1
|
Hill TG, Gao R, Benrick A, Kothegala L, Rorsman N, Santos C, Acreman S, Briant LJ, Dou H, Gandasi NR, Guida C, Haythorne E, Wallace M, Knudsen JG, Miranda C, Tolö J, Clark A, Davison L, Størling J, Tarasov A, Ashcroft FM, Rorsman P, Zhang Q. Loss of electrical β-cell to δ-cell coupling underlies impaired hypoglycaemia-induced glucagon secretion in type-1 diabetes. Nat Metab 2024:10.1038/s42255-024-01139-z. [PMID: 39313541 DOI: 10.1038/s42255-024-01139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Diabetes mellitus involves both insufficient insulin secretion and dysregulation of glucagon secretion1. In healthy people, a fall in plasma glucose stimulates glucagon release and thereby increases counter-regulatory hepatic glucose production. This response is absent in many patients with type-1 diabetes (T1D)2, which predisposes to severe hypoglycaemia that may be fatal and accounts for up to 10% of the mortality in patients with T1D3. In rats with chemically induced or autoimmune diabetes, counter-regulatory glucagon secretion can be restored by SSTR antagonists4-7 but both the underlying cellular mechanism and whether it can be extended to humans remain unestablished. Here, we show that glucagon secretion is not stimulated by low glucose in isolated human islets from donors with T1D, a defect recapitulated in non-obese diabetic mice with T1D. This occurs because of hypersecretion of somatostatin, leading to aberrant paracrine inhibition of glucagon secretion. Normally, KATP channel-dependent hyperpolarization of β-cells at low glucose extends into the δ-cells through gap junctions, culminating in suppression of action potential firing and inhibition of somatostatin secretion. This 'electric brake' is lost following autoimmune destruction of the β-cells, resulting in impaired counter-regulation. This scenario accounts for the clinical observation that residual β-cell function correlates with reduced hypoglycaemia risk8.
Collapse
Affiliation(s)
- Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Lakshmi Kothegala
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Nils Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Cristiano Santos
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Linford J Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Haiqiang Dou
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Nikhil R Gandasi
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Developmental Biology and Genetics (DBG), Indian Institute of Science (IISc), Bengaluru, India
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Marsha Wallace
- Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
- The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Miranda
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Johan Tolö
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Lucy Davison
- Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
- The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Joachim Størling
- Steno Diabetes Center Copenhagen, Translational Type 1 Diabetes Research, Herlev, Denmark
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden.
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Barco VS, Gallego FQ, Miranda CA, Souza MR, Volpato GT, Damasceno DC. Hyperglycemia influences the cell proliferation and death of the rat endocrine pancreas in the neonatal period. Life Sci 2024; 351:122854. [PMID: 38901688 DOI: 10.1016/j.lfs.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
AIMS To evaluate the cell proliferation and death, and structural morphology of the pancreatic islet cells of the rats with hyperglycemia in the first month of life and compare to those of the control rats. MAIN METHODS Female Sprague-Dawley newborn rats received Streptozotocin (a beta-cytotoxic drug) at birth for diabetes induction. Control and hyperglycemic animals were euthanized on different days of life: 5, 10, 15, and 30. The pancreas was collected and processed for immunohistochemical analysis of cleaved Caspase-3 (cell death), Ki-67 (cell proliferation), PDX-1 (transcription factor responsible for insulin synthesis), and endocrine hormones (insulin, glucagon, and somatostatin). KEY FINDINGS Control females showed a higher percentage (%) of Ki-67-positive(+) cells on D10 and D15, a higher % of insulin+ and somatostatin+ cells on D15 and D30, a lower % of PDX-1+ cells on D10, and a higher % of glucagon+ cells on D10 and D30. Hyperglycemic females showed a lower % of Ki-67+ cells on D15, a higher % of cleaved Caspase-3+ cells on D15, and insulin+ cells on D15 and D30. In the comparison among the experimental groups, the hyperglycemic females showed an increased % of cleaved Caspase-3+ and Ki-67+ cells and a lower % of PDX-1+ cells. SIGNIFICANCE This study enabled a better understanding of the abnormal pancreas development regarding cellular proliferation, apoptosis, and hormonal synthesis in the neonatal period. Thus, the pancreatic islets of hyperglycemic rats do not reestablish the normal endocrine cell population, and cellular apoptosis overcame the proliferative activity of these cells.
Collapse
Affiliation(s)
- Vinícius S Barco
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Franciane Q Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Carolina A Miranda
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
| | - Maysa R Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| | - Gustavo T Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora C Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics of UNIPEX, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| |
Collapse
|
4
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
D’Souza NC, Aiken JA, Hoffman EG, Atherley SC, Champsi S, Aleali N, Shakeri D, El-Zahed M, Akbarian N, Nejad-Mansouri M, Bavani PZ, Liggins RL, Chan O, Riddell MC. Evaluating the effectiveness of a novel somatostatin receptor 2 antagonist, ZT-01, for hypoglycemia prevention in a rodent model of type 2 diabetes. Front Pharmacol 2024; 15:1302015. [PMID: 38510652 PMCID: PMC10951717 DOI: 10.3389/fphar.2024.1302015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Elevated levels of somatostatin blunt glucagon counterregulation during hypoglycemia in type 1 diabetes (T1D) and this can be improved using somatostatin receptor 2 (SSTR2) antagonists. Hypoglycemia also occurs in late-stage type 2 diabetes (T2D), particularly when insulin therapy is initiated, but the utility of SSTR2 antagonists in ameliorating hypoglycemia in this disease state is unknown. We examined the efficacy of a single-dose of SSTR2 antagonists in a rodent model of T2D. Methods: High-fat fed (HFF), low dose streptozotocin (STZ, 35 mg/kg)-induced T2D and HFF only, nondiabetic (controls-no STZ) rats were treated with the SSTR2 antagonists ZT-01/PRL-2903 or vehicle (n = 9-11/group) 60 min before an insulin tolerance test (ITT; 2-12 U/kg insulin aspart) or an oral glucose tolerance test (OGTT; 2 g/kg glucose via oral gavage) on separate days. Results: This rodent model of T2D is characterized by higher baseline glucose and HbA1c levels relative to HFF controls. T2D rats also had lower c-peptide levels at baseline and a blunted glucagon counterregulatory response to hypoglycemia when subjected to the ITT. SSTR2 antagonists increased the glucagon response and reduced incidence of hypoglycemia, which was more pronounced with ZT-01 than PRL-2903. ZT-01 treatment in the T2D rats increased glucagon levels above the control response within 60 min of dosing, and values remained elevated during the ITT (glucagon Cmax: 156 ± 50 vs. 77 ± 46 pg/mL, p < 0.01). Hypoglycemia incidence was attenuated with ZT-01 vs. controls (63% vs. 100%) and average time to hypoglycemia onset was also delayed (103.1 ± 24.6 vs. 66.1 ± 23.6 min, p < 0.05). ZT-01 administration at the OGTT onset increased the glucagon response without exacerbating hyperglycemia (2877 ± 806 vs. 2982 ± 781), potentially due to the corresponding increase in c-peptide levels (6251 ± 5463 vs. 14008 ± 5495, p = 0.013). Conclusion: Treatment with SSTR2 antagonists increases glucagon responses in a rat model of T2D and results in less hypoglycemia exposure. Future studies are required to determine the best dosing periods for chronic SSTR2 antagonism treatment in T2D.
Collapse
Affiliation(s)
| | - Julian A. Aiken
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Emily G. Hoffman
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sara C. Atherley
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sabrina Champsi
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nadia Aleali
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorsa Shakeri
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Maya El-Zahed
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nicky Akbarian
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Parinaz Z. Bavani
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Owen Chan
- Department of Internal Medicine, Division of Endocrinology, University of Utah, Salt LakeCity, UT, United States
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Hoffman EG, D’Souza NC, Liggins RT, Riddell MC. Pharmacologic inhibition of somatostatin receptor 2 to restore glucagon counterregulation in diabetes. Front Pharmacol 2024; 14:1295639. [PMID: 38298268 PMCID: PMC10829877 DOI: 10.3389/fphar.2023.1295639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Glucose homeostasis is primarily maintained by pancreatic hormones, insulin and glucagon, with an emerging role for a third islet hormone, somatostatin, in regulating insulin and glucagon responses. Under healthy conditions, somatostatin secreted from pancreatic islet δ-cells inhibits both insulin and glucagon release through somatostatin receptor- induced cAMP-mediated downregulation and paracrine inhibition of β- and α-cells, respectively. Since glucagon is the body's most important anti-hypoglycemic hormone, and because glucagon counterregulation to hypoglycemia is lost in diabetes, the study of somatostatin biology has led to new investigational medications now in development that may help to restore glucagon counterregulation in type 1 diabetes. This review highlights the normal regulatory role of pancreatic somatostatin signaling in healthy islet function and how the inhibition of somatostatin receptor signaling in pancreatic α-cells may restore normal glucagon counterregulation in diabetes mellitus.
Collapse
Affiliation(s)
- Emily G. Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Ninoschka C. D’Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | - Michael C. Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Hamilton A, Eliasson L, Knudsen JG. Amino acids and the changing face of the α-cell. Peptides 2023:171039. [PMID: 37295651 DOI: 10.1016/j.peptides.2023.171039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glucagon has long been defined by its glucogenic action and as a result α-cells have been characterised based largely on their interaction with glucose. Recent findings have challenged this preconception, bringing to the fore the significant role glucagon plays in amino acid breakdown and underlining the importance of amino acids in glucagon secretion. The challenge that remains is defining the mechanism that underlie these effects - understanding which amino acids are most important, how they act on the α-cell and how their actions integrate with other fuels such as glucose and fatty acids. This review will describe the current relationship between amino acids and glucagon and how we can use this knowledge to redefine the α-cell.
Collapse
Affiliation(s)
- Alexander Hamilton
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark; Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Hoffman EG, D'Souza NC, Aiken J, Atherley S, Liggins R, Riddell MC. Effects of somatostatin receptor type 2 antagonism during insulin-induced hypoglycaemia in male rats with prediabetes. Diabetes Obes Metab 2023; 25:1547-1556. [PMID: 36734462 DOI: 10.1111/dom.15002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
AIMS To examine if glucagon counterregulatory defects exist in a rat model of prediabetes (pre-T2D) and to assess if a selective somatostatin receptor 2 antagonist (SSTR2a), ZT-01, enhances the glucagon response to insulin-induced hypoglycaemia. MATERIALS AND METHODS Hyperglycaemia was induced in 8- to 9-week-old male, Sprague-Dawley rats via 7 weeks of high-fat diet followed by a single, low-dose intraperitoneal injection of streptozotocin (30 mg/kg). After 2 weeks of basal insulin therapy (0-4 U/d insulin glargine, administered subcutaneously [SC]) to facilitate partial glycaemic recovery and a pre-T2D phenotype, n = 17 pre-T2D and n = 10 normal chow-fed control rats underwent the first of two hypoglycaemic treatment-crossover experiments, separated by a 1-week washout period. On each experimental day, SSTR2a (3 mg/kg ZT-01, SC) or vehicle was administered 1 hour prior to insulin-induced hypoglycaemia (insulin aspart, 6 U/kg, SC). RESULTS Glucagon counterregulation was marginally reduced with the induction of pre-T2D. Treatment with SSTR2a raised peak plasma glucagon levels and glucagon area under the curve before and after insulin overdose in both and pre-T2D rats. Blood glucose concentration was elevated by 30 minutes after SSTR2a treatment in pre-T2D rats, and hypoglycaemia onset (≤3.9 mmol/L) was delayed by 15 ± 12 minutes compared with vehicle (P < 0.001), despite similar glucose nadirs in the two treatment groups (1.4 ± 0.3 mmol/L). SSTR2a treatment had no effect on blood glucose levels in the control group or on the hypoglycaemia-induced decline in plasma C-peptide levels in either group. CONCLUSIONS Treatment with an SSTR2a increases glucagon responsiveness and delays the onset of insulin-induced hypoglycaemia in this rat model of pre-T2D where only a modest deficiency in glucagon counterregulation exists.
Collapse
Affiliation(s)
- Emily G Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Julian Aiken
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sara Atherley
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Demirbilek H, Vuralli D, Haris B, Hussain K. Managing Severe Hypoglycaemia in Patients with Diabetes: Current Challenges and Emerging Therapies. Diabetes Metab Syndr Obes 2023; 16:259-273. [PMID: 36760580 PMCID: PMC9888015 DOI: 10.2147/dmso.s313837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023] Open
Abstract
Hypoglycaemia is common in patients with diabetes mellitus and is a limiting factor for achieving adequate glycaemic control. In the vast majority of cases, hypoglycaemia develops due to the imbalance between food intake and insulin injections. As recurrent hypoglycaemia leads to significant morbidity and mortality, the recognition and immediate treatment of hypoglycaemia in diabetic patients is thus important. In the last 20 years, the introduction of improved insulin analogues, insulin pump therapy, continuous glucose monitoring (CGM), and sensor-augmented pump therapy have all made significant improvements in helping to reduce and prevent hypoglycaemia. In terms of treatment, the American Diabetes Association recommends oral glucose as the first-line treatment option for all conscious patients with hypoglycaemia. The second line of treatment (or first line in unconscious patients) is the use of glucagon. Novel formulations of glucagon include the nasal form, the Gvoke HypoPen which is a ready-to-deliver auto-injector packaged formulation and finally a glucagon analogue, Dasiglucagon. The Dasiglucagon formulation has recently been approved for the treatment of severe hypoglycaemia. It is a ready-to-use, similar to endogenous glucagon and its potency is also the same as native glucagon. It does not require reconstitution before injection and therefore ensures better compliance. Thus, significant improvements including development of newer insulin analogues, insulin pump therapy, continuous glucose monitoring (CGM), sensor-augmented pump therapy and novel formulations of glucagon have all contributed to reducing and preventing hypoglycaemia in diabetic individuals. However, considerable challenges remain as not all patients have access to diabetes technologies and to the newer glucagon formulations to help reduce and prevent hypoglycaemia.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dogus Vuralli
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Basma Haris
- Department of Pediatric Endocrinology, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Department of Pediatric Endocrinology, Sidra Medicine, Doha, Qatar
- Correspondence: Khalid Hussain, Sidra Medicine, OPC, C6-340, PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar, Tel +974-4003-7608, Email
| |
Collapse
|
11
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
12
|
Farhat R, Aiken J, D'Souza NC, Appadurai D, Hull G, Simonson E, Liggins RT, Riddell MC, Chan O. ZT-01: A novel somatostatin receptor 2 antagonist for restoring the glucagon response to hypoglycaemia in type 1 diabetes. Diabetes Obes Metab 2022; 24:908-917. [PMID: 35060297 DOI: 10.1111/dom.14652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 01/17/2023]
Abstract
AIM To evaluate the pharmacokinetics and efficacy of a novel somatostatin receptor 2 antagonist, ZT-01, to stimulate glucagon release in rats with type 1 diabetes (T1D). METHODS The pharmacokinetics of ZT-01 and PRL-2903 were assessed following intraperitoneal or subcutaneous dosing at 10 mg/kg. We compared the efficacy of ZT-01 with PRL-2903 to prevent hypoglycaemia during an insulin bolus challenge and under hypoglycaemic clamp conditions. RESULTS Within 1 hour after intraperitoneal administration, ZT-01 achieved more than 10-fold higher plasma Cmax compared with PRL-2903. Twenty-four hour exposure was 4.7× and 11.3× higher with ZT-01 by the intraperitoneal and subcutaneous routes, respectively. The median time to reach hypoglycaemia of more than 3.0 mmol/L was 60, 70, and 125 minutes following vehicle, PRL-2903, or ZT-01 administration, respectively. Furthermore, rats receiving ZT-01 had significantly higher glucose nadirs following insulin administration compared with PRL-2903- and vehicle-treated rats. During the hypoglycaemic clamp, ZT-01 increased peak glucagon responses by ~4-fold over PRL-2903. CONCLUSIONS We conclude that ZT-01 may be effective in restoring glucagon responses and preventing the onset of hypoglycaemia in patients with T1D.
Collapse
Affiliation(s)
- Rawad Farhat
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, Utah, USA
| | - Julian Aiken
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Daniel Appadurai
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, Utah, USA
| | - Grayson Hull
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, Utah, USA
| | - Eric Simonson
- Zucara Therapeutics, Vancouver, British Columbia, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Zucara Therapeutics, Vancouver, British Columbia, Canada
| | - Owen Chan
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
McCarthy O, Schmidt S, Christensen MB, Bain SC, Nørgaard K, Bracken R. The endocrine pancreas during exercise in people with and without type 1 diabetes: Beyond the beta-cell. Front Endocrinol (Lausanne) 2022; 13:981723. [PMID: 36147573 PMCID: PMC9485437 DOI: 10.3389/fendo.2022.981723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although important for digestion and metabolism in repose, the healthy endocrine pancreas also plays a key role in facilitating energy transduction around physical exercise. During exercise, decrements in pancreatic β-cell mediated insulin release opposed by increments in α-cell glucagon secretion stand chief among the hierarchy of glucose-counterregulatory responses to decreasing plasma glucose levels. As a control hub for several major glucose regulatory hormones, the endogenous pancreas is therefore essential in ensuring glucose homeostasis. Type 1 diabetes (T1D) is pathophysiological condition characterised by a destruction of pancreatic β-cells resulting in pronounced aberrations in glucose control. Yet beyond the beta-cell perhaps less considered is the impact of T1D on all other pancreatic endocrine cell responses during exercise and whether they differ to those observed in healthy man. For physicians, understanding how the endocrine pancreas responds to exercise in people with and without T1D may serve as a useful model from which to identify whether there are clinically relevant adaptations that need consideration for glycaemic management. From a physiological perspective, delineating differences or indeed similarities in such responses may help inform appropriate exercise test interpretation and subsequent program prescription. With more complex advances in automated insulin delivery (AID) systems and emerging data on exercise algorithms, a timely update is warranted in our understanding of the endogenous endocrine pancreatic responses to physical exercise in people with and without T1D. By placing our focus here, we may be able to offer a nexus of better understanding between the clinical and engineering importance of AIDs requirements during physical exercise.
Collapse
Affiliation(s)
- Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- *Correspondence: Olivia McCarthy,
| | - Signe Schmidt
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Richard Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| |
Collapse
|
15
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|
16
|
Panzer JK, Caicedo A. Targeting the Pancreatic α-Cell to Prevent Hypoglycemia in Type 1 Diabetes. Diabetes 2021; 70:2721-2732. [PMID: 34872936 PMCID: PMC8660986 DOI: 10.2337/dbi20-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
Life-threatening hypoglycemia is a limiting factor in the management of type 1 diabetes. People with diabetes are prone to develop hypoglycemia because they lose physiological mechanisms that prevent plasma glucose levels from falling. Among these so-called counterregulatory responses, secretion of glucagon from pancreatic α-cells is preeminent. Glucagon, a hormone secreted in response to a lowering in glucose concentration, counteracts a further drop in glycemia by promoting gluconeogenesis and glycogenolysis in target tissues. In diabetes, however, α-cells do not respond appropriately to changes in glycemia and, thus, cannot mount a counterregulatory response. If the α-cell could be targeted therapeutically to restore its ability to prevent hypoglycemia, type 1 diabetes could be managed more efficiently and safely. Unfortunately, the mechanisms that allow the α-cell to respond to hypoglycemia have not been fully elucidated. We know even less about the pathophysiological mechanisms that cause α-cell dysfunction in diabetes. Based on published findings and unpublished observations, and taking into account its electrophysiological properties, we propose here a model of α-cell function that could explain its impairment in diabetes. Within this frame, we emphasize those elements that could be targeted pharmacologically with repurposed U.S. Food and Drug Administration-approved drugs to rescue α-cell function and restore glucose counterregulation in people with diabetes.
Collapse
Affiliation(s)
- Julia K Panzer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
17
|
Hoffman EG, Jahangiriesmaili M, Mandel ER, Greenberg C, Aiken J, D’Souza NC, Pasieka A, Teich T, Chan O, Liggins R, Riddell MC. Somatostatin Receptor Antagonism Reverses Glucagon Counterregulatory Failure in Recurrently Hypoglycemic Male Rats. Endocrinology 2021; 162:6363563. [PMID: 34477204 PMCID: PMC8482965 DOI: 10.1210/endocr/bqab189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Recent antecedent hypoglycemia is a known source of defective glucose counter-regulation in diabetes; the mechanisms perpetuating the cycle of progressive α-cell failure and recurrent hypoglycemia remain unknown. Somatostatin has been shown to suppress the glucagon response to acute hypoglycemia in rodent models of type 1 diabetes. We hypothesized that somatostatin receptor 2 antagonism (SSTR2a) would restore glucagon counterregulation and delay the onset of insulin-induced hypoglycemia in recurrently hypoglycemic, nondiabetic male rats. Healthy, male, Sprague-Dawley rats (n = 39) received bolus injections of insulin (10 U/kg, 8 U/kg, 5 U/kg) on 3 consecutive days to induce hypoglycemia. On day 4, animals were then treated with SSTR2a (10 mg/kg; n = 17) or vehicle (n = 12) 1 hour prior to the induction of hypoglycemia using insulin (5 U/kg). Plasma glucagon level during hypoglycemia was ~30% lower on day 3 (150 ± 75 pg/mL; P < .01), and 68% lower on day 4 in the vehicle group (70 ± 52 pg/mL; P < .001) compared with day 1 (219 ± 99 pg/mL). On day 4, SSTR2a prolonged euglycemia by 25 ± 5 minutes (P < .05) and restored the plasma glucagon response to hypoglycemia. Hepatic glycogen content of SSTR2a-treated rats was 35% lower than vehicle controls after hypoglycemia induction on day 4 (vehicle: 20 ± 7.0 vs SSTR2a: 13 ± 4.4 µmol/g; P < .01). SSTR2a treatment reverses the cumulative glucagon deficit resulting from 3 days of antecedent hypoglycemia in healthy rats. This reversal is associated with decreased hepatic glycogen content and delayed time to hypoglycemic onset. We conclude that recurrent hypoglycemia produces glucagon counterregulatory deficiency in healthy male rats, which can be improved by SSTR2a.
Collapse
Affiliation(s)
- Emily G Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Mahsa Jahangiriesmaili
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Erin R Mandel
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Caylee Greenberg
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Julian Aiken
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Ninoschka C D’Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Aoibhe Pasieka
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - Owen Chan
- Department of Internal Medicine—Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: Michael C. Riddell, PhD, School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3.
| |
Collapse
|
18
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
19
|
Singh B, Khattab F, Chae H, Desmet L, Herrera PL, Gilon P. K ATP channel blockers control glucagon secretion by distinct mechanisms: A direct stimulation of α-cells involving a [Ca 2+] c rise and an indirect inhibition mediated by somatostatin. Mol Metab 2021; 53:101268. [PMID: 34118477 PMCID: PMC8274344 DOI: 10.1016/j.molmet.2021.101268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Glucagon is secreted by pancreatic α-cells in response to hypoglycemia and its hyperglycemic effect helps to restore normal blood glucose. Insulin and somatostatin (SST) secretions from β- and δ-cells, respectively, are stimulated by glucose by mechanisms involving an inhibition of their ATP-sensitive K+ (KATP) channels, leading to an increase in [Ca2+]c that triggers exocytosis. Drugs that close KATP channels, such as sulfonylureas, are used to stimulate insulin release in type 2 diabetic patients. α-cells also express KATP channels. However, the mechanisms by which sulfonylureas control glucagon secretion are still largely debated and were addressed in the present study. In particular, we studied the effects of KATP channel blockers on α-cell [Ca2+]c and glucagon secretion in the presence of a low (1 mM) or a high (15 mM) glucose concentration and evaluated the role of SST in these effects. Methods Using a transgenic mouse model expressing the Ca2+-sensitive fluorescent protein, GCaMP6f, specifically in α-cells, we measured [Ca2+]c in α-cells either dispersed or within whole islets (by confocal microscopy). By measuring [Ca2+]c in α-cells within islets and glucagon secretion using the same perifusion protocols, we tested whether glucagon secretion correlated with changes in [Ca2+]c in response to sulfonylureas. We studied the role of SST in the effects of sulfonylureas using multiple approaches including genetic ablation of SST, or application of SST-14 and SST receptor antagonists. Results Application of the sulfonylureas, tolbutamide, or gliclazide, to a medium containing 1 mM or 15 mM glucose increased [Ca2+]c in α-cells by a direct effect as in β-cells. At low glucose, sulfonylureas inhibited glucagon secretion of islets despite the rise in α-cell [Ca2+]c that they triggered. This glucagonostatic effect was indirect and attributed to SST because, in the islets of SST-knockout mice, sulfonylureas induced a stimulation of glucagon secretion which correlated with an increase in α-cell [Ca2+]c. Experiments with exogenous SST-14 and SST receptor antagonists indicated that the glucagonostatic effect of sulfonylureas mainly resulted from an inhibition of the efficacy of cytosolic Ca2+ on exocytosis. Although SST-14 was also able to inhibit glucagon secretion by decreasing α-cell [Ca2+]c, no decrease in [Ca2+]c occurred during sulfonylurea application because it was largely counterbalanced by the direct stimulatory effect of these drugs on α-cell [Ca2+]c. At high glucose, i.e., in conditions where glucagon release was already low, sulfonylureas stimulated glucagon secretion because their direct stimulatory effect on α-cells exceeded the indirect effect by SST. Our results also indicated that, unexpectedly, SST-14 poorly decreased the efficacy of Ca2+ on exocytosis in β-cells. Conclusions Sulfonylureas exert two opposite actions on α-cells: a direct stimulation as in β-cells and an indirect inhibition by SST. This suggests that any alteration of SST paracrine influence, as described in diabetes, will modify the effect of sulfonylureas on glucagon release. In addition, we suggest that δ-cells inhibit α-cells more efficiently than β-cells. KATP channel blockers control glucagon secretion by two mechanisms. The first one is the direct stimulation of α-cell by a [Ca2+]c rise, as in β-cells. The second one is an indirect inhibition mediated by δ-cells releasing somatostatin. Somatostatin mainly reduces the efficacy of Ca2+ on exocytosis in α-cells. Somatostatin more potently inhibits glucagon than insulin secretion.
Collapse
Affiliation(s)
- Bilal Singh
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Firas Khattab
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Heeyoung Chae
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Lieven Desmet
- Université Catholique de Louvain, SMCS, Louvain Institute of Data Analysis and Modeling in economics and statistics, Louvain-la-Neuve, Belgium
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium.
| |
Collapse
|
20
|
Farhat R, de Santana‐Van Vliet E, Su G, Neely L, Benally T, Chan O. Carvedilol prevents impairment of the counterregulatory response in recurrently hypoglycaemic diabetic rats. Endocrinol Diabetes Metab 2021; 4:e00226. [PMID: 33855225 PMCID: PMC8029566 DOI: 10.1002/edm2.226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023] Open
Abstract
Aim It has been suggested that repeated activation of the adrenergic system during antecedent episodes of hypoglycaemia contributes to the development of counterregulatory failure. We previously reported that treatment with carvedilol, a non-specific β-blocker, prevented the development of counterregulatory failure and improved hypoglycaemia awareness in recurrently hypoglycaemic non-diabetic rats. The current study investigated whether carvedilol has similar benefits in diabetic rats. Methods Recurrently hypoglycaemic streptozotocin-diabetic rats (STZ+RH) were treated with carvedilol for one week prior to undergoing a hypoglycaemic clamp. Hypoglycaemia awareness was evaluated in streptozotocin-diabetic rats made hypoglycaemia unaware using repeated injections of 2-deoxyglucose. Results Compared to hypoglycaemia-naïve STZ-diabetic controls, exogenous glucose requirements were more than doubled in the STZ+RH animals and this was associated with a 49% reduction in the epinephrine response to hypoglycaemia. Treating STZ+RH animals with carvedilol improved the epinephrine response to hypoglycaemia. Of note, neither recurrent hypoglycaemia nor carvedilol treatment affected the glucagon response in diabetic animals. Additionally, carvedilol treatment improved the feeding response to insulin-induced hypoglycaemia in diabetic animals made 'hypoglycaemia unaware' using repeated injections of 2-deoxyglucose, suggesting the treatment improved awareness of hypoglycaemia as well. Conclusion Our data suggest that carvedilol may be useful in preventing impairments of the sympathoadrenal response and the development of hypoglycaemia unawareness during recurring episodes of hypoglycaemia in diabetic animals.
Collapse
Affiliation(s)
- Rawad Farhat
- Department of Internal MedicineDivision of Endocrinology, Metabolism and DiabetesUniversity of UtahSalt Lake CityUTUSA
| | - Eliane de Santana‐Van Vliet
- Department of Internal MedicineDivision of Endocrinology, Metabolism and DiabetesUniversity of UtahSalt Lake CityUTUSA
| | - Gong Su
- Department of Cardiovascular MedicineShanghai Wusong Central HospitalShanghaiChina
| | - Levi Neely
- Department of BiologyUtah Valley UniversityOremUTUSA
| | - Thea Benally
- Department of Health, Exercise and Sports SciencesUniversity of New MexicoAlbuquerqueNMUSA
| | - Owen Chan
- Department of Internal MedicineDivision of Endocrinology, Metabolism and DiabetesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
21
|
GhavamiNejad A, Lu B, Samarikhalaj M, Liu JF, Mirzaie S, Pereira S, Zhou L, Giacca A, Wu XY. Transdermal delivery of a somatostatin receptor type 2 antagonist using microneedle patch technology for hypoglycemia prevention. Drug Deliv Transl Res 2021; 12:792-804. [PMID: 33683625 DOI: 10.1007/s13346-021-00944-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a serious and potentially fatal complication experienced by people with insulin-dependent diabetes. The complication is usually caused by insulin overdose, skipping meals, and/or excessive physical activities. In type 1 diabetes (T1D), on top of impaired pancreatic α-cells, excessive levels of somatostatin from δ-cells further inhibit glucagon secretion to counteract overdosed insulin. Herein, we aimed to develop a microneedle (MN) patch for transdermal delivery of a peptide (PRL-2903) that antagonizes somatostatin receptor type 2 (SSTR2) in α-cells. First, we investigated the efficacy of subcutaneously administered PRL-2903 and identified the optimal dose (i.e., the minimum effective dose) and treatment scheduling (i.e., the best administration time for hypoglycemia prevention) in a T1D rat model. We then designed an MN patch using a hyaluronic acid (HA)-based polymer. The possible effect of the polymer on stabilizing the native structure of PRL-2903 was studied by molecular dynamics (MD) simulations. The results showed that the HA-based polymer could stabilize the PRL-2903 structure by restricting water molecules, promoting intra-molecular H-bonding, and constraining torsional angles of important bonds. In vivo studies with an overdose insulin challenge revealed that the PRL-2903-loaded MN patch effectively increased the plasma glucagon level, restored the counter-regulation of blood glucose concentration, and prevented hypoglycemia. The proposed MN patch is the first demonstration of a transdermal microneedle patch designed to deliver an SSTR2 antagonist for the prevention of hypoglycemia. This counter-regulatory peptide delivery system may be applied alongside with insulin delivery systems to provide a more effective and safer treatment for people with insulin-dependent diabetes.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liwei Zhou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
22
|
Croze ML, Flisher MF, Guillaume A, Tremblay C, Noguchi GM, Granziera S, Vivot K, Castillo VC, Campbell SA, Ghislain J, Huising MO, Poitout V. Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Mol Metab 2021; 45:101166. [PMID: 33484949 PMCID: PMC7873385 DOI: 10.1016/j.molmet.2021.101166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. METHODS Glucose tolerance tests were performed in mice after administration of selective GPR120 agonist Compound A. Insulin, glucagon, and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knock-out of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β, and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. RESULTS Acute exposure to Compound A increased glucose tolerance, circulating insulin, and glucagon levels in vivo. Endogenous and/or pharmacological GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. CONCLUSIONS Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part by mitigating somatostatin release.
Collapse
Affiliation(s)
- Marine L Croze
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Marcus F Flisher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | | | - Glyn M Noguchi
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Vincent C Castillo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA
| | | | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Jepsen SL, Albrechtsen NJW, Windeløv JA, Galsgaard KD, Hunt JE, Farb TB, Kissow H, Pedersen J, Deacon CF, Martin RE, Holst JJ. Antagonizing somatostatin receptor subtype 2 and 5 reduces blood glucose in a gut- and GLP-1R-dependent manner. JCI Insight 2021; 6:143228. [PMID: 33434183 PMCID: PMC7934931 DOI: 10.1172/jci.insight.143228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas B Farb
- Lilly Research Laboratories, Lilly, Indianapolis, Indiana, USA
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Hillerød University Hospital, Hillerød, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Gao R, Yang T, Zhang Q. δ-Cells: The Neighborhood Watch in the Islet Community. BIOLOGY 2021; 10:biology10020074. [PMID: 33494193 PMCID: PMC7909827 DOI: 10.3390/biology10020074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022]
Abstract
Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.
Collapse
Affiliation(s)
- Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK;
- Correspondence:
| |
Collapse
|
25
|
Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets. Diabetologia 2021; 64:142-151. [PMID: 33043402 DOI: 10.1007/s00125-020-05288-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/26/2020] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The endocrine pancreas comprises the islets of Langerhans, primarily consisting of beta cells, alpha cells and delta cells responsible for secretion of insulin, glucagon and somatostatin, respectively. A certain level of intra-islet communication is thought to exist, where the individual hormones may reach the other islet cells and regulate their secretion. Glucagon has been demonstrated to importantly regulate insulin secretion, while somatostatin powerfully inhibits both insulin and glucagon secretion. In this study we investigated how secretion of somatostatin is regulated by paracrine signalling from glucagon and insulin. METHODS Somatostatin secretion was measured from perfused mouse pancreases isolated from wild-type as well as diphtheria toxin-induced alpha cell knockdown, and global glucagon receptor knockout (Gcgr-/-) mice. We studied the effects of varying glucose concentrations together with infusions of arginine, glucagon, insulin and somatostatin, as well as infusions of antagonists of insulin, somatostatin and glucagon-like peptide 1 (GLP-1) receptors. RESULTS A tonic inhibitory role of somatostatin was demonstrated with infusion of somatostatin receptor antagonists, which significantly increased glucagon secretion at low and high glucose, whereas insulin secretion was only increased at high glucose levels. Infusion of glucagon dose-dependently increased somatostatin secretion approximately twofold in control mice. Exogenous glucagon had no effect on somatostatin secretion in Gcgr-/- mice, and a reduced effect when combined with the GLP-1 receptor antagonist exendin 9-39. Diphtheria toxin-induced knockdown of glucagon producing cells led to reduced somatostatin secretion in response to 12 mmol/l glucose and arginine infusions. In Gcgr-/- mice (where glucagon levels are dramatically increased) overall somatostatin secretion was increased. However, infusion of exendin 9-39 in Gcgr-/- mice completely abolished somatostatin secretion in response to glucose and arginine. Neither insulin nor an insulin receptor antagonist (S961) had any effect on somatostatin secretion. CONCLUSIONS/INTERPRETATION Our findings demonstrate that somatostatin and glucagon secretion are linked in a reciprocal feedback cycle with somatostatin inhibiting glucagon secretion at low and high glucose levels, and glucagon stimulating somatostatin secretion via the glucagon and GLP-1 receptors. Graphical abstract.
Collapse
Affiliation(s)
- Berit Svendsen
- NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Cherrington A, Rashid S. Dr. Mladen Vranic-A Legend in Diabetes Research: 1930-2019. Diabetes Care 2020; 43:1997-2000. [PMID: 32703766 DOI: 10.2337/dci20-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Alan Cherrington
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Shirya Rashid
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN .,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Xu SFS, Andersen DB, Izarzugaza JMG, Kuhre RE, Holst JJ. In the rat pancreas, somatostatin tonically inhibits glucagon secretion and is required for glucose-induced inhibition of glucagon secretion. Acta Physiol (Oxf) 2020; 229:e13464. [PMID: 32145704 DOI: 10.1111/apha.13464] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
AIM It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.
Collapse
Affiliation(s)
- Stella F. S. Xu
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Daniel B. Andersen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Rune E. Kuhre
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
28
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
29
|
Vergari E, Denwood G, Salehi A, Zhang Q, Adam J, Alrifaiy A, Wernstedt Asterholm I, Benrick A, Chibalina MV, Eliasson L, Guida C, Hill TG, Hamilton A, Ramracheya R, Reimann F, Rorsman NJG, Spilliotis I, Tarasov AI, Walker JN, Rorsman P, Briant LJB. Somatostatin secretion by Na +-dependent Ca 2+-induced Ca 2+ release in pancreatic delta-cells. Nat Metab 2020; 2:32-40. [PMID: 31993555 PMCID: PMC6986923 DOI: 10.1038/s42255-019-0158-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo 6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells.
Collapse
Affiliation(s)
- Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Albert Salehi
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Julie Adam
- Nuffield Department of Clinical Medicine, University of Oxford, NDM Research Building, Oxford, UK
| | - Ahmed Alrifaiy
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | | | - Anna Benrick
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Department of Clinical Sciences Malmö, Clinical Research Centre, Malmö, Sweden
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Frank Reimann
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nils J G Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
| | - Ioannis Spilliotis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Jonathan N Walker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK
- MacLeod Diabetes and Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK.
- Department of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden.
- Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford, UK.
- Department of Computer Science, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab 2019; 1:1189-1201. [PMID: 32694675 PMCID: PMC7378277 DOI: 10.1038/s42255-019-0148-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management.
Collapse
Affiliation(s)
- Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
31
|
Denwood G, Tarasov A, Salehi A, Vergari E, Ramracheya R, Takahashi H, Nikolaev VO, Seino S, Gribble F, Reimann F, Rorsman P, Zhang Q. Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca 2+ release. J Gen Physiol 2019; 151:1094-1115. [PMID: 31358556 PMCID: PMC6719402 DOI: 10.1085/jgp.201912351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin secretion from pancreatic islet δ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+ , increasing glucose from 1 mM to 20 mM produced an ∼3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed δ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in δ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with δ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the δ-cell.
Collapse
Affiliation(s)
- Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Albert Salehi
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susumo Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fiona Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
32
|
Tengholm A. Cyclic AMP links glucose stimulation to somatostatin secretion in δ-cells. J Gen Physiol 2019; 151:1062-1065. [PMID: 31413066 PMCID: PMC6719405 DOI: 10.1085/jgp.201912417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tengholm reflects on new work providing insight into the mechanisms of glucose-stimulated somatostatin secretion from δ-cells.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Biomedical Centre, Uppsala University
| |
Collapse
|
33
|
Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic α Cells. Int J Mol Sci 2019; 20:ijms20153699. [PMID: 31357734 PMCID: PMC6695724 DOI: 10.3390/ijms20153699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022] Open
Abstract
To date, type 2 diabetes is considered to be a "bi-hormonal disorder" rather than an "insulin-centric disorder," suggesting that glucagon is as important as insulin. Although glucagon increases hepatic glucose production and blood glucose levels, paradoxical glucagon hypersecretion is observed in diabetes. Recently, insulin resistance in pancreatic α cells has been proposed to be associated with glucagon dysregulation. Moreover, cell autonomous dysfunction of α cells is involved in the etiology of diabetes. In this review, we summarize the current knowledge about the physiological and pathological roles of glucagon.
Collapse
|
34
|
Vergari E, Knudsen JG, Ramracheya R, Salehi A, Zhang Q, Adam J, Asterholm IW, Benrick A, Briant LJB, Chibalina MV, Gribble FM, Hamilton A, Hastoy B, Reimann F, Rorsman NJG, Spiliotis II, Tarasov A, Wu Y, Ashcroft FM, Rorsman P. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat Commun 2019; 10:139. [PMID: 30635569 PMCID: PMC6329806 DOI: 10.1038/s41467-018-08193-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/18/2018] [Indexed: 02/08/2023] Open
Abstract
Hypoglycaemia (low plasma glucose) is a serious and potentially fatal complication of insulin-treated diabetes. In healthy individuals, hypoglycaemia triggers glucagon secretion, which restores normal plasma glucose levels by stimulation of hepatic glucose production. This counterregulatory mechanism is impaired in diabetes. Here we show in mice that therapeutic concentrations of insulin inhibit glucagon secretion by an indirect (paracrine) mechanism mediated by stimulation of intra-islet somatostatin release. Insulin’s capacity to inhibit glucagon secretion is lost following genetic ablation of insulin receptors in the somatostatin-secreting δ-cells, when insulin-induced somatostatin secretion is suppressed by dapagliflozin (an inhibitor of sodium-glucose co-tranporter-2; SGLT2) or when the action of secreted somatostatin is prevented by somatostatin receptor (SSTR) antagonists. Administration of these compounds in vivo antagonises insulin’s hypoglycaemic effect. We extend these data to isolated human islets. We propose that SSTR or SGLT2 antagonists should be considered as adjuncts to insulin in diabetes therapy. Impaired glucagon secretion in patients with diabetes causes hypoglycemia. Here the authors show that therapeutic concentrations of insulin inhibit alpha-cell glucagon secretion by stimulating delta-cell insulin receptor and the release of somatostatin. Blocking somatostatin secretion or action ameliorates this effect.
Collapse
Affiliation(s)
- Elisa Vergari
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jakob G Knudsen
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Reshma Ramracheya
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Albert Salehi
- Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden
| | - Quan Zhang
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Julie Adam
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden
| | - Linford J B Briant
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Margarita V Chibalina
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Fiona M Gribble
- Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Alexander Hamilton
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Frank Reimann
- Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nils J G Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ioannis I Spiliotis
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Andrei Tarasov
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK.,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden
| | - Frances M Ashcroft
- Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden.,Department of Physiology, Anatomy and Genetics, Henry Wellcome Centre for Gene Function, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK. .,Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Box 430, Göteborg, SE40530, Sweden. .,Oxford National Institute for Health Research, Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
35
|
Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Wood HB, Wang L, Erion M, Sherwin R, Kelley DE. GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia. Diabetes 2018; 67:1401-1413. [PMID: 29669745 PMCID: PMC6014553 DOI: 10.2337/db18-0031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
Abstract
Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein-coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.
Collapse
Affiliation(s)
- Nina Xiaoyan Li
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - Tim Kowalski
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Margaret Wu
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liming Yang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Ge Dai
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Aleksandr Petrov
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | | | - Harold B Wood
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liangsu Wang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Mark Erion
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - David E Kelley
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| |
Collapse
|
36
|
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK.
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
37
|
The somatostatin-secreting pancreatic δ-cell in health and disease. NATURE REVIEWS. ENDOCRINOLOGY 2018. [PMID: 29773871 DOI: 10.1038/s41574‐018‐0020‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
|
38
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Alexandru N, Andrei E, Niculescu L, Dragan E, Ristoiu V, Georgescu A. Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiol (Oxf) 2017; 221:230-249. [PMID: 28513999 DOI: 10.1111/apha.12896] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
AIM In this study, we aimed: (i) to obtain and functionally characterize the cultures of late endothelial progenitor cells (EPCs) from the animal blood; (ii) to investigate the potential beneficial effects of circulating microparticles (MPs) of healthy origins on EPC dysfunctionality in atherosclerosis as well as involved mechanisms. METHODS Late EPCs were obtained and expanded in culture from peripheral blood isolated from two animal groups: hypertensive-hyperlipidaemic (HH) and control (C) hamsters. In parallel experiments, late EPC cultures from HH were incubated with MPs from C group. RESULTS The results showed that late EPCs display endothelial cell phenotype: (i) have ability to uptake 1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine-labelled acetylated low-density lipoprotein and Ulex europaeus agglutinin lectin-1; (ii) express CD34, CD133, KDR, CD144, vWF, Tie-2. Late EPCs from HH exhibited different morphological and functional characteristics compared to control: (i) are smaller and irregular in shape; (ii) present decreased endothelial surface marker expression; (iii) display reduced proliferation, migration and adhesion; (iv) lose ability to organize themselves into tubular structures and integrate into vascular network; (v) have diminished function of inward rectifier potassium channels. The incubation of late EPCs with MPs improved EPC functionality by miR-10a, miR-21, miR-126, miR-146a, miR-223 transfer and IGF-1 expression activation; the kinetic study of MP incorporation into EPCs demonstrated MP uptake by EPCs followed by the miRNA transfer. CONCLUSION The data reveal that late EPCs from atherosclerotic model exhibit distinctive features and are dysfunctional, and their function recovery can be supported by MP ability to transfer miRNAs. These findings bring a new light on the vascular repair in atherosclerosis.
Collapse
Affiliation(s)
- N. Alexandru
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - E. Andrei
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - L. Niculescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - E. Dragan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - V. Ristoiu
- Faculty of Biology; University of Bucharest; Bucharest Romania
| | - A. Georgescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| |
Collapse
|
40
|
Li Q, Cui M, Yang F, Li N, Jiang B, Yu Z, Zhang D, Wang Y, Zhu X, Hu H, Li PS, Ning SL, Wang S, Qi H, Song H, He D, Lin A, Zhang J, Liu F, Zhao J, Gao L, Yi F, Xue T, Sun JP, Gong Y, Yu X. A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions. J Clin Invest 2017; 127:2631-2646. [PMID: 28604389 DOI: 10.1172/jci91348] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
Somatostatin secreted by pancreatic δ cells mediates important paracrine interactions in Langerhans islets, including maintenance of glucose metabolism through the control of reciprocal insulin and glucagon secretion. Disruption of this circuit contributes to the development of diabetes. However, the precise mechanisms that control somatostatin secretion from islets remain elusive. Here, we found that a super-complex comprising the cullin 4B-RING E3 ligase (CRL4B) and polycomb repressive complex 2 (PRC2) epigenetically regulates somatostatin secretion in islets. Constitutive ablation of CUL4B, the core component of the CRL4B-PRC2 complex, in δ cells impaired glucose tolerance and decreased insulin secretion through enhanced somatostatin release. Moreover, mechanistic studies showed that the CRL4B-PRC2 complex, under the control of the δ cell-specific transcription factor hematopoietically expressed homeobox (HHEX), determines the levels of intracellular calcium and cAMP through histone posttranslational modifications, thereby altering expression of the Cav1.2 calcium channel and adenylyl cyclase 6 (AC6) and modulating somatostatin secretion. In response to high glucose levels or urocortin 3 (UCN3) stimulation, increased expression of cullin 4B (CUL4B) and the PRC2 subunit histone-lysine N-methyltransferase EZH2 and reciprocal decreases in Cav1.2 and AC6 expression were found to regulate somatostatin secretion. Our results reveal an epigenetic regulatory mechanism of δ cell paracrine interactions in which CRL4B-PRC2 complexes, Cav1.2, and AC6 expression fine-tune somatostatin secretion and facilitate glucose homeostasis in pancreatic islets.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Na Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Baichun Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Zhen Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Daolai Zhang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yijing Wang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xibin Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Huili Hu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Pei-Shan Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Shang-Lei Ning
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Si Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Haibo Qi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Hechen Song
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Dongfang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology.,Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina, USA
| | - Jingjing Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tian Xue
- Hefei National Laboratory for Physical Science at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Peng Sun
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China.,Duke University, School of Medicine, Durham, North Carolina, USA
| | - Yaoqin Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| |
Collapse
|
41
|
Hirose H, Yamasaki T, Ogino M, Mizojiri R, Tamura-Okano Y, Yashiro H, Muraki Y, Nakano Y, Sugama J, Hata A, Iwasaki S, Watanabe M, Maekawa T, Kasai S. Discovery of novel 5-oxa-2,6-diazaspiro[3.4]oct-6-ene derivatives as potent, selective, and orally available somatostatin receptor subtype 5 (SSTR5) antagonists for treatment of type 2 diabetes mellitus. Bioorg Med Chem 2017. [PMID: 28642028 DOI: 10.1016/j.bmc.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Somatostatin receptor subtype 5 (SSTR5) has emerged as a novel attractive drug target for type 2 diabetes mellitus. Starting from N-benzyl azetidine derivatives 1 and 2 as in-house hit compounds, we explored the introduction of a carboxyl group into the terminal benzene of 1 to enhance SSTR5 antagonistic activity by the combination of the substituents at the 3-position of the isoxazoline. Incorporation of a carboxyl group at the 4-position of the benzene ring resulted in a significant enhancement in potency, however, the 4-benzoic acid derivative 10c exhibited moderate human ether-a-go-go related gene (hERG) inhibitory activity. A subsequent optimization study revealed that replacement of the 4-benzoic acid with an isonipecotic acid dramatically reduced hERG inhibition (5.6% inhibition at 30μM) by eliminating π-related interaction with hERG K+ channel, which resulted in the identification of 1-(2-((2,6-diethoxy-4'-fluorobiphenyl-4-yl)methyl)-5-oxa-2,6-diazaspiro[3.4]oct-6-en-7-yl)piperidin-4-carboxylic acid 25a (hSSTR5/mSSTR5 IC50=9.6/57nM). Oral administration of 25a in high-fat diet fed C57BL/6J mice augmented insulin secretion in a glucose-dependent manner and lowered blood glucose concentration.
Collapse
Affiliation(s)
- Hideki Hirose
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takeshi Yamasaki
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaki Ogino
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryo Mizojiri
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yumiko Tamura-Okano
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroaki Yashiro
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yo Muraki
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihide Nakano
- Global Procurement, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jun Sugama
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Iwasaki
- Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Watanabe
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Research Division Medicinal Chemistry Laboratory, SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
42
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
43
|
Abbasi A, Kieneker LM, Corpeleijn E, Gansevoort RT, Gans ROB, Struck J, de Boer RA, Hillege HL, Stolk RP, Navis G, Bakker SJL. Plasma N-terminal Prosomatostatin and Risk of Incident Cardiovascular Disease and All-Cause Mortality in a Prospective Observational Cohort: the PREVEND Study. Clin Chem 2016; 63:278-287. [PMID: 28062624 DOI: 10.1373/clinchem.2016.259275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Somatostatin is a component of the well-known insulin-like growth factor-1/growth hormone (GH) longevity axis. There is observational evidence that increased GH is associated with an increased risk of cardiovascular disease (CVD). We aimed to investigate the potential association of plasma N-terminal fragment prosomatostatin (NT-proSST) with incident CVD and all-cause mortality in apparently healthy adults. METHODS We studied 8134 participants without history of CVD (aged 28-75 years; women, 52.6%) from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study in Groningen, the Netherlands. Plasma NT-proSST was measured in baseline samples. Outcomes were incidence of CVD and all-cause mortality. RESULTS In cross-sectional analyses, NT-proSST [mean (SD), 384.0 (169.3) pmol/L] was positively associated with male sex and age (both P < 0.001). During a median follow-up of 10.5 (Q1-Q3: 9.9-10.8) years, 708 (8.7%) participants developed CVD and 517 (6.4%) participants died. In univariable analyses, NT-proSST was associated with an increased risk of incident CVD and all-cause mortality (both P < 0.001). In multivariable analyses, these associations were independent of the Framingham risk factors, with hazard ratios (95% CI) per doubling of NT-proSST of 1.17 (1.03-1.34; P = 0.02) for incident CVD and of 1.28 (1.09-1.49; P = 0.002) for all-cause mortality. Addition of NT-proSST to the updated Framingham Risk Score improved reclassification (integrated discrimination improvement (P < 0.001); net reclassification improvement was 2.5% (P = 0.04)). CONCLUSIONS Plasma NT-proSST is positively associated with increased risk of future CVD and all-cause mortality, partly independent of traditional CVD risk factors. Further research is needed to address the nature of associations.
Collapse
Affiliation(s)
- Ali Abbasi
- Department of Epidemiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands; .,Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands.,MRC Epidemiology Unit, University of Cambridge School of Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, the United Kingdom.,Department of Primary Care & Public Health Sciences, King's College London, London, UK
| | - Lyanne M Kieneker
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Rijk O B Gans
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Hans L Hillege
- Department of Epidemiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands.,Department of Cardiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Ronald P Stolk
- Department of Epidemiology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Taleb N, Rabasa-Lhoret R. Can somatostatin antagonism prevent hypoglycaemia during exercise in type 1 diabetes? Diabetologia 2016; 59:1632-5. [PMID: 27153841 DOI: 10.1007/s00125-016-3978-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
The prevention and management of exercise-induced hypoglycaemia remains a challenge for patients with type 1 diabetes. Strategies involving changes to insulin dosing and/or carbohydrate consumption in anticipation of or during different types of exercise have proved to be helpful but not sufficient to fully prevent the hypoglycaemic risk. Meanwhile, the defect in glucagon secretion in response to hypoglycaemia in diabetes and the contributory role of somatostatin to this dysregulation constitute an important therapeutic target. In this issue of Diabetologia (DOI 10.1007/s00125-016-3953-0 ), Leclair et al show that selective somatostatin receptor 2 antagonists can enhance glucagon secretion in rats with streptozotocin-induced diabetes during exercise. The implications of their interesting findings are discussed, as well as limitations and potential for clinical applications, together with other glucagon-based options for tackling exercise-induced hypoglycaemia in diabetes.
Collapse
Affiliation(s)
- Nadine Taleb
- Institut de recherches cliniques de Montréal, 110, avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Rémi Rabasa-Lhoret
- Institut de recherches cliniques de Montréal, 110, avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada.
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
45
|
Leclair E, Liggins RT, Peckett AJ, Teich T, Coy DH, Vranic M, Riddell MC. Glucagon responses to exercise-induced hypoglycaemia are improved by somatostatin receptor type 2 antagonism in a rat model of diabetes. Diabetologia 2016; 59:1724-31. [PMID: 27075449 DOI: 10.1007/s00125-016-3953-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Regular exercise is at the cornerstone of care in type 1 diabetes. However, relative hyperinsulinaemia and a blunted glucagon response to exercise promote hypoglycaemia. Recently, a selective antagonist of somatostatin receptor 2, PRL-2903, was shown to improve glucagon counterregulation to hypoglycaemia in resting streptozotocin-induced diabetic rats. The aim of this study was to test the efficacy of PRL-2903 in enhancing glucagon counterregulation during repeated hyperinsulinaemic exercise. METHODS Diabetic rats performed daily exercise for 1 week and were then exposed to saline (154 mmol/l NaCl) or PRL-2903, 10 mg/kg, before hyperinsulinaemic exercise on two separate occasions spaced 1 day apart. In the following week, animals crossed over to the alternate treatment for a third hyperinsulinaemic exercise protocol. RESULTS Liver glycogen content was lower in diabetic rats compared with control rats, despite daily insulin therapy (p < 0.05). Glucagon levels failed to increase during exercise with saline but increased three-to-six fold with PRL-2903 (all p < 0.05). Glucose concentrations tended to be higher during exercise and early recovery with PRL-2903 on both days of treatment; this difference did not achieve statistical significance (p > 0.05). CONCLUSIONS/INTERPRETATION PRL-2903 improves glucagon counterregulation during exercise. However, liver glycogen stores or other factors limit the prevention of exercise-induced hypoglycaemia in rats with streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Erwan Leclair
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | | | - Ashley J Peckett
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - David H Coy
- Department of Medicine, Peptide Research Labs, Tulane University Medical Center, New Orleans, LA, USA
| | - Mladen Vranic
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
46
|
Briant L, Salehi A, Vergari E, Zhang Q, Rorsman P. Glucagon secretion from pancreatic α-cells. Ups J Med Sci 2016; 121:113-9. [PMID: 27044683 PMCID: PMC4900066 DOI: 10.3109/03009734.2016.1156789] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes involves a ménage à trois of impaired glucose regulation of pancreatic hormone release: in addition to impaired glucose-induced insulin secretion, the release of the hyperglycaemic hormone glucagon becomes dysregulated; these last-mentioned defects exacerbate the metabolic consequences of hypoinsulinaemia and are compounded further by hypersecretion of somatostatin (which inhibits both insulin and glucagon secretion). Glucagon secretion has been proposed to be regulated by either intrinsic or paracrine mechanisms, but their relative significance and the conditions under which they operate are debated. Importantly, the paracrine and intrinsic modes of regulation are not mutually exclusive; they could operate in parallel to control glucagon secretion. Here we have applied mathematical modelling of α-cell electrical activity as a novel means of dissecting the processes that underlie metabolic regulation of glucagon secretion. Our analyses indicate that basal hypersecretion of somatostatin and/or increased activity of somatostatin receptors may explain the loss of adequate counter-regulation under hypoglycaemic conditions, as well as the physiologically inappropriate stimulation of glucagon secretion during hyperglycaemia seen in diabetic patients. We therefore advocate studying the interaction of the paracrine and intrinsic mechanisms; unifying these processes may give a more complete picture of the regulation of glucagon secretion from α-cells than studying the individual parts.
Collapse
Affiliation(s)
- Linford Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Albert Salehi
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK;
- Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| |
Collapse
|
47
|
Resnyk CW, Chen C, Huang H, Wu CH, Simon J, Le Bihan-Duval E, Duclos MJ, Cogburn LA. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism. PLoS One 2015; 10:e0139549. [PMID: 26445145 PMCID: PMC4596860 DOI: 10.1371/journal.pone.0139549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023] Open
Abstract
Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.
Collapse
Affiliation(s)
- Christopher W. Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Jean Simon
- INRA UR83 Recherches Avicoles, 37380, Nouzilly, France
| | | | | | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
48
|
Elliott AD, Ustione A, Piston DW. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am J Physiol Endocrinol Metab 2015; 308:E130-43. [PMID: 25406263 PMCID: PMC4297778 DOI: 10.1152/ajpendo.00344.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca(2+)]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose.
Collapse
Affiliation(s)
- Amicia D Elliott
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
49
|
The clinical significance of somatostatin in pancreatic diseases. ANNALES D'ENDOCRINOLOGIE 2014; 75:232-40. [DOI: 10.1016/j.ando.2014.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/28/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
|
50
|
Abstract
The peptide hormone somatostatin (SST) is produced in the brain, the gut, and in δ-cells in pancreatic islets of Langerhans. SST secretion from δ-cells is stimulated by glucose, amino acids, and glucagon-like peptide-1. Exogenous SST strongly inhibits the secretion of the blood glucose-regulating hormones insulin and glucagon from pancreatic β-cells and α-cells, respectively. Endogenous SST secreted from δ-cells is a paracrine regulator of insulin and glucagon secretion, although the exact physiological significance of this regulation is unclear. Secreted SST binds to specific receptors (SSTRs), which are coupled to Gi/o proteins. In both β- and α-cells, activation of SSTRs suppresses hormone secretion by reducing cAMP levels, inhibiting electrical activity, decreasing Ca²⁺ influx through voltage-gated Ca²⁺ channels and directly reducing exocytosis in a Ca²⁺ and cAMP-independent manner. In rodents, β-cells express predominantly SSTR5, whereas α-cells express SSTR2. In human islets, SSTR2 is the dominant receptor in both β- and α-cells, but other isoforms also contribute to the SST effects. Evidence from rodent models suggests that SST secretion from δ-cells is dysregulated in diabetes mellitus, which may contribute to the metabolic disturbances in this disease. SST analogues are currently used for the treatment of hyperinsulinism and other endocrine disorders, including acromegaly and Cushing's syndrome.
Collapse
Affiliation(s)
- Matthias Braun
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|