1
|
Liao MC, Lo CS, Pang YC, Yang WX, Su K, Zhao XP, Miyata KN, Peng J, Ingelfinger JR, Chan JSD, Zhang SL. Heterogeneous nuclear ribonucleoprotein F deficiency in mouse podocyte promotes podocytopathy mediated by methyltransferase-like 14 nuclear translocation resulting in Sirtuin 1 gene inhibition. Transl Res 2024; 267:1-9. [PMID: 38195017 DOI: 10.1016/j.trsl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein F (HnRNP F) is a key regulator for nucleic acid metabolism; however, whether HnRNP F expression is important in maintaining podocyte integrity is unclear. Nephroseq analysis from a registry of human kidney biopsies was performed. Age- and sex-matched podocyte-specific HnRNP F knockout (HnRNP FPOD KO) mice and control (HnRNP Ffl/fl) were studied. Podocytopathy was induced in male mice (more susceptible) either by adriamycin (ADR)- or low-dose streptozotocin treatment for 2 or 8 weeks. The mouse podocyte cell line (mPODs) was used in vitro. Nephroseq data in three human cohorts were varied greatly. Both sexes of HnRNP FPOD KO mice were fertile and appeared grossly normal. However, male 20-week-old HnRNP FPOD KO than HnRNP Ffl/fl mice had increased urinary albumin/creatinine ratio, and lower expression of podocyte markers. ADR- or diabetic- HnRNP FPOD KO (vs. HnRNP Ffl/fl) mice had more severe podocytopathy. Moreover, methyltransferase-like 14 (Mettl14) gene expression was increased in podocytes from HnRNP FPOD KO mice, further enhanced in ADR- or diabetic-treated HnRNP FPOD KO mice. Consequently, this elevated Mettl14 expression led to sirtuin1 (Sirt1) inhibition, associated with podocyte loss. In mPODs, knock-down of HnRNP F promoted Mettl14 nuclear translocation, which was associated with podocyte dysmorphology and Sirt1 inhibition-mediated podocyte loss. This process was more severe in ADR- or high glucose- treated mPODs. Conclusion: HnRNP F deficiency in podocytes promotes podocytopathy through activation of Mettl14 expression and its nuclear translocation to inhibit Sirt1 expression, underscoring the protective role of HnRNP F against podocyte injury.
Collapse
Affiliation(s)
- Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Yu-Chao Pang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Wen-Xia Yang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Ke Su
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada; Division of Nephrology, Department of Internal Medicine, Saint Louis University, 1008 Spring Ave. St Louis, MO 63110, USA
| | - Junzheng Peng
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Mass General Hospital for Children at Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2×0A9, Canada.
| |
Collapse
|
2
|
Chi Y, Zhang X, Liang D, Wang Y, Cai X, Dong J, Li L, Chi Z. ZnT8 Exerts Anti-apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-κB Signal Pathways. Biol Trace Elem Res 2023; 201:2442-2457. [PMID: 35871203 DOI: 10.1007/s12011-022-03361-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
Apoptosis of kidney tubular epithelial cells contributes to diabetic kidney disease (DKD) pathophysiology, but the mechanisms are not fully understood. Zinc transporter protein member 8 (ZnT8, SLC30A8) is a susceptive gene in diabetes. Here, we aim to investigate whether ZnT8 has effects on pathophysiology of DKD. The animal groups include control, ZnT8KO mice, STZ-induced, and ZnT8-KO-STZ. STZ-induced DKD was performed in male C57BL/6 J mice and in ZnT8-KO mice. High glucose (HG)-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells) was performed in vitro. Transfection of hZnT8-EGFP or TNFAIP3 siRNA was done in NRK-52E cells. Flow cytometry with Annexin V-FITC/PI double staining and TUNEL analysis was performed for the detection of apoptosis. Gene expression at mRNA and protein levels was examined with real-time RT-PCR and Western blot. Urine albumin to creatinine ratio, proinflammatory cytokines, and apoptosis were enhanced in kidneys of STZ and ZnT8-KO-STZ mice compared to control or ZnT8-KO mice. ZnT8 overexpression after hZnT8-EGFP transfection decreased HG-stimulated inflammatory activity and apoptosis in NRK-52E cells. Furthermore, treatment with ZnSO4 blunted HG-induced apoptosis and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3). Also, ZnT8 over-expression after hZnT8-EGFP transfection significantly ameliorates HG-induced NF-κB-dependent transcriptional activity and apoptotic protein expressions in NRK-52E cells, but the inhibitory effect of ZnT8 was significantly abolished with TNFAIP3 siRNA. Our study provides evidence that ZnT8 has protective effects against apoptosis of renal tubular epithelial cells through induction of TNFAIP3 and subsequent suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Yinmao Chi
- Department of Physiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
- Department of Nephrology, Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Dan Liang
- Troops of 95988 Unit, Changchun, Jilin, 158000, People's Republic of China
| | - Yue Wang
- Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiaoyi Cai
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong Province, 515000, People's Republic of China
| | - Jiqiu Dong
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Lingzhi Li
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Zhihong Chi
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| |
Collapse
|
3
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Di Camillo B, Puricelli L, Iori E, Toffolo GM, Tessari P, Arrigoni G. Modeling SILAC Data to Assess Protein Turnover in a Cellular Model of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24032811. [PMID: 36769128 PMCID: PMC9917874 DOI: 10.3390/ijms24032811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Protein turnover rate is finely regulated through intracellular mechanisms and signals that are still incompletely understood but that are essential for the correct function of cellular processes. Indeed, a dysfunctional proteostasis often impacts the cell's ability to remove unfolded, misfolded, degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling protein turnover impinge on the pathophysiology of many diseases, making the study of protein synthesis and degradation rates an important step for a more comprehensive understanding of these pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We estimated protein half-lives and relative abundance for thousands of proteins, several of which are characterized by either an altered turnover rate or altered abundance between diabetic nephropathic subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects strictly related to the pathological condition, our data also represent a consistent compendium of protein half-lives in human fibroblasts and a rich source of important information related to basic cell biology.
Collapse
Affiliation(s)
- Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| | - Lucia Puricelli
- Department of Medicine, University of Padova, 35128 Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Elisabetta Iori
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Paolo Tessari
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, 35128 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (B.D.C.); (G.A.)
| |
Collapse
|
5
|
Zhang S, Yang X, Jiang M, Ma L, Hu J, Zhang HH. Post-transcriptional control by RNA-binding proteins in diabetes and its related complications. Front Physiol 2022; 13:953880. [PMID: 36277184 PMCID: PMC9582753 DOI: 10.3389/fphys.2022.953880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes mellitus (DM) is a fast-growing chronic metabolic disorder that leads to significant health, social, and economic problems worldwide. Chronic hyperglycemia caused by DM leads to multiple devastating complications, including macrovascular complications and microvascular complications, such as diabetic cardiovascular disease, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. Numerous studies provide growing evidence that aberrant expression of and mutations in RNA-binding proteins (RBPs) genes are linked to the pathogenesis of diabetes and associated complications. RBPs are involved in RNA processing and metabolism by directing a variety of post-transcriptional events, such as alternative splicing, stability, localization, and translation, all of which have a significant impact on RNA fate, altering their function. Here, we purposed to summarize the current progression and underlying regulatory mechanisms of RBPs in the progression of diabetes and its complications. We expected that this review will open the door for RBPs and their RNA networks as novel therapeutic targets for diabetes and its related complications.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Miao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianhua Ma
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Navarro J, Sanchez A, Ba Aqeel SH, Ye M, Rehman MZ, Wysocki J, Rademaker A, Molitch ME, Batlle D. Urinary Angiotensinogen in Patients With Type 1 Diabetes With Microalbuminuria: Gender Differences and Effect of Intensive Insulin Therapy. Kidney Int Rep 2022; 7:2657-2667. [PMID: 36506234 PMCID: PMC9727532 DOI: 10.1016/j.ekir.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Angiotensinogen (AOG) is the precursor of peptides of the renin angiotensin system (RAS). Because insulin up-regulates transcriptional factors that normally repress kidney AOG synthesis, we evaluated urinary AOG (uAOG) in patients with type 1 diabetes (T1D) and microalbuminuria who are receiving either intensive or conventional insulin therapy. Methods Urine samples from participants of the Diabetes Control and Complications Trial (DCCT) were used for the following: (i) uAOG/creatinine measurements in 103 patients with microalbuminuria and 103 patients with normoalbuminuria, matched for age, gender, disease duration, and allocation to insulin therapy; and (ii) uAOG/creatinine measurements from patients with microalbuminuria allocated to intensive insulin therapy (n = 58) or conventional insulin therapy (n = 41) after 3 years on each modality. Results uAOG was higher in patients who started with microalbuminuria than in those with normoalbuminuria (6.65 vs. 4.0 ng/mg creatinine, P < 0.01). uAOG was higher in females than in males with microalbuminuria (11.7 vs. 5.4 ng/mg creatinine, P = 0.015). uAOG was lower in patients with microalbuminuria allocated to intensive insulin therapy than in conventional insulin therapy (3.98 vs. 7.42 ng/mg creatinine, P < 0.01). These differences in uAOG were observed though albumin excretion rate (AER) was not significantly different. Conclusion In patients with T1D and microalbuminuria, uAOG is increased and varies with gender and the type of insulin therapy independently of AER. This suggests that AOG production is increased in females and it is decreased by intensive insulin therapy. The reduction in uAOG with intensive insulin therapy, by kidney RAS downregulation, may contribute to the known renoprotective action associated with intensive insulin and improved glycemic control.
Collapse
Affiliation(s)
- Jessica Navarro
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alejandro Sanchez
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheeba H. Ba Aqeel
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mohammed Z. Rehman
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred Rademaker
- Division of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark E. Molitch
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Correspondence: Daniel Batlle, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, 320 E Superior, Chicago, Illinois 60611, USA.
| |
Collapse
|
7
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Rong Q, Han B, Li Y, Yin H, Li J, Hou Y. Berberine Reduces Lipid Accumulation by Promoting Fatty Acid Oxidation in Renal Tubular Epithelial Cells of the Diabetic Kidney. Front Pharmacol 2022; 12:729384. [PMID: 35069186 PMCID: PMC8766852 DOI: 10.3389/fphar.2021.729384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.
Collapse
Affiliation(s)
- Qingfeng Rong
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Haizhen Yin
- Central Laboratory, Shanxi Province People's Hospital, Taiyuan, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Miyata KN, Lo CS, Zhao S, Zhao XP, Chenier I, Yamashita M, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Deletion of heterogeneous nuclear ribonucleoprotein F in renal tubules downregulates SGLT2 expression and attenuates hyperfiltration and kidney injury in a mouse model of diabetes. Diabetologia 2021; 64:2589-2601. [PMID: 34370045 PMCID: PMC8992778 DOI: 10.1007/s00125-021-05538-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Xin-Ping Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
10
|
Zhao S, Lo CS, Miyata KN, Ghosh A, Zhao XP, Chenier I, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of Nrf2 in Renal Proximal Tubular Cells Stimulates Sodium-Glucose Cotransporter 2 Expression and Exacerbates Dysglycemia and Kidney Injury in Diabetic Mice. Diabetes 2021; 70:1388-1403. [PMID: 33820760 DOI: 10.2337/db20-1126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) overexpression in renal proximal tubular cells (RPTCs) on blood glucose, kidney injury, and sodium-glucose cotransporter 2 (Sglt2) expression in diabetic Akita Nrf2 -/-/Nrf2RPTC transgenic (Tg) mice. Immortalized human RPTCs (HK2) stably transfected with plasmid containing the SGLT2 promoter and human kidneys from patients with diabetes were also studied. Nrf2 overexpression was associated with increased blood glucose, glomerular filtration rate, urinary albumin-to-creatinine ratio, tubulointerstitial fibrosis, and Sglt2 expression in Akita Nrf2 -/-/Nrf2RPTC Tg mice compared with their Akita Nrf2 -/- littermates. In vitro, oltipraz or transfection of NRF2 cDNA stimulated SGLT2 expression and SGLT2 promoter activity in HK2, and these effects were inhibited by trigonelline or NRF2 siRNA. The deletion of the NRF2-responsive element (NRF2-RE) in the SGLT2 promoter abolished the stimulatory effect of oltipraz on SGLT2 promoter activity. NRF2 binding to the NRF2-RE of the SGLT2 promoter was confirmed by gel mobility shift assay and chromatin immunoprecipitation assays. Kidneys from patients with diabetes exhibited higher levels of NRF2 and SGLT2 in the RPTCs than kidneys from patients without diabetes. These results suggest a link by which NRF2 mediates hyperglycemia stimulation of SGLT2 expression and exacerbates blood glucose and kidney injury in diabetes.
Collapse
Affiliation(s)
- Shuiling Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Kana N Miyata
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Anindya Ghosh
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Chenier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Cailhier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Ethier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Janos G Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, and Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - John S D Chan
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis 2021; 12:523. [PMID: 34021126 PMCID: PMC8140121 DOI: 10.1038/s41419-021-03813-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Tubulointerstitial inflammation plays a key role in the pathogenesis of diabetic nephropathy (DN). Interleukin-1β (IL-1β) is the key proinflammatory cytokine associated with tubulointerstitial inflammation. The NLRP3 inflammasome regulates IL-1β activation and secretion. Reactive oxygen species (ROS) represents the main mediator of NLRP3 inflammasome activation. We previously reported that CD36, a class B scavenger receptor, mediates ROS production in DN. Here, we determined whether CD36 is involved in NLRP3 inflammasome activation and explored the underlying mechanisms. We observed that high glucose induced-NLRP3 inflammasome activation mediate IL-1β secretion, caspase-1 activation, and apoptosis in HK-2 cells. In addition, the levels of CD36, NLRP3, and IL-1β expression (protein and mRNA) were all significantly increased under high glucose conditions. CD36 knockdown resulted in decreased NLRP3 activation and IL-1β secretion. CD36 knockdown or the addition of MitoTempo significantly inhibited ROS production in HK-2 cells. CD36 overexpression enhanced NLRP3 activation, which was reduced by MitoTempo. High glucose levels induced a change in the metabolism of HK-2 cells from fatty acid oxidation (FAO) to glycolysis, which promoted mitochondrial ROS (mtROS) production after 72 h. CD36 knockdown increased the level of AMP-activated protein kinase (AMPK) activity and mitochondrial FAO, which was accompanied by the inhibition of NLRP3 and IL-1β. The in vivo experimental results indicate that an inhibition of CD36 could protect diabetic db/db mice from tubulointerstitial inflammation and tubular epithelial cell apoptosis. CD36 mediates mtROS production and NLRP3 inflammasome activation in db/db mice. CD36 inhibition upregulated the level of FAO-related enzymes and AMPK activity in db/db mice. These results suggest that NLRP3 inflammasome activation is mediated by CD36 in renal tubular epithelial cells in DN, which suppresses mitochondrial FAO and stimulates mtROS production.
Collapse
Affiliation(s)
- Yanjuan Hou
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- grid.477944.dDepartment of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yiliang Chen
- grid.280427.b0000 0004 0434 015XBlood Research Institute, Blood Center of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Xi Qiao
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- grid.263452.40000 0004 1798 4018Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Artemisinin attenuates early renal damage on diabetic nephropathy rats through suppressing TGF-β1 regulator and activating the Nrf2 signaling pathway. Life Sci 2020; 256:117966. [PMID: 32535079 DOI: 10.1016/j.lfs.2020.117966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
AIM The present study aims to investigate the protective effects of artemisinin (ATZ) on early renal damage in experimental diabetic rats and its probable mechanism. METHODS Models of diabetic nephropathy (DN) rats was established utilizing streptozotocin (STZ)-injection intraperitoneally (55 mg/kg) method. All rats were subsequently divided into normal control group, model group and ATZ (25, 50, 75 mg/kg) group randomly. Biochemical parameters including body weight, kidney index, blood glucose, 24 h UAER, Scr, BUN, T-SOD, GSH-Px and MDA were comprehensively determined after 8-week consecutive administrations. HE and PAS stainings were performed to observe the histopathological alterations of kidney. Western blot was conducted to detect the expressions of TGF-β1, Nrf2, HQ-1 and NQO1. KEY FINDINGS ATZ at three concentrations in ATZ group significantly increased the body weight. Biochemical parameters altered significantly between model group and ATZ group. Moreover, ATZ inhibited TGF-β1 protein expression and activated the Nrf2 signaling pathway. Pathological histology results revealed the alterations including mesangial cells proliferation, thickness of glomerular capillary basement membrane, extracellular matrix (ECM) and the 24 h UAER. Western blot analysis demonstrated the increase of antioxidant proteins HO-1 and NQO1 and Nrf2-related proteins. SIGNIFICANCE ATZ could reduce early renal oxidative stress damage in DN rats by inhibiting TGF-β1 protein expression in kidney tissues as well as activating the Nrf2 signaling pathway and enhancing the expression of antioxidant proteins, thereby exerting the protective effects on DN kidney. The current study is the first report of ATZ on attenuating effects on kidney of DN rats, which could lay solid theoretical foundations on clinical application of ATZ to treat DN.
Collapse
|
13
|
Miyata KN, Zhao S, Wu CH, Lo CS, Ghosh A, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Comparison of the effects of insulin and SGLT2 inhibitor on the Renal Renin-Angiotensin system in type 1 diabetes mice. Diabetes Res Clin Pract 2020; 162:108107. [PMID: 32173417 DOI: 10.1016/j.diabres.2020.108107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023]
Abstract
AIMS SGLT2 inhibitors have been proposed as an adjunct to insulin therapy for glycemic control in type 1 diabetes (T1D) patients. However, concern has been raised due to an increase in renin-angiotensin-system (RAS) activity reported in a clinical trial in which an SGLT2 inhibitor was added while insulin dose was reduced in T1D patients. We previously reported that insulin inhibits intrarenal angiotensinogen (Agt) gene transcription and RAS activation. We hypothesized that insulin, rather than SGLT2 inhibition might regulate the intrarenal RAS. METHODS We compared RAS activity in non-diabetic wild type mice, Akita mice (T1D model) and Akita mice treated with insulin or the SGLT2 inhibitor canagliflozin. RESULTS Treatment of Akita mice with insulin or canagliflozin produced similar reductions in blood glucose, whereas insulin, but not canagliflozin, reduced elevated systolic blood pressure. Akita mice exhibited increased renal Agt mRNA/protein expression, which was attenuated by insulin, but not by canagliflozin. Furthermore, insulin was more effective than canagliflozin in lowering kidney weight and albuminuria. CONCLUSIONS Insulin, but not canagliflozin, lowers intrarenal RAS activity in Akita mice. Our findings can be of potential clinical importance, especially for T1D patients who are not on RAS inhibitors at the time of adding SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chin-Han Wu
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Anindya Ghosh
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, 5415 boul. l'Assomption, Montréal, Quebec H1T 2M4, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, 15 Parkman Street, WAC 709, Boston, MA 02114-3117, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| |
Collapse
|
14
|
Tubular Deficiency of Heterogeneous Nuclear Ribonucleoprotein F Elevates Systolic Blood Pressure and Induces Glycosuria in Mice. Sci Rep 2019; 9:15765. [PMID: 31673025 PMCID: PMC6823451 DOI: 10.1038/s41598-019-52323-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
We reported previously that overexpression of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in renal proximal tubular cells (RPTCs) suppresses angiotensinogen (Agt) expression, and attenuates systemic hypertension and renal injury in diabetic Hnrnpf-transgenic (Tg) mice. We thus hypothesized that deletion of Hnrnpf in the renal proximal tubules (RPT) of mice would worsen systemic hypertension and kidney injury, perhaps revealing novel mechanism(s). Tubule-specific Hnrnpf knockout (KO) mice were generated by crossbreeding Pax8-Cre mice with floxed Hnrnpf mice on a C57BL/6 background. Both male and female KO mice exhibited elevated systolic blood pressure, increased urinary albumin/creatinine ratio, tubulo-interstitial fibrosis and glycosuria without changes in blood glucose or glomerular filtration rate compared with control littermates. However, glycosuria disappeared in male KO mice at the age of 12 weeks, while female KO mice had persistent glycosuria. Agt expression was elevated, whereas sodium-glucose co-transporter 2 (Sglt2) expression was down-regulated in RPTs of both male and female KO mice as compared to control littermates. In vitro, KO of HNRNPF in human RPTCs (HK-2) by CRISPR gRNA up-regulated AGT and down-regulated SGLT2 expression. The Sglt2 inhibitor canagliflozin treatment had no effect on Agt and Sglt2 expression in HK-2 and in RPTCs of wild-type mice but induced glycosuria. Our results demonstrate that Hnrnpf plays a role in the development of hypertension and glycosuria through modulation of renal Agt and Sglt2 expression in mice, respectively.
Collapse
|
15
|
Tang J, Wysocki J, Ye M, Vallés PG, Rein J, Shirazi M, Bader M, Gomez RA, Sequeira-Lopez MLS, Afkarian M, Batlle D. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension 2019; 74:83-94. [PMID: 31079532 DOI: 10.1161/hypertensionaha.119.12873] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In patients with diabetic kidney disease (DKD), plasma renin activity is usually decreased, but there is limited information on urinary renin and its origin. Urinary renin was evaluated in samples from patients with longstanding type I diabetes mellitus and mice with streptozotocin-induced diabetes mellitus. Renin-reporter mouse model (Ren1d-Cre;mT/mG) was made diabetic with streptozotocin to examine whether the distribution of cells of the renin lineage was altered in a chronic diabetic environment. Active renin was increased in urine samples from patients with DKD (n=36), compared with those without DKD (n=38; 3.2 versus 1.3 pg/mg creatinine; P<0.001). In mice with streptozotocin-induced diabetes mellitus, urine renin was also increased compared with nondiabetic controls. By immunohistochemistry, in mice with streptozotocin-induced diabetes mellitus, juxtaglomerular apparatus and proximal tubular renin staining were reduced, whereas collecting tubule staining, by contrast, was increased. To examine the role of filtration and tubular reabsorption on urinary renin, mice were either infused with either mouse or human recombinant renin and lysine (a blocker of proximal tubular protein reabsorption). Infusion of either form of renin together with lysine markedly increased urinary renin such that it was no longer different between nondiabetic and diabetic mice. Megalin mRNA was reduced in the kidney cortex of streptozotocin-treated mice (0.70±0.09 versus 1.01±0.04 in controls, P=0.01) consistent with impaired tubular reabsorption. In Ren1d-Cre;mT/mG with streptozotocin-induced diabetes mellitus, the distribution of renin lineage cells within the kidney was similar to nondiabetic renin-reporter mice. No evidence for migration of cells of renin linage to the collecting duct in diabetic mice could be found. Renin mRNA in microdissected collecting ducts from streptozotocin-treated mice, moreover, was not significantly different than in controls, whereas in kidney cortex, largely reflecting juxtaglomerular apparatus renin, it was significantly reduced. In conclusion, in urine from patients with type 1 diabetes mellitus and DKD and from mice with streptozotocin-induced diabetes mellitus, renin is elevated. This cannot be attributed to production from cells of the renin lineage migrating to the collecting duct in a chronic hyperglycemic environment. Rather, the elevated levels of urinary renin found in DKD are best attributed to altered glomerular filteration and impaired proximal tubular reabsorption.
Collapse
Affiliation(s)
- Jeannette Tang
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Jan Wysocki
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Minghao Ye
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| | - Patricia G Vallés
- Notti Pediatric Hospital School of Medicine, Mendoza, Argentina (P.G.V.)
| | - Johannes Rein
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Mina Shirazi
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.).,Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.)
| | - Michael Bader
- Charité-Universitätsmedizin, Berlin, Germany (J.T., J.R., M.S., M.B.).,Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.B.)
| | | | | | | | - Daniel Batlle
- From the Northwestern University Feinberg Medical School, Chicago, IL (J.T., J.W., M.Y., J.R., M.S., D.B.)
| |
Collapse
|
16
|
Ghosh A, Zhao S, Lo CS, Maachi H, Chenier I, Lateef MA, Abdo S, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Mediates Insulin Inhibition of Bcl2-Modifying Factor Expression and Tubulopathy in Diabetic Kidney. Sci Rep 2019; 9:6687. [PMID: 31040360 PMCID: PMC6491582 DOI: 10.1038/s41598-019-43218-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
We investigated the molecular mechanism(s) by which insulin prevents Bcl2-modifying factor (Bmf)-induced renal proximal tubular cell (RPTC) apoptosis and loss in diabetic mice. Transgenic mice (Tg) mice specifically overexpressing human BMF in RPTCs and non-Tg littermates were studied at 10 to 20 weeks of age. Non-diabetic littermates, diabetic Akita mice +/− insulin implant, Akita Tg mice specifically overexpressing heterogeneous nuclear ribonucleoprotein F (hnRNP F) in their RPTCs and immortalized rat renal proximal tubular cells (IRPTCs) were also studied. BMF-Tg mice exhibited higher systolic blood pressure, urinary albumin/creatinine ratio, RPTC apoptosis and urinary RPTCs than non-Tg mice. Insulin treatment in Akita mice and Akita mice overexpressing hnRNP F suppressed Bmf expression and RPTC apoptosis. In hyperinsulinemic-euglycemic wild type mice, renal Bmf expression was down-regulated with up-regulation of hnRNP F. In vitro, insulin inhibited high glucose-stimulation of Bmf expression, predominantly via p44/42 mitogen-activated protein kinase (MAPK) signaling. Transfection of p44/42 MAPK or hnRNP F small interfering RNA (siRNA) prevented insulin inhibition of Bmf expression. HnRNP F inhibited Bmf transcription via hnRNP F-responsive element in the Bmf promoter. Our results demonstrate that hnRNP F suppression of Bmf transcription is an important mechanism by which insulin protects RPTCs from apoptosis in diabetes.
Collapse
Affiliation(s)
- Anindya Ghosh
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Shuiling Zhao
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Chao-Sheng Lo
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Hasna Maachi
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Isabelle Chenier
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Muhammad Abdul Lateef
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Shaaban Abdo
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Janos G Filep
- Département de pathologie et biologie cellulaire, Université de Montréal, Centre de recherche, Hôpital Maisonneuve-Rosemont, 5415 boul. de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, 15 Parkman Street, WAC 709, Boston, MA, 02114-3117, USA
| | - Shao-Ling Zhang
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada.
| | - John S D Chan
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
17
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol 2018; 478:115-125. [PMID: 30098377 DOI: 10.1016/j.mce.2018.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported in diabetic kidney, yet the potential role of NLRP3 inflammasome in DN is not well known. In this study, we explored the role of NLRP3 inflammasome on inflammation and fibrosis in diabetic kidney using NLRP3 knockout mice. Renal expression of NLRP3, caspase-1 p10, interleukin-18 (IL-18) and cleaved IL-1β was increased in diabetic wild-type (WT) mice at 24 weeks. NLRP3 knockout (KO) improved renal function, attenuated glomerular hypertrophy, glomerulosclerosis, mesangial expansion, interstitial fibrosis, inflammation and expression of TGF-β1 and connective tissue growth factor (CTGF), as well as the activation of Smad3 in kidneys of STZ-induced diabetic mice. In addition, NLRP3 KO inhibited expression of thioredoxin-interacting protein (TXNIP) and NADPH oxidase 4 (Nox4) and superoxide production in diabetic kidneys. The diabetes-induced increase in urinary level of 8-hydroxydeoxyguanosine (8-OHdG) was attenuated in NLRP3 KO mice. In vitro experiments, using HK-2 cells, revealed that high glucose (HG)-mediated expression of TXNIP and Nox4 was inhibited by transfection with NLRP3 shRNA plasmid or antioxidant tempol treatment. Silencing of the NLRP3 resulted in reduced generation of reactive oxygen species (ROS) in HK-2 cells under HG conditions. Furthermore, we also found exposure of IL-1β to HK-2 cells induced ROS generation and expression of TXNIP and Nox4. Taken together, inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis at least in part via suppression of oxidative stress in diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Chao Liu
- Hebei Key Laboratory of Animal Science, Shijiazhuang, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| |
Collapse
|
18
|
Miraee-Nedjad S, Sims PFG, Schwartz JM, Doig AJ. Effect of IAPP on the proteome of cultured Rin-5F cells. BMC BIOCHEMISTRY 2018; 19:9. [PMID: 30419808 PMCID: PMC6233276 DOI: 10.1186/s12858-018-0099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022]
Abstract
Background Islet amyloid polypeptide (IAPP) or amylin deposits can be found in the islets of type 2 diabetes patients. The peptide is suggested to be involved in the etiology of the disease through formation of amyloid deposits and destruction of β islet cells, though the underlying molecular events leading from IAPP deposition to β cell death are still largely unknown. Results We used OFFGEL™ proteomics to study how IAPP exposure affects the proteome of rat pancreatic insulinoma Rin-5F cells. The OFFGEL™ methodology is highly effective at generating quantitative data on hundreds of proteins affected by IAPP, with its accuracy confirmed by In Cell Western and Quantitative Real Time PCR results. Combining data on individual proteins identifies pathways and protein complexes affected by IAPP. IAPP disrupts protein synthesis and degradation, and induces oxidative stress. It causes decreases in protein transport and localization. IAPP disrupts the regulation of ubiquitin-dependent protein degradation and increases catabolic processes. IAPP causes decreases in protein transport and localization, and affects the cytoskeleton, DNA repair and oxidative stress. Conclusions Results are consistent with a model where IAPP aggregates overwhelm the ability of a cell to degrade proteins via the ubiquitin system. Ultimately this leads to apoptosis. IAPP aggregates may be also toxic to the cell by causing oxidative stress, leading to DNA damage or by decreasing protein transport. The reversal of any of these effects, perhaps by targeting proteins which alter in response to IAPP, may be beneficial for type II diabetes. Electronic supplementary material The online version of this article (10.1186/s12858-018-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Miraee-Nedjad
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Isozyme-specific comprehensive characterization of transglutaminase-crosslinked substrates in kidney fibrosis. Sci Rep 2018; 8:7306. [PMID: 29743665 PMCID: PMC5943318 DOI: 10.1038/s41598-018-25674-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is characterized by prolonged decline in renal function, excessive accumulation of ECM, and progressive tissue fibrosis. Transglutaminase (TG) is a crosslinking enzyme that catalyzes the formation of covalent bonds between glutamine and lysine residues, and is involved in the induction of renal fibrosis via the stabilization of ECM and the activation of TGF-β1. Despite the accumulating evidences indicating that TG2 is a key enzyme in fibrosis, genetic knockout of TG2 reduced by only 50% the elevated protein crosslinking and fibrous protein in renal fibrosis model, whereas treatment with TG inhibitor almost completely reduced these levels. Here, we also clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific crosslinked substrates for both TG1 and TG2 in fibrotic kidney. We found that TG1 activity was markedly enhanced in renal tubular epithelium and interstitial areas, whereas TG2 activity increased only in the extracellular space. In total, 47 and 67 possible candidates were identified as TG1 and TG2 substrates, respectively, only in fibrotic kidney. Among them, several possible substrates related to renal disease and fibrosis were identified. These findings provide novel insights into the mechanisms of renal fibrosis through the targeting of isozyme-specific TG substrates.
Collapse
|
20
|
Nutter CA, Kuyumcu-Martinez MN. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29280295 DOI: 10.1002/wrna.1459] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
Diabetes is a debilitating health care problem affecting 422 million people around the world. Diabetic patients suffer from multisystemic complications that can cause mortality and morbidity. Recent advancements in high-throughput next-generation RNA-sequencing and computational algorithms led to the discovery of aberrant posttranscriptional gene regulatory programs in diabetes. However, very little is known about how these regulatory programs are mis-regulated in diabetes. RNA-binding proteins (RBPs) are important regulators of posttranscriptional RNA networks, which are also dysregulated in diabetes. Human genetic studies provide new evidence that polymorphisms and mutations in RBPs are linked to diabetes. Therefore, we will discuss the emerging roles of RBPs in abnormal posttranscriptional gene expression in diabetes. Questions that will be addressed are: Which posttranscriptional mechanisms are disrupted in diabetes? Which RBPs are responsible for such changes under diabetic conditions? How are RBPs altered in diabetes? How does dysregulation of RBPs contribute to diabetes? Can we target RBPs using RNA-based methods to restore gene expression profiles in diabetic patients? Studying the evolving roles of RBPs in diabetes is critical not only for a comprehensive understanding of diabetes pathogenesis but also to design RNA-based therapeutic approaches for diabetic complications. WIREs RNA 2018, 9:e1459. doi: 10.1002/wrna.1459 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
21
|
Molecular insights into the specific recognition between the RNA binding domain qRRM2 of hnRNP F and G-tract RNA: A molecular dynamics study. Biochem Biophys Res Commun 2017; 494:95-100. [PMID: 29050934 DOI: 10.1016/j.bbrc.2017.10.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/21/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein F (hnRNP F) controls the expression of various genes through regulating the alternative splicing of pre-mRNAs in the nucleus. It uses three quasi-RNA recognition motifs (qRRMs) to recognize G-tract RNA which contains at least three consecutive guanines. The structures containing qRRMs of hnRNP F in complex with G-tract RNA have been determined by nuclear magnetic resonance (NMR) spectroscopy, shedding light on the recognition mechanism of qRRMs with G-tract RNA. However, knowledge of the recognition details is still lacking. To investigate how qRRMs specifically bind with G-tract RNA and how the mutations of any guanine to an adenine in the G-tract affect the binding, molecular dynamics simulations with binding free energy analysis were performed based on the NMR structure of qRRM2 in complex with G-tract RNA. Simulation results demonstrate that qRRM2 binds strongly with G-tract RNA, but any mutation of the G-tract leads to a drastic reduction of the binding free energy. Further comparisons of the energetic components reveal that van der Waals and non-polar interactions play essential roles in the binding between qRRM2 and G-tract RNA, but the interactions are weakened by the effect of RNA mutations. Structural and dynamical analyses indicate that when qRRM2 binds with G-tract RNA, both qRRM2 and G-tract maintain stabilized structures and dynamics; however, the stability is disrupted by the mutations of the G-tract. These results provide novel insights into the recognition mechanism of qRRM2 with G-tract RNA that are not elucidated by the NMR technique.
Collapse
|
22
|
Lo CS, Shi Y, Chenier I, Ghosh A, Wu CH, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice. Diabetes 2017; 66:1964-1978. [PMID: 28424160 PMCID: PMC5482081 DOI: 10.2337/db16-1588] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
We investigated the mechanism of heterogeneous nuclear ribonucleoprotein F (hnRNP F) renoprotective action in a type 2 diabetes (T2D) mouse model (db/db). Immortalized rat renal proximal tubular cells (IRPTCs) and kidneys from humans with T2D were also studied. The db/db mice developed hyperglycemia, oxidative stress, and nephropathy at age 20 weeks compared with their db/m littermates. These abnormalities, with the exception of hyperglycemia, were attenuated in db/dbhnRNP F-transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs. Sirtuin-1, Foxo3α, and catalase expression were significantly decreased in RPTCs from db/db mice and normalized in db/dbhnRNP F-Tg mice. In vitro, hnRNP F overexpression stimulated Sirtuin-1 and Foxo3α with downregulation of acetylated p53 expression and prevented downregulation of Sirtuin-1 and Foxo3α expression in IRPTCs by high glucose plus palmitate. Transfection of Sirtuin-1 small interfering RNA prevented hnRNP F stimulation of Foxo3α and downregulation of acetylated p53 expression. hnRNP F stimulated Sirtuin-1 transcription via hnRNP F-responsive element in the Sirtuin-1 promoter. Human T2D kidneys exhibited more RPTC apoptosis and lower expression of hnRNP F, SIRTUIN-1, and FOXO3α than nondiabetic kidneys. Our results demonstrate that hnRNP F protects kidneys against oxidative stress and nephropathy via stimulation of Sirtuin-1 expression and signaling in diabetes.
Collapse
MESH Headings
- Acetylation
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Fibrosis
- Forkhead Box Protein O3
- Gene Expression Regulation/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Kidney/pathology
- Kidney Tubules, Proximal/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Oxidative Stress
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Leptin/genetics
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Anindya Ghosh
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Chin-Han Wu
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Francois Cailhier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean Ethier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Janos G Filep
- Centre de recherche, Hôpital Maisonneuve-Rosemont and Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
23
|
Wang J, Zhuang S. Src family kinases in chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F721-F728. [PMID: 28615246 PMCID: PMC5625110 DOI: 10.1152/ajprenal.00141.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and .,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Ghosh A, Abdo S, Zhao S, Wu CH, Shi Y, Lo CS, Chenier I, Alquier T, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice. Endocrinology 2017; 158:903-919. [PMID: 28324005 PMCID: PMC5460794 DOI: 10.1210/en.2016-1576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022]
Abstract
Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2-related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress, and renal injury; inhibited renal Nrf2 and angiotensinogen (Agt) gene expression; and upregulated heterogeneous nuclear ribonucleoprotein F and K (hnRNP F and hnRNP K) expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signaling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F, or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was downregulated, whereas hnRNP F/K expression was upregulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Anindya Ghosh
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shaaban Abdo
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shuiling Zhao
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Chin-Han Wu
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Yixuan Shi
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Isabelle Chenier
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Thierry Alquier
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Janos G Filep
- Department of Pathology and Cell Biology, Université de Montréal and Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - John S D Chan
- Department of Medicine, Université de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
25
|
High glucose-induced fibronectin upregulation in cultured mesangial cells involves caveolin-1-dependent RhoA-GTP activation via Src kinase. Mol Med Rep 2016; 14:963-8. [PMID: 27220778 DOI: 10.3892/mmr.2016.5312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/21/2016] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that diabetes-mediated renal interstitial fibrosis through extracellular matrix (ECM) protein accumulation is an important event in the development of diabetic kidney disease (DKD), however, the underlying mechanism remains unclear. In the current study, it was observed that high levels of glucose (HG) time‑ and dose-dependently increased the production of the ECM protein, fibronectin (FN), in primary rat mesangial cells. Inhibition of the Rho pathway blocked HG‑induced FN upregulation. HG‑induced RhoA activation was prevented by inhibiting caveolae with filipin III or caveolin‑1 siRNA and rescued by exogenous caveolin‑1. HG also increased caveolin-1/Src association and activated Src kinase, whereas the inhibition of Src blocked RhoA activation and FN upregulation. Src-mediated phosphorylation of caveolin‑1 on Y14 has also been implicated in signaling responses. Overexpression of the nonphosphorylatable caveolin‑1 Y14A mutant prevented the HG‑induced RhoA activation and FN upregulation. In conclusion, HG‑induced FN upregulation requires caveolae and caveolin‑1 to interact with RhoA and Src kinases. Interference with Src/caveolin-1/RhoA signaling may provide novel mechanistic targets for the treatment of DKD.
Collapse
|
26
|
Lo CS, Shi Y, Chang SY, Abdo S, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes. Diabetologia 2015; 58:2443-54. [PMID: 26232095 PMCID: PMC4572079 DOI: 10.1007/s00125-015-3700-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. METHODS Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. RESULTS Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. CONCLUSIONS/INTERPRETATION These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shiao-Ying Chang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shaaban Abdo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Janos G Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
27
|
Abstract
Experimental models of hypertension and patients with inappropriately increased renin formation due to a stenotic kidney, arteriosclerotic narrowing of the renal arterioles or a rare juxtaglomerular cell tumor have shown a progressive augmentation of the intrarenal/intratubular renin-angiotensin system (RAS). The increased intrarenal angiotensin II (Ang II) elicits renal vasoconstriction and enhanced tubular sodium reabsorption in proximal and distal nephron segments. The enhanced intrarenal Ang II levels are due to both increased Ang II type 1 (AT1) receptor mediated Ang II uptake and AT1 receptor dependent stimulation of renal angiotensinogen (AGT) mRNA and augmented AGT production. The increased AGT formation and secretion into the proximal tubular lumen leads to local formation of Ang II, which stimulates proximal transporters such as the sodium/hydrogen exchanger. Enhanced AGT production also leads to spillover of AGT into the distal nephron segments as reflected by AGT in the urine, which provides an index of intrarenal RAS activity. There is also increased Ang II concentration in distal nephron with stimulation of distal sodium transport. Increased urinary excretion of AGT has been demonstrated in patients with hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases indicating an upregulation of intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weijian Shao
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane University Health Sciences Center, SL39, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
28
|
Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond) 2015; 128:649-63. [PMID: 25495544 DOI: 10.1042/cs20140329] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the relationship between Ang-(1-7) [angiotensin-(1-7)] action, sHTN (systolic hypertension), oxidative stress, kidney injury, ACE2 (angiotensin-converting enzyme-2) and MasR [Ang-(1-7) receptor] expression in Type 1 diabetic Akita mice. Ang-(1-7) was administered daily [500 μg/kg of BW (body weight) per day, subcutaneously] to male Akita mice from 14 weeks of age with or without co-administration of an antagonist of the MasR, A779 (10 mg/kg of BW per day). The animals were killed at 20 weeks of age. Age-matched WT (wild-type) mice served as controls. Ang-(1-7) administration prevented sHTN and attenuated kidney injury (reduced urinary albumin/creatinine ratio, glomerular hyperfiltration, renal hypertrophy and fibrosis, and tubular apoptosis) without affecting blood glucose levels in Akita mice. Ang-(1-7) also attenuated renal oxidative stress and the expression of oxidative stress-inducible proteins (NADPH oxidase 4, nuclear factor erythroid 2-related factor 2, haem oxygenase 1), pro-hypertensive proteins (angiotensinogen, angiotensin-converting enzyme, sodium/hydrogen exchanger 3) and profibrotic proteins (transforming growth factor-β1 and collagen IV), and increased the expression of anti-hypertensive proteins (ACE2 and MasR) in Akita mouse kidneys. These effects were reversed by A779. Our data suggest that Ang-(1-7) plays a protective role in sHTN and RPTC (renal proximal tubular cell) injury in diabetes, at least in part, through decreasing renal oxidative stress-mediated signalling and normalizing ACE2 and MasR expression.
Collapse
|
29
|
Marumo T, Yagi S, Kawarazaki W, Nishimoto M, Ayuzawa N, Watanabe A, Ueda K, Hirahashi J, Hishikawa K, Sakurai H, Shiota K, Fujita T. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol 2015; 26:2388-97. [PMID: 25653098 DOI: 10.1681/asn.2014070665] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/26/2014] [Indexed: 01/07/2023] Open
Abstract
Epigenetic mechanisms may underlie the progression of diabetic kidney disease. Because the kidney is a heterogeneous organ with different cell types, we investigated DNA methylation status of the kidney in a cell type-specific manner. We first identified genes specifically demethylated in the normal proximal tubules obtained from control db/m mice, and next delineated the candidate disease-modifying genes bearing aberrant DNA methylation induced by diabetes using db/db mice. Genes involved in glucose metabolism, including Sglt2, Pck1, and G6pc, were selectively hypomethylated in the proximal tubules in control mice. Hnf4a, a transcription factor regulating transporters for reabsorption, was also selectively demethylated. In diabetic mice, aberrant hypomethylation of Agt, Abcc4, Cyp4a10, Glut5, and Met and hypermethylation of Kif20b, Cldn18, and Slco1a1 were observed. Time-dependent demethylation of Agt, a marker of diabetic kidney disease, was accompanied by histone modification changes. Furthermore, inhibition of DNA methyltransferase or histone deacetylase increased Agt mRNA in cultured human proximal tubular cells. Aberrant DNA methylation and concomitant changes in histone modifications and mRNA expression in the diabetic kidney were resistant to antidiabetic treatment with pioglitazone. These results suggest that an epigenetic switch involving aberrant DNA methylation causes persistent mRNA expression of select genes that may lead to phenotype changes of the proximal tubules in diabetic kidney disease.
Collapse
Affiliation(s)
- Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, and
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology
| | - Atsushi Watanabe
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology
| | - Junichi Hirahashi
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo, Japan; and
| | - Keiichi Hishikawa
- Department of Advanced Nephrology and Regenerative Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, and
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, CREST, Japan Science and Technology Agency, Tokyo, Japan;
| |
Collapse
|
30
|
Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One 2014; 9:e110429. [PMID: 25330384 PMCID: PMC4199717 DOI: 10.1371/journal.pone.0110429] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/14/2014] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.
Collapse
|
31
|
Emerging roles for hnRNPs in post-transcriptional regulation: what can we learn from flies? Chromosoma 2014; 123:515-27. [PMID: 24913828 DOI: 10.1007/s00412-014-0470-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a highly conserved family of RNA-binding proteins able to associate with nascent RNAs in order to support their localization, maturation and translation. Research over this last decade has remarked the importance of gene regulatory processes at post-transcriptional level, highlighting the emerging roles of hnRNPs in several essential biological events. Indeed, hnRNPs are key factors in regulating gene expression, thus, having a number of roles in many biological pathways. Moreover, failure of the activities catalysed by hnRNPs affects various biological processes and may underlie several human diseases including cancer, diabetes and neurodegenerative syndromes. In this review, we summarize some of hnRNPs' roles in the model organism Drosophila melanogaster, particularly focusing on their participation in all aspects of post-transcriptional regulation as well as their conserved role and involvement in the aetiology of human pathologies.
Collapse
|
32
|
Abdo S, Lo CS, Chenier I, Shamsuyarova A, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous nuclear ribonucleoproteins F and K mediate insulin inhibition of renal angiotensinogen gene expression and prevention of hypertension and kidney injury in diabetic mice. Diabetologia 2013; 56:1649-60. [PMID: 23609310 DOI: 10.1007/s00125-013-2910-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/12/2013] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether heterogeneous nuclear ribonucleoproteins F and K (hnRNP F, hnRNP K) mediate insulin inhibition of renal Agt expression and prevention of hypertension and kidney injury in an Akita mouse model of type 1 diabetes. METHODS Adult male Akita mice (12 weeks old) were treated with insulin implants and killed at week 16. Untreated non-Akita littermates served as controls. The effects of insulin on blood glucose, systolic BP (SBP), renal proximal tubular cell (RPTC) gene expression and interstitial fibrosis were studied. We also examined immortalised rat RPTCs stably transfected with control plasmid or with plasmid containing rat Agt promoter in vitro. RESULTS Insulin treatment normalised blood glucose levels and SBP, inhibited renal AGT expression but enhanced hnRNP F, hnRNP K and angiotensin-converting enzyme-2 expression, attenuated renal hypertrophy and glomerular hyperfiltration and decreased urinary albumin/creatinine ratio, as well as AGT and angiotensin II levels, in Akita mice. In vitro, insulin inhibited Agt but stimulated Hnrnpf and Hnrnpk expression in high-glucose media via p44/42 mitogen-activated protein kinase signalling in RPTCs. Transfection with Hnrnpf or Hnrnpk small interfering RNAs prevented insulin inhibition of Agt expression in RPTCs. CONCLUSIONS/INTERPRETATION These data indicate that insulin prevents hypertension and attenuates kidney injury, at least in part, through suppressing renal Agt transcription via upregulation of hnRNP F and hnRNP K expression in diabetic Akita mice. HnRNP F and hnRNP K may be potential targets in the treatment of hypertension and kidney injury in diabetes.
Collapse
Affiliation(s)
- S Abdo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu Hospital, Université de Montréal, Pavillon Masson, 3850 Saint Urbain Street, Montreal, Canada, QC, H2W 1T8
| | | | | | | | | | | | | | | |
Collapse
|