1
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
2
|
Sui L, Xin Y, Du Q, Georgieva D, Diedenhofen G, Haataja L, Su Q, Zuccaro MV, Kim J, Fu J, Xing Y, He Y, Baum D, Goland RS, Wang Y, Oberholzer J, Barbetti F, Arvan P, Kleiner S, Egli D. Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight 2021; 6:141553. [PMID: 33529174 PMCID: PMC8022502 DOI: 10.1172/jci.insight.141553] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Limitations in cell proliferation are important for normal function of differentiated tissues and essential for the safety of cell replacement products made from pluripotent stem cells, which have unlimited proliferative potential. To evaluate whether these limitations can be established pharmacologically, we exposed pancreatic progenitors differentiating from human pluripotent stem cells to small molecules that interfere with cell cycle progression either by inducing G1 arrest or by impairing S phase entry or S phase completion and determined growth potential, differentiation, and function of insulin-producing endocrine cells. We found that the combination of G1 arrest with a compromised ability to complete DNA replication promoted the differentiation of pancreatic progenitor cells toward insulin-producing cells and could substitute for endocrine differentiation factors. Reduced replication fork speed during differentiation improved the stability of insulin expression, and the resulting cells protected mice from diabetes without the formation of cystic growths. The proliferative potential of grafts was proportional to the reduction of replication fork speed during pancreatic differentiation. Therefore, a compromised ability to enter and complete S phase is a functionally important property of pancreatic endocrine differentiation, can be achieved by reducing replication fork speed, and is an important determinant of cell-intrinsic limitations of growth.
Collapse
Affiliation(s)
- Lina Sui
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Qian Du
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Daniela Georgieva
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Giacomo Diedenhofen
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Bambino Gesù Children's Hospital, Rome, Italy
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Michael V Zuccaro
- PhD program in the Department of Physiology and Cellular Biophysics, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Jiayu Fu
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Danielle Baum
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Fabrizio Barbetti
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Peter Arvan
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol 2020; 40:MCB.00031-20. [PMID: 32179553 DOI: 10.1128/mcb.00031-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Isoforms of protein kinase B (also known as AKT) play important roles in mediating insulin and growth factor signals. Previous studies have suggested that the AKT2 isoform is critical for insulin-regulated glucose metabolism, while the role of the AKT1 isoform remains less clear. This study focuses on the effects of AKT1 on the adaptive response of pancreatic β cells. Using a mouse model with inducible β-cell-specific deletion of the Akt1 gene (βA1KO mice), we showed that AKT1 is involved in high-fat-diet (HFD)-induced growth and survival of β cells but is unnecessary for them to maintain a population in the absence of metabolic stress. When unchallenged, βA1KO mice presented the same metabolic profile and β-cell phenotype as the control mice with an intact Akt1 gene. When metabolic stress was induced by HFD, β cells in control mice with intact Akt1 proliferated as a compensatory mechanism for metabolic overload. Similar effects were not observed in βA1KO mice. We further demonstrated that AKT1 protein deficiency caused endoplasmic reticulum (ER) stress and potentiated β cells to undergo apoptosis. Our results revealed that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress. Together, these data established a role for AKT1 as a growth and survival factor for adaptive β-cell response and suggest that ER stress induction is responsible for this effect of AKT1.
Collapse
|
4
|
Maugein A, Diedisheim M, Bailly K, Scharfmann R, Albagli O. The RB gene family controls the maturation state of the EndoC-βH2 human pancreatic β-cells. Differentiation 2020; 113:1-9. [PMID: 32120156 DOI: 10.1016/j.diff.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
The functional maturation of human pancreatic β-cells remains poorly understood. EndoC-βH2 is a human β-cell line with a reversible immortalized phenotype. Removal of the two oncogenes, SV40LT and hTERT introduced for its propagation, stops proliferation, triggers cell size increase and senescence, promotes mitochondrial activity and amplifies several β-cell traits and functions. Overall, these events recapitulate several aspects of functional β-cell maturation. We report here that selective depletion of SV40LT, but not of hTERT, is sufficient to revert EndoC-βH2 immortalization. SV40LT inhibits the activity of the RB family members and of P53. In EndoC-βH2 cells, the knock-down of RB itself, and, to a lesser extent, of its relative P130, precludes most events triggered by SV40LT depletion. In contrast, the knock-down of P53 does not prevent reversion of immortalization. Thus, an increase in RB and P130 activity, but not in P53 activity, is required for functional maturation of EndoC-βH2 cells upon SV40LT-depletion. In addition, RB and/or P130 depletion in SV40LT-expressing EndoC-βH2 cells decreases cell size, stimulates proliferation, and decreases the expression of key β-cell genes. Thus, despite SV40LT expression, EndoC-βH2 cells have a residual RB activity, which when suppressed reverts them to a more immature phenotype. These results show that the expression and activity levels of RB family members, especially RB itself, regulate the maturation state of EndoC-βH2 cells.
Collapse
Affiliation(s)
- Alicia Maugein
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Marc Diedisheim
- Assistance Publique - Hôpitaux de Paris, Diabetology Department, Paris University, Cochin Hospital, and INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris University, 75006, Paris, France
| | - Karine Bailly
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Raphaël Scharfmann
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Olivier Albagli
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France.
| |
Collapse
|
5
|
Naert T, Dimitrakopoulou D, Tulkens D, Demuynck S, Carron M, Noelanders R, Eeckhout L, Van Isterdael G, Deforce D, Vanhove C, Van Dorpe J, Creytens D, Vleminckx K. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis. Oncogene 2020; 39:2692-2706. [PMID: 32001819 DOI: 10.1038/s41388-020-1173-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy. We show that while rb1 inactivation is sufficient to induce choroid plexus papilloma, combined rb1 and rbl1 inactivation is required and sufficient to drive SC-PaNEC, retinoblastoma and astrocytoma. Further, using a novel Li-Fraumeni syndrome-mimicking tp53 mutant X. tropicalis line, we demonstrate increased malignancy of rb1/rbl1-mutant glioma towards glioblastoma upon concomitant inactivation of tp53. Interestingly, although clinical SC-PaNEC samples are characterized by abnormal p53 expression or localization, in the current experimental models, the tp53 status had little effect on the establishment and growth of SC-PaNEC, but may rather be essential for maintaining chromosomal stability. SCLC was only rarely observed in our experimental setup, indicating requirement of additional or alternative oncogenic insults. In conclusion, we used CRISPR/Cas9 to delineate the tumor suppressor properties of Rbl1, generating new insights in the functional redundancy within the retinoblastoma protein family in suppressing neuroendocrine pancreatic cancer and glioma/glioblastoma.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dionysia Dimitrakopoulou
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Rivka Noelanders
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Liza Eeckhout
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent, Ghent, Belgium
- Infinity lab, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Abdolazimi Y, Zhao Z, Lee S, Xu H, Allegretti P, Horton TM, Yeh B, Moeller HP, Nichols RJ, McCutcheon D, Shalizi A, Smith M, Armstrong NA, Annes JP. CC-401 Promotes β-Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology 2018; 159:3143-3157. [PMID: 29514186 PMCID: PMC6287593 DOI: 10.1210/en.2018-00083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
Pharmacologic expansion of endogenous β cells is a promising therapeutic strategy for diabetes. To elucidate the molecular pathways that control β-cell growth we screened ∼2400 bioactive compounds for rat β-cell replication-modulating activity. Numerous hit compounds impaired or promoted rat β-cell replication, including CC-401, an advanced clinical candidate previously characterized as a c-Jun N-terminal kinase inhibitor. Surprisingly, CC-401 induced rodent (in vitro and in vivo) and human (in vitro) β-cell replication via dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 1B inhibition. In contrast to rat β cells, which were broadly growth responsive to compound treatment, human β-cell replication was only consistently induced by DYRK1A/B inhibitors. This effect was enhanced by simultaneous glycogen synthase kinase-3β (GSK-3β) or activin A receptor type II-like kinase/transforming growth factor-β (ALK5/TGF-β) inhibition. Prior work emphasized DYRK1A/B inhibition-dependent activation of nuclear factor of activated T cells (NFAT) as the primary mechanism of human β-cell-replication induction. However, inhibition of NFAT activity had limited effect on CC-401-induced β-cell replication. Consequently, we investigated additional effects of CC-401-dependent DYRK1A/B inhibition. Indeed, CC-401 inhibited DYRK1A-dependent phosphorylation/stabilization of the β-cell-replication inhibitor p27Kip1. Additionally, CC-401 increased expression of numerous replication-promoting genes normally suppressed by the dimerization partner, RB-like, E2F and multivulval class B (DREAM) complex, which depends upon DYRK1A/B activity for integrity, including MYBL2 and FOXM1. In summary, we present a compendium of compounds as a valuable resource for manipulating the signaling pathways that control β-cell replication and leverage a DYRK1A/B inhibitor (CC-401) to expand our understanding of the molecular pathways that control β-cell growth.
Collapse
Affiliation(s)
- Yassan Abdolazimi
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Zhengshan Zhao
- Biomedical Institute for Regenerative Research, Texas A&M University,
Commerce, Texas
| | - Sooyeon Lee
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Paul Allegretti
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Timothy M Horton
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Department of Chemistry, Stanford University, Stanford, California
| | - Benjamin Yeh
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Hannah P Moeller
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Robert J Nichols
- Department of Genetics, Stanford University, Stanford, California
| | - David McCutcheon
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Aryaman Shalizi
- Department of Pathology, Stanford University, Stanford, California
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Medicinal Chemistry Knowledge Center, Chemistry, Engineering and Medicine for
Human Health, Stanford University, Stanford, California
| | - Neali A Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| |
Collapse
|
7
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
8
|
A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation. Mol Cell Biol 2016; 36:2918-2930. [PMID: 27620967 DOI: 10.1128/mcb.00103-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation.
Collapse
|
9
|
Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 2016; 6:17873-90. [PMID: 26160835 PMCID: PMC4627222 DOI: 10.18632/oncotarget.4286] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the retinoblastoma (RB1) tumor suppressor is one of the most frequent and early recognized molecular hallmarks of cancer. RB1, although mainly studied for its role in the regulation of cell cycle, emerged as a key regulator of many biological processes. Among these, RB1 has been implicated in the regulation of apoptosis, the alteration of which underlies both cancer development and resistance to therapy. RB1 role in apoptosis, however, is still controversial because, depending on the context, the apoptotic cues, and its own status, RB1 can act either by inhibiting or promoting apoptosis. Moreover, the mechanisms whereby RB1 controls both proliferation and apoptosis in a coordinated manner are only now beginning to be unraveled. Here, by reviewing the main studies assessing the effect of RB1 status and modulation on these processes, we provide an overview of the possible underlying molecular mechanisms whereby RB1, and its family members, dictate cell fate in various contexts. We also describe the current antitumoral strategies aimed at the use of RB1 as predictive, prognostic and therapeutic target in cancer. A thorough understanding of RB1 function in controlling cell fate determination is crucial for a successful translation of RB1 status assessment in the clinical setting.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Immacolata Vocca
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| |
Collapse
|
10
|
Jiménez-Palomares M, López-Acosta JF, Villa-Pérez P, Moreno-Amador JL, Muñoz-Barrera J, Fernández-Luis S, Heras-Pozas B, Perdomo G, Bernal-Mizrachi E, Cózar-Castellano I. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells. Am J Physiol Endocrinol Metab 2015; 308:E450-9. [PMID: 25564474 PMCID: PMC4360017 DOI: 10.1152/ajpendo.00260.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [(3)H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration.
Collapse
Affiliation(s)
| | | | - Pablo Villa-Pérez
- Instituto de Genética y Biología Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | - Jennifer Muñoz-Barrera
- Instituto de Genética y Biología Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Sara Fernández-Luis
- Instituto de Genética y Biología Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Blanca Heras-Pozas
- Instituto de Genética y Biología Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Germán Perdomo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla La Mancha, Spain
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Irene Cózar-Castellano
- Instituto de Genética y Biología Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain;
| |
Collapse
|
11
|
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Blackwell JM. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS One 2015; 10:e0119333. [PMID: 25760438 PMCID: PMC4356593 DOI: 10.1371/journal.pone.0119333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
A body mass index (BMI) >22kg/m2 is a risk factor for type 2 diabetes (T2D) in Aboriginal Australians. To identify loci associated with BMI and T2D we undertook a genome-wide association study using 1,075,436 quality-controlled single nucleotide polymorphisms (SNPs) genotyped (Illumina 2.5M Duo Beadchip) in 402 individuals in extended pedigrees from a Western Australian Aboriginal community. Imputation using the thousand genomes (1000G) reference panel extended the analysis to 6,724,284 post quality-control autosomal SNPs. No associations achieved genome-wide significance, commonly accepted as P<5x10-8. Nevertheless, genes/pathways in common with other ethnicities were identified despite the arrival of Aboriginal people in Australia >45,000 years ago. The top hit (rs10868204 Pgenotyped = 1.50x10-6; rs11140653 Pimputed_1000G = 2.90x10-7) for BMI lies 5' of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped = 8.06x10-6; rs10841048 Pimputed_1000G = 6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped = 4.65x10-5; rs13225016 Pimputed_1000G = 6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped = 5.59x10-6, Pimputed_1000G = 5.73x10-6) for T2D lies 5' of BCL9 that, along with TCF7L2, promotes beta-catenin's transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other populations included MC4R (Pgenotyped = 4.49x10-4) for BMI and IGF2BP2 Pimputed_1000G = 2.55x10-6) for T2D. Our results may provide novel functional leads in understanding disease pathogenesis in this Australian Aboriginal population.
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard W. Francis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth S. H. Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J. Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E. Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Parsons K, Nakatani Y, Nguyen MD. p600/UBR4 in the central nervous system. Cell Mol Life Sci 2015; 72:1149-60. [PMID: 25424645 PMCID: PMC11113099 DOI: 10.1007/s00018-014-1788-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
A decade ago, the large 600 kDa mammalian protein p600 (also known as UBR4) was discovered as a multifunctional protein with roles in anoikis, viral transformation and protein degradation. Recently, p600 has emerged as a critical protein in the mammalian brain with roles in neurogenesis, neuronal migration, neuronal signaling and survival. How p600 integrates these apparently unrelated functions to maintain tissue homeostasis and murine survival remains unclear. The common molecular basis underlying many of the actions of p600 suggests, however, certain conservation and transposition of these functions across systems. In this review, we summarize the central nervous system functions of p600 and propose new perspectives on its biological complexity in neuronal physiology and neurological diseases.
Collapse
Affiliation(s)
- Kari Parsons
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada,
| | | | | |
Collapse
|
13
|
Cai EP, Luk CT, Wu X, Schroer SA, Shi SY, Sivasubramaniyam T, Brunt JJ, Zacksenhaus E, Woo M. Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action. Diabetologia 2014; 57:2555-65. [PMID: 25249236 DOI: 10.1007/s00125-014-3381-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/25/2014] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.
Collapse
Affiliation(s)
- Erica P Cai
- Toronto General Research Institute, University Health Network, 101 College Street, MaRS Centre/TMDT, Room 10-363, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang KT, Bayan JA, Zeng N, Aggarwal R, He L, Peng Z, Kassa A, Kim M, Luo Z, Shi Z, Medina V, Boddupally K, Stiles BL. Adult-onset deletion of Pten increases islet mass and beta cell proliferation in mice. Diabetologia 2014; 57:352-61. [PMID: 24162585 PMCID: PMC3918745 DOI: 10.1007/s00125-013-3085-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Adult beta cells have a diminished ability to proliferate. Phosphatase and tensin homologue (PTEN) is a lipid phosphatase that antagonises the function of the mitogenic phosphatidylinositol 3-kinase (PI3K) pathway. The objective of this study was to understand the role of PTEN and PI3K signalling in the maintenance of beta cells postnatally. METHODS We developed a Pten (lox/lox); Rosa26 (lacZ); RIP-CreER (+) model that permitted us to induce Pten deletion by treatment with tamoxifen in mature animals. We evaluated islet mass and function as well as beta cell proliferation in 3- and 12-month-old mice treated with tamoxifen (Pten deleted) vs mice treated with vehicle (Pten control). RESULTS Deletion of Pten in juvenile (3-month-old) beta cells significantly induced their proliferation and increased islet mass. The expansion of islet mass occurred concomitantly with the enhanced ability of the Pten-deleted mice to maintain euglycaemia in response to streptozotocin treatment. In older mice (>12 months of age), deletion of Pten similarly increased islet mass and beta cell proliferation. This novel finding suggests that PTEN-regulated mechanisms may override the age-onset diminished ability of beta cells to respond to mitogenic stimulation. We also found that proteins regulating G1/S cell-cycle transition, such as cyclin D1, cyclin D2, p27 and p16, were altered when PTEN was lost, suggesting that they may play a role in PTEN/PI3K-regulated beta cell proliferation in adult tissue. CONCLUSIONS/INTERPRETATION The signals regulated by the PTEN/PI3K pathway are important for postnatal maintenance of beta cells and regulation of their proliferation in adult tissues.
Collapse
Affiliation(s)
- Kai-Ting Yang
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alvarez-Perez JC, Ernst S, Demirci C, Casinelli GP, Mellado-Gil JMD, Rausell-Palamos F, Vasavada RC, Garcia-Ocaña A. Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration. Diabetes 2014; 63:216-23. [PMID: 24089510 PMCID: PMC3868042 DOI: 10.2337/db13-0333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocyte growth factor (HGF) is a mitogen required for β-cell replication during pregnancy. To determine whether HGF/c-Met signaling is required for β-cell regeneration, we characterized mice with pancreatic deletion of the HGF receptor, c-Met (PancMet KO mice), in two models of reduced β-cell mass and regeneration: multiple low-dose streptozotocin (MLDS) and partial pancreatectomy (Ppx). We also analyzed whether HGF administration could accelerate β-cell regeneration in wild-type (WT) mice after Ppx. Mouse islets obtained 7 days post-Ppx displayed significantly increased c-Met, suggesting a potential role for HGF/c-Met in β-cell proliferation in situations of reduced β-cell mass. Indeed, adult PancMet KO mice displayed markedly reduced β-cell replication compared with WT mice 7 days post-Ppx. Similarly, β-cell proliferation was decreased in PancMet KO mice in the MLDS mouse model. The decrease in β-cell proliferation post-Ppx correlated with a striking decrease in D-cyclin levels. Importantly, PancMet KO mice showed significantly diminished β-cell mass, decreased glucose tolerance, and impaired insulin secretion compared with WT mice 28 days post-Ppx. Conversely, HGF administration in WT Ppx mice further accelerated β-cell regeneration. These results indicate that HGF/c-Met signaling is critical for β-cell proliferation in situations of diminished β-cell mass and suggest that activation of this pathway can enhance β-cell regeneration.
Collapse
Affiliation(s)
- Juan Carlos Alvarez-Perez
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sara Ernst
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Cem Demirci
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Gabriella P. Casinelli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jose Manuel D. Mellado-Gil
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Francisco Rausell-Palamos
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rupangi C. Vasavada
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
- Corresponding author: Adolfo Garcia-Ocaña,
| |
Collapse
|
16
|
Zeng N, Yang KT, Bayan JA, He L, Aggarwal R, Stiles JW, Hou X, Medina V, Abad D, Palian BM, Al-Abdullah I, Kandeel F, Johnson DL, Stiles BL. PTEN controls β-cell regeneration in aged mice by regulating cell cycle inhibitor p16ink4a. Aging Cell 2013; 12:1000-11. [PMID: 23826727 DOI: 10.1111/acel.12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 12/31/2022] Open
Abstract
Tissue regeneration diminishes with age, concurrent with declining hormone levels including growth factors such as insulin-like growth factor-1 (IGF-1). We investigated the molecular basis for such decline in pancreatic β-cells where loss of proliferation occurs early in age and is proposed to contribute to the pathogenesis of diabetes. We studied the regeneration capacity of β-cells in mouse model where PI3K/AKT pathway downstream of insulin/IGF-1 signaling is upregulated by genetic deletion of Pten (phosphatase and tensin homologue deleted on chromosome 10) specifically in insulin-producing cells. In this model, PTEN loss prevents the decline in proliferation capacity in aged β-cells and restores the ability of aged β-cells to respond to injury-induced regeneration. Using several animal and cell models where we can manipulate PTEN expression, we found that PTEN blocks cell cycle re-entry through a novel pathway leading to an increase in p16(ink4a), a cell cycle inhibitor characterized for its role in cellular senescence/aging. A downregulation in p16(ink4a) occurs when PTEN is lost as a result of cyclin D1 induction and the activation of E2F transcription factors. The activation of E2F transcriptional factors leads to methylation of p16(ink4a) promoter, an event that is mediated by the upregulation of polycomb protein, Ezh2. These analyses establish a novel PTEN/cyclin D1/E2F/Ezh2/p16(ink4a) signaling network responsible for the aging process and provide specific evidence for a molecular paradigm that explain how decline in growth factor signals such as IGF-1 (through PTEN/PI3K signaling) may control regeneration and the lack thereof in aging cells.
Collapse
Affiliation(s)
- Ni Zeng
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Kai-Ting Yang
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | - Jennifer-Ann Bayan
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Lina He
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Richa Aggarwal
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Joseph W. Stiles
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Xiaogang Hou
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Vivian Medina
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
| | - Danny Abad
- Islet Transplant Center; City of Hope; Duarte CA 91010 USA
| | - Beth M. Palian
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | | | - Fouad Kandeel
- Islet Transplant Center; City of Hope; Duarte CA 91010 USA
| | - Deborah L. Johnson
- Department of Biochemistry; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences; School of Pharmacy; University of Southern California; Los Angeles CA 90089 USA
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles CA 90033 USA
| |
Collapse
|
17
|
Taneera J, Fadista J, Ahlqvist E, Zhang M, Wierup N, Renström E, Groop L. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 2013; 375:35-42. [PMID: 23707792 DOI: 10.1016/j.mce.2013.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
Microarray gene expression data were used to analyze the expression pattern of cyclin, cyclin-dependent kinase (CDKs) and cyclin-dependent kinase inhibitor (CDKIs) genes from human pancreatic islets with and without type 2 diabetes (T2D). Of the cyclin genes, CCNI was the most expressed. Data obtained from microarray and qRT-PCR showed higher expression of CCND1 in diabetic islets. Among the CDKs, CDK4, CDK8 and CDK9 were highly expressed, while CDK1 was expressed at low level. High expression of CDK18 was observed in diabetic islets. Of the CDKIs, CDKN1A expression was higher in diabetic islets in both microarray and qRT-PCR. Expression of CDKN1A, CDKN2A, CCNI2, CDK3 and CDK16 was correlated with age. Finally, eight SNPs in these genes were associated with T2D in the DIAGRAM database. Our data provide a comprehensive expression pattern of cell cycle genes in human islets. More human studies are required to confirm and reproduce animal studies.
Collapse
Affiliation(s)
- Jalal Taneera
- Lund University Diabetes Center, Department of Clinical Sciences, Diabetes & Endocrinology, Skåne University Hospital, Lund University, Malmö 20502, Sweden.
| | | | | | | | | | | | | |
Collapse
|
18
|
Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proc Natl Acad Sci U S A 2013; 110:14723-8. [PMID: 23946427 DOI: 10.1073/pnas.1303386110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes.
Collapse
|
19
|
Agrelo R, Kishimoto H, Novatchkova M, Peraza V, Paolino M, Souabni A, Wutz A. SATB1 collaborates with loss of p16 in cellular transformation. Oncogene 2013; 32:5492-500. [PMID: 23686316 PMCID: PMC3898308 DOI: 10.1038/onc.2013.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
Abstract
Tumor progression is associated with invasiveness and metastatic potential. The special AT-rich binding protein 1 (SATB1) has been identified as a key factor in the progression of breast cancer cells to a malignant phenotype and is associated with progression of human tumors. In normal development, SATB1 coordinates gene expression of progenitor cells by functioning as a genome organizer. In contrast to progenitor and tumor cells, SATB1 expression in nontransformed cells is not compatible with proliferation. Here we show that SATB1 expression in mouse embryonic fibroblasts induces cell cycle arrest and senescence that is associated with elevated p16 protein levels. Deletion of p16 overcomes the SATB1-induced senescence. We further provide evidence for an interaction of SATB1 with the retinoblastoma (RB)/E2F pathway downstream of p16. A combined deletion of the RB proteins, RB, p107 and p130 (triple-mutant; TM), prevents SATB1-induced G1 arrest, which is restored upon the reintroduction of RB into SATB1-expressing TM fibroblasts. SATB1 interacts with the E2F/RB complex and regulates the cyclin E promoter in an E2F-dependent manner. These findings demonstrate that p16 and the RB/E2F pathway are critical for SATB1-induced cell cycle arrest. In the absence of p16, SATB1 causes anchorage-independent growth and invasive phenotype in fibroblasts. Our data illustrate that p16 mutations collaborate with the oncogenic activity of SATB1. Consistent with our finding, a literature survey shows that deletion of p16 is generally associated with SATB1 expressing human cell lines and tumors.
Collapse
Affiliation(s)
- R Agrelo
- 1] Institut Pasteur de Montevideo, Epigenetics of Cancer and Aging Laboratory, Montevideo, Uruguay [2] Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes 2012; 61:2205-13. [PMID: 22751699 PMCID: PMC3425429 DOI: 10.2337/db12-0018] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major goal in diabetes research is to find ways to enhance the mass and function of insulin secreting β-cells in the endocrine pancreas to prevent and/or delay the onset or even reverse overt diabetes. In this Perspectives in Diabetes article, we highlight the contrast between the relatively large body of information that is available in regard to signaling pathways, proteins, and mechanisms that together provide a road map for efforts to regenerate β-cells in rodents versus the scant information in human β-cells. To reverse the state of ignorance regarding human β-cell signaling, we suggest a series of questions for consideration by the scientific community to construct a human β-cell proliferation road map. The hope is that the knowledge from the new studies will allow the community to move faster towards developing therapeutic approaches to enhance human β-cell mass in the long-term goal of preventing and/or curing type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Rohit N. Kulkarni
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| | - Ernesto-Bernal Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Adolfo Garcia Ocana
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Corresponding authors: Rohit N. Kulkarni, , and Andrew F. Stewart,
| |
Collapse
|
21
|
Metukuri MR, Zhang P, Basantani MK, Chin C, Stamateris RE, Alonso LC, Takane KK, Gramignoli R, Strom SC, O’Doherty RM, Stewart AF, Vasavada RC, Garcia-Ocaña A, Scott DK. ChREBP mediates glucose-stimulated pancreatic β-cell proliferation. Diabetes 2012; 61:2004-15. [PMID: 22586588 PMCID: PMC3402328 DOI: 10.2337/db11-0802] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose stimulates rodent and human β-cell replication, but the intracellular signaling mechanisms are poorly understood. Carbohydrate response element-binding protein (ChREBP) is a lipogenic glucose-sensing transcription factor with unknown functions in pancreatic β-cells. We tested the hypothesis that ChREBP is required for glucose-stimulated β-cell proliferation. The relative expression of ChREBP was determined in liver and β-cells using quantitative RT-PCR (qRT-PCR), immunoblotting, and immunohistochemistry. Loss- and gain-of-function studies were performed using small interfering RNA and genetic deletion of ChREBP and adenoviral overexpression of ChREBP in rodent and human β-cells. Proliferation was measured by 5-bromo-2'-deoxyuridine incorporation, [(3)H]thymidine incorporation, and fluorescence-activated cell sorter analysis. In addition, the expression of cell cycle regulatory genes was measured by qRT-PCR and immunoblotting. ChREBP expression was comparable with liver in mouse pancreata and in rat and human islets. Depletion of ChREBP decreased glucose-stimulated proliferation in β-cells isolated from ChREBP(-/-) mice, in INS-1-derived 832/13 cells, and in primary rat and human β-cells. Furthermore, depletion of ChREBP decreased the glucose-stimulated expression of cell cycle accelerators. Overexpression of ChREBP amplified glucose-stimulated proliferation in rat and human β-cells, with concomitant increases in cyclin gene expression. In conclusion, ChREBP mediates glucose-stimulated proliferation in pancreatic β-cells.
Collapse
Affiliation(s)
- Mallikarjuna R. Metukuri
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pili Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mahesh K. Basantani
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Connie Chin
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel E. Stamateris
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura C. Alonso
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karen K. Takane
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberto Gramignoli
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert M. O’Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew F. Stewart
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rupangi C. Vasavada
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adolfo Garcia-Ocaña
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donald K. Scott
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Donald K. Scott,
| |
Collapse
|
22
|
Rieck S, Zhang J, Li Z, Liu C, Naji A, Takane KK, Fiaschi-Taesch NM, Stewart AF, Kushner JA, Kaestner KH. Overexpression of hepatocyte nuclear factor-4α initiates cell cycle entry, but is not sufficient to promote β-cell expansion in human islets. Mol Endocrinol 2012; 26:1590-602. [PMID: 22798294 DOI: 10.1210/me.2012-1019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcription factor HNF4α (hepatocyte nuclear factor-4α) is required for increased β-cell proliferation during metabolic stress in vivo. We hypothesized that HNF4α could induce proliferation of human β-cells. We employed adenoviral-mediated overexpression of an isoform of HNF4α (HNF4α8) alone, or in combination with cyclin-dependent kinase (Cdk)6 and Cyclin D3, in human islets. Heightened HNF4α8 expression led to a 300-fold increase in the number of β-cells in early S-phase. When we overexpressed HNF4α8 together with Cdk6 and Cyclin D3, β-cell cycle entry was increased even further. However, the punctate manner of bromodeoxyuridine incorporation into HNF4α(High) β-cells indicated an uncoupling of the mechanisms that control the concise timing and execution of each cell cycle phase. Indeed, in HNF4α8-induced bromodeoxyuridine(+,punctate) β-cells we observed signs of dysregulated DNA synthesis, cell cycle arrest, and activation of a double stranded DNA damage-associated cell cycle checkpoint mechanism, leading to the initiation of loss of β-cell lineage fidelity. However, a substantial proportion of β-cells stimulated to enter the cell cycle by Cdk6 and Cyclin D3 alone also exhibited a DNA damage response. HNF4α8 is a mitogenic signal in the human β-cell but is not sufficient for completion of the cell cycle. The DNA damage response is a barrier to efficient β-cell proliferation in vitro, and we suggest its evaluation in all attempts to stimulate β-cell replication as an approach to diabetes treatment.
Collapse
Affiliation(s)
- Sebastian Rieck
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, 12-126 Translational Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5156, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim YC, Kim SY, Mellado-Gil JM, Yadav H, Neidermyer W, Kamaraju AK, Rane SG. RB regulates pancreas development by stabilizing Pdx1. EMBO J 2011; 30:1563-76. [PMID: 21399612 DOI: 10.1038/emboj.2011.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 02/08/2011] [Indexed: 12/15/2022] Open
Abstract
RB is a key substrate of Cdks and an important regulator of the mammalian cell cycle. RB either represses E2Fs that promote cell proliferation or enhances the activity of cell-specific factors that promote differentiation, although the mechanism that facilitates this dual interaction is unclear. Here, we demonstrate that RB associates with and stabilizes pancreatic duodenal homeobox-1 (Pdx-1) that is essential for embryonic pancreas development and adult β-cell function. Interestingly, Pdx-1 utilizes a conserved RB-interaction motif (RIM) that is also present in E2Fs. Point mutations within the RIM reduce RB-Pdx-1 complex formation, destabilize Pdx-1 and promote its proteasomal degradation. Glucose regulates RB and Pdx-1 levels, RB/Pdx-1 complex formation and Pdx-1 degradation. RB occupies the promoters of β-cell-specific genes, and knockdown of RB results in reduced expression of Pdx-1 and its target genes. Further, RB-deficiency in vivo results in reduced pancreas size due to decreased proliferation of Pdx-1(+) pancreatic progenitors, increased apoptosis and aberrant expression of regulators of pancreatic development. These results demonstrate an unanticipated regulatory mechanism for pancreatic development and β-cell function, which involves RB-mediated stabilization of the pancreas-specific transcription factor Pdx-1.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Köhler CU, Olewinski M, Tannapfel A, Schmidt WE, Fritsch H, Meier JJ. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am J Physiol Endocrinol Metab 2011; 300:E221-30. [PMID: 20978233 DOI: 10.1152/ajpendo.00496.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
β-Cell regeneration declines with aging, but the molecular mechanisms controlling β-cell replication in humans are not well understood. We compared the expression of selected cell cycle proteins in prenatal and adult tissue and examined the association of these proteins with β-cell replication. Pancreatic tissue from a total of 20 human fetuses and adults was stained for Ki67, cyclin D3, p16 and p27, and insulin. The β-cellular expression of these cell cycle proteins was determined. The frequency of β-cell replication was lower in adult compared with prenatal β-cells (<0.5 vs. 3.4 ± 0.5%, respectively; P < 0.0001). p16 was sporadically expressed in prenatal β-cells (8.0 ± 1.1%) but highly enriched in adult β-cells (63.1 ± 5.2%, P < 0.0001). Likewise, the expression of p27 was much lower in prenatal β-cells (1.7 ± 0.4 vs. 44.1 ± 5.4%, respectively, P < 0.0001), and cyclin D3 expression increased from 24.2 ± 4.1 to 47.25 ± 5.0%, respectively (P < 0.001), with aging. The expression of all three proteins was significantly correlated with each other (P < 0.01 and r > 0.75, respectively). The strong expression of cyclin D3 in adult human β-cells and its correlation to p27 and p16 suggest a positive role in human β-cell cycle regulation. p16 and p27 appear to restrict β-cell replication with aging. The age dependency of cell cycle regulation in human β-cells might explain the reduced β-cell regeneration in adult humans.
Collapse
Affiliation(s)
- Christina U Köhler
- Department of Medicine I, St. Josef-Hospital, Ruhr-University of Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF. Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 2010; 59:1926-36. [PMID: 20668294 PMCID: PMC2911074 DOI: 10.2337/db09-1776] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Most knowledge on human beta-cell cycle control derives from immunoblots of whole human islets, mixtures of beta-cells and non-beta-cells. We explored the presence, subcellular localization, and function of five early G1/S phase molecules-cyclins D1-3 and cdk 4 and 6-in the adult human beta-cell. RESEARCH DESIGN AND METHODS Immunocytochemistry for the five molecules and their relative abilities to drive human beta-cell replication were examined. Human beta-cell replication, cell death, and islet function in vivo were studied in the diabetic NOD-SCID mouse. RESULTS Human beta-cells contain easily detectable cdks 4 and 6 and cyclin D3 but variable cyclin D1. Cyclin D2 was only marginally detectable. All five were principally cytoplasmic, not nuclear. Overexpression of the five, alone or in combination, led to variable increases in human beta-cell replication, with the cdk6/cyclin D3 combination being the most robust (15% versus 0.3% in control beta-cells). A single molecule, cdk6, proved to be capable of driving human beta-cell replication in vitro and enhancing human islet engraftment/proliferation in vivo, superior to normal islets and as effectively as the combination of cdk6 plus a D-cyclin. CONCLUSIONS Human beta-cells contain abundant cdk4, cdk6, and cyclin D3, but variable amounts of cyclin D1. In contrast to rodent beta-cells, they contain little or no detectable cyclin D2. They are primarily cytoplasmic and likely ineffective in basal beta-cell replication. Unexpectedly, cyclin D3 and cdk6 overexpression drives human beta-cell replication most effectively. Most importantly, a single molecule, cdk6, supports robust human beta-cell proliferation and function in vivo.
Collapse
Affiliation(s)
- Nathalie M Fiaschi-Taesch
- Division of Endocrinology, the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|