1
|
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit M, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O’Neal WK, Ling SC, Knowles MR. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024; 80:1012-1025. [PMID: 38536042 PMCID: PMC11427593 DOI: 10.1097/hep.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Collapse
Affiliation(s)
- Jaclyn R. Stonebraker
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - M.A. Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - William W. Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Ronald L. Gibson
- Center for Respiratory Biology & Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, 98105, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | - Fred A. Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Scott M. Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Simon C. Ling
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
2
|
Ling H, Raraigh KS, Pugh EW, Aksit MA, Zhang P, Pace RG, Faino AV, Bamshad MJ, Gibson RL, O'Neal W, Knowles MR, Blackman SM, Cutting GR. Genetic modifiers of body mass index in individuals with cystic fibrosis. Am J Hum Genet 2024; 111:2203-2218. [PMID: 39260370 PMCID: PMC11480786 DOI: 10.1016/j.ajhg.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, β = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, β = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.
Collapse
Affiliation(s)
- Hua Ling
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth W Pugh
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Melis A Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peng Zhang
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna V Faino
- Children's Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ronald L Gibson
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, Division of Pulmonary & Sleep Medicine, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, WA, USA
| | - Wanda O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott M Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Luo S, Rollins S, Schmitz-Abe K, Tam A, Li Q, Shi J, Lin J, Wang R, Agrawal PB. The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 2024; 561:119765. [PMID: 38852790 DOI: 10.1016/j.cca.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA
| | - Klaus Schmitz-Abe
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Tam
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA; Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02115, USA.
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Sheridan MB, Aksit MA, Pagel K, Hetrick K, Shultz-Lutwyche H, Myers B, Buckingham KJ, Pace RG, Ling H, Pugh E, O'Neal WK, Bamshad MJ, Gibson RL, Knowles MR, Blackman SM, Cutting GR, Raraigh KS. The clinical utility of sequencing the entirety of CFTR. J Cyst Fibros 2024; 23:707-715. [PMID: 38734509 DOI: 10.1016/j.jcf.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Cystic fibrosis (CF) is caused by deleterious variants in each CFTR gene. We investigated the utility of whole-gene CFTR sequencing when fewer than two pathogenic or likely pathogenic (P/LP) variants were detected by conventional testing (sequencing of exons and flanking introns) of CFTR. METHODS Individuals with features of CF and a CF-diagnostic sweat chloride concentration with zero or one P/LP variants identified by conventional testing enrolled in the CF Mutation Analysis Program (MAP) underwent whole-gene CFTR sequencing. Replication was performed on individuals enrolled in the CF Genome Project (CFGP), followed by phenotype review and interrogation of other genes. RESULTS Whole-gene sequencing identified a second P/LP variant in 20/43 MAP enrollees (47 %) and 10/22 CFGP enrollees (45 %) who had one P/LP variant after conventional testing. No P/LP variants were detected when conventional testing was negative (MAP: n = 43; CFGP: n = 13). Genome-wide analysis was unable to find an alternative etiology in CFGP participants with fewer than two P/LP CFTR variants and CF could not be confirmed in 91 % following phenotype re-review. CONCLUSIONS Whole-gene CFTR analysis is beneficial in individuals with one previously-identified P/LP variant and a CF-diagnostic sweat chloride. Negative conventional CFTR testing indicates that the phenotype should be re-evaluated.
Collapse
Affiliation(s)
- Molly B Sheridan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Melis A Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kymberleigh Pagel
- The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kurt Hetrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hannah Shultz-Lutwyche
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ben Myers
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kati J Buckingham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rhonda G Pace
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hua Ling
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Pugh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wanda K O'Neal
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael R Knowles
- Department of Medicine, Marsico Lung Institute/UNC CF Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott M Blackman
- Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Štechová K, Fila L. Cystic fibrosis related diabetes - current situation and perspective. VNITŘNÍ LÉKAŘSTVÍ 2024; 70:219-223. [DOI: 10.36290/vnl.2024.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Bae H, Kim BR, Jung S, Le J, van der Heide D, Yu W, Park SH, Hilkin BM, Gansemer ND, Powers LS, Kang T, Meyerholz DK, Schuster VL, Jang C, Welsh MJ. Arteriovenous metabolomics in pigs reveals CFTR regulation of metabolism in multiple organs. J Clin Invest 2024; 134:e174500. [PMID: 38743489 PMCID: PMC11213515 DOI: 10.1172/jci174500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that is characterized by diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects is uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disruption of lung uptake of fatty acids, yet enhancement of uptake of arachidonic acid, a precursor of proinflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multiorgan metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Bo Ram Kim
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | | | - Wenjie Yu
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Sang Hee Park
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Linda S. Powers
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Taekyung Kang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Victor L. Schuster
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California – Irvine, Irvine, California, USA
- Center for Complex Biological Systems and
- Center for Epigenetics and Metabolism, University of California – Irvine, Irvine, California, USA
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
8
|
Anton-Păduraru DT, Murgu AM, Donos MA, Trofin F, Azoicăi AN, Popovici P, Stana AB, Gheorghiescu I, Trandafir LM. An Update in Cystic Fibrosis-Related Diabetes in Children and Adolescents. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1879. [PMID: 38136081 PMCID: PMC10741586 DOI: 10.3390/children10121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
This paper delineates several aspects of cystic fibrosis-related diabetes (CFRD)-a common complication of cystic fibrosis (CF). CFRD exhibits a predilection for older individuals with CF, yet it also extends its influence on children and adolescents. Scientific insights postulate a potential link between CFRD and the aberrant mucus production within the pancreas, thereby culminating in pancreatic insufficiency. This, in turn, perturbs the synthesis of insulin, a pivotal endocrine hormone responsible for the regulation of glycemic levels. Standardized protocols advocate for the systematic screening of CFRD among all individuals with CF, commencing at the age of 10 years using the oral glucose tolerance test (OGTT). Therapeutic modalities encompass insulin therapy, dietary adjustments, and the vigilant monitoring of glycemic parameters. The overarching objective is to maintain blood glucose levels within a targeted range to mitigate the advent of diabetic complications. Untreated or sub-optimally managed CFRD can precipitate a spectrum of deleterious health ramifications, encompassing cardiovascular afflictions, neuropathy, renal dysfunction, and ocular complications.
Collapse
Affiliation(s)
- Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alina Mariela Murgu
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Mădălina Andreea Donos
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania
| | - Alice Nicoleta Azoicăi
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Paula Popovici
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Aurelian Bogdan Stana
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Ionela Gheorghiescu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.-T.A.-P.); (A.M.M.); (A.N.A.); (P.P.); (A.B.S.); (L.M.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
9
|
Weiss L, Reix P, Mosnier-Pudar H, Ronsin O, Beltrand J, Reynaud Q, Mely L, Burgel PR, Stremler N, Rakotoarisoa L, Galderisi A, Perge K, Bendelac N, Abely M, Kessler L. Screening strategies for glucose tolerance abnormalities and diabetes in people with cystic fibrosis. DIABETES & METABOLISM 2023; 49:101444. [PMID: 37030530 DOI: 10.1016/j.diabet.2023.101444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
The increase in life expectancy of patients with cystic fibrosis has come with new comorbidities, particularly diabetes. The gradual development of glucose tolerance abnormalities means that 30 to 40% of adults will be diabetic. Cystic fibrosis-related diabetes is a major challenge in the care of these patients because it is a morbidity and mortality factor at all stages of the disease. Early glucose tolerance abnormalities observed from childhood, before the stage of diabetes, are also associated with a poor pulmonary and nutritional outcome. The long asymptomatic period justifies systematic screening with an annual oral glucose tolerance test from the age of 10 years. However, this strategy does not take into account the new clinical profiles of patients with cystic fibrosis, recent pathophysiological knowledge of glucose tolerance abnormalities, and the emergence of new diagnostic tools in diabetology. In this paper, we summarise the challenges of screening in the current context of new patient profiles - patients who are pregnant, have transplants, or are being treated with fibrosis conductance transmembrane regulator modulators - and put forward an inventory of the various screening methods for cystic fibrosis-related diabetes, including their applications, limitations and practical implications.
Collapse
|
10
|
Mastromatteo S, Chen A, Gong J, Lin F, Thiruvahindrapuram B, Sung WW, Whitney J, Wang Z, Patel RV, Keenan K, Halevy A, Panjwani N, Avolio J, Wang C, Côté-Maurais G, Bégin S, Adam D, Brochiero E, Bjornson C, Chilvers M, Price A, Parkins M, van Wylick R, Mateos-Corral D, Hughes D, Smith MJ, Morrison N, Tullis E, Stephenson AL, Wilcox P, Quon BS, Leung WM, Solomon M, Sun L, Ratjen F, Strug LJ. High-quality read-based phasing of cystic fibrosis cohort informs genetic understanding of disease modification. HGG ADVANCES 2023; 4:100156. [PMID: 36386424 PMCID: PMC9647008 DOI: 10.1016/j.xhgg.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Phasing of heterozygous alleles is critical for interpretation of cis-effects of disease-relevant variation. We sequenced 477 individuals with cystic fibrosis (CF) using linked-read sequencing, which display an average phase block N50 of 4.39 Mb. We use these samples to construct a graph representation of CFTR haplotypes, demonstrating its utility for understanding complex CF alleles. These are visualized in a Web app, CFTbaRcodes, that enables interactive exploration of CFTR haplotypes present in this cohort. We perform fine-mapping and phasing of the chr7q35 trypsinogen locus associated with CF meconium ileus, an intestinal obstruction at birth associated with more severe CF outcomes and pancreatic disease. A 20-kb deletion polymorphism and a PRSS2 missense variant p.Thr8Ile (rs62473563) are shown to independently contribute to meconium ileus risk (p = 0.0028, p = 0.011, respectively) and are PRSS2 pancreas eQTLs (p = 9.5 × 10−7 and p = 1.4 × 10−4, respectively), suggesting the mechanism by which these polymorphisms contribute to CF. The phase information from linked reads provides a putative causal explanation for variation at a CF-relevant locus, which also has implications for the genetic basis of non-CF pancreatitis, to which this locus has been reported to contribute.
Collapse
|
11
|
Prentice B, Nicholson M, Lam GY. Cystic fibrosis related diabetes (CFRD) in the era of modulators: A scoping review. Paediatr Respir Rev 2022:S1526-0542(22)00086-0. [PMID: 36581478 DOI: 10.1016/j.prrv.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is a common complication of CF that increases in incidence as patients age. Poor glycemic control has been shown to negatively impact lung function and weight, resulting in higher risk of recurrent pulmonary exacerbations. With the advent of highly effective modulator therapies (HEMT), patients with CF are living longer and healthier lives. Consequently, CFRD and its microvascular complications are rising in prominence, becoming one of the most urgent clinical concerns. As HEMT were developed with the primary focus of improving pulmonary outcomes, it is not clear from the original phase III studies what the short- or long-term benefits of modulators might be on CFRD development and trajectory. In this review, we will examine the pathophysiology of CFRD, summarize and synthesize the available evidence of HEMT impact on CFRD and describe the emerging research needs in this field.
Collapse
Affiliation(s)
- Bernadette Prentice
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick Australia; Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Randwick, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, University of New South Wales, Randwick, Australia
| | - Mike Nicholson
- Division of Respirology, Department of Medicine, Western University, Ontario, Canada
| | - Grace Y Lam
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Alberta, Canada.
| |
Collapse
|
12
|
Abstract
Endocrine comorbidities have become increasingly important medical considerations as improving cystic fibrosis (CF) care increases life expectancy. Although the underlying pathophysiology of CF-related diabetes remains elusive, the use of novel technologies and therapeutics seeks to improve both CF-related outcomes and quality of life. Improvements in the overall health of those with CF have tempered concerns about pubertal delay and short stature; however, other comorbidities such as hypogonadism and bone disease are increasingly recognized. Following the introduction of highly effective modulator therapies there are many lessons to be learned about their long-term impact on endocrine comorbidities.
Collapse
Affiliation(s)
- Andrea Kelly
- Division of Endocrinology & Diabetes, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Room 14363, Roberts Building for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
| | - Brynn E Marks
- Division of Endocrinology & Diabetes, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Room 7547, The Hub for Clinical Collaboration, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Michael S Stalvey
- Department of Pediatrics, UAB Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Children's of Alabama, CPPII M30, 1600 7th Avenue South, Birmingham, AL 35233-1711, USA; Department of Medicine, UAB Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Children's of Alabama, CPPII M30, 1600 7th Avenue South, Birmingham, AL 35233-1711, USA.
| |
Collapse
|
13
|
Mésinèle J, Ruffin M, Guillot L, Corvol H. Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes. Int J Mol Sci 2022; 23:ijms232214205. [PMID: 36430680 PMCID: PMC9698440 DOI: 10.3390/ijms232214205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Although cystic fibrosis (CF) is recognized as a monogenic disease, due to variants within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene, an extreme clinical heterogeneity is described among people with CF (pwCF). Apart from the exocrine pancreatic status, most studies agree that there is little association between CFTR variants and disease phenotypes. Environmental factors have been shown to contribute to this heterogeneity, accounting for almost 50% of the variability of the lung function of pwCF. Nevertheless, pwCF with similar CFTR variants and sharing the same environment (such as in siblings) may have highly variable clinical manifestations not explained by CFTR variants, and only partly explained by environmental factors. It is recognized that genetic variants located outside the CFTR locus, named "modifier genes", influence the clinical expression of the disease. This short review discusses the latest studies that have described modifier factors associated with the various CF phenotypes as well as the response to the recent CFTR modulator therapies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Inovarion, 75005 Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| |
Collapse
|
14
|
Aksit MA, Ling H, Pace RG, Raraigh KS, Onchiri F, Faino AV, Pagel K, Pugh E, Stilp AM, Sun Q, Blue EE, Wright FA, Zhou YH, Bamshad MJ, Gibson RL, Knowles MR, Cutting GR, Blackman SM. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis. Am J Hum Genet 2022; 109:1894-1908. [PMID: 36206743 PMCID: PMC9606479 DOI: 10.1016/j.ajhg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.
Collapse
Affiliation(s)
- Melis A Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen S Raraigh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frankline Onchiri
- Children's Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Anna V Faino
- Children's Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Fred A Wright
- Department of Statistics, North Carolina State University, Raleigh, NC 27797, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27797, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27797, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ronald L Gibson
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, Division of Pulmonary & Sleep Medicine, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, WA, USA
| | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott M Blackman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
15
|
Kingston H, Stilp AM, Gordon W, Broome J, Gogarten SM, Ling H, Barnard J, Dugan-Perez S, Ellinor PT, Gabriel S, Germer S, Gibbs RA, Gupta N, Rice K, Smith AV, Zody MC, Blackman SM, Cutting G, Knowles MR, Zhou YH, Rosenfeld M, Gibson RL, Bamshad M, Fohner A, Blue EE. Accounting for population structure in genetic studies of cystic fibrosis. HGG ADVANCES 2022; 3:100117. [PMID: 35647563 PMCID: PMC9136666 DOI: 10.1016/j.xhgg.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its frequency varies in a geographic cline across Europe. We hypothesized that genetic variation associated with this cline is overrepresented in a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) analyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control for population structure even when population structure is confounded with disease severity and a common pathogenic variant.
Collapse
Affiliation(s)
- Hanley Kingston
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - William Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jai Broome
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shannon Dugan-Perez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - The Cystic Fibrosis Genome Project
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Scott M. Blackman
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Garry Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
| | - Margaret Rosenfeld
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ronald L. Gibson
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alison Fohner
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E. Blue
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Auxological and Endocrinological Features in Children and Adolescents with Cystic Fibrosis. J Clin Med 2022; 11:jcm11144041. [PMID: 35887806 PMCID: PMC9323690 DOI: 10.3390/jcm11144041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystem autosomal recessive disease caused by mutations that lead to deficient or dysfunctional CF transmembrane conductance regulator (CFTR) proteins. Patients typically present malnutrition resulting from the malabsorption of fundamental nutrients and recurring lung infections, with a progressive worsening of the respiratory function. For these reasons, the clinical management of CF requires a multidisciplinary team. From an endocrinological point of view, patients often present major complications, such as diabetes, bone disease, thyroid disorders, delayed growth and puberty, hypogonadism and infertility, which negatively affect their quality of life and, in some cases, significantly reduce life expectancy. These complications can arise as a direct result of CFTR dysfunction and/or as a consequence of a deterioration in the function of the organs affected. The objective of this review is to analyze all the possible endocrinological complications that can occur in patients with CF by evaluating the most recent papers in the literature.
Collapse
|
17
|
Gong J, He G, Wang C, Bartlett C, Panjwani N, Mastromatteo S, Lin F, Keenan K, Avolio J, Halevy A, Shaw M, Esmaeili M, Côté-Maurais G, Adam D, Bégin S, Bjornson C, Chilvers M, Reisman J, Price A, Parkins M, van Wylick R, Berthiaume Y, Bilodeau L, Mateos-Corral D, Hughes D, Smith MJ, Morrison N, Brusky J, Tullis E, Stephenson AL, Quon BS, Wilcox P, Leung WM, Solomon M, Sun L, Brochiero E, Moraes TJ, Gonska T, Ratjen F, Rommens JM, Strug LJ. Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease. NPJ Genom Med 2022; 7:28. [PMID: 35396391 PMCID: PMC8993824 DOI: 10.1038/s41525-022-00299-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) are CF-causing. CFTR modulators target variants to improve lung function, but marked variability in response exists and current therapies do not address all CF-causing variants highlighting unmet needs. Alternative epithelial ion channel/transporters such as SLC26A9 could compensate for CFTR dysfunction, providing therapeutic targets that may benefit all individuals with CF. We investigate the relationship between rs7512462, a marker of SLC26A9 activity, and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD). Rs7512462 CC genotype is associated with greater lung function in CF individuals with minimal function variants (for which there are currently no approved therapies; p = 0.008); and for gating (p = 0.033) and p.Phe508del/ p.Phe508del (p = 0.006) genotypes upon treatment with CFTR modulators. In parallel, human nasal epithelia with CC and p.Phe508del/p.Phe508del after Ussing chamber analysis of a combination of approved and experimental modulator treatments show greater CFTR function (p = 0.0022). Beyond CF, rs7512462 is associated with peak expiratory flow in a meta-analysis of the UK Biobank and Spirometa Consortium (p = 2.74 × 10-44) and provides p = 0.0891 in an analysis of COPD case-control status in the UK Biobank defined by spirometry. These findings support SLC26A9 as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases.
Collapse
Affiliation(s)
- Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Cheng Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Bartlett
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Mastromatteo
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anat Halevy
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Shaw
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Guillaume Côté-Maurais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Mark Chilvers
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Joe Reisman
- The Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - April Price
- The Children's Hospital, London Health Science Centre, London, ON, Canada
| | | | | | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lara Bilodeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | | | - Mary J Smith
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nancy Morrison
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Janna Brusky
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | - Melinda Solomon
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Johanna M Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada.
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Marks BE, Williams KM, Sherwood JS, Putman MS. Practical aspects of diabetes technology use: Continuous glucose monitors, insulin pumps, and automated insulin delivery systems. J Clin Transl Endocrinol 2022; 27:100282. [PMID: 34917483 PMCID: PMC8666668 DOI: 10.1016/j.jcte.2021.100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023] Open
Abstract
There have been tremendous advances in diabetes technology in the last decade. Continuous glucose monitors (CGM), insulin pumps, and automated insulin delivery (AID) systems aim to improve glycemic control while simultaneously decreasing the burden of diabetes management. Although diabetes technologies have been shown to decrease both hypoglycemia and hyperglycemia and to improve health-related quality of life in individuals with type 1 diabetes, the impact of these devices in individuals with cystic fibrosis-related diabetes (CFRD) is less clear. There are unique aspects of CFRD, including the different underlying pathophysiology and unique lived health care experience and comorbidities, that likely affect the use, efficacy, and uptake of diabetes technology in this population. Small studies suggest that CGM is accurate and may be helpful in guiding insulin therapy for individuals with CFRD. Insulin pump use has been linked to improvements in lean body mass and hemoglobin A1c among adults with CFRD. A recent pilot study highlighted the promise of AID systems in this population. This article provides an overview of practical aspects of diabetes technology use and device limitations that clinicians must be aware of in caring for individuals with CF and CFRD. Cost and limited insurance coverage remain significant barriers to wider implementation of diabetes technology use among patients with CFRD. Future studies exploring strategies to improve patient and CF provider education about these devices and studies showing the effectiveness of these technologies on health and patient-reported outcomes may lead to improved insurance coverage and increased rates of uptake and sustained use of these technologies in the CFRD community.
Collapse
Affiliation(s)
- Brynn E. Marks
- Division of Endocrinology and Diabetes, Children’s National Hospital, 111 Michigan Ave, NW, Washington, DC 20010, USA
| | - Kristen M. Williams
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Columbia University Irving Medical Center, 1150 St Nicholas Avenue, New York, NY 10032, United States
| | - Jordan S. Sherwood
- Diabetes Research Center, Division of Pediatric Endocrinology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, United States
| | - Melissa S. Putman
- Division of Endocrinology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, United States
- Diabetes Research Center, Division of Endocrinology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, United States
| |
Collapse
|
19
|
The role of genetic modifiers, inflammation and CFTR in the pathogenesis of Cystic fibrosis related diabetes. J Clin Transl Endocrinol 2022; 27:100287. [PMID: 34976741 PMCID: PMC8688704 DOI: 10.1016/j.jcte.2021.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
|
20
|
SLC26A9 as a Potential Modifier and Therapeutic Target in Cystic Fibrosis Lung Disease. Biomolecules 2022; 12:biom12020202. [PMID: 35204703 PMCID: PMC8961553 DOI: 10.3390/biom12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
SLC26A9 belongs to the solute carrier family 26 (SLC26), which comprises membrane proteins involved in ion transport mechanisms. On the basis of different preliminary findings, including the phenotype of SlC26A9-deficient mice and its possible role as a gene modifier of the human phenotype and treatment response, SLC26A9 has emerged as one of the most interesting alternative targets for the treatment of cystic fibrosis (CF). However, despite relevant clues, some open issues and controversies remain. The lack of specific pharmacological modulators, the elusive expression reported in the airways, and its complex relationships with CFTR and the CF phenotype prevent us from conclusively understanding the contribution of SLC26A9 in human lung physiology and its real potential as a therapeutic target in CF. In this review, we summarized the various studies dealing with SLC26A9 expression, molecular structure, and function as an anion channel or transporter; its interaction and functional relationships with CFTR; and its role as a gene modifier and tried to reconcile them in order to highlight the current understanding and the gap in knowledge regarding the contribution of SLC26A9 to human lung physiology and CF disease and treatment.
Collapse
|
21
|
Li T, Stefano G, Raza GS, Sommerer I, Riederer B, Römermann D, Tan X, Tan Q, Pallagi P, Hollenbach M, Herzig K, Seidler U. Hydrokinetic pancreatic function and insulin secretion are moduled by Cl - uniporter Slc26a9 in mice. Acta Physiol (Oxf) 2022; 234:e13729. [PMID: 34525257 DOI: 10.1111/apha.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
AIM Slc26a9 is a member of the Slc26 multifunctional anion transporter family. Polymorphisms in Slc26a9 are associated with an increased incidence of meconium ileus and diabetes in cystic fibrosis patients. We investigated the expression of Slc26a9 in the murine pancreatic ducts, islets and parenchyma, and elucidated its role in pancreatic ductal electrolyte and fluid secretion and endocrine function. METHODS Pancreatic Slc26a9 and CFTR mRNA expression, fluid and bicarbonate secretion were assessed in slc26a9-/- mice and their age- and sex-matched wild-type (wt) littermates. Glucose and insulin tolerance tests were performed. RESULTS Compared with stomach, the mRNA expression of Slc26a9 was low in pancreatic parenchyma, 20-fold higher in microdissected pancreatic ducts than parenchyma, and very low in islets. CFTR mRNA was ~10 fold higher than Slc26a9 mRNA expression in each pancreatic cell type. Significantly reduced pancreatic fluid secretory rates and impaired glucose tolerance were observed in female slc26a9-/- mice, whereas alterations in male mice did not reach statistical significance. No significant difference was observed in peripheral insulin resistance in slc26a9-/- compared to sex- and aged-matched wt controls. In contrast, isolated slc26a9-/- islets in short term culture displayed no difference in insulin content, but a significantly reduced glucose-stimulated insulin secretion compared to age- and sex-matched wt islets, suggesting that the impaired glucose tolerance in the absence of Slc26a9 expression these is a pancreatic defect. CONCLUSIONS Deletion of Slc26a9 is associated with a reduction in pancreatic fluid secretion and impaired glucose tolerance in female mice. The results underline the importance of Slc26a9 in pancreatic physiology.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology Hannover Medical School Hannover Germany
- Department of Thyroid and Breast Surgery Affiliated Hospital of Zunyi Medical University Zunyi P.R. China
| | - G. Stefano
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - G. S. Raza
- Institute of Biomedicine and Biocenter of Oulu Oulu University Oulu Finland
| | - I. Sommerer
- Department of Medicine Szeged University Szeged Hungary
| | - B. Riederer
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - D. Römermann
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - X. Tan
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - Q. Tan
- Department of Gastroenterology Hannover Medical School Hannover Germany
| | - P. Pallagi
- Department of Gastroenterology Leipzig University Leipzig Germany
| | - M. Hollenbach
- Department of Medicine Szeged University Szeged Hungary
| | - K.‐H. Herzig
- Institute of Biomedicine and Biocenter of Oulu Oulu University Oulu Finland
- Department of Gastroenterology and Metabolism Poznan University of Medical Sciences Poznan Poland
| | - U. Seidler
- Department of Gastroenterology Hannover Medical School Hannover Germany
| |
Collapse
|
22
|
SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem J 2021; 478:4203-4220. [PMID: 34821356 PMCID: PMC8826537 DOI: 10.1042/bcj20210644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.
Collapse
|
23
|
Butnariu LI, Țarcă E, Cojocaru E, Rusu C, Moisă ȘM, Leon Constantin MM, Gorduza EV, Trandafir LM. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J Clin Med 2021; 10:5821. [PMID: 34945117 PMCID: PMC8707808 DOI: 10.3390/jcm10245821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disease caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. CF is characterized by a high phenotypic variability present even in patients with the same genotype. This is due to the intervention of modifier genes that interact with both the CFTR gene and environmental factors. The purpose of this review is to highlight the role of non-CFTR genetic factors (modifier genes) that contribute to phenotypic variability in CF. We analyzed literature data starting with candidate gene studies and continuing with extensive studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES). The results of both types of studies revealed that the number of modifier genes in CF patients is impressive. Their identification offers a new perspective on the pathophysiological mechanisms of the disease, paving the way for the understanding of other genetic disorders. In conclusion, in the future, genetic analysis, such as GWAS and WES, should be performed routinely. A challenge for future research is to integrate their results in the process of developing new classes of drugs, with a goal to improve the prognosis, increase life expectancy, and enhance quality of life among CF patients.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| | | | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| |
Collapse
|
24
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Larsen MB, Choi JJ, Wang X, Myerburg MM, Frizzell RA, Bertrand CA. Separating the contributions of SLC26A9 and CFTR to anion secretion in primary human bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1147-L1160. [PMID: 34668421 PMCID: PMC8715023 DOI: 10.1152/ajplung.00563.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Aberrant anion secretion across the bronchial epithelium is associated with airway disease, most notably in cystic fibrosis. Although the cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as the primary source of airway anion secretion, alternative anion transport mechanisms play a contributing role. An alternative anion transporter of growing interest is SLC26A9, a constitutively active chloride channel that has been shown to interact with CFTR and may also contribute to bicarbonate secretion. Interest in SLC26A9 has been fueled by genome-wide association studies that suggest it is a significant modifier of CF disease severity. Despite this growing evidence that SLC26A9 plays an important role in the airway, its presence and function in bronchial epithelia remain poorly understood, in part, because its activity is difficult to separate from the activity of CFTR. Here, we present results using primary human bronchial epithelia (HBE) from multiple patient sources to confirm that SLC26A9 mRNA is present in HBE and that its constitutive channel activity is unaffected by knockdown of CFTR. Furthermore, SLC26A9 and CFTR show differential responses to common inhibitors of anion secretion. Finally, we assess the impact of bicarbonate on the activity of SLC26A9 and CFTR. These results confirm that SLC26A9 is the primary source of constitutive anion secretion across HBE, and should inform future studies focused on activation of SLC26A9 as an alternative anion channel in CF. These results should provide a strong foundation to investigate how single-nucleotide polymorphisms in SLC26A9 modulate airway disease.
Collapse
Affiliation(s)
- Mads B Larsen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeannie J Choi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiaohui Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael M Myerburg
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raymond A Frizzell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carol A Bertrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Raraigh KS, Aksit MA, Hetrick K, Pace RG, Ling H, O'Neal W, Blue E, Zhou YH, Bamshad MJ, Blackman SM, Gibson RL, Knowles MR, Cutting GR. Complete CFTR gene sequencing in 5,058 individuals with cystic fibrosis informs variant-specific treatment. J Cyst Fibros 2021; 21:463-470. [PMID: 34782259 DOI: 10.1016/j.jcf.2021.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a recessive condition caused by variants in each CF transmembrane conductance regulator (CFTR) allele. Clinically affected individuals without two identified causal variants typically have no further interrogation of CFTR beyond examination of coding regions, but the development of variant-specific CFTR-targeted treatments necessitates complete understanding of CFTR genotype. METHODS Whole genome sequences were analyzed on 5,058 individuals with CF. We focused on the full CFTR gene sequence and identified disease-causing variants in three phases: screening for known and structural variants; discovery of novel loss-of-function variants; and investigation of remaining variants. RESULTS All variants identified in the first two phases and coding region variants found in the third phase were interpreted according to CFTR2 or ACMG criteria (n = 371; 16 [4.3%] previously unreported). Full gene sequencing enabled delineation of 18 structural variants (large insertions or deletions), of which two were novel. Additional CFTR variants of uncertain effect were found in 76 F508del homozygotes and in 21 individuals with other combinations of CF-causing variants. Both causative variants were identified in 98.1% (n = 4,960) of subjects, an increase of 2.3 percentage points from the 95.8% (n = 4,847) who had a registry- or chart-reported disease-causing CFTR genotype. Of the remaining 98 individuals, 78 carried one variant that has been associated with CF (CF-causing [n = 70] or resulting in varying clinical consequences n = 8]). CONCLUSIONS Complete CFTR gene sequencing in 5,058 individuals with CF identified at least one DNA variant in 99.6% of the cohort that is targetable by current molecular or emerging gene-based therapeutic technologies.
Collapse
Affiliation(s)
- Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Melis A Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kurt Hetrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Hua Ling
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Wanda O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Elizabeth Blue
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States; Department of Pediatrics, University of Washington, Seattle, WA 98195, United States; Brotman-Baty Institute, Seattle, WA 98195, United States
| | - Scott M Blackman
- Division of Pediatric Endocrinology and Diabetes, Johns Hopkins University, Baltimore, MD 21287, United States
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
28
|
Chin M, Brennan AL, Bell SC. Emerging non-pulmonary complications for adults with cystic fibrosis. Chest 2021; 161:1211-1224. [PMID: 34774529 DOI: 10.1016/j.chest.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Improved treatments of cystic fibrosis (CF) related lung disease have resulted in increased longevity, but also increasing prevalence and severity of extrapulmonary manifestations of CF, treatment related complications, age-related conditions and psychosocial effects of longstanding chronic disease. Likewise, the recognition of mild CF phenotypes has changed the landscape of CF disease. This review outlines our current understanding of the common extrapulmonary complications of CF, as well as the changing landscape and future directions of the extrapulmonary complications experienced by patients with CF.
Collapse
Affiliation(s)
- Melanie Chin
- Department of Medicine and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Amanda L Brennan
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Scott C Bell
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
29
|
Al-Selwi Y, Shaw JA, Kattner N. Understanding the Pancreatic Islet Microenvironment in Cystic Fibrosis and the Extrinsic Pathways Leading to Cystic Fibrosis Related Diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211048813. [PMID: 34675737 PMCID: PMC8524685 DOI: 10.1177/11795514211048813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive chronic condition
effecting approximately 70 000 to 100 000 people globally and is
caused by a loss-of-function mutation in the CF transmembrane
conductance regulator. Through improvements in clinical care, life
expectancy in CF has increased considerably associated with rising
incidence of secondary complications including CF-related diabetes
(CFRD). CFRD is believed to result from β-cell loss as well as
insufficient insulin secretion due to β-cell dysfunction, but the
underlying pathophysiology is not yet fully understood. Here we review
the morphological and cellular changes in addition to the
architectural remodelling of the pancreatic exocrine and endocrine
compartments in CF and CFRD pancreas. We consider also potential
underlying proinflammatory signalling pathways impacting on endocrine
and specifically β-cell function, concluding that further research
focused on these mechanisms may uncover novel therapeutic targets
enabling restoration of normal insulin secretion.
Collapse
Affiliation(s)
- Yara Al-Selwi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
32
|
Iafusco F, Maione G, Rosanio FM, Mozzillo E, Franzese A, Tinto N. Cystic Fibrosis-Related Diabetes (CFRD): Overview of Associated Genetic Factors. Diagnostics (Basel) 2021; 11:diagnostics11030572. [PMID: 33810109 PMCID: PMC8005125 DOI: 10.3390/diagnostics11030572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population and is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that encodes for a chloride/bicarbonate channel expressed on the membrane of epithelial cells of the airways and of the intestine, as well as in cells with exocrine and endocrine functions. A common nonpulmonary complication of CF is cystic fibrosis-related diabetes (CFRD), a distinct form of diabetes due to insulin insufficiency or malfunction secondary to destruction/derangement of pancreatic betacells, as well as to other factors that affect their function. The prevalence of CFRD increases with age, and 40–50% of CF adults develop the disease. Several proposed hypotheses on how CFRD develops have emerged, including exocrine-driven fibrosis and destruction of the entire pancreas, as well as contrasting theories on the direct or indirect impact of CFTR mutation on islet function. Among contributors to the development of CFRD, in addition to CFTR genotype, there are other genetic factors related and not related to type 2 diabetes. This review presents an overview of the current understanding on genetic factors associated with glucose metabolism abnormalities in CF.
Collapse
Affiliation(s)
- Fernanda Iafusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Giovanna Maione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
| | - Francesco Maria Rosanio
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Enza Mozzillo
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Adriana Franzese
- Regional Center of Pediatric Diabetology, Department of Translational Medical Sciences, Section of Pediatrics, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.R.); (E.M.); (A.F.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (F.I.); (G.M.)
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
33
|
Eastman AC, Pace RG, Dang H, Aksit MA, Vecchio-Pagán B, Lam ATN, O'Neal WK, Blackman SM, Knowles MR, Cutting GR. SLC26A9 SNP rs7512462 is not associated with lung disease severity or lung function response to ivacaftor in cystic fibrosis patients with G551D-CFTR. J Cyst Fibros 2021; 20:851-856. [PMID: 33674211 DOI: 10.1016/j.jcf.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The CFTR modulator ivacaftor has been variably effective in treating individuals with cystic fibrosis (CF) who harbor CFTR gating variants such as G551D, as well as other classes of CFTR variants when used with other modulators. Because CFTR genotype does not fully explain this variability, defining genetic modifiers of response to modulator therapy is of particular interest to the field of individualized CF drug therapy. Previous studies have proposed that a variant in SLC26A9 (rs7512462) is associated with lung disease severity and with response to treatment with ivacaftor in individuals with CF who carry G551D or gating variants. METHODS Given the implications for CF treatment, we re-examined the reported associations in three cohorts; patients enrolled in the Twin and Siblings study at Johns Hopkins University, the CF modifier study at the University of North Carolina at Chapel Hill, and the prospective G551D Observational (GOAL) study. The GOAL study was specifically designed to measure lung function response to ivacaftor. RESULTS We find no association between SLC26A9 (rs7512462) genotype and lung disease severity (n = 272) or change in lung function at one-, three-, and six-month intervals following ivacaftor treatment(n = 141) in individuals with CF who carry at least one G551D variant. CONCLUSIONS Our inability to replicate this association indicates that rs7512462 genotype should not be used in treatment decisions.
Collapse
Affiliation(s)
- Alice C Eastman
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Rhonda G Pace
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Hong Dang
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Melis Atalar Aksit
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Briana Vecchio-Pagán
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Anh-Thu N Lam
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Wanda K O'Neal
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Scott M Blackman
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Michael R Knowles
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA.
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
Sanders M, Lawlor JMJ, Li X, Schuen JN, Millard SL, Zhang X, Buck L, Grysko B, Uhl KL, Hinds D, Stenger CL, Morris M, Lamb N, Levy H, Bupp C, Prokop JW. Genomic, transcriptomic, and protein landscape profile of CFTR and cystic fibrosis. Hum Genet 2021; 140:423-439. [PMID: 32734384 PMCID: PMC7855842 DOI: 10.1007/s00439-020-02211-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023]
Abstract
Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.
Collapse
Affiliation(s)
- Morgan Sanders
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - John N Schuen
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Susan L Millard
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Xi Zhang
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Leah Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Bethany Grysko
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Hara Levy
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Caleb Bupp
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
Lin YC, Keenan K, Gong J, Panjwani N, Avolio J, Lin F, Adam D, Barrett P, Bégin S, Berthiaume Y, Bilodeau L, Bjornson C, Brusky J, Burgess C, Chilvers M, Consunji-Araneta R, Côté-Maurais G, Dale A, Donnelly C, Fairservice L, Griffin K, Henderson N, Hillaby A, Hughes D, Iqbal S, Itterman J, Jackson M, Karlsen E, Kosteniuk L, Lazosky L, Leung W, Levesque V, Maille É, Mateos-Corral D, McMahon V, Merjaneh M, Morrison N, Parkins M, Pike J, Price A, Quon BS, Reisman J, Smith C, Smith MJ, Vadeboncoeur N, Veniott D, Viczko T, Wilcox P, van Wylick R, Cutting G, Tullis E, Ratjen F, Rommens JM, Sun L, Solomon M, Stephenson AL, Brochiero E, Blackman S, Corvol H, Strug LJ. Cystic fibrosis-related diabetes onset can be predicted using biomarkers measured at birth. Genet Med 2021; 23:927-933. [PMID: 33500570 PMCID: PMC8105168 DOI: 10.1038/s41436-020-01073-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis–related diabetes (CFRD). Untreated CFRD causes increased CF-related mortality whereas early detection can improve outcomes. Methods Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using the Canadian CF Gene Modifier Study (CGS; n = 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n = 1,003). We investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association studies. Results The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies. Conclusion We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.
Collapse
Affiliation(s)
- Yu-Chung Lin
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Katherine Keenan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiafen Gong
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Damien Adam
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CRCHUM, Montréal, QC, Canada
| | | | | | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lara Bilodeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | - Janna Brusky
- Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | | | - Mark Chilvers
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | | | | | - Andrea Dale
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | | | | | | | | | | | | - Shaikh Iqbal
- The Children's Hospital of Winnipeg, Winnipeg, MB, Canada
| | | | - Mary Jackson
- Royal University Hospital, Saskatoon, SK, Canada
| | | | | | | | - Winnie Leung
- University of Alberta Hospital, Edmonton, AB, Canada
| | | | | | | | | | | | - Nancy Morrison
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | | | | - April Price
- The Children's Hospital of Western Ontario, London, ON, Canada
| | | | - Joe Reisman
- The Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Clare Smith
- Foothills Medical Centre, Calgary, AB, Canada
| | - Mary Jane Smith
- Janeway Children's Health & Rehabilitation Centre, St. John's, NL, Canada
| | - Nathalie Vadeboncoeur
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | - Terry Viczko
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | | | | | - Garry Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Johanna M Rommens
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Melinda Solomon
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Emmanuelle Brochiero
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CRCHUM, Montréal, QC, Canada
| | - Scott Blackman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harriet Corvol
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Pediatric Pulmonary Department, Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint Antoine, Paris, France
| | - Lisa J Strug
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada. .,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada. .,The Center for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Wang J, Wang W, Wang H, Tuo B. Physiological and Pathological Functions of SLC26A6. Front Med (Lausanne) 2021; 7:618256. [PMID: 33553213 PMCID: PMC7859274 DOI: 10.3389/fmed.2020.618256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10 members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26 family and is widely expressed in various organs and tissues of mammals. SLC26A6 has some special properties that make it play a particularly important role in ion homeostasis and acid-base balance. In the past few years, the function of SLC26A6 in the diseases has received increasing attention. SLC26A6 not only participates in the development of intestinal and pancreatic diseases but also serves a significant role in mediating nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to guide in-depth studies about related diseases of human.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenkang Wang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi City), Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
37
|
Coderre L, Debieche L, Plourde J, Rabasa-Lhoret R, Lesage S. The Potential Causes of Cystic Fibrosis-Related Diabetes. Front Endocrinol (Lausanne) 2021; 12:702823. [PMID: 34394004 PMCID: PMC8361832 DOI: 10.3389/fendo.2021.702823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity, affecting more than 50% of adult CF patients. Despite this high prevalence, the etiology of CFRD remains incompletely understood. Studies in young CF children show pancreatic islet disorganization, abnormal glucose tolerance, and delayed first-phase insulin secretion suggesting that islet dysfunction is an early feature of CF. Since insulin-producing pancreatic β-cells express very low levels of CFTR, CFRD likely results from β-cell extrinsic factors. In the vicinity of β-cells, CFTR is expressed in both the exocrine pancreas and the immune system. In the exocrine pancreas, CFTR mutations lead to the obstruction of the pancreatic ductal canal, inflammation, and immune cell infiltration, ultimately causing the destruction of the exocrine pancreas and remodeling of islets. Both inflammation and ductal cells have a direct effect on insulin secretion and could participate in CFRD development. CFTR mutations are also associated with inflammatory responses and excessive cytokine production by various immune cells, which infiltrate the pancreas and exert a negative impact on insulin secretion, causing dysregulation of glucose homeostasis in CF adults. In addition, the function of macrophages in shaping pancreatic islet development may be impaired by CFTR mutations, further contributing to the pancreatic islet structural defects as well as impaired first-phase insulin secretion observed in very young children. This review discusses the different factors that may contribute to CFRD.
Collapse
Affiliation(s)
- Lise Coderre
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Lyna Debieche
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
- Département de médecine, Université de Montréal, Montréal, QC, Canada
| | - Joëlle Plourde
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
- Département de médecine, Université de Montréal, Montréal, QC, Canada
| | - Rémi Rabasa-Lhoret
- Division of Cardiovascular and Metabolic Diseases, Institut de recherche clinique de Montréal, Montréal, QC, Canada
- Département de nutrition, Université de Montréal, Montréal, QC, Canada
- Cystic Fibrosis Clinic, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Lesage,
| |
Collapse
|
38
|
Abstract
Because CFTR gene studies now represent one of the most frequent genetic analyses routinely performed worldwide, the number of rare CFTR variants identified in various clinical situations, regularly increases. To provide appropriate diagnosis and prognosis to CF patients as well as appropriate genetic counseling to families, the clinical impact and the phenotypic spectrum of variants identified by diagnostic techniques need to be characterized. Three complementary locus specific databases, called CFTR1, CFTR2 and CFTR-France were developed to address these issues. Besides, the growing knowledge of the CF pathophysiology and the technical evolution in molecular biology allowed to identify candidate modifier genes, regulatory loci, epigenetic profiles and trans-regulators that could help to refine genotype-phenotype correlations at the individual level. These different factors may contribute to the large phenotypic variability between patients with CF, even when they carry identical CFTR variants, regarding lung function, meconium ileus susceptibility or the risk for developing CFTR-related diabetes and liver disease. Finally, the availability of new therapies that target the CFTR protein for numbers of CF patients led to the identification of 'good' and 'poor' responders, thus raising questions of pharmacogenetics factors that may influence treatment efficiency as a novel feature of the complexity of CF patients' management. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
|
39
|
Coriati A, Bouvet GF, Massé C, Ducruet T, Berthiaume Y. YKL-40 as a clinical biomarker in adult patients with CF: Implications of a CHI3L1 single nucleotide polymorphism in disease severity. J Cyst Fibros 2020; 20:e93-e99. [PMID: 33277205 DOI: 10.1016/j.jcf.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
|
40
|
Abstract
Although type 1 diabetes mellitus and, to a lesser extent, type 2 diabetes mellitus, are the prevailing forms of diabetes in youth, atypical forms of diabetes are not uncommon and may require etiology-specific therapies. By some estimates, up to 6.5% of children with diabetes have monogenic forms. Mitochondrial diabetes and cystic fibrosis related diabetes are less common but often noted in the underlying disease. Atypical diabetes should be considered in patients with a known disorder associated with diabetes, aged less than 25 years with nonautoimmune diabetes and without typical characteristics of type 2 diabetes mellitus, and/or with comorbidities associated with atypical diabetes.
Collapse
Affiliation(s)
- Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA.
| | - Marissa Kilberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Sara E Pinney
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Abstract
Cystic fibrosis (CF) is the most common fatal autosomal recessive disease in the Caucasian population. A mutation in the cystic fibrosis transmembrane regulator protein (CFTR) gene leads to the production of abnormally viscous mucus and secretions in the lungs of these patients. A similar pathology also occurs in other organs. In the abdomen, among others the gastrointestinal tract, the pancreas, and the hepatobiliary system are affected. The involvement of the pancreas leads to its exocrine and endocrine insufficiency. Hepatic manifestations include hepatic steatosis, focal biliary and multilobular cirrhosis, and portal hypertension. Biliary complications include cholelithiasis, microgallbladder, and sclerosing cholangitis. In the gastrointestinal tract, complications such as the distal intestinal obstruction syndrome, invaginations, chronic constipation, wall thickening, and fibrosis in the colon may occur. An important renal manifestation is nephrolithiasis. With currently rapidly increasing life expectancy of patients with cystic fibrosis, complications of extrapulmonary cystic fibrosis manifestations including hepatic and gastrointestinal malignancy could be an increasing cause of morbidity and mortality of these patients. It is therefore important for radiologists to know and recognize these clinical patterns and to monitor these manifestations in follow-up exams. Previous therapy of extrapulmonary manifestations has been largely symptomatic. Fortunately, the new CFTR modulators seem to represent an effective causal therapeutic approach here.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Sektion für Pädiatrische Pneumologie & Allergologie und Mukoviszidosezentrum, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland. .,Zentrum für Translationale Lungenforschung Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| | - Jens-Peter Schenk
- Sektion für Pädiatrische Radiologie, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
42
|
Wang Y, Saelao P, Kern C, Jin S, Gallardo RA, Kelly T, Dekkers JM, Lamont SJ, Zhou H. Liver Transcriptome Responses to Heat Stress and Newcastle Disease Virus Infection in Genetically Distinct Chicken Inbred Lines. Genes (Basel) 2020; 11:E1067. [PMID: 32932855 PMCID: PMC7563548 DOI: 10.3390/genes11091067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
Heat stress results in reduced productivity, anorexia, and mortality in chickens. The objective of the study was to identify genes and signal pathways associated with heat stress and Newcastle disease virus (NDV) infection in the liver of chickens through RNA-seq analysis, using two highly inbred chicken lines (Leghorn and Fayoumi). All birds were held in the same environment until 14 days of age. On day 14, half the birds were exposed to 38 °C with 50% relative humidity for 4 h, then 35 °C until the end of the experiment. The remaining birds were kept at 25 °C throughout the experiment. The heat-treated birds were inoculated at 21 days of age with 107 EID50 (One EID50 unit is the amount of virus that will infect 50 percent of inoculated embryos) NDV La Sota strain to investigate the effects of both heat stress and NDV infection. Physiological parameters were recorded as blood phenotypes at three stages: acute heat (AH), chronic heat (CH1), and chronic heat combined with NDV infection (CH&NDV), at 4 h, 7 days, and 10 days post-initiation of heat treatment, respectively. Our previous work revealed that the heat-resilient Fayoumi line maintained a more stable acid-base balance in their blood compared to the Leghorn line. Liver samples were harvested on both AH and CH&NDV to characterize the transcriptome profiles of these two inbred lines. Both genetic lines and treatments had large impact on the liver transcriptome. Fayoumi birds had more differentially expressed genes (DEGs) than Leghorn birds for both treatments. Metabolic and immune-related genes were on the DEG list, with Fayoumi having more immune-related DEGs than Leghorns, which was confirmed by gene functional enrichment analysis. Weighted correlation network analysis (WGCNA) indicated that the driver genes such as Solute Carrier Family genes could be very important for stabilizing the acid-base balance in Fayoumi birds during heat stress. Therefore, candidate genes such solute carrier family genes could be potential genetic targets that are regulated by Fayoumis to maintain physical hemostasis under heat stress. Differential gene expression showed that Leghorns mainly performed metabolic regulation in response to heat stress and NDV infection, while Fayoumis regulated both immune and metabolic functions. This study provides novel insights and enhances our understandings of liver response to heat stress of heat resilient and susceptible inbred chicken lines.
Collapse
Affiliation(s)
- Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Sihua Jin
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Rodrigo A. Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jack M. Dekkers
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J. Lamont
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| |
Collapse
|
43
|
Alves C, Della-Manna T, Albuquerque CTM. Cystic fibrosis-related diabetes: an update on pathophysiology, diagnosis, and treatment. J Pediatr Endocrinol Metab 2020; 33:835-843. [PMID: 32651985 DOI: 10.1515/jpem-2019-0484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis (CF) is a highly prevalent autosomal recessive disorder that is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene (7q31.2), which encodes the CFTR chloride-anion channel that is expressed in several tissues. Life expectancy has increased significantly over the past few decades due to therapeutic advances and early diagnosis through neonatal screening. However, new complications have been identified, including CF-related diabetes (CFRD). The earliest detectable glycemic abnormality is postprandial hyperglycemia that progresses into fasting hyperglycemia. CFRD is associated with a decline in lung function, impairments in weight gain and growth, pubertal development, and increased morbidity and mortality. Annual screening with oral glucose tolerance test is recommended beginning at the age of 10, and screenings are recommended for any age group during the first 48 h of hospital admission. Fasting plasma glucose levels ≥126 mg/dL (7.0 mmol/L) or 2-h postprandial plasma glucose levels ≥200 mg/dL (11.1 mmol/L) that persist for more than 48 h are diagnostic criteria for CFRD. Under stable health condition, the diagnosis is made when laboratory abnormalities in accordance with the American Diabetes Association criteria are detected for the first time; however, levels of HbA1c <6.5% do not rule out the diagnosis. Treatment for CFRD includes insulin replacement and a hypercaloric and hyperproteic diet that does not restrict carbohydrates, fats or salt, and diabetes self-management education. The most important CFRD complications are nutritional and pulmonary disease deterioration, though the microvascular complications of diabetes have already been described.
Collapse
Affiliation(s)
- Crésio Alves
- Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculty of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Thais Della-Manna
- Pediatric Endocrinology Unit, Instituto da Criança, Hospital das Clínicas, Faculty of Medicine, University of São Paulo (ICr-HC-FMUSP), São Paulo, Brazil
| | - Cristiano Tulio Maciel Albuquerque
- Pediatric Endocrinology, Hospital Infantil João Paulo II - Fundação Hospitalar do Estado de Minas Gerais (HIJPII/MG - FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
44
|
Lam ATN, Aksit MA, Vecchio-Pagan B, Shelton CA, Osorio DL, Anzmann AF, Goff LA, Whitcomb DC, Blackman SM, Cutting GR. Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis. J Clin Invest 2020; 130:272-286. [PMID: 31581148 DOI: 10.1172/jci129833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a common complication of cystic fibrosis (CF) that affects approximately 20% of adolescents and 40%-50% of adults with CF. The age at onset of CF-related diabetes (CFRD) (marked by clinical diagnosis and treatment initiation) is an important measure of the disease process. DNA variants associated with age at onset of CFRD reside in and near SLC26A9. Deep sequencing of the SLC26A9 gene in 762 individuals with CF revealed that 2 common DNA haplotypes formed by the risk variants account for the association with diabetes. Single-cell RNA sequencing (scRNA-Seq) indicated that SLC26A9 is predominantly expressed in pancreatic ductal cells and frequently coexpressed with CF transmembrane conductance regulator (CFTR) along with transcription factors that have binding sites 5' of SLC26A9. These findings were replicated upon reanalysis of scRNA-Seq data from 4 independent studies. DNA fragments derived from the 5' region of SLC26A9-bearing variants from the low-risk haplotype generated 12%-20% higher levels of expression in PANC-1 and CFPAC-1 cells compared with the high- risk haplotype. Taken together, our findings indicate that an increase in SLC26A9 expression in ductal cells of the pancreas delays the age at onset of diabetes, suggesting a CFTR-agnostic treatment for a major complication of CF.
Collapse
Affiliation(s)
- Anh-Thu N Lam
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melis A Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana Vecchio-Pagan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | - Celeste A Shelton
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Ariel Precision Medicine, Pittsburgh, Pennsylvania, USA
| | - Derek L Osorio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arianna F Anzmann
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Loyal A Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Scott M Blackman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Barbato E, Daly B, Douglas S, Kerr M, Litman P, Darrah R. Genetic Variation Near chrXq22-q23 Is Linked to Emotional Functioning in Cystic Fibrosis. Biol Res Nurs 2020; 22:319-325. [PMID: 32390518 DOI: 10.1177/1099800420924125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive disease that affects many organ systems, most notably the pulmonary and gastrointestinal systems. Through genome-wide association studies, multiple genetic regions modifying CF-related pulmonary and gastrointestinal symptoms have been identified, but translation of these findings to clinical benefit remains elusive. Symptom variation in CF patients has been associated with changes in health-related quality of life (HRQOL), but the relationship between CF symptom-modifying genetic loci and HRQOL has not been explored. The purpose of this study was to determine whether two previously identified genetic modifiers of CF-related pathology also modify the subscales of HRQOL. METHODS HRQOL and genotype data were obtained and analyzed. Linear regressions were used to examine the amount of variance in HRQOL subscales that could be explained by genotype for each modifier locus. RESULTS A significant regression equation was found between genotype for rs5952223, a variant near chrXq22-q23, and emotional functioning in a sample of 129 CF patients. DISCUSSION These data suggest that genotype for this single-nucleotide polymorphism is associated with emotional functioning in CF patients and highlight this genetic region as a potential therapeutic target, irrespective of CF transmembrane conductance regulator genotype.
Collapse
Affiliation(s)
- Eric Barbato
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara Daly
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Douglas
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Mary Kerr
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Paul Litman
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Rebecca Darrah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.,Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, Yee D, Hitchcock IS, Sousos N, O'Sullivan J, Anderson S, Senis YA, Weinberg OK, Calicchio ML, Iskander D, Royston D, Milojkovic D, Roberts I, Bodine DM, Thongjuea S, Mead AJ. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Mol Cell 2020; 78:477-492.e8. [PMID: 32386542 PMCID: PMC7217381 DOI: 10.1016/j.molcel.2020.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Collapse
Affiliation(s)
- Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA.
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Rong Li
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Lauren Murphy
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Daniel Yee
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Stacie Anderson
- NHGRI Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Strasbourg 67065, France
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica L Calicchio
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deena Iskander
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dragana Milojkovic
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Supat Thongjuea
- NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK.
| |
Collapse
|
47
|
Aksit MA, Pace RG, Vecchio-Pagán B, Ling H, Rommens JM, Boelle PY, Guillot L, Raraigh KS, Pugh E, Zhang P, Strug LJ, Drumm ML, Knowles MR, Cutting GR, Corvol H, Blackman SM. Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. J Clin Endocrinol Metab 2020; 105:dgz102. [PMID: 31697830 PMCID: PMC7236628 DOI: 10.1210/clinem/dgz102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT Individuals with cystic fibrosis (CF) develop a distinct form of diabetes characterized by β-cell dysfunction and islet amyloid accumulation similar to type 2 diabetes (T2D), but generally have normal insulin sensitivity. CF-related diabetes (CFRD) risk is determined by both CFTR, the gene responsible for CF, and other genetic variants. OBJECTIVE To identify genetic modifiers of CFRD and determine the genetic overlap with other types of diabetes. DESIGN AND PATIENTS A genome-wide association study was conducted for CFRD onset on 5740 individuals with CF. Weighted polygenic risk scores (PRSs) for type 1 diabetes (T1D), T2D, and diabetes endophenotypes were tested for association with CFRD. RESULTS Genome-wide significance was obtained for variants at a novel locus (PTMA) and 2 known CFRD genetic modifiers (TCF7L2 and SLC26A9). PTMA and SLC26A9 variants were CF-specific; TCF7L2 variants also associated with T2D. CFRD was strongly associated with PRSs for T2D, insulin secretion, postchallenge glucose concentration, and fasting plasma glucose, and less strongly with T1D PRSs. CFRD was inconsistently associated with PRSs for insulin sensitivity and was not associated with a PRS for islet autoimmunity. A CFRD PRS comprising variants selected from these PRSs (with a false discovery rate < 0.1) and the genome-wide significant variants was associated with CFRD in a replication population. CONCLUSIONS CFRD and T2D have more etiologic and mechanistic overlap than previously known, aligning along pathways involving β-cell function rather than insulin sensitivity. Two CFRD risk loci are unrelated to T2D and may affect multiple aspects of CF. An 18-variant PRS stratifies risk of CFRD in an independent population.
Collapse
Affiliation(s)
- Melis A Aksit
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Johanna M Rommens
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Pierre-Yves Boelle
- Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, iPLESP, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Loic Guillot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Karen S Raraigh
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Peng Zhang
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Lisa J Strug
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | | | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Garry R Cutting
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harriet Corvol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Scott M Blackman
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Liou TG, Kartsonaki C, Keogh RH, Adler FR. Evaluation of a five-year predicted survival model for cystic fibrosis in later time periods. Sci Rep 2020; 10:6602. [PMID: 32313191 PMCID: PMC7171119 DOI: 10.1038/s41598-020-63590-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/04/2022] Open
Abstract
We evaluated a multivariable logistic regression model predicting 5-year survival derived from a 1993-1997 cohort from the United States Cystic Fibrosis (CF) Foundation Patient Registry to assess whether therapies introduced since 1993 have altered applicability in cohorts, non-overlapping in time, from 1993-1998, 1999-2004, 2005-2010 and 2011-2016. We applied Kaplan-Meier statistics to assess unadjusted survival. We tested logistic regression model discrimination using the C-index and calibration using Hosmer-Lemeshow tests to examine original model performance and guide updating as needed. Kaplan-Meier age-adjusted 5-year probability of death in the CF population decreased substantially during 1993-2016. Patients in successive cohorts were generally healthier at entry, with higher average age, weight and lung function and fewer pulmonary exacerbations annually. CF-related diabetes prevalence, however, steadily increased. Newly derived multivariable logistic regression models for 5-year survival in new cohorts had similar estimated coefficients to the originals. The original model exhibited excellent calibration and discrimination when applied to later cohorts despite improved survival and remains useful for predicting 5-year survival. All models may be used to stratify patients for new studies, and the original coefficients may be useful as a baseline to search for additional but rare events that affect survival in CF.
Collapse
Affiliation(s)
- Theodore G Liou
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA.
- The Adult Cystic Fibrosis Center at the University of Utah, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA.
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit and Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth H Keogh
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frederick R Adler
- Center for Quantitative Biology, University of Utah, Salt Lake City, Utah, USA
- Department of Mathematics, College of Science and the College of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
49
|
Zhong X, Yin Z, Jia G, Zhou D, Wei Q, Faucon A, Evans P, Gamazon ER, Li B, Tao R, Rzhetsky A, Bastarache L, Cox NJ. Electronic health record phenotypes associated with genetically regulated expression of CFTR and application to cystic fibrosis. Genet Med 2020; 22:1191-1200. [PMID: 32296164 DOI: 10.1038/s41436-020-0786-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The increasing use of electronic health records (EHRs) and biobanks offers unique opportunities to study Mendelian diseases. We described a novel approach to summarize clinical manifestations from patient EHRs into phenotypic evidence for cystic fibrosis (CF) with potential to alert unrecognized patients of the disease. METHODS We estimated genetically predicted expression (GReX) of cystic fibrosis transmembrane conductance regulator (CFTR) and tested for association with clinical diagnoses in the Vanderbilt University biobank (N = 9142 persons of European descent with 71 cases of CF). The top associated EHR phenotypes were assessed in combination as a phenotype risk score (PheRS) for discriminating CF case status in an additional 2.8 million patients from Vanderbilt University Medical Center (VUMC) and 125,305 adult patients including 25,314 CF cases from MarketScan, an independent external cohort. RESULTS GReX of CFTR was associated with EHR phenotypes consistent with CF. PheRS constructed using the EHR phenotypes and weights discovered by the genetic associations improved discriminative power for CF over the initially proposed PheRS in both VUMC and MarketScan. CONCLUSION Our study demonstrates the power of EHRs for clinical description of CF and the benefits of using a genetics-informed weighing scheme in construction of a phenotype risk score. This research may find broad applications for phenomic studies of Mendelian disease genes.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Genetics Institute, Nashville, TN, USA.
| | - Zhijun Yin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Gengjie Jia
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Qiang Wei
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annika Faucon
- Human Genetics Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Patrick Evans
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA.,'Life Member' of Clare Hall, University of Cambridge, Cambridge, United Kingdom.,MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Bingshan Li
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrey Rzhetsky
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.,Committee on Genomics, Genetics and Systems Biology, University of Chicago, Chicago, IL, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Genetics Institute, Nashville, TN, USA.
| |
Collapse
|
50
|
Paranjapye A, Ruffin M, Harris A, Corvol H. Genetic variation in CFTR and modifier loci may modulate cystic fibrosis disease severity. J Cyst Fibros 2020; 19 Suppl 1:S10-S14. [PMID: 31734115 PMCID: PMC7036019 DOI: 10.1016/j.jcf.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
In patients with cystic fibrosis (CF), genetic variants within and outside the CFTR locus contribute to the variability of the disease severity. CFTR transcription is tightly regulated by cis-regulatory elements (CREs) that control the three-dimensional structure of the locus, chromatin accessibility and transcription factor recruitment. Variants within these CREs may contribute to the pathophysiology and to the phenotypic heterogeneity by altering CFTR transcript abundance. In addition to the CREs, variants outside the CFTR locus, namely "modifiers genes", may also be associated with the clinical variability. This review addresses variants at the CFTR locus itself and CFTR CREs, together with the outcomes of the latest modifier gene studies with respect to the different CF phenotypes.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Manon Ruffin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH, USA.
| | - Harriet Corvol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France; AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France.
| |
Collapse
|