: 25336524 PMCID: PMC4269677 DOI: 10.1152/ajpendo.00216.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle microvascular blood flow (MBF) increases in response to physiological hyperinsulinemia. This vascular action of insulin may facilitate glucose uptake. We hypothesized that epoxyeicosatrienoic acids (EETs), a family of arachadonic, acid-derived, endothelium-derived hyperpolarizing factors, are mediators of insulin's microvascular effects. Contrast-enhanced ultrasound (CEU) was performed to quantify skeletal muscle capillary blood volume (CBV) and MBF in wild-type and obese insulin-resistant (db/db) mice after administration of vehicle or trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (t-AUCB), an inhibitor of soluble epoxide hydrolase that converts EETs to less active dihydroxyeicosatrienoic acids. Similar studies were performed in rats pretreated with l-NAME. CEU was also performed in rats undergoing a euglycemic hyperinsulinemic clamp, half of which were pretreated with the epoxygenase inhibitor MS-PPOH to inhibit EET synthesis. In both wild-type and db/db mice, intravenous t-AUCB produced an increase in CBV (65-100% increase at 30 min, P < 0.05) and in MBF. In db/db mice, t-AUCB also reduced plasma glucose by ∼15%. In rats pretreated with l-NAME, t-AUCB after produced a significant ≈20% increase in CBV, indicating a component of vascular response independent of nitric oxide (NO) production. Hyperinsulinemic clamp produced a time-dependent increase in MBF (19 ± 36 and 76 ± 49% at 90 min, P = 0.026) that was mediated in part by an increase in CBV. Insulin-mediated changes in both CBV and MBF during the clamp were blocked entirely by MS-PPOH. We conclude that EETs are a mediator of insulin-mediated augmentation in skeletal muscle perfusion and are involved in regulating changes in CBV during hyperinsulinemia.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Benzoates/pharmacology
- Blood Volume/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Hyperinsulinism/physiopathology
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microcirculation/drug effects
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Rats
- Rats, Sprague-Dawley
- Regional Blood Flow/drug effects
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
| | | | | | | | - Yue Qi
- Knight Cardiovascular Institute and
| | - Aris Xie
- Knight Cardiovascular Institute and
| | - Nabil J Alkayed
- Knight Cardiovascular Institute and Department of Anesthesia and Peri-operative Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|
36
|
Raper JA, Love LK, Paterson DH, Peters SJ, Heigenhauser GJF, Kowalchuk JM. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise. J Appl Physiol (1985) 2014; 117:1371-9. [PMID: 25277736 DOI: 10.1152/japplphysiol.00456.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial pyruvate dehydrogenase (PDH) regulates the delivery of carbohydrate-derived substrate to the mitochondrial tricarboxylic acid cycle and electron transport chain. PDH activity at rest and its activation during exercise is attenuated following high-fat (HFAT) compared with high-carbohydrate (HCHO) diets. Given the reliance on carbohydrate-derived substrate early in transitions to exercise, this study examined the effects of HFAT and HCHO on phase II pulmonary O2 uptake (V̇o2 p) kinetics during transitions into the moderate-intensity (MOD) exercise domain. Eight active adult men underwent dietary manipulations consisting of 6 days of HFAT (73% fat, 22% protein, 5% carbohydrate) followed immediately by 6 days of HCHO (10% fat, 10% protein, 80% carbohydrate); each dietary phase was preceded by a glycogen depletion protocol. Participants performed three MOD transitions from a 20 W cycling baseline to work rate equivalent to 80% of estimated lactate threshold on days 5 and 6 of each diet. Steady-state V̇o2 p was greater (P < 0.05), and respiratory exchange ratio and carbohydrate oxidation rates were lower (P < 0.05) during HFAT. The phase II V̇o2 p time constant (τV̇o2 p) [HFAT 40 ± 16, HCHO 32 ± 19 s (mean ± SD)] and V̇o2 p gain (HFAT 10.3 ± 0.8, HCHO 9.4 ± 0.7 ml·min(-1·)W(-1)) were greater (P < 0.05) in HFAT. The overall adjustment (effective time constant) of muscle deoxygenation (Δ[HHb]) was not different between diets (HFAT 24 ± 4 s, HCHO 23 ± 4 s), which coupled with a slower τV̇o2 p, indicates a slowed microvascular blood flow response. These results suggest that the slower V̇o2 p kinetics associated with HFAT are consistent with inhibition and slower activation of PDH, a lower rate of pyruvate production, and/or attenuated microvascular blood flow and O2 delivery.
Collapse
Affiliation(s)
- J A Raper
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - L K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - S J Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - G J F Heigenhauser
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - J M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
37
|
Hong YH, Betik AC, McConell GK. Role of nitric oxide in skeletal muscle glucose uptake during exercise. Exp Physiol 2014; 99:1569-73. [PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
Collapse
Affiliation(s)
- Yet Hoi Hong
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia Department of Physiology, Faculty of Medicine, University of Malaya, Malaysia
| | - Andrew C Betik
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Glenn K McConell
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Zhao L, Fu Z, Liu Z. Adiponectin and insulin cross talk: the microvascular connection. Trends Cardiovasc Med 2014; 24:319-24. [PMID: 25220977 DOI: 10.1016/j.tcm.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/02/2014] [Accepted: 08/03/2014] [Indexed: 12/20/2022]
Abstract
Adiponectin exerts both vasodilatory and insulin-sensitizing actions and its levels are decreased in insulin-resistant humans and animals. The mechanisms underlying adiponectin׳s insulin-sensitizing effect have been extensively investigated but remain largely unclear. Muscle microvasculature critically regulates muscle insulin action by modulating insulin delivery to the microvessels nurturing the muscle cells and the trans-endothelial insulin transport. We have recently reported that adiponectin exerts its insulin-sensitizing effect via recruiting muscle microvasculature, expanding the endothelial surface area, and increasing insulin delivery to and thus action in muscle. The current review focuses on the microvascular connection between the adiponectin and insulin cross talk.
Collapse
Affiliation(s)
- Lina Zhao
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908
| | - Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908.
| |
Collapse
|
39
|
Chai W, Zhang X, Barrett EJ, Liu Z. Glucagon-like peptide 1 recruits muscle microvasculature and improves insulin's metabolic action in the presence of insulin resistance. Diabetes 2014; 63:2788-99. [PMID: 24658303 PMCID: PMC4113068 DOI: 10.2337/db13-1597] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin's metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy.
Collapse
Affiliation(s)
- Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Xingxing Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VADepartment of Pediatrics, Central South University 2nd Xiangya Hospital, Hunan, China
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
40
|
Fu Z, Zhao L, Aylor KW, Carey RM, Barrett EJ, Liu Z. Angiotensin-(1-7) recruits muscle microvasculature and enhances insulin's metabolic action via mas receptor. Hypertension 2014; 63:1219-27. [PMID: 24711523 DOI: 10.1161/hypertensionaha.113.03025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin-(1-7) [Ang-(1-7)], an endogenous ligand for the G protein-coupled receptor Mas, exerts both vasodilatory and insulin-sensitizing effects. In skeletal muscle, relaxation of precapillary arterioles recruits microvasculature and increases the endothelial surface area available for nutrient and hormone exchanges. To assess whether Ang-(1-7) recruits microvasculature and enhances insulin action in muscle, overnight-fasted adult rats received an intravenous infusion of Ang-(1-7) (0, 10, or 100 ng/kg per minute) for 150 minutes with or without a simultaneous infusion of the Mas inhibitor A-779 and a superimposition of a euglycemic insulin clamp (3 mU/kg per minute) from 30 to 150 minutes. Hind limb muscle microvascular blood volume, microvascular flow velocity, and microvascular blood flow were determined. Myographic changes in tension were measured on preconstricted distal saphenous artery. Ang-(1-7) dose-dependently relaxed the saphenous artery (P<0.05) ex vivo. This effect was potentiated by insulin (P<0.01) and abolished by either endothelium denudement or Mas inhibition. Systemic infusion of Ang-(1-7) rapidly increased muscle microvascular blood volume and microvascular blood flow (P<0.05, each) without altering microvascular flow velocity. Insulin infusion alone increased muscle microvascular blood volume by 60% to 70% (P<0.05). Adding insulin to the Ang-(1-7) infusion further increased muscle microvascular blood volume and microvascular blood flow (≈2.5 fold; P<0.01). These were associated with a significant increase in insulin-mediated glucose disposal and muscle protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation. A-779 pretreatment blunted the microvascular and insulin-sensitizing effects of Ang-(1-7). We conclude that Ang-(1-7) by activating Mas recruits muscle microvasculature and enhances the metabolic action of insulin. These effects may contribute to the cardiovascular protective responses associated with Mas activation and explain the insulin-sensitizing action of Ang-(1-7).
Collapse
Affiliation(s)
- Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
42
|
Fu Z, Zhao L, Chai W, Dong Z, Cao W, Liu Z. Ranolazine recruits muscle microvasculature and enhances insulin action in rats. J Physiol 2013; 591:5235-49. [PMID: 23798495 DOI: 10.1113/jphysiol.2013.257246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ranolazine, an anti-anginal compound, has been shown to significantly improve glycaemic control in large-scale clinical trials, and short-term ranolazine treatment is associated with an improvement in myocardial blood flow. As microvascular perfusion plays critical roles in insulin delivery and action, we aimed to determine if ranolazine could improve muscle microvascular blood flow, thereby increasing muscle insulin delivery and glucose use. Overnight-fasted, anaesthetized Sprague-Dawley rats were used to determine the effects of ranolazine on microvascular recruitment using contrast-enhanced ultrasound, insulin action with euglycaemic hyperinsulinaemic clamp, and muscle insulin uptake using (125)I-insulin. Ranolazine's effects on endothelial nitric oxide synthase (eNOS) phosphorylation, cAMP generation and endothelial insulin uptake were determined in cultured endothelial cells. Ranolazine-induced myographical changes in tension were determined in isolated distal saphenous artery. Ranolazine at therapeutically effective dose significantly recruited muscle microvasculature by increasing muscle microvascular blood volume (∼2-fold, P < 0.05) and increased insulin-mediated whole body glucose disposal (∼30%, P = 0.02). These were associated with an increased insulin delivery into the muscle (P < 0.04). In cultured endothelial cells, ranolazine increased eNOS phosphorylation and cAMP production without affecting endothelial insulin uptake. In ex vivo studies, ranolazine exerted a potent vasodilatatory effect on phenylephrine pre-constricted arterial rings, which was partially abolished by endothelium denudement. In conclusion, ranolazine treatment vasodilatates pre-capillary arterioles and increases microvascular perfusion, which are partially mediated by endothelium, leading to expanded microvascular endothelial surface area available for nutrient and hormone exchanges and resulting in increased muscle delivery and action of insulin. Whether these actions contribute to improved glycaemic control in patients with insulin resistance warrants further investigation.
Collapse
Affiliation(s)
- Zhuo Fu
- Z. Liu: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Heinonen I, Saltin B, Kemppainen J, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle. Nutr Metab (Lond) 2013; 10:43. [PMID: 23773265 PMCID: PMC3686616 DOI: 10.1186/1743-7075-10-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/10/2013] [Indexed: 12/03/2022] Open
Abstract
Background The role of nitric oxide in controlling substrate metabolism in humans is incompletely understood. Methods The present study examined the effect of nitric oxide blockade on glucose uptake, and free fatty acid and lactate exchange in skeletal muscle of eight healthy young males. Exchange was determined by measurements of muscle perfusion by positron emission tomography and analysis of arterial and femoral venous plasma concentrations of glucose, fatty acids and lactate. The measurements were performed at rest and during exercise without (control) and with blockade of nitric oxide synthase (NOS) with NG-monomethyl-l-arginine (L-NMMA). Results Glucose uptake at rest was 0.40 ± 0.21 μmol/100 g/min and increased to 3.71 ± 2.53 μmol/100 g/min by acute one leg low intensity exercise (p < 0.01). Prior inhibition of NOS by L-NMMA did not affect glucose uptake, at rest or during exercise (0.40 ± 0.26 and 4.74 ± 2.69 μmol/100 g/min, respectively). In the control trial, there was a small release of free fatty acids from the limb at rest (−0.05 ± 0.09 μmol/100 g/min), whereas during inhibition of NOS, there was a small uptake of fatty acids (0.04 ± 0.05 μmol/100 g/min, p < 0.05). During exercise fatty acid uptake was increased to (0.89 ± 1.07 μmol/100 g/min), and there was a non-significant trend (p = 0.10) for an increased FFA uptake with NOS inhibition 1.23 ± 1.48 μmol/100 g/min) compared to the control condition. Arterial concentrations of all substrates and exchange of lactate over the limb at rest and during exercise remained unaltered during the two conditions. Conclusion In conclusion, inhibition of nitric oxide synthesis does not alter muscle glucose uptake during low intensity exercise, but affects free fatty acid exchange especially at rest, and may thus be involved in the modulation of energy metabolism in the human skeletal muscle.
Collapse
|
44
|
Zhao L, Chai W, Fu Z, Dong Z, Aylor KW, Barrett EJ, Cao W, Liu Z. Globular adiponectin enhances muscle insulin action via microvascular recruitment and increased insulin delivery. Circ Res 2013; 112:1263-71. [PMID: 23459195 DOI: 10.1161/circresaha.111.300388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE Adiponectin enhances insulin action and induces nitric oxide-dependent vasodilatation. Insulin delivery to muscle microcirculation and transendothelial transport are 2 discrete steps that limit insulin's action. We have shown that expansion of muscle microvascular surface area increases muscle insulin delivery and action. OBJECTIVE To examine whether adiponectin modulates muscle microvascular recruitment thus insulin delivery and action in vivo. METHODS AND RESULTS Overnight fasted adult male rats were studied. We determined the effects of adiponectin on muscle microvascular recruitment, using contrast-enhanced ultrasound, on insulin-mediated microvascular recruitment and whole-body glucose disposal, using contrast-enhanced ultrasound and insulin clamp, and on muscle insulin clearance and uptake with (125)I-insulin. Globular adiponectin potently increased muscle microvascular blood volume without altering microvascular blood flow velocity, leading to a significantly increased microvascular blood flow. This was paralleled by a ≈30% to 40% increase in muscle insulin uptake and clearance, and ≈30% increase in insulin-stimulated whole-body glucose disposal. Inhibition of endothelial nitric oxide synthase abolished globular adiponectin-mediated muscle microvascular recruitment and insulin uptake. In cultured endothelial cells, globular adiponectin dose-dependently increased endothelial nitric oxide synthase phosphorylation but had no effect on endothelial cell internalization of insulin. CONCLUSIONS Globular adiponectin increases muscle insulin uptake by recruiting muscle microvasculature, which contributes to its insulin-sensitizing action.
Collapse
Affiliation(s)
- Lina Zhao
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
46
|
Wang N, Chai W, Zhao L, Tao L, Cao W, Liu Z. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment. Am J Physiol Endocrinol Metab 2013; 304:E538-45. [PMID: 23299501 PMCID: PMC3602659 DOI: 10.1152/ajpendo.00537.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin uptake and action, rats were studied after an overnight fast to examine the effects of losartan on muscle insulin uptake (protocol 1), microvascular perfusion (protocol 2), and insulin's microvascular and metabolic actions in the state of insulin resistance (protocol 3). Endothelial cell insulin uptake was assessed, using (125)I-insulin as tracer. Systemic lipid infusion was used to induce insulin resistance. Losartan significantly increased muscle insulin uptake (∼60%, P < 0.03), which was associated with a two- to threefold increase in muscle microvascular blood volume (MBV; P = 0.002) and flow (MBF; P = 0.002). Losartan ± angiotensin II had no effect on insulin internalization in cultured endothelial cells. Lipid infusion abolished insulin-mediated increases in muscle MBV and MBF and lowered insulin-stimulated whole body glucose disposal (P = 0.0001), which were reversed by losartan administration. Inhibition of nitric oxide synthase abolished losartan-induced muscle insulin uptake and reversal of lipid-induced metabolic insulin resistance. We conclude that AT1R blockade increases muscle insulin uptake mainly via microvascular recruitment and rescues insulin's metabolic action in the insulin-resistant state. This may contribute to the clinical findings of decreased cardiovascular events and new onset of diabetes in patients receiving AT1R blockers.
Collapse
Affiliation(s)
- Nasui Wang
- Div. of Endocrinology and Metabolism, Dept. of Medicine, Univ. of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
47
|
Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care 2013; 36:104-10. [PMID: 22961574 PMCID: PMC3526221 DOI: 10.2337/dc11-2399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether early, insulin-mediated microvascular recruitment in skeletal muscle predicts steady-state glucose metabolism in the setting of physiological elevation of free fatty acid concentrations. RESEARCH DESIGN AND METHODS We measured insulin's microvascular and metabolic effects in 14 healthy young adults during a 2-h euglycemic insulin clamp. Plasma free fatty acid concentrations were raised (Intralipid and heparin infusion) for 3 h before the clamp and maintained at postprandial concentrations during the clamp. Microvascular blood volume (MBV) was measured by contrast-enhanced ultrasound (CEU) continuously from baseline through the first 30 min of the insulin clamp. Muscle glucose and insulin uptake were measured by the forearm balance method. RESULTS The glucose infusion rate (GIR) necessary to maintain euglycemia during the clamp varied by fivefold across subjects (2.5-12.5 mg/min/kg). The early MBV responses to insulin, as indicated by CEU video intensity, ranged widely, from a 39% decline to a 69% increase. During the clamp, steady state forearm muscle glucose uptake and GIR each correlated significantly with the change in forearm MBV (P < 0.01). To explore the basis for the wide range of vascular and metabolic insulin sensitivity observed, we also measured V(O(2max)) in a subset of eight subjects. Fitness (V(O(2max))) correlated significantly with the GIR, the forearm glucose uptake, and the percentage change in MBV during the insulin clamp (P < 0.05 for each). CONCLUSIONS Early microvascular responses to insulin strongly associate with steady state skeletal muscle insulin-mediated glucose uptake. Physical fitness predicts both metabolic and vascular insulin responsiveness.
Collapse
Affiliation(s)
- Emma M Eggleston
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | |
Collapse
|
48
|
Barrett EJ, Rattigan S. Muscle perfusion: its measurement and role in metabolic regulation. Diabetes 2012; 61:2661-8. [PMID: 23093655 PMCID: PMC3478558 DOI: 10.2337/db12-0271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Eugene J Barrett
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
49
|
McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol Endocrinol Metab 2012; 303:E301-7. [PMID: 22550064 DOI: 10.1152/ajpendo.00667.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components. A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance. This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute of Sport, Exercise and Active Living and the School of Biomedical and Health Sciences, Victoria University, Footscray, Victoria, Australia.
| | | | | | | | | |
Collapse
|
50
|
St-Pierre P, Keith LJ, Richards SM, Rattigan S, Keske MA. Microvascular blood flow responses to muscle contraction are not altered by high-fat feeding in rats. Diabetes Obes Metab 2012; 14:753-61. [PMID: 22429614 DOI: 10.1111/j.1463-1326.2012.01598.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM Exercise and insulin each increase microvascular blood flow and enhance glucose disposal in skeletal muscle. We have reported that insulin-mediated microvascular recruitment in a diet-induced model of insulin resistance (high-fat feeding for 4 weeks) is markedly impaired; however, the effect of muscle contraction in this model has not been previously explored. METHODS We fed rats either normal (ND, 10% calories from fat) or high-fat (HFD, 60% calories from fat) diets ad libitum for 4-8 weeks. Animals were then anaesthetized and one hindlimb electrically stimulated to contract at 0.05, 0.1 and 2 Hz (field stimulation, 30 V, 0.1 ms duration) in 15 min stepwise increments. Femoral artery blood flow (Transonic flow probe), muscle microvascular blood flow (hindleg metabolism of 1-methylxanthine and contrast-enhanced ultrasound) and muscle glucose disposal (uptake of radiolabelled 2-deoxy-d-glucose and hindleg glucose disappearance) were measured. RESULTS Both ND and HFD rats received the same voltage across the leg and consequently developed the same muscle tension. Femoral artery blood flow in the contracting leg increased during 2 Hz contraction, but not during the lower frequencies and these effects were similar between ND and HFD rats. Muscle microvascular blood flow significantly increased in a contraction frequency-dependent manner, and preceded increases in total limb blood flow and these effects were similar between ND and HFD rats. Muscle glucose disposal was markedly elevated during 2 Hz contraction and was comparable between ND and HFD rats. CONCLUSION Contraction-mediated muscle microvascular recruitment and glucose uptake are not impaired in the HFD insulin resistant rat.
Collapse
Affiliation(s)
- P St-Pierre
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|