1
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Bellanti F, Lo Buglio A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Aich P, Singh SP, Serviddio G, Vendemiale G. Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease. World J Gastroenterol 2022; 28:3243-3257. [PMID: 36051336 PMCID: PMC9331534 DOI: 10.3748/wjg.v28.i26.3243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sodium glucose cotransporter-2 inhibitors (SGLT2-I) are the most recently approved drugs for type 2 diabetes (T2D). Recent clinical trials of these compounds reported beneficial cardiovascular (CV) and renal outcomes. A major cause of vascular dysfunction and CV disease in diabetes is hyperglycemia associated with inflammation and oxidative stress. Pre-clinical studies demonstrated that SGLT2-I reduce glucotoxicity and promote anti-inflammatory effects by lowering oxidative stress.
AIM To investigate the effects of SGLT2-I on markers of oxidative stress, inflammation, liver steatosis, and fibrosis in patients of T2D with non-alcoholic fatty liver disease (NAFLD).
METHODS We referred fifty-two consecutive outpatients treated with metformin monotherapy and exhibiting poor glycemic control to our centre. We introduced the outpatients to an SGLT2-I (dapagliflozin, empagliflozin, or canagliflozin; n = 26) or a different hypoglycemic drug [other glucose-lowering drugs (OTHER), n = 26]. We evaluated circulating interleukins and serum hydroxynonenal (HNE)- or malondialdehyde (MDA)-protein adducts, fatty liver index (FLI), NAFLD fibrosis score, aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio, AST-to-platelet-ratio index (APRI), and fibrosis-4 on the day before (T0) and following treatment for six months (T1). We also performed transient elastography at T0 and T1.
RESULTS Add-on therapy resulted in improved glycemic control and reduced fasting blood glucose in both groups. Of note, following treatment for six months, a reduction of FLI and APRI, as well as of the FibroScan result, was reported in patients treated with SGLT2-I, but not in the OTHER group; furthermore, in the SGLT2-I group, we reported lower circulating levels of interleukin (IL)-1β, IL-6, tumor necrosis factor, vascular endothelial growth factor, and monocyte chemoattractant protein-1, and higher levels of IL-4 and IL-10. We did not observe any modification in circulating interleukins in the OTHER group. Finally, serum HNE- and MDA-protein adducts decreased significantly in SGLT2-I rather than OTHER patients and correlated with liver steatosis and fibrosis scores.
CONCLUSION The present data indicate that treatment with SGLT2-I in patients with T2D and NAFLD is associated with improvement of liver steatosis and fibrosis markers and circulating pro-inflammatory and redox status, more than optimizing glycemic control.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research, Khurdha 752050, India
| | - Shivaram P Singh
- Department of Gastroenterology, SCB Medical College, Cuttack 753007, India
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
3
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
4
|
Wang TZ, Zuo GW, Yao L, Yuan CL, Li HF, Lai Y, Chen ZW, Zhang J, Jin YQ, Yamahara J, Wang JW. Ursolic acid ameliorates adipose tissue insulin resistance in aged rats via activating the Akt-glucose transporter 4 signaling pathway and inhibiting inflammation. Exp Ther Med 2021; 22:1466. [PMID: 34737806 DOI: 10.3892/etm.2021.10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/07/2021] [Indexed: 11/06/2022] Open
Abstract
Ageing often results in insulin resistance (IR) and chronic inflammation, and adipose is one of the tissues in which inflammation and IR occur earliest during this process. The present study investigated the effect and underlying mechanisms of ursolic acid (UA) on adipose IR and inflammation in ageing rats. Specific pathogen-free male Sprague-Dawley rats were randomly divided into 4 groups: i) Young normal (young); ii) untreated ageing (aged); and groups supplemented with UA either iii) low-UA 10 mg/kg (UA-L) or iv) high-50 mg/kg (UA-H). Animals in the UA-treated groups received 10 or 50 mg/kg UA (suspended in 5% Gum Arabic solution). The rats in the corresponding aged group and young groups received vehicle (5% Gum Arabic) alone. All rats were intragastrically treated once daily by oral gavage for 7 weeks. The day before the experiment terminated, overnight fasting blood (~700 µl) was collected and plasma was prepared to measure biochemical indicators; western blotting was performed to analyze the expression of insulin signaling proteins [(insulin receptor substrate 1 (IRS-1), phosphorylated (p)-IRS-1, PI3K, glucose transporter 4 (GLUT4), Akt and p-Akt)] and inflammatory factors (NF-κB, IL-6 and IL-1β) in the epididymis white adipose tissue (eWAT). The results revealed that treatment with UA-H decreased eWAT weight, the ratio of eWAT weight/body weight, fasted insulin and triglyceride levels, the homeostasis model assessment of insulin resistance and adipose tissue insulin resistance index in ageing rats, indicating the amelioration of systemic and adipose tissue IR, compared with the aged group. Mechanistically, UA-H administration upregulated p-protein kinase B, the ratio of p-Akt to protein kinase B and total and cellular membrane GLUT4 protein levels in eWAT of ageing rats. Conversely, UA inhibited the increase in NF-κB expression and proinflammatory cytokines IL-6 and IL-1β. However, these alterations were not observed in the rats of the aged group. Taken together, the findings of the present study indicated that UA may ameliorate adipose IR, which is associated with activation of the Akt-GLUT4 signaling pathway and inhibition of inflammation in ageing rats. These data provide a basis for the development of effective and safe drugs or functional substances, such as UA, for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tong-Zhuang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guo-Wei Zuo
- Laboratory of Medical Tests, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chun-Lin Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai-Fei Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Lai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhi-Wei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Zhang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Qian Jin
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | | | - Jian-Wei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
β-blockade prevents coronary macro- and microvascular dysfunction induced by a high salt diet and insulin resistance in the Goto-Kakizaki rat. Clin Sci (Lond) 2021; 135:327-346. [PMID: 33480422 DOI: 10.1042/cs20201441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of β-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.
Collapse
|
6
|
Marmentini C, Soares GM, Bronczek GA, Piovan S, Mareze-Costa CE, Carneiro EM, Boschero AC, Kurauti MA. Aging Reduces Insulin Clearance in Mice. Front Endocrinol (Lausanne) 2021; 12:679492. [PMID: 34054736 PMCID: PMC8150109 DOI: 10.3389/fendo.2021.679492] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela M. Soares
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela A. Bronczek
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Silvano Piovan
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| | - Cecília E. Mareze-Costa
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| | - Everardo M. Carneiro
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C. Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A. Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
- *Correspondence: Mirian A. Kurauti, ;
| |
Collapse
|
7
|
Li D, Zhang T, Lu J, Peng C, Lin L. Natural constituents from food sources as therapeutic agents for obesity and metabolic diseases targeting adipose tissue inflammation. Crit Rev Food Sci Nutr 2020; 61:1-19. [PMID: 32462898 DOI: 10.1080/10408398.2020.1768044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue, an endocrine and paracrine organ, plays critical roles in the regulation of whole-body metabolic homeostasis. Obesity is accompanied with a chronic low-grade inflammation status in adipose tissue, which disrupts its endocrine function and results in metabolic derangements, such as type 2 diabetes. Dietary bioactive components, such as flavonoids, polyphenols and unsaturated fatty acids from fruits and vegetables, have been widely revealed to alleviate both systemic and adipose tissue inflammation, and improve metabolic disorders. Remarkably, some dietary bioactive components mitigate the inflammatory response in adipocytes, macrophages, and other immune cells, and modulate the crosstalk between adipocytes and macrophages or other immune cells, in adipose tissue. Epidemiological and preclinical studies related to these substances have indicated beneficial effects on adipose tissue inflammation. The main purpose of this review is to provide a comprehensive and up-to-date state of knowledge on dietary components targeting adipose tissue inflammation and their underlying mechanisms. These natural products have great potential to be developed as functional food or lead compounds for treating and/or preventing metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
8
|
Li S, Shi B, Huang K, Wang Y. Different intracellular signalling sensitivity and cell behaviour of porcine insulin with aging. Peptides 2020; 127:170278. [PMID: 32109654 DOI: 10.1016/j.peptides.2020.170278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 01/30/2023]
Abstract
Insulin has many important biological functions. Insulin interacts with the insulin receptor (IR) to play its physiological role and execute its functions. Here, we isolated porcine hepatocytes from young and aged pigs, which endogenously express the IR, as a model to study the intracellular signalling properties and cellular behaviour of insulin with aging. Firstly, we analysed the intracellular signal transduction that is triggered by insulin in porcine hepatocytes that were isolated from young and aged pigs and found that insulin can strongly activate insulin receptor subunit (IRS), protein kinase B (AKT), and GSK in a time- and dose-dependent manner in hepatocytes from young pigs. On the contrary, the signalling response to insulin in hepatocytes from aged pigs was significantly reduced compared to that of the young pig. Secondly, the different subcellular locations of insulin/insulin receptor (IR) may result in different biological activities, although nuclear-localized insulin/IR still could exhibit important functions and roles. We found that insulin can translocate into cell nuclei in the hepatocytes of the young pigs; however, insulin/insulin receptor fails to transports into the cell nucleus in hepatocytes from aged pigs, although insulin/insulin receptor could internalize into cell cytoplasm. In summary, in the current study, we explored and compared for the first time insulin's behaviour and signalling properties in the cells of young pig hepatocytes and aged pig hepatocytes. Furthermore, we found that the insulin signalling response in hepatocytes was significantly reduced with age; more importantly, we found that the cell behaviour of insulin was changed significantly in the hepatocytes from aged pigs compared to young pigs, and it is noteworthy that insulin/IR cannot translocate into the cell nuclei in the hepatocytes from the aged pig. This may be a potential new reason contributing to insulin resistance with aging, suggesting that we need to study the reason for insulin resistance from a new point of view.
Collapse
Affiliation(s)
- Shichun Li
- The Third Operating Room Of The First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China
| | - Bo Shi
- Experimental Center of Biochemistry and Molecular Biology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Ying Wang
- The First Operating Room of the First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
9
|
Badedi M, Darraj H, Hummadi A, Najmi A, Solan Y, Zakry I, Khawaji A, Zaylai S, Rajeh N, Alhafaf H, Hakami W, Bakkari A, Kriry M, Dagreri A, Haddad E. Khat Chewing and Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:307-312. [PMID: 32104027 PMCID: PMC7024885 DOI: 10.2147/dmso.s240680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Knowledge about the effects of khat chewing on type 2 diabetes mellitus (T2DM) development and glycemic control is very sparse. Emerging data suggest that khat chewing may increase the risk of T2DM occurrence. Therefore, this study aimed to measure the prevalence of khat chewing in Saudi people with T2DM in Jazan, Saudi Arabia and to determine the association of khat chewing with T2DM development and glycemic control in T2DM. METHODS This is an analytical, cross-sectional study that included 472 Saudi participants selected randomly from primary healthcare centers in Jazan, Saudi Arabia. A chi-square test and logistic regression were performed in the statistical analysis. RESULTS The prevalence of khat chewing in Saudi patients with T2DM in Jazan was 29.3%. After adjusting for covariates, khat chewing was significantly associated with T2DM (odds ratio 3.5), indicating that khat chewers had a more than three times higher risk of developing T2DM than those who do not chew khat. However, there was no association between khat chewing and glycemic control in T2DM. CONCLUSION Khat chewing was highly prevalent in Saudi people with T2DM in Jazan, Saudi Arabia. There was an association between khat chewing and the development of T2DM. Establishing the causal association of khat chewing with T2DM development and glycemic control and clarifying the biological role of khat in T2DM are important aims for future studies.
Collapse
Affiliation(s)
- Mohammed Badedi
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Hussain Darraj
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Abdulrahman Hummadi
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Abdullah Najmi
- Jazan Health Affairs, Ministry of Health, Jazan, Saudi Arabia
| | - Yahiya Solan
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Ibrahim Zakry
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Abdullah Khawaji
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Sayedah Zaylai
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Norah Rajeh
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Hassan Alhafaf
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Wali Hakami
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Awaji Bakkari
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Maryam Kriry
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Abdulraheem Dagreri
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| | - Ebrahim Haddad
- Jazan Diabetes and Endocrine Center, Ministry of Health, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
11
|
Li D, Liu Q, Lu X, Li Z, Wang C, Leung CH, Wang Y, Peng C, Lin L. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging (Albany NY) 2019; 11:11084-11110. [PMID: 31806859 PMCID: PMC6932911 DOI: 10.18632/aging.102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Low-grade chronic adipose tissue inflammation contributes to the onset and development of aging-related insulin resistance and type 2 diabetes. In the current study, α-mangostin, a xanthone isolated from mangosteen (Garcinia mangostana), was identified to ameliorate lipopolysaccharides-induced acute adipose tissue inflammation in mice, by reducing the expression of pro-inflammatory cytokines and chemokines. In a cohort of young (3 months) and old (18-20 months) mice, α-mangostin mitigated aging-associated adiposity, hyperlipidemia, and insulin resistance. Further study showed that α-mangostin alleviated aging-related adipose tissue inflammation by reducing macrophage content and shifting pro-inflammatory macrophage polarization. Moreover, α-mangostin protected the old mice against liver injury through suppressing the secretion of microRNA-155-5p from macrophages. The above results demonstrated that α-mangostin represents a new scaffold to alleviate adipose tissue inflammation, which might be a novel candidate to treat aging-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qianyu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Yu D, Tomasiewicz JL, Yang SE, Miller BR, Wakai MH, Sherman DS, Cummings NE, Baar EL, Brinkman JA, Syed FA, Lamming DW. Calorie-Restriction-Induced Insulin Sensitivity Is Mediated by Adipose mTORC2 and Not Required for Lifespan Extension. Cell Rep 2019; 29:236-248.e3. [PMID: 31577953 PMCID: PMC6820997 DOI: 10.1016/j.celrep.2019.08.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023] Open
Abstract
Calorie restriction (CR) extends the healthspan and lifespan of diverse species. In mammals, a broadly conserved metabolic effect of CR is improved insulin sensitivity, which may mediate the beneficial effects of a CR diet. This model has been challenged by the identification of interventions that extend lifespan and healthspan yet promote insulin resistance. These include rapamycin, which extends mouse lifespan yet induces insulin resistance by disrupting mTORC2 (mechanistic target of rapamycin complex 2). Here, we induce insulin resistance by genetically disrupting adipose mTORC2 via tissue-specific deletion of the mTORC2 component Rictor (AQ-RKO). Loss of adipose mTORC2 blunts the metabolic adaptation to CR and prevents whole-body sensitization to insulin. Despite this, AQ-RKO mice subject to CR experience the same increase in fitness and lifespan on a CR diet as wild-type mice. We conclude that the CR-induced improvement in insulin sensitivity is dispensable for the effects of CR on fitness and longevity.
Collapse
Affiliation(s)
- Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Shany E Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Blake R Miller
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew H Wakai
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dawn S Sherman
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole E Cummings
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma L Baar
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacqueline A Brinkman
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Faizan A Syed
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
13
|
Baranowska-Bik A, Bik W. Vascular Dysfunction and Insulin Resistance in Aging. Curr Vasc Pharmacol 2019; 17:465-475. [DOI: 10.2174/1570161117666181129113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
:
Insulin was discovered in 1922 by Banting and Best. Since that time, extensive research on
the mechanisms of insulin activity and action has continued. Currently, it is known that the role of insulin
is much greater than simply regulating carbohydrate metabolism. Insulin in physiological concentration
is also necessary to maintain normal vascular function.
:
Insulin resistance is defined as a pathological condition characterized by reduced sensitivity of skeletal
muscles, liver, and adipose tissue, to insulin and its downstream metabolic effects under normal serum
glucose concentrations. There are also selective forms of insulin resistance with unique features, including
vascular insulin resistance. Insulin resistance, both classical and vascular, contributes to vascular
impairment resulting in increased risk of cardiovascular disease. Furthermore, in the elderly population,
additional factors including redistribution of fat concentrations, low-grade inflammation, and decreased
self-repair capacity [or cell senescence] amplify the vascular abnormalities related to insulin resistance.
Collapse
Affiliation(s)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
14
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
15
|
Liu L, Yao L, Wang S, Chen Z, Han T, Ma P, Jiang L, Yuan C, Li J, Ke D, Li C, Yamahara J, Li Y, Wang J. 6‐Gingerol Improves Ectopic Lipid Accumulation, Mitochondrial Dysfunction, and Insulin Resistance in Skeletal Muscle of Ageing Rats: Dual Stimulation of the AMPK/PGC‐1α Signaling Pathway via Plasma Adiponectin and Muscular AdipoR1. Mol Nutr Food Res 2019; 63:e1800649. [DOI: 10.1002/mnfr.201800649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/06/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
- Faculty of Basic Medical SciencesChongqing Medical University Chongqing China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
- Faculty of Basic Medical SciencesChongqing Medical University Chongqing China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
| | - Tingli Han
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Peng Ma
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
- Faculty of Basic Medical SciencesChongqing Medical University Chongqing China
| | - Lirong Jiang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
- Faculty of Basic Medical SciencesChongqing Medical University Chongqing China
| | - Chunlin Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
| | - Jinxiu Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
| | - Dazhi Ke
- The Second Affiliated HospitalChongqing Medical University Chongqing China
| | - Chunli Li
- Institute of Life SciencesChongqing Medical University Chongqing China
| | | | - Yuhao Li
- Endocrinology and Metabolism GroupSydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine Sydney Australia
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic DiseasesCollege of Traditional Chinese MedicineChongqing Medical University Chongqing China
| |
Collapse
|
16
|
Zhang S, Wang J, Zhao H, Luo Y. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ 2018; 4:174-184. [PMID: 30693344 PMCID: PMC6329217 DOI: 10.4103/bc.bc_13_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
As the worldwide population ages, the morbidity of neurodegenerative, cardiovascular, cerebrovascular, and endocrine diseases, such as diabetes and osteoporosis, continues to increase. The etiology of geriatric diseases is complex, involving the interaction of genes and the environment, which makes effective treatment challenging. Traditional Chinese medicine, unlike Western medicine, uses diverse bioactive ingredients to target multiple signaling pathways in geriatric diseases. Radix puerariae is one of the most widely used ancient traditional Chinese medicines and is also consumed as food. This review summarizes the evidence from in vivo and in vitro studies of the pharmacological effects of the main active components of the tuber of Radix puerariae on geriatric diseases.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haiping Zhao
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Yumin Luo
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
17
|
Chen C, Tu YQ, Yang P, Yu QL, Zhang S, Xiong F, Wang CY. Assessing the impact of cigarette smoking on β-cell function and risk for type 2 diabetes in a non-diabetic Chinese cohort. Am J Transl Res 2018; 10:2164-2174. [PMID: 30093953 PMCID: PMC6079127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Although the impact of cigarette smoking on glucose homeostasis has been extensively studied, the results, however, are still not conclusive. We, therefore, conducted a cross-sectional analysis of a non-diabetic Chinese cohort collected by the China Health and Nutrition Survey (CHNS 2009) to comprehensively assess the relationship between smoking, Hemoglobin A1c, β-cell function and insulin sensitivity. The cohort included a total of 5965 individuals (47.4% male) with a mean age of 49.23 years, and 4140 of which were non-smokers (69.4%), 834 were current light smokers (13.9%) and 991 were current heavy smokers (16.6%). Current smokers were predominantly males (93.6%) with a lower BMI (22.95 versus 23.42 kg/m2). HbA1c levels were dose-dependently increased with smoking exposure (5.39%, 5.42% and 5.45%, respectively, P = 0.007). Non-smokers were served as a referent, the adjusted ORs for type 2 diabetes were 1.12 (P = 0.256, light smokers) and 1.26 (P = 0.014, heavy smokers), indicating a positive relationship between cigarette smoking and incidence of diabetes. HOMA%B was decreased in a dose-responsive manner with cigarette smoking (4.80, 4.79 and 4.76, P = 0.036), suggesting an adverse effect of smoking on β-cell function. Collectively, cigarette smoking is dose-dependently associated with decreased HOMA%B, and current smokers were clearly in a higher risk for diabetes as manifested by the elevated HbA1c.
Collapse
Affiliation(s)
- Cai Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ya-Qin Tu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology1277 Jiefang Ave, Wuhan 430022, China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
| | - Qi-Lin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
18
|
Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol 2017; 13:370-385. [PMID: 28667906 PMCID: PMC5491464 DOI: 10.1016/j.redox.2017.06.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male ZDF rats were used as a model of T2DM (35 diabetic ZDF‐Leprfa/fa and 16 ZDF-Lepr+/+ controls). Empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 6 weeks. Treatment with empagliflozin restored glycemic control. Empagliflozin improved endothelial function (thoracic aorta) and reduced oxidative stress in the aorta and in blood of diabetic rats. Inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by SGLT2i treatment (ChIP). Linear regression analysis revealed a significant inverse correlation of endothelial function with HbA1c, whereas leukocyte-dependent oxidative burst and C-reactive protein (CRP) were positively correlated with HbA1c. Viability of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i. Empagliflozin reduces glucotoxicity and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits anti-inflammatory effects in ZDF rats, despite persisting hyperlipidemia and hyperinsulinemia. Our preclinical observations provide insights into the mechanisms by which empagliflozin reduces cardiovascular mortality in humans (EMPA-REG trial). Hyperglycemia induces vascular complications and cardiovascular disease. Empagliflozin reduces hyperglycemia and cardiovascular mortality (EMPA-REG trial). Here, empagliflozin normalized vascular function and oxidative stress in ZDF rats. Here, empagliflozin reduced AGE/RAGE signaling, inflammation and oxidative stress. Here, empagliflozin conferred glycemic control, epigenetic and pleiotropic effects.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alina Hanf
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Welschof
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maximilian Kopp
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ning Xia
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eberhard Schulz
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR 5309, Grenoble-Alps University and Institute for Biology and Pathology, CHU, Grenoble, France
| | - Leszek Wojnowski
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge P Bottari
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
19
|
Xiong Y, Yepuri G, Necetin S, Montani JP, Ming XF, Yang Z. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging. Diabetes 2017; 66:1636-1649. [PMID: 28356309 DOI: 10.2337/db16-1190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/21/2017] [Indexed: 11/13/2022]
Abstract
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L-arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II-/-) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II-/-) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice.
Collapse
Affiliation(s)
- Yuyan Xiong
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Gautham Yepuri
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Sevil Necetin
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Medicine, Division of Physiology, University of Fribourg, Fribourg, Switzerland
- Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zurich, Switzerland
| |
Collapse
|
20
|
Quines CB, Chagas PM, Hartmann D, Carvalho NR, Soares FA, Nogueira CW. (p
-ClPhSe)2
Reduces Hepatotoxicity Induced by Monosodium Glutamate by Improving Mitochondrial Function in Rats. J Cell Biochem 2017; 118:2877-2886. [DOI: 10.1002/jcb.25938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Caroline B. Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
| | - Pietro M. Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
| | - Diane Hartmann
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Nélson R. Carvalho
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Félix A. Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Cristina W. Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| |
Collapse
|
21
|
Abstract
BACKGROUND Data relating to cancer treatment in the older patient population are limited because older individuals have been under-represented in clinical trials. The goal of this review was to establish which factors hinder the participation of older individuals to clinical trials and to examine possible solutions. METHODS The literature relating to cancer treatment in the older patient population was reviewed. RESULTS The benefit of systemic cancer treatment may decrease with age, and risks may be increased due to reduced life expectancy and reduced tolerance of stress in the older population. Therefore, a multipronged approach is recommended for clinical studies in these patients, including phase 2 studies limited to persons 70 years of age and older, stratification by life expectancy and predicted treatment tolerance in phase 3 studies, and registration studies to establish predictive variables for treatment-related toxicity in older individuals. CONCLUSIONS A combination of prospective and registration studies may supply adequate information to study cancer treatments in the older patient population.
Collapse
Affiliation(s)
- Lodovico Balducci
- Senior Adult Oncology Program, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
22
|
Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S, Eyerich K. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 2015; 6:244ra90. [PMID: 25009230 DOI: 10.1126/scitranslmed.3008946] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous attempts to gain insight into the pathogenesis of psoriasis and eczema by comparing their molecular signatures were hampered by the high interindividual variability of those complex diseases. In patients affected by both psoriasis and nonatopic or atopic eczema simultaneously (n = 24), an intraindividual comparison of the molecular signatures of psoriasis and eczema identified genes and signaling pathways regulated in common and exclusive for each disease across all patients. Psoriasis-specific genes were important regulators of glucose and lipid metabolism, epidermal differentiation, as well as immune mediators of T helper 17 (TH17) responses, interleukin-10 (IL-10) family cytokines, and IL-36. Genes in eczema related to epidermal barrier, reduced innate immunity, increased IL-6, and a TH2 signature. Within eczema subtypes, a mutually exclusive regulation of epidermal differentiation genes was observed. Furthermore, only contact eczema was driven by inflammasome activation, apoptosis, and cellular adhesion. On the basis of this comprehensive picture of the pathogenesis of psoriasis and eczema, a disease classifier consisting of NOS2 and CCL27 was created. In an independent cohort of eczema (n = 28) and psoriasis patients (n = 25), respectively, this classifier diagnosed all patients correctly and also identified initially misdiagnosed or clinically undifferentiated patients.
Collapse
Affiliation(s)
- Maria Quaranta
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Natalie Garzorz
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Martina Mattii
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Venu Pullabhatla
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London WC2R 2LS, UK
| | - Davide Pennino
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Christian Andres
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | | | - Andrea Cavani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany. Department of Mathematics, Technische Universität Munich, 85748 Garching, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany.
| |
Collapse
|
23
|
Nasta P, Maida I, Cattelan AM, Pontali E, Angeli E, Giralda M, Verucchi G, Caputo A, Iannacone C, Puoti M, Carosi G. Effect of aging, glucose level, and HIV viral load on response to treatment with pegylated interferon plus ribavirin in HIV/HCV co-infected women. J Womens Health (Larchmt) 2015; 24:159-64. [PMID: 25682817 DOI: 10.1089/jwh.2014.4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This was a post-hoc analysis of the Optimized Pegylated interferons Efficacy and anti-Retroviral Approach (OPERA) study, originally designed to document routine clinical and treatment data in HIV/HCV coinfected patients treated with pegylated interferon/ribavirin (PEG-IFN/RBV). The aim of this study was to define the impact of several variables, such as age, glucose metabolism, and HIV viral load, on PEG-IFN/RBV treatment outcomes, in HIV/HCV coinfected women. METHODS Female subjects from the OPERA database were retrospectively evaluated and factors associated with sustained virological response (SVR) were assessed and compared to the male population by logistic regression analysis. At baseline, clinical and demographic data were collected. Patients were then administered with PEG-IFN/RBV therapy for 48 weeks. After a 24-week follow-up period, SVR was evaluated. RESULTS A total of 1523 patients were enrolled in 98 centers across Italy, 1284 of whom were IFN therapy naïve and were included in the post-hoc analysis. In the female group, factors associated with SVR were the presence of HCV genotype 2,3 (adjusted odds ratio [AOR]=6.87, p<0.0001), age ≤45 years (AOR=2.61, p=0.014), ≥80% exposure to PEG-IFN (AOR=3.85, p=0.019) and RBV (AOR=3.94, p=0.015) therapy. Also, increased glucose plasma level negatively correlated with SVR (AOR=0.98, p=0.066). In the male population, undetectable HIV-RNA (AOR=1.47, p=0.033) but not glucose level (AOR=1.0, p=0.95) predicted SVR. CONCLUSIONS Findings from the present study demonstrate that several factors may be predictive of SVR when pegylated interferon plus ribavirin is used (i.e., age, gender, HIV viral load and HCV genotype) that need to be carefully considered prior to therapeutic intervention, since they may hinder successful therapy. Use of PEG-IFN/RBV with novel direct antiviral agents will likely be still maintained until less expensive and effective interferon-free strategies become available.
Collapse
Affiliation(s)
- Paola Nasta
- 1 University Division of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital , Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, Zinßius E, Agdauletova S, Gottschlich A, Steven S, Schulz E, Bottari SP, Mayoux E, Münzel T, Daiber A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 2014; 9:e112394. [PMID: 25402275 PMCID: PMC4234367 DOI: 10.1371/journal.pone.0112394] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE). Results Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy. Conclusions Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.
Collapse
Affiliation(s)
- Matthias Oelze
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Welschof
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Jansen
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Hausding
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paul Stamm
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Mader
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Elena Zinßius
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Saule Agdauletova
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Gottschlich
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eberhard Schulz
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge P. Bottari
- Laboratory of Fundamental and Applied, Bioenergetics, INSERM U1055, Grenoble-Alpes Université et Pôle de Biologie, CHU, Grenoble, France
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Thomas Münzel
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
25
|
Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci 2014; 15:11473-94. [PMID: 24979131 PMCID: PMC4139794 DOI: 10.3390/ijms150711473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023] Open
Abstract
Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.
Collapse
|
26
|
Effect of Aging and Exercise Training on Plasma Insulin Concentration. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2013. [DOI: 10.2478/rjdnmd-2013-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Background and Aims. Previous studies have shown that aging is an important risk factor for insulin resistance and type 2 diabetes. The beneficial effects of exercise on glucose metabolism are well known. Our goal was to examine whether physical activity improves insulin levels in older individuals. Material and Methods. Plasma glucose and insulin were measured in fasting state and 2 h after a 75-g oral glucose tolerance test in young lean, sedentary, non-diabetic subjects (n=34, age 25±2 years, body mass index- BMI 24.4±0.7 kg/m2) and older, lean, sedentary, non-diabetic subjects (n=36, age 75±3 years, BMI 24.8±0.4 kg/m2), before and after 8 weeks of aerobic exercise. Training consisted of exercise (such as cycling or fast walking) 5 days/week for approximately 30 min/day. Results. Fasting plasma insulin and 2-h serum insulin levels at baseline were significantly higher in older than young subjects (11.6 μU/ml vs 10.0 μU/ml, p=0.0001, 46.3 μU/ml vs 34.0 μU/ml, p=0.0001). Fasting and 2h plasma insulin levels were reduced after 8 weeks of aerobic exercise in older subjects, with no change in body weight. Conclusion. In our study the hyperinsulinemia associated with aging can be blunted significantly by aerobic exercise in older individuals independent of any changes in body composition
Collapse
|