1
|
Ajmal N, Bogart MC, Khan P, Max-Harry IM, Healy AM, Nunemaker CS. Identifying Promising Immunomodulators for Type 1 Diabetes (T1D) and Islet Transplantation. J Diabetes Res 2024; 2024:5151171. [PMID: 39735417 PMCID: PMC11679277 DOI: 10.1155/jdr/5151171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can reverse T1D. Within the National Clinical Trial (NCT) database, a majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on noninsulin pharmacological therapies, specifically immunomodulators. Many investigational new drugs fall under this category, such as the recently FDA-approved CD3 monoclonal antibody teplizumab to delay the onset of T1D. In total, we identified 39 different immunomodulatory investigational drugs. FDA-approved teplizumab for Stage 2 T1D is discussed along with other immunomodulators that have been tested in Phase 3 clinical trials or higher, including otelixizumab (another anti-CD3 monoclonal antibody), daclizumab (an anti-CD25 monoclonal antibody), ladarixin (CXCR1/2 inhibitor), and antithymocyte globulin (ATG). Immunomodulators also play roles in islet transplantation and cellular therapies like FDA-approved Lantidra. Several immunomodulators involved in Phase 3 clinical studies of islet transplantation are also discussed, including alemtuzumab, basiliximab, etanercept, and reparixin, some already FDA-approved for other uses. These include alemtuzumab, basiliximab, etanercept, and reparixin, some of which have been FDA-approved for other uses. This review provides background, mechanism of action, results of completed trials, and adverse effects as well as details regarding ongoing clinical trials for each of these immunomodulators. Trial Registration: ClinicalTrials.gov identifier: NCT03875729, NCT01030861, NCT00129259, NCT00385697, NCT01280682; NCT03929601, NCT04598893, NCT05757713, NCT00678886, NCT01123083, NCT00064714, NCT00468117, NCT04628481, NCT01106157, NCT02215200, NCT00331162, NCT00679042, NCT01220856, NCT01817959.
Collapse
Affiliation(s)
- Nida Ajmal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | | | - Palwasha Khan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ibiagbani M. Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| | - Amber M. Healy
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| |
Collapse
|
2
|
Min T, Bain SC. Emerging drugs for the treatment of type 1 diabetes mellitus: a review of phase 2 clinical trials. Expert Opin Emerg Drugs 2023; 28:1-15. [PMID: 36896700 DOI: 10.1080/14728214.2023.2188191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Despite therapeutic advances in the field of diabetes management since the discovery of insulin 100 years ago, there are still unmet clinical needs for people with type 1 diabetes mellitus (T1DM). AREAS COVERED Genetic testing and islet autoantibodies testing allow researchers to design prevention studies. This review discusses the emerging therapy for prevention of T1DM, disease modification therapy in early course of T1DM, and therapies and technologies for established T1DM. We focus on phase 2 clinical trials with promising results, thus avoiding the exhausted list of every new therapy for T1DM. EXPERT OPINION Teplizumab has demonstrated potential as a preventative agent for individuals at risk prior to the onset of overt dysglycemia. However, these agents are not without side effects, and there are uncertainties on long-term safety. Technological advances have led a substantial influence on quality of life of people suffering from T1DM. There remains variation in uptake of new technologies across the globe. Novel insulins (ultra-long acting), oral insulin, and inhaled insulin attempt to narrow the gap of unmet needs. Islet cell transplant is another exciting field, and stem cell therapy might have potential to provide unlimited supply of islet cells.
Collapse
Affiliation(s)
- Thinzar Min
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
- Department of Diabetes and Endocrinology, Neath Port Talbot Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Stephen C Bain
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
- Department of Diabetes and Endocrinology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
3
|
Oh E, McCown EM, Ahn M, Garcia PA, Branciamore S, Tang S, Zeng DF, Roep BO, Thurmond DC. Syntaxin 4 Enrichment in β-Cells Prevents Conversion to Autoimmune Diabetes in Non-Obese Diabetic (NOD) Mice. Diabetes 2021; 70:2837-2849. [PMID: 34556496 PMCID: PMC8660989 DOI: 10.2337/db21-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022]
Abstract
Syntaxin 4 (STX4), a plasma membrane-localized SNARE protein, regulates human islet β-cell insulin secretion and preservation of β-cell mass. We found that human type 1 diabetes (T1D) and NOD mouse islets show reduced β-cell STX4 expression, consistent with decreased STX4 expression, as a potential driver of T1D phenotypes. To test this hypothesis, we generated inducible β-cell-specific STX4-expressing NOD mice (NOD-iβSTX4). Of NOD-iβSTX4 mice, 73% had sustained normoglycemia vs. <20% of control NOD (NOD-Ctrl) mice by 25 weeks of age. At 12 weeks of age, before diabetes conversion, NOD-iβSTX4 mice demonstrated superior whole-body glucose tolerance and β-cell glucose responsiveness than NOD-Ctrl mice. Higher β-cell mass and reduced β-cell apoptosis were also detected in NOD-iβSTX4 pancreata compared with pancreata of NOD-Ctrl mice. Single-cell RNA sequencing revealed that islets from NOD-iβSTX4 had markedly reduced interferon-γ signaling and tumor necrosis factor-α signaling via nuclear factor-κB in islet β-cells, including reduced expression of the chemokine CCL5; CD4+ regulatory T cells were also enriched in NOD-iβSTX4 islets. These results provide a deeper mechanistic understanding of STX4 function in β-cell protection and warrant further investigation of STX4 enrichment as a strategy to reverse or prevent T1D in humans or protect β-cell grafts.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Erika M McCown
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Pablo A Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Sergio Branciamore
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Shanshan Tang
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - De-Fu Zeng
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Bart O Roep
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
4
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
5
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Kim H, Perovanovic J, Shakya A, Shen Z, German CN, Ibarra A, Jafek JL, Lin NP, Evavold BD, Chou DHC, Jensen PE, He X, Tantin D. Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. J Exp Med 2021; 218:e20200533. [PMID: 33295943 PMCID: PMC7731945 DOI: 10.1084/jem.20200533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 11/04/2022] Open
Abstract
The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Gene Deletion
- Germ Cells/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Ovalbumin
- Pancreas/metabolism
- Pancreas/pathology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jillian L Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nai-Pin Lin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Danny H-C Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Peter E Jensen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
7
|
Zirpel H, Roep BO. Islet-Resident Dendritic Cells and Macrophages in Type 1 Diabetes: In Search of Bigfoot's Print. Front Endocrinol (Lausanne) 2021; 12:666795. [PMID: 33912139 PMCID: PMC8072455 DOI: 10.3389/fendo.2021.666795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
The classical view of type 1 diabetes assumes that the autoimmune mediated targeting of insulin producing ß-cells is caused by an error of the immune system. Malfunction and stress of beta cells added the target tissue at the center of action. The innate immune system, and in particular islet-resident cells of the myeloid lineage, could function as a link between stressed ß-cells and activation and recognition by the adaptive immune system. We survey the role of islet-resident macrophages and dendritic cells in healthy islet homeostasis and pathophysiology of T1D. Knowledge of islet-resident antigen presenting cells in rodents is substantial, but quite scarce in humans, in particular regarding dendritic cells. Differences in blood between healthy and diseased individuals were reported, but it remains elusive to what extend these contribute to T1D onset. Increasing our understanding of the interaction between ß-cells and innate immune cells may provide new insights into disease initiation and development that could ultimately point to future treatment options. Here we review current knowledge of islet-resident macrophages and dendritic cells, place these in context of current clinical trials, and guide future research.
Collapse
|
8
|
Pearson JA, McKinney EF, Walker LSK. 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 1:ltab024. [PMID: 35156097 PMCID: PMC8826223 DOI: 10.1093/immadv/ltab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the insulin-producing β cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, therapeutic options for T1D are once more at a turning point. Years of effort directed at developing immunotherapies are finally starting to pay off, with signs of progress in new onset and even preventative settings. Here, we review a selection of immunotherapies that have shown promise in preserving β cell function and highlight future considerations for immunotherapy in the T1D setting.
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, England, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, England, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute or Immunity and Transplantation, University College London, Royal Free Campus, London, UK
| |
Collapse
|
9
|
Jacobsen LM, Bundy BN, Greco MN, Schatz DA, Atkinson MA, Brusko TM, Mathews CE, Herold KC, Gitelman SE, Krischer JP, Haller MJ. Comparing Beta Cell Preservation Across Clinical Trials in Recent-Onset Type 1 Diabetes. Diabetes Technol Ther 2020; 22:948-953. [PMID: 32833543 PMCID: PMC7757538 DOI: 10.1089/dia.2020.0305] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several immunotherapies have demonstrated endogenous insulin preservation in recent-onset type 1 diabetes (T1D). We considered the primary results of rituximab, abatacept, teplizumab, alefacept, high-dose antithymocyte globulin (ATG), low-dose ATG, and low-dose ATG ± granulocyte-colony-stimulating factor trials in an attempt to rank the effectiveness of the agents studied. C-peptide 2-h area under the curve means were modeled using analysis of covariance. The experimental treatment group effect for each study, compared with its internal control, was estimated after adjusting for baseline C-peptide and age. Percentage increase in C-peptide over placebo and the absolute difference within study were calculated to compare and contrast effect size among interventions. Low-dose ATG (55% and 103%) and teplizumab (48% and 63%) ranked highest in C-peptide preservation at 1 and 2 years, respectively. Low-dose ATG and teplizumab show the greatest impact on C-peptide preservation among recent new-onset T1D studies; these should be further explored as core immunotherapies in the T1D prevention setting.
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Division of Pediatric Endocrinology, University of Florida, Gainesville, Florida, USA
- Address correspondence to: Laura M. Jacobsen, MD, Division of Pediatric Endocrinology, University of Florida, PO Box 100296, Gainesville, FL 32610-0296, USA
| | - Brian N. Bundy
- Health Informatics Institute, University of South Florida, Tampa, Florida, USA
| | - Madison N. Greco
- Division of Pediatric Endocrinology, University of Florida, Gainesville, Florida, USA
| | - Desmond A. Schatz
- Division of Pediatric Endocrinology, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephen E. Gitelman
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey P. Krischer
- Health Informatics Institute, University of South Florida, Tampa, Florida, USA
| | - Michael J. Haller
- Division of Pediatric Endocrinology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Wu Q, Zheng S, Qin Y, Zheng X, Chen H, Yang T, Zhang M. Efficacy and safety of stem cells transplantation in patients with type 1 diabetes mellitus-a systematic review and meta-analysis. Endocr J 2020; 67:827-840. [PMID: 32321876 DOI: 10.1507/endocrj.ej20-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stem cells (SCs) therapy is a new promising therapeutic modality for type 1 diabetes (T1DM). We performed a systematic review and meta-analysis to evaluate the efficacy and safety of stem cells transplantation (SCT) in patients with T1DM. We searched five literature databases (MEDLINE, EMBASE, Web of Science, WanFang and CENTRAL) up to 31 October 2019. 29 studies (487 patients with T1DM) were included in our meta-analysis. There was no substantial publication bias. Meta-analysis showed the SCT had significant effect to decrease HbA1c (SMD, 1.40; 95% CI, 0.93 to 1.86; p < 0.00001; I2 = 89%) and to improve C-peptide levels (SMD, -0.62; 95% CI, -1.22 to -0.02; p = 0.04; I2 = 92%) at 1 year follow-up. Subgroup analyses showed the heterogeneity level of the results was high. Significant improvement of metabolic outcomes was observed in the subgroups of mesenchymal stem cells (MSCs) combined with hematopoietic stem cells (HSCs) and HSCs. The older age showed significant association with the efficacy in HSCs subgroup. The higher GADA positive rate before treatment also significantly associated with the decrease of daily insulin requirement. The transient insulin independence rate at last follow-up was 9.6 per 100 person-years (95% CI: 5.8-13.5%). The mean length of insulin independence was 15.6 months (95% CI: 12.3-18.9). The mortality of SCT was 3.4% (95% CI: 2.1-5.5%). Therefore, SCT is an efficacious and safe method for treating patients with T1DM especially in the subgroups of MSCs + HSCs and HSCs. Well designed, double blind and randomized controlled trails with large sample size and long-term follow-up are needed for further evaluation.
Collapse
Affiliation(s)
- Qian Wu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210046, China
| | - Shuai Zheng
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Heng Chen
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
11
|
Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Geyer SM, Warnock MV, Miller JL, Atkinson MA, Becker DJ, Baidal DA, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell WE, Wilson DM, Greenbaum CJ. Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA 1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 2019; 68:1267-1276. [PMID: 30967424 PMCID: PMC6610026 DOI: 10.2337/db19-0057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
A three-arm, randomized, double-masked, placebo-controlled phase 2b trial performed by the Type 1 Diabetes TrialNet Study Group previously demonstrated that low-dose anti-thymocyte globulin (ATG) (2.5 mg/kg) preserved β-cell function and reduced HbA1c for 1 year in new-onset type 1 diabetes. Subjects (N = 89) were randomized to 1) ATG and pegylated granulocyte colony-stimulating factor (GCSF), 2) ATG alone, or 3) placebo. Herein, we report 2-year area under the curve (AUC) C-peptide and HbA1c, prespecified secondary end points, and potential immunologic correlates. The 2-year mean mixed-meal tolerance test-stimulated AUC C-peptide, analyzed by ANCOVA adjusting for baseline C-peptide, age, and sex (n = 82) with significance defined as one-sided P < 0.025, was significantly higher in subjects treated with ATG versus placebo (P = 0.00005) but not ATG/GCSF versus placebo (P = 0.032). HbA1c was significantly reduced at 2 years in subjects treated with ATG (P = 0.011) and ATG/GCSF (P = 0.022) versus placebo. Flow cytometry analyses demonstrated reduced circulating CD4:CD8 ratio, increased regulatory T-cell:conventional CD4 T-cell ratios, and increased PD-1+CD4+ T cells following low-dose ATG and ATG/GCSF. Low-dose ATG partially preserved β-cell function and reduced HbA1c 2 years after therapy in new-onset type 1 diabetes. Future studies should determine whether low-dose ATG might prevent or delay the onset of type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | | - Dorothy J Becker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- University of Pittsburgh, Pittsburgh, PA
| | - David A Baidal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | - Peter A Gottlieb
- University of Colorado Barbara Davis Center for Childhood Diabetes, Aurora, CO
| | | | - Jennifer B Marks
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | |
Collapse
|
12
|
Haller MJ, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Miller JL, Atkinson MA, Becker DJ, Baidal D, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell W, Wilson DM, Greenbaum CJ, Greenbaum C, Atkinson M, Baidal D, Battaglia M, Becker D, Bingley P, Bosi E, Buckner J, Clements M, Colman P, DiMeglio L, Evans-Molina C, Gitelman S, Goland R, Gottlieb P, Herold K, Knip M, Krischer J, Lernmark A, Moore W, Moran A, Muir A, Palmer J, Peakman M, Philipson L, Raskin P, Redondo M, Rodriguez H, Russell W, Spain L, Schatz D, Sosenko J, Wherrett D, Wilson D, Winter W, Ziegler A, Anderson M, Antinozzi P, Benoist C, Blum J, Bourcier K, Chase P, Clare-Salzler M, Clynes R, Cowie C, Eisenbarth G, Fathman C, Grave G, Harrison L, Hering B, Insel R, Jordan S, Kaufman F, Kay T, Kenyon N, Klines R, Lachin J, Leschek E, Mahon J, Marks J, Monzavi R, Nanto-Salonen K, Nepom G, Orban T, Parkman R, Pescovitz M, Peyman J, Pugliese A, Ridge J, Roep B, Roncarolo M, Savage P, Simell O, Sherwin R, Siegelman M, Skyler J, Steck A, Thomas J, Trucco M, Wagner J, Bourcier K, Greenbaum CJ, Krischer JP, Leschek E, Rafkin L, Spain L, Cowie C, Foulkes M, Insel R, Krause-Steinrauf H, Lachin JM, Malozowski S, Peyman J, Ridge J, Savage P, Skyler JS, Zafonte SJ, Greenbaum CJ, Rafkin L, Sosenko JM, Skyler JS, Kenyon NS, Santiago I, Krischer JP, Bundy B, Abbondondolo M, Adams T, Amado D, Asif I, Boonstra M, Boulware D, Bundy B, Burroughs C, Cuthbertson D, Eberhard C, Fiske S, Ford J, Garmeson J, Guillette H, Geyer S, Hays B, Henderson C, Henry M, Heyman K, Hsiao B, Karges C, Kinderman A, Lane L, Leinbach A, Liu S, Lloyd J, Malloy J, Maddox K, Martin J, Miller J, Moore M, Muller S, Nguyen T, O’Donnell R, Parker M, Pereyra M, Reed N, Roberts A, Sadler K, Stavros T, Tamura R, Wood K, Xu P, Young K, Alies P, Badias F, Baker A, Bassi M, Beam C, Boulware D, Bounmananh L, Bream S, Deemer M, Freeman D, Gough J, Ginem J, Granger M, Holloway M, Kieffer M, Lane P, Law P, Linton C, Nallamshetty L, Oduah V, Parrimon Y, Paulus K, Pilger J, Ramiro J, Luvon AQ, Ritzie A, Sharma A, Shor X, Song A, Terry J, Weinberger M, Wootten J, Fradkin E, Leschek L, Spain C, Cowie S, Malozowski P, Savage G, Beck E, Blumberg R, Gubitosi-Klug L, Laffel R, Veatch D, Wallace J, Braun D, Brillon A, Lernmark B, Lo H, Mitchell A, Naji J, Nerup T, Orchard M, Steffes A, Tsiatis B, Zinman B, Loechelt L, Baden M, Green A, Weinberg S, Marcovina JP, Palmer A, Weinberg L, Yu W, Winter GS, Eisenbarth A, Shultz E, Batts K, Fitzpatrick M, Ramey R, Guerra C, Webb M, Romasco C, Greenbaum S, Lord D, VanBuecken W, Hao M, McCulloch D, Hefty K, Varner R, Goland E, Greenberg S, Pollack B, Nelson L, Looper L, DiMeglio M, Spall C, Evans-Molina M, Mantravadi J, Sanchez M, Mullen V, Patrick S, Woerner DM, Wilson T, Aye T, Esrey K, Barahona B, Baker H, Bitar C, Ghodrat M, Hamilton SE, Gitelman CT, Ferrara S, Sanda R, Wesch C, Torok P, Gottlieb J, Lykens C, Brill A, Michels A, Schauwecker MJ, Haller DA, Schatz MA, Atkinson LM, Jacobsen M, Cintron TM, Brusko CH, Wasserfall CE, Mathews JS, Skyler JM, Marks D, Baidal C, Blaschke D, Matheson A, Moran B, Nathan A, Street J, Leschyshyn B, Pappenfus B, Nelson N, Flaherty D, Becker K, Delallo D, Groscost K, Riley H, Rodriguez D, Henson E, Eyth W, Russell A, Brown F, Brendall K, Herold, Feldman L. Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA 1c in New-Onset Type 1 Diabetes. Diabetes Care 2018; 41:1917-1925. [PMID: 30012675 PMCID: PMC6105329 DOI: 10.2337/dc18-0494] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A pilot study suggested that combination therapy with low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte colony-stimulating factor (GCSF) preserves C-peptide in established type 1 diabetes (T1D) (duration 4 months to 2 years). We hypothesized that 1) low-dose ATG/GCSF or 2) low-dose ATG alone would slow the decline of β-cell function in patients with new-onset T1D (duration <100 days). RESEARCH DESIGN AND METHODS A three-arm, randomized, double-masked, placebo-controlled trial was performed by the Type 1 Diabetes TrialNet Study Group in 89 subjects: 29 subjects randomized to ATG (2.5 mg/kg intravenously) followed by pegylated GCSF (6 mg subcutaneously every 2 weeks for 6 doses), 29 to ATG alone (2.5 mg/kg), and 31 to placebo. The primary end point was mean area under the curve (AUC) C-peptide during a 2-h mixed-meal tolerance test 1 year after initiation of therapy. Significance was defined as one-sided P value < 0.025. RESULTS The 1-year mean AUC C-peptide was significantly higher in subjects treated with ATG (0.646 nmol/L) versus placebo (0.406 nmol/L) (P = 0.0003) but not in those treated with ATG/GCSF (0.528 nmol/L) versus placebo (P = 0.031). HbA1c was significantly reduced at 1 year in subjects treated with ATG and ATG/GCSF, P = 0.002 and 0.011, respectively. CONCLUSIONS Low-dose ATG slowed decline of C-peptide and reduced HbA1c in new-onset T1D. Addition of GCSF did not enhance C-peptide preservation afforded by low-dose ATG. Future studies should be considered to determine whether low-dose ATG alone or in combination with other agents may prevent or delay the onset of the disease.
Collapse
Affiliation(s)
| | | | - Jay S. Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | - David Baidal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | - Peter A. Gottlieb
- University of Colorado Barbara Davis Center for Childhood Diabetes, Aurora, CO
| | | | - Jennifer B. Marks
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Burrack AL, Landry LG, Siebert J, Coulombe M, Gill RG, Nakayama M. Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in Transplant Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1504-1512. [PMID: 29311365 PMCID: PMC5809255 DOI: 10.4049/jimmunol.1700856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune condition is a primary obstacle to inducing tolerance in type 1 diabetes patients receiving allogeneic pancreas transplants. It is unknown how autoreactive T cells that recognize self-MHC molecules contribute to MHC-disparate allograft rejection. In this report, we show the presence and accumulation of dual-reactive, that is autoreactive and alloreactive, T cells in C3H islet allografts that were transplanted into autoimmune diabetic NOD mice. Using high-throughput sequencing, we discovered that T cells prevalent in allografts share identical TCRs with autoreactive T cells present in pancreatic islets. T cells expressing TCRs that are enriched in allograft lesions recognized C3H MHC molecules, and five of six cell lines expressing these TCRs were also reactive to NOD islet cells. These results reveal the presence of autoreactive T cells that mediate cross-reactive alloreactivity, and indicate a requirement for regulating such dual-reactive T cells in tissue replacement therapies given to autoimmune individuals.
Collapse
Affiliation(s)
- Adam L Burrack
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Marilyne Coulombe
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ronald G Gill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
15
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
16
|
Oh SH, Jorgensen ML, Wasserfall CH, Gjymishka A, Petersen BE. Suppression of islet homeostasis protein thwarts diabetes mellitus progression. J Transl Med 2017; 97:577-590. [PMID: 28218739 DOI: 10.1038/labinvest.2017.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/29/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023] Open
Abstract
During progression to type 1 diabetes, insulin-producing β-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered β-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.
Collapse
Affiliation(s)
- Seh-Hoon Oh
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marda L Jorgensen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clive H Wasserfall
- Department of Pathology, Diabetes Institute, Colleges of Medicine, University of Florida, Gainesville, FL, USA
| | - Altin Gjymishka
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bryon E Petersen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Liu CL, Lyle MJ, Shin SC, Miao CH. Strategies to target long-lived plasma cells for treating hemophilia A inhibitors. Cell Immunol 2016; 301:65-73. [PMID: 26877251 DOI: 10.1016/j.cellimm.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
Abstract
Long-lived plasma cells (LLPCs) can persistently produce anti-factor VIII (FVIII) antibodies which disrupt therapeutic effect of FVIII in hemophilia A patients with inhibitors. The migration of plasma cells to BM where they become LLPCs is largely controlled by an interaction between the chemokine ligand CXCL12 and its receptor CXCR4. AMD3100 combined with G-CSF inhibit their interactions, thus facilitating the mobilization of CD34(+) cells and blocking the homing of LLPCs. These reagents were combined with anti-CD20 to reduce B-cells and the specific IL-2/IL-2mAb (JES6-1) complexes to induce Treg expansion for targeting anti-FVIII immune responses. Groups of mice primed with FVIII plasmid and protein respectively were treated with the combined regimen for six weeks, and a significant reduction of anti-FVIII inhibitor titers was observed, associated with the dramatic decrease of circulating and bone marrow CXCR4(+) plasma cells. The combination regimens are highly promising in modulating pre-existing anti-FVIII antibodies in FVIII primed subjects.
Collapse
Affiliation(s)
- Chao Lien Liu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Meghan J Lyle
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Simon C Shin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Haller MJ, Atkinson MA, Wasserfall CH, Brusko TM, Mathews CE, Hulme M, Cintron M, Shuster J, McGrail K, Posgai A, Schatz D. Mobilization without immune depletion fails to restore immunological tolerance or preserve beta cell function in recent onset type 1 diabetes. Clin Exp Immunol 2015; 183:350-7. [PMID: 26462724 DOI: 10.1111/cei.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 12/12/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used to restore immune competence following chemoablative cancer therapy and to promote immunological tolerance in certain settings of autoimmunity. Therefore, we tested the potential of G-CSF to impact type 1 diabetes (T1D) progression in patients with recent-onset disease [n = 14; n = 7 (placebo)] and assessed safety, efficacy and mechanistic effects on the immune system. We hypothesized that pegylated G-CSF (6 mg administered subcutaneously every 2 weeks for 12 weeks) would promote regulatory T cell (Treg) mobilization to a degree capable of restoring immunological tolerance, thus preventing further decline in C-peptide production. Although treatment was well tolerated, G-CSF monotherapy did not affect C-peptide production, glycated haemoglobin (HbA1c) or insulin dose. Mechanistically, G-CSF treatment increased circulating neutrophils during the 12-week course of therapy (P < 0·01) but did not alter Treg frequencies. No effects were observed for CD4(+) : CD8(+) T cell ratio or the ratio of naive : memory (CD45RA(+)/CD45RO(+)) CD4(+) T cells. As expected, manageable bone pain was common in subjects receiving G-CSF, but notably, no severe adverse events such as splenomegaly occurred. This study supports the continued exploration of G-CSF and other mobilizing agents in subjects with T1D, but only when combined with immunodepleting agents where synergistic mechanisms of action have previously demonstrated efficacy towards the preservation of C-peptide.
Collapse
Affiliation(s)
- M J Haller
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - M A Atkinson
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA.,Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C H Wasserfall
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - T M Brusko
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C E Mathews
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M Hulme
- Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - M Cintron
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| | - J Shuster
- Health Outcomes and Policy, University of Florida, Gainesville, FL, USA
| | - K McGrail
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - A Posgai
- Immunology, Pathology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - D Schatz
- Departments of Pediatric Endocrinology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Immune Depletion in Combination with Allogeneic Islets Permanently Restores Tolerance to Self-Antigens in Diabetic NOD Mice. PLoS One 2015; 10:e0142318. [PMID: 26580221 PMCID: PMC4651367 DOI: 10.1371/journal.pone.0142318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
The destruction of beta cells in type 1 diabetes (T1D) results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD) mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG)) can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D.
Collapse
|
20
|
Mathews CE, Xue S, Posgai A, Lightfoot YL, Li X, Lin A, Wasserfall C, Haller MJ, Schatz D, Atkinson MA. Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic Interventions in Type 1 Diabetes. Diabetes 2015; 64:3885-90. [PMID: 26216853 PMCID: PMC4613974 DOI: 10.2337/db15-0449] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Most natural history models for type 1 diabetes (T1D) propose that overt hyperglycemia results after a progressive loss of insulin-secreting β-cell mass and/or function. To experimentally address this concept, we prospectively determined morning blood glucose measurements every other day in multiple cohorts (total n = 660) of female NOD/ShiLtJ mice starting at 8 weeks of age until diabetes onset or 26 weeks of age. Consistent with this notion, a majority of mice that developed diabetes (354 of 489 [72%]) displayed a progressive increase in blood glucose with transient excursions >200 mg/dL, followed by acute and persistent hyperglycemia at diabetes onset. However, 135 of the 489 (28%) diabetic animals demonstrated normal glucose values followed by acute (i.e., sudden) hyperglycemia. Interestingly, diabetes onset occurred earlier in mice with acute versus progressive disease onset (15.37 ± 0.3207 vs. 17.44 ± 0.2073 weeks of age, P < 0.0001). Moreover, the pattern of onset (i.e., progressive vs. acute) dramatically influenced the ability to achieve reversal of T1D by immunotherapeutic intervention, with increased effectiveness observed in situations of a progressive deterioration in euglycemia. These studies highlight a novel natural history aspect in this animal model, one that may provide important guidance for the selection of subjects participating in human trials seeking disease reversal.
Collapse
Affiliation(s)
| | - Song Xue
- Department of Pathology, University of Florida, Gainesville, FL
| | - Amanda Posgai
- Department of Pathology, University of Florida, Gainesville, FL
| | | | - Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Andrea Lin
- Department of Pathology, University of Florida, Gainesville, FL
| | | | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Desmond Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL
| |
Collapse
|
21
|
Xue S, Posgai A, Wasserfall C, Myhr C, Campbell-Thompson M, Mathews CE, Brusko T, Rabinovitch A, Savinov A, Battaglia M, Schatz D, Haller M, Atkinson MA. Combination Therapy Reverses Hyperglycemia in NOD Mice With Established Type 1 Diabetes. Diabetes 2015; 64:3873-84. [PMID: 26185279 PMCID: PMC4613966 DOI: 10.2337/db15-0164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022]
Abstract
An increasing number of therapies have proven effective at reversing hyperglycemia in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D), yet situations of successful translation to human T1D are limited. This may be partly due to evaluating the effect of treating immediately at diagnosis in mice, which may not be reflective of the advanced disease state in humans at disease onset. In this study, we treated NOD mice with new-onset as well as established disease using various combinations of four drugs: antithymocyte globulin (ATG), granulocyte-colony stimulating factor (G-CSF), a dipeptidyl peptidase IV inhibitor (DPP-4i), and a proton pump inhibitor (PPI). Therapy with all four drugs induced remission in 83% of new-onset mice and, remarkably, in 50% of NOD mice with established disease. Also noteworthy, disease remission occurred irrespective of initial blood glucose values and mechanistically was characterized by enhanced immunoregulation involving alterations in CD4+ T cells, CD8+ T cells, and natural killer cells. This combination therapy also allowed for effective treatment at reduced drug doses (compared with effective monotherapy), thereby minimizing potential adverse effects while retaining efficacy. This combination of approved drugs demonstrates a novel ability to reverse T1D, thereby warranting translational consideration.
Collapse
Affiliation(s)
- Song Xue
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Amanda Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Courtney Myhr
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Todd Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | | | - Alexei Savinov
- Sanford Research, University of South Dakota, Sioux Falls, SD
| | | | - Desmond Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Michael Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Abstract
There is a clear need to develop strategies to induce tolerance without the need of chronic immunosuppression in transplant recipient and in patients with autoimmunity. Adoptive T regulatory cell (Treg) therapy offers the potential of long-lasting protection. However, based on results of clinical trials so far with ex vivo expanded autologous Tregs in type 1 diabetic (T1D) patients, it seems unlikely that single immunotherapy with Treg infusion without immunomodulation regimens that promote stable donor Treg engraftment and persistence would afford truly significant clinical benefit. Combination therapies could provide improved outcomes with consideration of the fundamental factors required for Treg generation, homeostasis, and function to promote long-term donor Treg persistence to provoke beneficial therapeutic outcomes.
Collapse
|
23
|
Maurice Morillon Y, Martin A, Gojanovich G, Wang B, Tisch R. Reestablishing T Cell Tolerance by Antibody-Based Therapy in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2015; 63:239-50. [PMID: 25790749 DOI: 10.1007/s00005-015-0336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing β cells are selectively destroyed. β cell-specific T cells are considered to be the major mediators of pathology. Accordingly, most immunotherapies tested in the clinic to date have focused on reestablishing self-tolerance within the T cell compartment. Monoclonal antibodies (Ab) targeting a variety of lymphocyte surface proteins have demonstrated benefits in preclinical and clinical settings. Indeed, the use of Ab to target T cells directly or indirectly has proven to be an effective strategy to rapidly suppress β cell autoimmunity and establish tissue-specific, long-term tolerance in rodent T1D models. In this review, we describe a number of these Ab-based immunotherapies, discuss associated immune regulatory mechanisms, and highlight results obtained in T1D clinical trials.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | | | | | | | | |
Collapse
|
24
|
Askenasy N. Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. Int Rev Immunol 2015; 34:523-37. [DOI: 10.3109/08830185.2015.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Li R, Lee J, Kim MS, Liu V, Moulik M, Li H, Yi Q, Xie A, Chen W, Yang L, Li Y, Tsai TH, Oka K, Chan L, Yechoor V. PD-L1-driven tolerance protects neurogenin3-induced islet neogenesis to reverse established type 1 diabetes in NOD mice. Diabetes 2015; 64:529-40. [PMID: 25332429 PMCID: PMC4303975 DOI: 10.2337/db13-1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A breakdown in self-tolerance underlies autoimmune destruction of β-cells and type 1 diabetes. A cure by restoring β-cell mass is limited by the availability of transplantable β-cells and the need for chronic immunosuppression. Evidence indicates that inhibiting costimulation through the PD-1/PD-L1 pathway is central to immune tolerance. We therefore tested whether induction of islet neogenesis in the liver, protected by PD-L1-driven tolerance, reverses diabetes in NOD mice. We demonstrated a robust induction of neo-islets in the liver of diabetic NOD mice by gene transfer of Neurogenin3, the islet-defining factor, along with betacellulin, an islet growth factor. These neo-islets expressed all the major pancreatic hormones and transcription factors. However, an enduring restoration of glucose-stimulated insulin secretion and euglycemia occurs only when tolerance is also induced by the targeted overexpression of PD-L1 in the neo-islets, which results in inhibition of proliferation and increased apoptosis of infiltrating CD4(+) T cells. Further analysis revealed an inhibition of cytokine production from lymphocytes isolated from the liver but not from the spleen of treated mice, indicating that treatment did not result in generalized immunosuppression. This treatment strategy leads to persistence of functional neo-islets that resist autoimmune destruction and consequently an enduring reversal of diabetes in NOD mice.
Collapse
Affiliation(s)
- Rongying Li
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mi-sun Kim
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Victoria Liu
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX
| | - Haiyan Li
- Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH
| | - Qing Yi
- Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH
| | - Aini Xie
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Wenhao Chen
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Lina Yang
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Yimin Li
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Tsung Huang Tsai
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Kazuhiro Oka
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Lawrence Chan
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Vijay Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Diabetes and Endocrinology Research Center, and Department of Medicine, Baylor College of Medicine, Houston, TX Division of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
26
|
Skyler JS. Immune therapy for treating type 1 diabetes: challenging existing paradigms. J Clin Invest 2014; 125:94-6. [PMID: 25500880 DOI: 10.1172/jci79190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Patients with type 1 diabetes (T1D) rapidly lose β cell function and/or mass, leading to a life-long dependence on insulin therapy. β Cell destruction is mediated by aberrant immune responses; therefore, immune modulation has potential to ameliorate disease. While immune intervention in animal models of diabetes has shown promising results, treatment of patients with T1D with the same agents has not been as successful. In this issue of the JCI, Haller and colleagues present data from a small clinical trial that tested the efficacy of a combination of immunomodulatory agents, anti-thymocyte globulin and pegylated granulocyte CSF, neither of which have shown benefit for T1D as single treatment agents. Many patients that received combination therapy maintained β cell function at baseline levels up to a year after treatment. The results from this study challenge current trial design paradigm that for combined therapy to be successful individual agents should show benefit.
Collapse
|
27
|
Haller MJ, Gitelman SE, Gottlieb PA, Michels AW, Rosenthal SM, Shuster JJ, Zou B, Brusko TM, Hulme MA, Wasserfall CH, Mathews CE, Atkinson MA, Schatz DA. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes. J Clin Invest 2014; 125:448-55. [PMID: 25500887 DOI: 10.1172/jci78492] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/31/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous efforts to preserve β cell function in individuals with type 1 diabetes (T1D) have focused largely on the use of single immunomodulatory agents administered within 100 days of diagnosis. Based on human and preclinical studies, we hypothesized that a combination of low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte CSF (G-CSF) would preserve β cell function in patients with established T1D (duration of T1D >4 months and <2 years). METHODS A randomized, single-blinded, placebo-controlled trial was performed on 25 subjects: 17 subjects received ATG (2.5 mg/kg intravenously) followed by pegylated G-CSF (6 mg subcutaneously every 2 weeks for 6 doses) and 8 subjects received placebo. The primary outcome was the 1-year change in AUC C-peptide following a 2-hour mixed-meal tolerance test (MMTT). At baseline, the age (mean ± SD) was 24.6 ± 10 years; mean BMI was 25.4 ± 5.2 kg/m²; mean A1c was 6.5% ± 1.1%; insulin use was 0.31 ± 0.22 units/kg/d; and length of diagnosis was 1 ± 0.5 years. RESULTS Combination ATG/G-CSF treatment tended to preserve β cell function in patients with established T1D. The mean difference in MMTT-stimulated AUC C-peptide between treated and placebo subjects was 0.28 nmol/l/min (95% CI 0.001-0.552, P = 0.050). A1c was lower in ATG/G-CSF-treated subjects at the 6-month study visit. ATG/G-CSF therapy was associated with relative preservation of Tregs. CONCLUSIONS Patients with established T1D may benefit from combination immunotherapy approaches to preserve β cell function. Further studies are needed to determine whether such approaches may prevent or delay the onset of the disease. TRIAL REGISTRATION Clinicaltrials.gov NCT01106157. FUNDING The Leona M. and Harry B. Helmsley Charitable Trust and Sanofi.
Collapse
|
28
|
The rise, fall, and resurgence of immunotherapy in type 1 diabetes. Pharmacol Res 2014; 98:31-8. [PMID: 25107501 DOI: 10.1016/j.phrs.2014.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Despite considerable effort to halt or delay destruction of β-cells in autoimmune type 1 diabetes (T1D), success remains elusive. Over the last decade, we have seen a proliferation of knowledge on the pathogenesis of T1D that emerged from studies performed in non-obese diabetic (NOD) mice. However, while results of these preclinical studies appeared to hold great promise and boosted patients' hopes, none of these approaches, once tested in clinical settings, induced remission of autoimmune diabetes in individuals with T1D. The primary obstacles to translation reside in the differences between the human and murine autoimmune responses and in the contribution of many environmental factors associated with the onset of disease. Moreover, inaccurate dosing as well as inappropriate timing and uncertain length of drug exposure have played a central role in the negative outcomes of such therapeutic interventions. In this review, we summarize the most important approaches tested thus far in T1D, beginning with the most successful preclinical studies in NOD mice and ending with the latest disappointing clinical trials in humans. Finally, we highlight recent stem cell-based trials, for which expectations in the scientific community and among individuals with T1D are high.
Collapse
|
29
|
Abstract
Clinical onset of type 1 diabetes (T1D) is thought to result from a combination of overt beta cell loss and beta cell dysfunction. However, our understanding of how beta cell metabolic abnormalities arise during the pathogenesis of disease remains incomplete. Despite extensive research on the autoimmune nature of T1D, questions remain regarding the time frame and nature of beta cell destruction and dysfunction. This review focuses on the characterizations of beta cell dysfunction in the prediabetic and T1D human and mouse model. Studies have shown evidence supporting progressive loss of beta cell mass and function prior to T1D onset, while other scientists argue beta cell destruction occurs later in the disease process. Determining the time frame of beta cell destruction and identifying metabolic mechanisms that drive beta cell dysfunction has high potential for successful interventions to maintain insulin secretion for individuals with established T1D as well as those with prediabetes.
Collapse
Affiliation(s)
- Shuyao Zheng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275
| |
Collapse
|
30
|
Gitelman SE, Gottlieb PA, Rigby MR, Felner EI, Willi SM, Fisher LK, Moran A, Gottschalk M, Moore WV, Pinckney A, Keyes-Elstein L, Aggarwal S, Phippard D, Sayre PH, Ding L, Bluestone JA, Ehlers MR. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol 2013; 1:306-16. [PMID: 24622416 PMCID: PMC6489466 DOI: 10.1016/s2213-8587(13)70065-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 1 diabetes results from T-cell-mediated destruction of β cells. Findings from preclinical studies and pilot clinical trials suggest that antithymocyte globulin (ATG) might be effective for reducing this autoimmune response. We assessed the safety and efficacy of rabbit ATG in preserving islet function in participants with recent-onset type 1 diabetes, and report here our 12-month results. METHODS For this phase 2, randomised, placebo-controlled, clinical trial, we enrolled patients with recent-onset type 1 diabetes, aged 12-35 years, and with a peak C-peptide of 0.4 nM or greater on mixed meal tolerance test from 11 sites in the USA. We used a computer generated randomisation sequence to randomly assign patients (2:1, with permuted-blocks of size three or six and stratified by study site) to receive either 6.5 mg/kg ATG or placebo over a course of four days. All participants were masked and initially managed by an unmasked drug management team, which managed all aspects of the study until month 3. Thereafter, to maintain masking for diabetes management throughout the remainder of the study, participants received diabetes management from an independent, masked study physician and nurse educator. The primary endpoint was the baseline-adjusted change in 2-h area under the curve C-peptide response to mixed meal tolerance test from baseline to 12 months. Analyses were by intention to treat. This is a planned interim analysis of an on-going trial that will run for 24 months of follow-up. This study is registered with ClinicalTrials.gov, number NCT00515099. FINDINGS Between Sept 10, 2007, and June 1, 2011, we screened 154 individuals, randomly allocating 38 to ATG and 20 to placebo. We recorded no between-group difference in the primary endpoint: participants in the ATG group had a mean change in C-peptide area under the curve of -0.195 pmol/mL (95% CI -0.292 to -0.098) and those in the placebo group had a mean change of -0.239 pmol/mL (-0.361 to -0.118) in the placebo group (p=0.591). All except one participant in the ATG group had both cytokine release syndrome and serum sickness, which was associated with a transient rise in interleukin-6 and acute-phase proteins. Acute T cell depletion occurred in the ATG group, with slow reconstitution over 12 months. However, effector memory T cells were not depleted, and the ratio of regulatory to effector memory T cells declined in the first 6 months and stabilised thereafter. ATG-treated patients had 159 grade 3-4 adverse events, many associated with T-cell depletion, compared with 13 in the placebo group, but we detected no between-group difference in incidence of infectious diseases. INTERPRETATION Our findings suggest that a brief course of ATG does not result in preservation of β-cell function 12 months later in patients with new-onset type 1 diabetes. Generalised T-cell depletion in the absence of specific depletion of effector memory T cells and preservation of regulatory T cells seems to be an ineffective treatment for type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Mark R Rigby
- Indiana University and Riley Children's Hospital, Indianapolis, Indianapolis, IN, USA
| | | | - Steven M Willi
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynda K Fisher
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | - Linna Ding
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | |
Collapse
|
31
|
Layseca-Espinosa E, Korniotis S, Montandon R, Gras C, Bouillié M, Gonzalez-Amaro R, Dy M, Zavala F. CCL22-producing CD8α- myeloid dendritic cells mediate regulatory T cell recruitment in response to G-CSF treatment. THE JOURNAL OF IMMUNOLOGY 2013; 191:2266-72. [PMID: 23878314 DOI: 10.4049/jimmunol.1202307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
G-CSF prevents type 1 diabetes in the NOD mouse by promoting the local recruitment of T regulatory cells (Tregs). This is an indirect effect because adoptive transfer of G-CSF-induced tolerogenic dendritic cells (DCs) promotes Treg accumulation. However, the identity of the particular DC subset and the molecule(s) mediating this effect remain unknown. We demonstrate in this study that the adoptive transfer of CD11c(high)CD8α(-) DCs isolated from pegylated G-CSF (pegG-CSF) recipients, but not that of other DC subtypes, enhanced the pancreatic recruitment of CD4(+)CD25(+)Foxp3(+) Tregs, which generated increased amounts of TGF-β. Likewise, only CD11c(high)CD8α(-) DCs from pegG-CSF recipients secreted the chemokine CCL22 at levels that effectively attracted Tregs. PegG-CSF was more efficient at enhancing the synthesis of CCL22 by CD11c(high)CD8α(-) DCs from the pancreatic lymph nodes compared with those from the spleen. Accordingly, CD11c(high)CD8α(-) DCs from the pancreatic lymph nodes of pegG-CSF recipients were more efficient than their splenic counterparts in the recruitment of Tregs upon adoptive transfer. Predictably, CD11c(high)CD8α(-) DCs failed to recruit these Tregs both in vivo and in vitro following intracellular neutralization of CCL22. These data assign a key role to CD8α(-) DCs and CCL22 in Treg recruitment in the protection of NOD mice against type 1 diabetes following the treatment with G-CSF.
Collapse
Affiliation(s)
- Esther Layseca-Espinosa
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8147, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, Wingard JR, Theriaque DW, Shuster JJ, Ferguson RJ, Kozuch M, Clare-Salzler M, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol Blood Marrow Transplant 2013; 19:1126-9. [PMID: 23611977 PMCID: PMC3852705 DOI: 10.1016/j.bbmt.2013.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/15/2013] [Indexed: 11/22/2022]
Abstract
We sought to determine if autologous umbilical cord blood (UCB) infusion followed by 1 year of supplementation with vitamin D and docosahexaenoic acid (DHA) can preserve C-peptide in children with type 1 diabetes. We conducted an open-label, 2:1 randomized study in which 15 type 1 diabetes subjects with stimulated C-peptide > .2 pmol/mL received either (1) autologous UCB infusion, 1 year of daily oral vitamin D (2000 IU), and DHA (38 mg/kg) and intensive diabetes management or (2) intensive diabetes management alone. Primary analyses were performed 1 year after UCB infusion. Treated (N = 10) and control (N = 5) subjects had median ages of 7.2 and 6.6 years, respectively. No severe adverse events were observed. Although the absolute rate of C-peptide decline was slower in treated versus control subjects, intergroup comparisons failed to reach significance (P = .29). Area under the curve C-peptide declined and insulin use increased in both groups (P < .01). Vitamin D levels remained stable in treated subjects but declined in control subjects (P = .01). DHA levels rose in treated subjects versus control subjects (P = .003). CD4/CD8 ratio remained stable in treated subjects but declined in control subjects (P = .03). No changes were seen in regulatory T cell frequency, total CD4 counts, or autoantibody titers. Autologous UCB infusion followed by daily supplementation with vitamin D and DHA was safe but failed to preserve C-peptide. Lack of significance may reflect small sample size. Future efforts will require expansion of specific immunoregulatory cell subsets, optimization of combined immunoregulatory and anti-inflammatory agents, and larger study cohorts.
Collapse
Affiliation(s)
- Michael J Haller
- Department of Pediatrics, the University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lantow M, Sivakumar R, Zeumer L, Wasserfall C, Zheng YY, Atkinson MA, Morel L. The granulocyte colony stimulating factor pathway regulates autoantibody production in a murine induced model of systemic lupus erythematosus. Arthritis Res Ther 2013; 15:R49. [PMID: 23566364 PMCID: PMC3672747 DOI: 10.1186/ar4208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 04/03/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction An NZB-derived genetic locus (Sle2c2) that suppresses autoantibody production in a mouse model of induced systemic lupus erythematosus contains a polymorphism in the gene encoding the G-CSF receptor. This study was designed to test the hypothesis that the Sle2c2 suppression is associated with an impaired G-CSF receptor function that can be overcome by exogenous G-CSF. Methods Leukocytes from B6.Sle2c2 and B6 congenic mice, which carry a different allele of the G-CSF receptor, were compared for their responses to G-CSF. Autoantibody production was induced with the chronic graft-versus-host-disease (cGVHD) model by adoptive transfer of B6.bm12 splenocytes. Different treatment regimens varying the amount and frequency of G-CSF (Neulasta®) or carrier control were tested on cGVHD outcomes. Autoantibody production, immune cell activation, and reactive oxygen species (ROS) production were compared between the two strains with the various treatments. In addition, the effect of G-CSF treatment was examined on the production autoantibodies in the B6.Sle1.Sle2.Sle3 (B6.TC) spontaneous model of lupus. Results B6.Sle2c2 and B6 leukocytes responded differently to G-CSF. G-CSF binding by B6.Sle2c2 leukocytes was reduced as compared to B6, which was associated with a reduced expansion in response to in vivo G-CSF treatment. G-CSF in vivo treatment also failed to mobilize bone-marrow B6.Sle2c2 neutrophils as it did for B6 neutrophils. In contrast, the expression of G-CSF responsive genes indicated a higher G-CSF receptor signaling in B6.Sle2c2 cells. G-CSF treatment restored the ability of B6.Sle2c2 mice to produce autoantibodies in a dose-dependent manner upon cGVHD induction, which correlated with restored CD4+ T cells activation, as well as dendritic cell and granulocyte expansion. Steady-state ROS production was higher in B6.Sle2c2 than in B6 mice. cGVHD induction resulted in a larger increase in ROS production in B6 than in B6.Sle2c2 mice, and this difference was eliminated with G-CSF treatment. Finally, a low dose G-CSF treatment accelerated the production of anti-dsDNA IgG in young B6.TC mice. Conclusion The different in vivo and in vitro responses of B6.Sle2c2 leukocytes are consistent with the mutation in the G-CSFR having functional consequences. The elimination of Sle2c2 suppression of autoantibody production by exogenous G-CSF indicates that Sle2c2 corresponds to a loss of function of G-CSF receptor. This result was corroborated by the increased anti-dsDNA IgG production in G-CSF-treated B6.TC mice, which also carry the Sle2c2 locus. Overall, these results suggest that the G-CSF pathway regulates the production of autoantibodies in murine models of lupus.
Collapse
|
34
|
Staeva TP, Chatenoud L, Insel R, Atkinson MA. Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 2013; 62:9-17. [PMID: 23258904 PMCID: PMC3526042 DOI: 10.2337/db12-0562] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Lucienne Chatenoud
- Université Paris Descartes, INSERM U1013, Hôpital Universitaire Necker-Enfants malades, Paris, France
| | | | - Mark A. Atkinson
- Department of Pathology, University of Florida, Gainesville, Florida
- Corresponding author: Mark A. Atkinson,
| |
Collapse
|
35
|
Ehlers MR, Nepom GT. Immune-directed therapy for type 1 diabetes at the clinical level: the Immune Tolerance Network (ITN) experience. Rev Diabet Stud 2012; 9:359-71. [PMID: 23804273 DOI: 10.1900/rds.2012.9.359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reestablishing immune tolerance in type 1 diabetes (T1D), a chronic autoimmune disease, is a major goal. The Immune Tolerance Network (ITN) has initiated eight clinical trials of immunomodulatory therapies in recent-onset T1D over the past decade. Results have been mixed in terms of clinical efficacy, but the studies have provided valuable mechanistic insight that are enhancing our understanding of the disease and guiding the design of future trials. Trials of non-Fc-binding anti-CD3 mAbs have revealed that modulation of this target leads to partial responses, and ITN's AbATE trial led to identification of a robust responder group that could be distinguished from non-responders by baseline metabolic and immunologic features. A pilot study of the combination of IL-2 and rapamycin gave the first demonstration that frequency and function of regulatory T cells (Tregs) can be enhanced in T1D subjects, although the therapy triggered the activation of effectors with transient β-cell dysfunction. Similarly, therapy with anti-thymocyte globulin led to substantial lymphocyte depletion, but also to the activation of the acute-phase response with no clinical benefit during preliminary analyses. These and other results provide mechanistic tools that can be used as biomarkers for safety and efficacy in future trials. Furthermore, our results, together with those of other organizations, notably TrialNet, delineate the roles of the major components of the immune response in T1D. This information is setting the stage for future combination therapy trials. The development of disease-relevant biomarkers will also enable the implementation of innovative trial designs, notably adaptive trials, which will increase efficiencies in terms of study duration and sample size, and which will expedite the conduct of trials in which there are uncertainties about dose response and effect size.
Collapse
Affiliation(s)
- Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA.
| | | |
Collapse
|
36
|
Driver JP, Chen YG, Mathews CE. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev Diabet Stud 2012; 9:169-87. [PMID: 23804259 DOI: 10.1900/rds.2012.9.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
37
|
Shapiro AMJ. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 2012; 9:385-406. [PMID: 23804275 DOI: 10.1900/rds.2012.9.385] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 2000 College Plaza, 8215 112th Street, Edmonton AB Canada T6G 2C8.
| |
Collapse
|
38
|
Xia CQ, Chernatynskaya AV, Wasserfall CH, Wan S, Looney BM, Eisenbeis S, Williams J, Clare-Salzler MJ, Atkinson MA. Anti-thymocyte globulin (ATG) differentially depletes naïve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice. BMC Immunol 2012; 13:70. [PMID: 23237483 PMCID: PMC3547787 DOI: 10.1186/1471-2172-13-70] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/24/2012] [Indexed: 12/28/2022] Open
Abstract
Background ATG has been employed to deplete T cells in several immune-mediated conditions. However, whether ATG administration affects naïve and memory T cell differently is largely unknown. The context and purpose of the study In this study, we assessed how murine ATG therapy affected T cell subsets in NOD mice, based on their regulatory and naïve or memory phenotype, as well as its influence on antigen-specific immune responses. Results Peripheral blood CD4+ and CD8+ T cells post-ATG therapy declined to their lowest levels at day 3, while CD4+ T cells returned to normal levels more rapidly than CD8+ T cells. ATG therapy failed to eliminate antigen-primed T cells. CD4+ T cell responses post-ATG therapy skewed to T helper type 2 (Th2) and possibly IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) were less sensitive to ATG depletion and remained at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory T cell phenotype was significantly increased in ATG-treated animals. Conclusion ATG therapy may modulate antigen-specific immune responses through inducing memory-like regulatory T cells as well as other protective T cells such as Th2 and IL-10-producing Tr1 cells.
Collapse
Affiliation(s)
- Chang-Qing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiang JL, Haller MJ, Schatz DA. Update on global intervention studies in type 1 diabetes. Endocrinol Metab Clin North Am 2012; 41:695-712. [PMID: 23099265 DOI: 10.1016/j.ecl.2012.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Remarkable progress has been made in strategies to arrest pancreatic β-cell destruction in type 1 diabetes. Although knowledge of the disease has increased, a safe therapeutic intervention to reverse or prevent it remains elusive. The interaction of genes, immune system, and environment result in a complex disease process that has delayed hopes for a cure. Several well-designed prevention and intervention studies have aspired to test potentially efficacious and safe therapies. This article updates the principles used to design prevention and intervention trials, reviews clinical trials, addresses controversial issues, and provides a framework for future efforts to interdict this condition.
Collapse
Affiliation(s)
- Jane L Chiang
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
40
|
Gan MJ, Albanese-O'Neill A, Haller MJ. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr Probl Pediatr Adolesc Health Care 2012; 42:269-91. [PMID: 23046732 DOI: 10.1016/j.cppeds.2012.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by a combination of genetic and environmental triggers resulting in lymphocytic infiltration of pancreatic islets, destruction of beta cells, and lifelong dependency on exogenous insulin. Although T1D is prevalent (1 in 300) and its incidence is steadily increasing worldwide (3% per year), the exact gene-environment interactions precipitating the disease remain unknown. Living with T1D is challenging for patients, families, and caregivers. Because of the relative paucity of pediatric endocrinologists, general pediatricians and other subspecialists may occasionally be faced with the task of managing diabetes-related complaints. Herein, we provide a comprehensive review of the natural history, pathophysiology, and contemporary management of T1D. In addition, recent advances in T1D research are discussed.
Collapse
Affiliation(s)
- Mary Joyce Gan
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
41
|
Graft-specific immune cells communicate inflammatory immune responses after brain death. J Heart Lung Transplant 2012; 31:1293-300. [PMID: 23102910 DOI: 10.1016/j.healun.2012.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Donor brain death (BD) triggers inflammatory graft activation that leads to impaired graft quality and outcome. We used a mouse BD model to investigate graft inflammation in cardiac transplants from immune-competent and immune-deficient donor animals. Effects of donor T-cell depletion were tested in an additional group of cardiac transplant recipients. METHODS We analyzed systemic and graft-specific inflammatory activation after BD in donors and in syngeneic recipients of hearts retrieved from BD donors. To dissect the role of donor-specific immune cells in communicating BD-triggered inflammation, immune-deficient T-cell-, B-cell-, and natural killer cell-deficient Rag2/double knockout mice and naïve C57BL6 treated with anti-thymocyte globulin (Thymoglobulin; Genzyme Transplant, Cambridge, MA) were observed. RESULTS Donor BD boosted lymphocyte activation in donors and recipients of syngeneic BD grafts. Lymphocyte activation was mitigated in recipients of immune-deficient and Thymoglobulin-treated BD donor grafts. Likewise, systemic and intra-graft levels of inflammatory cytokines interleukin -1, interleukin-6, interferon-γ, and tumor necrosis factor-α were significantly reduced in immune-deficient and anti-thymocyte globulin-treated recipients. Dense lymphocyte infiltrates were detected in the hearts from untreated BD donors; in contrast, the hearts from donors treated with Thymoglobulin demonstrated a preserved structure with minimal infiltrates comparable with naïve controls. CONCLUSION BD triggers inflammatory graft activation communicated through intra-graft immune cells. Donor treatment with Thymoglobulin prevented inflammatory immune activation and improved graft quality to levels comparable to living donor organs.
Collapse
|
42
|
Abstract
The immune system is tasked with defending the host from a wide array of pathogens and environmental insults. When uncontrolled, this endeavor may lead to off-target reactivity to self-tissues resulting in multiple autoimmune diseases including type 1 diabetes (T1D). This multifactorial disease process involves over 40 susceptibility genes and is influenced by poorly characterized environmental factors. While many questions regarding the pathogenesis of the disease process remain, it has become increasingly clear that the progression to disease results from a breakdown in the processes that maintain peripheral immune tolerance. The end result of this process is localized tissue inflammation, islet dysfunction, and ultimately the destruction of pancreatic β cells due to concomitant defects in innate and adaptive immune responses. A number of immunomodulatory intervention trials have now been conducted in patients at risk for or with recent onset T1D, often with the goal of restoring immune tolerance by inducing regulatory T cells (Tregs). Unfortunately, many of these trials have fallen short of inducing persistent immune regulation. This shortfall has led to additional efforts to more directly shift the balance from destructive effector T cell (Teff) responses to favor Tregs, including the use of autologous Treg cell therapy. In this review we will discuss key concepts related to the use of autologous Treg cell therapy for the treatment of T1D. Among these topics, we will discuss the notions of genetic control of Treg activity, Treg cellular plasticity, and requirements for antigen-specificity.
Collapse
Affiliation(s)
- James A Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
43
|
Grant CW, Duclos SK, Moran-Paul CM, Yahalom B, Tirabassi RS, Arreaza-Rubin G, Spain LM, Guberski DL. Development of standardized insulin treatment protocols for spontaneous rodent models of type 1 diabetes. Comp Med 2012; 62:381-90. [PMID: 23114041 PMCID: PMC3472602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/11/2011] [Accepted: 03/08/2012] [Indexed: 06/01/2023]
Abstract
Standardized protocols for maintaining near-normal glycemic levels in diabetic rodent models for testing therapeutic agents to treat disease are unavailable. We developed protocols for 2 common models of spontaneous type 1 diabetes, the BioBreeding diabetes-prone (BBDP) rat and nonobese diabetic (NOD) mouse. Insulin formulation, dose level, timing of dose administration, and delivery method were examined and adjusted so that glycemic levels remained within a normal range and fluctuation throughout feeding and resting cycles was minimized. Protamine zinc formulations provided the longest activity, regardless of the source of insulin. Glycemic control with few fluctuations was achieved in diabetic BBDP rats through twice-daily administration of protamine zinc insulin, and results were similar regardless of whether BBDP rats were acutely or chronically diabetic at initiation of treatment. In contrast, glycemic control could not be attained in NOD mice through administration of insulin twice daily. However, glycemic control was achieved in mice through daily administration of 0.25 U insulin through osmotic pumps. Whereas twice-daily injections of protamine zinc insulin provided glycemic control with only minor fluctuations in BBDP rats, mice required continuous delivery of insulin to prevent wide glycemic excursions. Use of these standard protocols likely will aid in the testing of agents to prevent or reverse diabetes.
Collapse
Affiliation(s)
| | | | | | - Barak Yahalom
- Biomedical Research Models, Worcester, Massachusetts
| | | | - Guillermo Arreaza-Rubin
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lisa M Spain
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
44
|
The tyrphostin agent AG490 prevents and reverses type 1 diabetes in NOD mice. PLoS One 2012; 7:e36079. [PMID: 22615750 PMCID: PMC3351395 DOI: 10.1371/journal.pone.0036079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown. MATERIALS AND METHODS Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed. RESULTS AG490 significantly inhibited the development of T1D (p = 0.02, p = 0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (n = 23) in comparision to the absolute inability (0%; 0/10, p = 0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.Scid mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system. CONCLUSION The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.
Collapse
|
45
|
Abstract
The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.
Collapse
|
46
|
Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM, Sumrall TM, Wingard JR, Theriaque DW, Shuster JJ, Atkinson MA, Schatz DA. Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care 2011; 34:2567-9. [PMID: 22011412 PMCID: PMC3220832 DOI: 10.2337/dc11-1406] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We conducted an open-label, phase I study using autologous umbilical cord blood (UCB) infusion to ameliorate type 1 diabetes (T1D). Having previously reported on the first 15 patients reaching 1 year of follow-up, herein we report on the complete cohort after 2 years of follow-up. RESEARCH DESIGN AND METHODS A total of 24 T1D patients (median age 5.1 years) received a single intravenous infusion of autologous UCB cells and underwent metabolic and immunologic assessments. RESULTS No infusion-related adverse events were observed. β-Cell function declined after UCB infusion. Area under the curve C-peptide was 24.3% of baseline 1 year postinfusion (P < 0.001) and 2% of baseline 2 years after infusion (P < 0.001). Flow cytometry revealed increased regulatory T cells (Tregs) (P = 0.04) and naive Tregs (P = 0.001) 6 and 9 months after infusion, respectively. CONCLUSIONS Autologous UCB infusion in children with T1D is safe and induces changes in Treg frequency but fails to preserve C-peptide.
Collapse
Affiliation(s)
- Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Serreze DV, Chapman HD, Niens M, Dunn R, Kehry MR, Driver JP, Haller M, Wasserfall C, Atkinson MA. Loss of intra-islet CD20 expression may complicate efficacy of B-cell-directed type 1 diabetes therapies. Diabetes 2011; 60:2914-21. [PMID: 21926271 PMCID: PMC3198088 DOI: 10.2337/db11-0705] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Consistent with studies in NOD mice, early clinical trials addressing whether depletion of B cells by the Rituximab CD20-specific antibody provides an effective means for type 1 diabetes reversal have produced promising results. However, to improve therapeutic efficacy, additional B-cell-depleting agents, as well as attempts seeking diabetes prevention, are being considered. RESEARCH DESIGN AND METHODS Autoantibodies, including those against insulin (IAAs), are used to identify at-risk subjects for inclusion in diabetes prevention trials. Therefore, we tested the ability of anti-CD20 to prevent diabetes in NOD mice when administered either before or after IAA onset. RESULTS The murine CD20-specific 18B12 antibody that like Rituximab, depletes the follicular (FO) but not marginal zone subset of B cells, efficiently inhibited diabetes development in NOD mice in a likely regulatory T-cell-dependent manner only when treatment was initiated before IAA detection. One implication of these results is that the FO subset of B cells preferentially contributes to early diabetes initiation events. However, most important, the inefficient ability of anti-CD20 treatment to exert late-stage diabetes prevention was found to be attributable to downregulation of CD20 expression upon B cell entry into pancreatic islets. CONCLUSIONS These findings provide important guidance for designing strategies targeting B cells as a potential means of diabetes intervention.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antigens, CD20/chemistry
- Antigens, CD20/metabolism
- Autoantibodies/analysis
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Disease Progression
- Female
- Hypoglycemic Agents/therapeutic use
- Islets of Langerhans/drug effects
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Depletion
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Plasma Cells/drug effects
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Prediabetic State/blood
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Rituximab
Collapse
|
48
|
Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 2011; 10:439-52. [DOI: 10.1038/nrd3402] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Affiliation(s)
- F Susan Wong
- Center for Diabetes and Endocrine Sciences, Cardiff UniversitySchool of Medicine, Cardiff, U.K.
| |
Collapse
|
50
|
Deletion of the Men1 gene prevents streptozotocin-induced hyperglycemia in mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2010:876701. [PMID: 21318185 PMCID: PMC3034935 DOI: 10.1155/2010/876701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/09/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022]
Abstract
Diabetes ultimately results from an inadequate number of functional beta cells in the islets of Langerhans. Enhancing proliferation of functional endogenous beta cells to treat diabetes remains underexplored. Here, we report that excision of the Men1 gene, whose loss-of-function mutation leads to inherited multiple endocrine neoplasia type 1 (MEN1), rendered resistant to streptozotocin-induced hyperglycemia in a tamoxifen-inducible and temporally controlled Men1 excision mouse model as well as in a tissue-specific Men1 excision mouse model. Men1 excision prevented mice from streptozotocin-induced hyperglycemia mainly through increasing the number of functional beta cells. BrdU incorporation by beta cells, islet size, and circulating insulin levels were significantly increased in Men1-excised mice. Membrane localization of glucose transporter 2 was largely preserved in Men1-excised beta cells, but not in Men1-expressing beta cells. Our findings suggest that repression of menin, a protein encoded by the Men1 gene, might be a valuable means to maintain or increase the number of functional endogenous beta cells to prevent or ameliorate diabetes.
Collapse
|