1
|
Kim C, Kim Y, Sohn JH, Sung JH, Han SW, Lee M, Kim Y, Lee JJ, Mo HJ, Yu KH, Lee SH. Effects of Prior Metformin Use on Stroke Outcomes in Diabetes Patients with Acute Ischemic Stroke Receiving Endovascular Treatment. Biomedicines 2024; 12:745. [PMID: 38672100 PMCID: PMC11048027 DOI: 10.3390/biomedicines12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) predisposes individuals to vascular injury, leading to poor outcomes after ischemic stroke and symptomatic hemorrhagic transformation (SHT) after thrombolytic and endovascular treatment (EVT). Metformin (MET), an oral antidiabetic drug, has shown potential neuroprotective effects, but its impact on stroke prognosis in DM patients undergoing EVT remains unclear. In a multicenter study, 231 patients with DM undergoing EVT for acute ischemic stroke were enrolled. Prior MET use was identified, and patients were stratified into MET+ and MET- groups. Demographics, clinical data, and outcomes were compared between groups. Multivariate analysis was used to assess the effect of MET on stroke prognosis. Of the enrolled patients, 59.3% were previously on MET. MET+ patients had lower initial infarct volumes and NIHSS scores compared to MET-taking patients. Multivariate analysis showed that MET+ was associated with a lower risk of stroke progression and SHT (with stroke progression as follows: odd ratio [OR] 0.24, 95% confidence interval [CI] [0.12-0.48], p < 0.001; SHT: OR 0.33, 95% CI [0.14-0.75], p = 0.01) and was also associated with better 3-month functional outcomes (mRS 0-2) after EVT. Prestroke MET use in DM patients undergoing EVT is associated with improved stroke prognosis, including reduced risk of stroke progression and SHT and better functional outcomes. These findings suggest the potential neuroprotective role of MET in this population and highlight its clinical utility as an adjunctive therapy in the management of ischemic stroke. Further research is warranted to elucidate the underlying mechanisms and to optimize MET therapy in this setting.
Collapse
Affiliation(s)
- Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.K.); (J.-H.S.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Yejin Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Jong-Hee Sohn
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.K.); (J.-H.S.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Joo Hye Sung
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.K.); (J.-H.S.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.K.); (J.-H.S.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| | - Minwoo Lee
- Department of Neurology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (K.-H.Y.)
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hee Jung Mo
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea;
| | - Kyung-Ho Yu
- Department of Neurology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (K.-H.Y.)
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (C.K.); (J.-H.S.); (J.H.S.); (S.-W.H.)
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (Y.K.); (J.J.L.)
| |
Collapse
|
2
|
Li W, Abdul Y, Ergul A. Acute Ischemic Stroke by Middle Cerebral Artery Occlusion in Rat Models of Diabetes: Importance of Pre-op and Post-op Care, Severity of Hyperglycemia, and Sex. Methods Mol Biol 2023; 2616:467-479. [PMID: 36715954 DOI: 10.1007/978-1-0716-2926-0_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetes mellitus (DM) is associated with poor stroke outcomes, including high mortality and disability rates. Ischemic injury modeling large artery stroke in diabetic animals also results in high mortality and poor acute and long-term outcomes. In this chapter, we describe middle cerebral artery occlusion (MCAO) in a high-fat diet/low-dose streptozotocin (STZ) model of diabetes including details on pre-op and post-op care that improve survival rate for successful completion of the studies.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yasir Abdul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Adviye Ergul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Li W, Abdul Y, Chandran R, Jamil S, Ward RA, Abdelsaid M, Dong G, Fagan SC, Ergul A. Deferoxamine prevents poststroke memory impairment in female diabetic rats: potential links to hemorrhagic transformation and ferroptosis. Am J Physiol Heart Circ Physiol 2023; 324:H212-H225. [PMID: 36563009 PMCID: PMC9870589 DOI: 10.1152/ajpheart.00490.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetes increases the risk of poststroke cognitive impairment (PSCI). Greater hemorrhagic transformation (HT) after stroke is associated with vasoregression and cognitive decline in male diabetic rats. Iron chelator deferoxamine (DFX) prevents vasoregression and improves outcomes. Although diabetic female rats develop greater HT, its impact on poststroke cerebrovascularization and cognitive outcomes remained unknown. We hypothesized that diabetes mediates pathological neovascularization, and DFX attenuates poststroke cerebrovascular remodeling and improves neurological outcomes in female diabetic rats. Female control and diabetic animals were treated with DFX or vehicle for 7 days after stroke. Vascular indices, microglial activation, and blood-brain barrier (BBB) integrity were evaluated on day 14. Results from diabetic female rats were partially compared with our previously published findings in male counterparts. Hemin-induced programmed cell death was studied in male and female brain microvascular endothelial cell lines (BMVEC). There was no vasoregression after stroke in either control or diabetic female animals. DFX prevented diabetes-mediated gliovascular remodeling and compromised BBB integrity while improving memory function in diabetes. Comparisons of female and male rats indicated sex differences in cognitive and vascular outcomes. Hemin mediated ferroptosis in both male and female BMVECs. DFX improved survival but had differential effects on ferroptosis signaling in female and male cells. These results suggest that stroke and associated HT do not affect cerebrovascularization in diabetic female rats, but iron chelation may provide a novel therapeutic strategy in the prevention of poststroke memory impairment in females with diabetes via the preservation of gliovascular integrity and improvement of endothelial cell survival.NEW & NOTEWORTHY The current study shows for the first time that diabetes does not promote aberrant cerebrovascularization in female rats. This contrasts with what we reported in male animals in various diabetes models. Deferoxamine preserved recognition memory function in diabetic female animals after stroke. The effect(s) of stroke and deferoxamine on cerebrovascular density and microglial activation also appear(s) to be different in female diabetic rats. Lastly, deferoxamine exerts detrimental effects on animals and BMVECs under control conditions.
Collapse
Affiliation(s)
- Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yasir Abdul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Raghavendar Chandran
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Jamil
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca A Ward
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
4
|
Edgerton-Fulton M, Ergul A. Vascular contributions to cognitive impairment/dementia in diabetes: role of endothelial cells and pericytes. Am J Physiol Cell Physiol 2022; 323:C1177-C1189. [PMID: 36036445 PMCID: PMC9576164 DOI: 10.1152/ajpcell.00072.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Vascular contributions to cognitive impairment/dementia (VCID) are a leading cause of dementia, a known neurodegenerative disorder characterized by progressive cognitive decline. Although diabetes increases the risks of stroke and the development of cerebrovascular disease, the cellular and vascular mechanisms that lead to VCID in diabetes are yet to be determined. A growing body of research has identified that cerebrovascular cells within the neurovascular complex display an array of cellular responses that impact their survival and reparative properties, which plays a significant role in VCID development. Specifically, endothelial cells and pericytes are the primary cell types that have gained much attention in dementia-related studies due to their molecular and phenotypic heterogeneity. In this review, we will discuss the various morphological subclasses of endothelial cells and pericytes as well as their relative distribution throughout the cerebrovasculature. Furthermore, the use of diabetic and stroke animal models in preclinical studies has provided more insight into the impact of sex differences on cerebral vascularization in progressive VCID. Understanding how cellular responses and sex differences contribute to endothelial cell and pericyte survival and function will set the stage for the development of potential preventive therapies for dementia-related disorders in diabetes.
Collapse
Affiliation(s)
- Mia Edgerton-Fulton
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Bailey J, Coucha M, Bolduc DR, Burnett FN, Barrett AC, Ghaly M, Abdelsaid M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022; 65:1541-1554. [PMID: 35687178 DOI: 10.1007/s00125-022-05730-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
Collapse
Affiliation(s)
- Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Deanna R Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mark Ghaly
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
6
|
Impact of diabetes and ischemic stroke on the cerebrovasculature: A female perspective. Neurobiol Dis 2022; 167:105667. [PMID: 35227927 PMCID: PMC9615543 DOI: 10.1016/j.nbd.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/16/2023] Open
Abstract
There is a very complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of vascular networks and cerebrovascular function ultimately plays a key role in this intricate communication within the brain in health and disease. Experimental evidence showed that diabetes not only affects the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression, but also alters cerebrovascular function resulting in compromised myogenic reactivity and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain can rapidly occur. When an ischemic insult is superimposed on this pathology, not only is the neurovascular injury greater, but repair mechanisms fail, resulting in greater physical and cognitive deficits. While clinically it is known that women suffer disproportionately from diabetes as well as ischemic stroke and post-stroke cognitive impairment, the cerebrovascular architecture, patho/physiology, as well as cerebrovascular contributions to stroke recovery in female and diabetic animal models are inadequately studied and highlighted in this review.
Collapse
|
7
|
Tu WJ, Liu Z, Chao BH, Yan F, Ma L, Cao L, Ji XM, Wang LD. Metformin use is associated with low risk of case fatality and disability rates in first-ever stroke patients with type 2 diabetes. Ther Adv Chronic Dis 2022; 13:20406223221076894. [PMID: 35465053 PMCID: PMC9021516 DOI: 10.1177/20406223221076894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background: To assess the effectiveness of metformin treatment on long-term outcomes in first-ever stroke patients with type 2 diabetes mellitus (T2DM) in China. Methods: From August to September 2019, all patients with first-ever stroke and T2DM from 232 hospitals in China Mainland were included. The enrolled patients were divided into two groups: the metformin treatment (MT) and the no-metformin treatment (No-MT) groups. All discharged patients would receive a telephone follow-up at 12-month after admission. Results: In total, 7587 first-ever stroke patients with T2DM [age: median (IQR) = 66 (57–73) years; 57.35% male] were recruited. Out of those 7587 included patients, 3593 (47.36%) received MT. The in-hospital case fatality rate was lower in the MT group than the No-MT group [MT group versus No-MT group: 1.09% versus 2.30%; absolute difference = −1.75% (95% CI = −2.15 to −1.17%); OR = 0.63 (95% CI = 0.47 to 0.84)]. The 12-month case fatality rate was lower in the MT group than the No-MT group [4.72% versus 8.05%; absolute difference = −4.05% (95% CI = −5.58 to −2.41); OR = 0.69 (95% CI = 0.50 to 0.88)]. The 12-month disability rate was also lower in the MT group than the No-MT group [14.74% versus 19.41%; absolute difference = −5.70% (95% CI = −7.25 to −3.22); OR = 0.83 (95% CI = 0.70 to 0.95)]. Furthermore, the recurrence rate did not differ significantly between the MT and No-MT groups (p = 0.29). Conclusion: The study reveals that metformin use in stroke patients with T2DM results in a less severe stroke and lower fatality and disability rates.
Collapse
Affiliation(s)
- Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Four Ring West Road, Beijing 100070, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zheng Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bao-Hua Chao
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Department of Interventional Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Cao
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
| | - Xun-Ming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Long-De Wang
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, No. 118, Guang’anmen Inner Street, Beijing 100053, China
| |
Collapse
|
8
|
Han Q, Zheng T, Zhang L, Wu N, Liang J, Wu H, Li G. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:747-768. [PMID: 34865608 DOI: 10.1080/09205063.2021.2014113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The repair of spinal cord injury is a great challenge in clinical. Improving the microenvironment of the injured site is the key strategy for accelerating axon regeneration and synaptic formation. Herein, a kind of silk fibroin microspheres functionalized by metformin through dopamine was developed using water-in-oil emulsification-diffusion method and surface modification technique, and the effect on cortical neuron was evaluated. The results showed that the microspheres showed a uniform size distribution with the diameter of around 60 μm and a concave structure. Moreover, the microspheres possessed good injectability and stability. In addition, the metformin could be successfully immobilized in the silk fibroin microspheres. The cell culture results displayed that the growth and morphology of cortical neurons on the microspheres with metformin concentration of 5 mg/mL and 10 mg/mL were obviously better than that on other samples. Notably, the spread area of single cortical cell on silk fibroin microspheres was increased with the ascending metformin concentration. Therefore, the results indicated that the metformin loaded silk fibroin microsphere could obviously improve the growth and spreading behavior of cortical neuron. The study may provide an important experimental basis for the development of drug loaded injectable biomaterials scaffolds for the treatment of spinal cord injury and have great potential for spinal cord regeneration.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Linhui Zhang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Ningling Wu
- School of Medical, Nantong University, Nantong, P.R. China
| | - Jiaqi Liang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Hong Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| |
Collapse
|
9
|
Hyperglycemia-triggered ATF6-CHOP pathway aggravates acute inflammatory liver injury by β-catenin signaling. Cell Death Dis 2022; 8:115. [PMID: 35289326 PMCID: PMC8921205 DOI: 10.1038/s41420-022-00910-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/08/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Although hyperglycemia has been documented as an unfavorable element that can further induce liver ischemia–reperfusion injury (IRI), the related molecular mechanisms remain to be clearly elaborated. This study investigated the effective manner of endoplasmic reticulum (ER) stress signaling in hyperglycemia-exacerbated liver IRI. Here we demonstrated that in the liver tissues and Kupffer cells (KCs) of DM patients and STZ-induced hyperglycemic mice, the ER stress-ATF6-CHOP signaling pathway is activated. TLR4-mediated pro-inflammatory activation was greatly attenuated by the addition of 4-phenylbutyrate (PBA), one common ER stress inhibitor. The liver IRI in hyperglycemic mice was also significantly reduced after PBA treatment. In addition, deficiency of CHOP (CHOP−/−) obviously alleviates the hepatic IRI, and pro-inflammatory effects deteriorated by hyperglycemia. In hyperglycemic mice, β-catenin expression was suppressed while the ATF6-CHOP signal was activated. In the liver tissues of PBA-treated or CHOP−/− hyperglycemic mice, the expression of β-catenin was restored. Furthermore, CHOP deficiency can induce protection against hyperglycemia-related liver IRI, which was disrupted by the knockdown of β-catenin will cause this protection to disappear. High glucose (HG) treatment stimulated ATF6-CHOP signaling, reduced cellular β-catenin accumulation, and promoted the TLR4-related inflammation of BMDMs. But the above effects were partially rescued in BMDMs with CHOP deficiency or by PBA treatment. In BMDMs cultured in HG conditions, the anti-inflammatory functions of CHOP−/− were destroyed by the knockdown of β-catenin. Finally, chimeric mice carrying WT or CHOP−/− BMDMs by bone marrow transplantation were adopted to verify the above conclusion. The current study suggested that hyperglycemia could trigger ER stress-ATF6-CHOP axis, inhibit β-catenin activation, accelerate inflammation, and deteriorate liver IRI, thus providing the treatment potential for management of sterile liver inflammation in DM patients.
Collapse
|
10
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC, Ergul A. Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male Diabetic Rats: Role of Endothelial Ferroptosis. Transl Stroke Res 2021; 12:615-630. [PMID: 32875455 PMCID: PMC7917163 DOI: 10.1007/s12975-020-00844-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Abstract
It is a clinically well-established fact that patients with diabetes have very poor stroke outcomes. Yet, the underlying mechanisms remain largely unknown. Our previous studies showed that male diabetic animals show greater hemorrhagic transformation (HT), profound loss of cerebral vasculature in the recovery period, and poor sensorimotor and cognitive outcomes after ischemic stroke. This study aimed to determine the impact of iron chelation with deferoxamine (DFX) on (1) cerebral vascularization patterns and (2) functional outcomes after stroke in control and diabetic rats. After 8 weeks of type 2 diabetes induced by a combination of high-fat diet and low-dose streptozotocin, male control and diabetic animals were subjected to thromboembolic middle cerebral artery occlusion (MCAO) and randomized to vehicle, DFX, or tPA/DFX and followed for 14 days with behavioral tests. Vascular indices (vascular volume and surface area), neurovascular remodeling (AQP4 polarity), and microglia activation were measured. Brain microvascular endothelial cells (BMVEC) from control and diabetic animals were evaluated for the impact of DFX on ferroptotic cell death. DFX treatment prevented vasoregression and microglia activation while improving AQP4 polarity as well as blood-brain barrier permeability by day 14 in diabetic rats. These pathological changes were associated with improvement of functional outcomes. In control rats, DFX did not have an effect. Iron increased markers of ferroptosis and lipid reactive oxygen species (ROS) to a greater extent in BMVECs from diabetic animals, and this was prevented by DFX. These results strongly suggest that (1) HT impacts post-stroke vascularization patterns and recovery responses in diabetes, (2) treatment of bleeding with iron chelation has differential effects on outcomes in comorbid disease conditions, and (3) iron chelation and possibly inhibition of ferroptosis may provide a novel disease-modifying therapeutic strategy in the prevention of post-stroke cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Weiguo Li
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Rebecca Ward
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Sarah Jamil
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29425, USA.
| |
Collapse
|
12
|
Li X, Yin Q, Han X, Zhang H, Wang F, Ma J, Zhuang P, Zhang Y. Dynamic expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor beta (PDGFRβ) in diabetic brain contributes to cognitive dysfunction. Brain Res Bull 2021; 175:99-106. [PMID: 34303767 DOI: 10.1016/j.brainresbull.2021.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cognitive dysfunction is increasingly recognized as an important complication of diabetes mellitus (DM). Accumulating evidence indicates that the abnormality of cerebrovascular structure and function plays an essential role in diabetic cognitive impairment (DCI), however, changes in cerebrovascular factors have been blurred during the development of diabetes. OBJECTIVE To evaluate the changes in the structure and function of cerebrovascular in DCI mice and to investigate the changes of cerebral angiogenesis and stability factors during the development of DM. METHODS Diabetes was induced by feeding with high-fat diet combined with intraperitoneal injection of streptozotocin (STZ,120 mg/kg). Cognitive function was evaluated at different stages of DM, cerebral neovascularization, blood-brain barrier (BBB) permeability and hippocampal neurons were measured of DCI mice, and the expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor β (PDGFRβ) in hippocampus was detected during the development of DM. RESULTS With the progress of diabetes, the learning and memory ability of mice gradually decreased, and DCI mice showed neuronal degeneration, increased BBB permeability and pathological cerebral neovascularization. Moreover, the expression of VEGF in the hippocampus increased first and then decreased at DM+8week, PDGFRβ decreased continuously with the development of diabetes. CONCLUSIONS Our results demonstrate that DCI may be attributed to the dynamic expression of VEGF/PDGFRβ in diabetic hippocampus, and pathological cerebral neovascularization, increased BBB permeability and neuronal degeneration are the key links.
Collapse
Affiliation(s)
- Xueli Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xu Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hanyu Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fang Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Liu Y, Chen D, Smith A, Ye Q, Gao Y, Zhang W. Three-dimensional remodeling of functional cerebrovascular architecture and gliovascular unit in leptin receptor-deficient mice. J Cereb Blood Flow Metab 2021; 41:1547-1562. [PMID: 33818188 PMCID: PMC8221780 DOI: 10.1177/0271678x211006596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The cerebrovascular sequelae of diabetes render victims more susceptible to ischemic stroke, vascular cognitive impairment, and Alzheimer's disease. However, limited knowledge exists on the progressive changes in cerebrovascular structure and functional remodeling in type 2 diabetes. To ascertain the impact of diabetes on whole-brain cerebrovascular perfusion, leptin-receptor-deficient mice were transcardially injected with tomato-lectin before sacrifice. The whole brain was clarified by the Fast free-of-acrylamide clearing tissue technique. Functional vascular anatomy of the cerebrum was visualized by light-sheet microscopy, followed by analysis in Imaris software. We observed enhanced neovascularization in adult db/db mice, characterized by increased branch level and loop structures. Microvascular hypoperfusion was initially detected in juvenile db/db mice, suggesting early onset of insufficient microcirculation. Furthermore, gliovascular unit remodeling was verified by loss of pericytes and overactivation of microglia and astrocytes in adult diabetic mice. However, the integrity of the blood-brain barrier (BBB) was fundamentally preserved, as shown by a lack of extravasation of IgG into the brain parenchyma. In summary, we, for the first time, reveal that functional cerebrovascular remodeling occurs as early as four weeks in db/db mice and the deficit in gliovascular coupling may play a role in cerebral hypoperfusion before BBB breakdown in 16-week-old db/db mice.
Collapse
Affiliation(s)
- Yaan Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda Smith
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qing Ye
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenting Zhang
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Liang XX, Wang RY, Guo YZ, Cheng Z, Lv DY, Luo MH, He A, Luo SX, Xia Y. Phosphorylation of Akt at Thr308 regulates p-eNOS Ser1177 during physiological conditions. FEBS Open Bio 2021; 11:1953-1964. [PMID: 33993653 PMCID: PMC8255840 DOI: 10.1002/2211-5463.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS)‐derived nitric oxide (NO) plays a crucial role in maintaining vascular homeostasis. As a hallmark of eNOS activation, phosphorylation of eNOS at Ser1177 induced by activated protein kinase B (PKB/Akt) is pivotal for NO production. The complete activation of Akt requires its phosphorylation of both Thr308 and Ser473. However, which site plays the main role in regulating phosphorylation of eNOS Ser1177 is still controversial. The purpose of the present study is to explore the specific regulatory mechanism of phosphorylated Akt in eNOS activation. Inhibition of Akt Thr308 phosphorylation by a specific inhibitor or by siRNA in vitro led to a decrease in eNOS phosphorylation at Ser1177 and to lower NO concentration in the cell culture medium of HUVECs. However, inhibiting p‐Akt Ser473 had no effect on eNOS phosphorylation at Ser1177. Next, we administered mice with inhibitors to downregulate p‐Akt Ser473 or Thr308 activity. Along with the inhibition of p‐Akt Thr308, vascular p‐eNOS Ser1177 protein was simultaneously downregulated in parallel with a decrease in plasma NO concentration. Additionally, we cultured HUVECs at various temperature conditions (37, 22, and 4 °C). The results showed that p‐Akt Ser473 was gradually decreased in line with the reduction in temperature, accompanied by increased levels of p‐Akt Thr308 and p‐eNOS Ser1177. Taken together, our study indicates that the phosphorylation of Akt at Thr308, but not at Ser473, plays a more significant role in regulating p‐eNOS Ser1177 levels under physiological conditions.
Collapse
Affiliation(s)
- Xiao-Xue Liang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Rui-Yu Wang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Yong-Zheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Zhe Cheng
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Ding-Yi Lv
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Ming-Hao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| | - Su-Xin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, China.,Institute of Life Science, Chongqing Medical University, China
| |
Collapse
|
15
|
Lin Y, Zhao M, Bai L, Li H, Xu Y, Li X, Xie J, Zhang Y, Zheng D. Renal-targeting peptide-microRNA nanocomplex for near IR imaging and therapy of renal ischemia/reperfusion injury. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Sharma S, Nozohouri S, Vaidya B, Abbruscato T. Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sci 2021; 274:119343. [PMID: 33716063 DOI: 10.1016/j.lfs.2021.119343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.
Collapse
Affiliation(s)
- Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
17
|
Guo Z, Wu X, Fan W. Clarifying the effects of diabetes on the cerebral circulation: Implications for stroke recovery and beyond. Brain Res Bull 2021; 171:67-74. [PMID: 33662495 DOI: 10.1016/j.brainresbull.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Given the sheer increased number of victims per year and the availability of only one effective treatment, acute ischemic stroke (AIS) remains to be one of the most under-treated serious diseases. Diabetes not only increases the incidence of ischemic stroke, but amplifies the ischemic damage, upon which if patients with diabetes suffer from stroke, he/she will confront increased risks of long-term functional deficits. The grim reality makes it a pressing need to intensify efforts at the basic science level to understand how diabetes impairs stroke recovery. This review retrospects the clinical and experimental studies in order to elucidate the detrimental effect of diabetes on cerebrovascular circulation including the major arteries/arterioles, collateral circulation, and neovascularization to shed light on further exploration of novel strategies for cerebral circulation protection before and after AIS in patients with diabetes.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
18
|
Chuan L, Huang X, Fan C, Wen S, Yang X, Wang J, Ren J, Ru J, Ding L. Metformin ameliorates brain damage caused by cardiopulmonary resuscitation via targeting endoplasmic reticulum stress-related proteins GRP78 and XBP1. Eur J Pharmacol 2021; 891:173716. [PMID: 33197442 DOI: 10.1016/j.ejphar.2020.173716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Cerebral damage after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is a primary cause of death. Endoplasmic reticulum stress (ERS) is very important during these situations. This study aimed to explore the role of metformin in protecting brain endoplasmic reticulum post CA/CPR. Male SD rats (n = 132) were treated with 6-min CA-posted asphyxia and sham surgery. Before CA/CPR, metformin (200 mg/kg/day) or a vehicle (0.9% saline) were administered randomly for two weeks. The neurological deficit scores were assessed 24 h, 48 h, 72 h, and 7 days after CA/CPR, and the rat brains were analyzed by Western blotting and qRT-PCR. Apoptosis was detected by the TUNEL assay according to the mitochondrial membrane potential (MMP). Oxidative stress and ERS-related protein expression were also investigated. The Western blotting and qRT-PCR results revealed that the resuscitated animals had time-dependent elevated GRP78 and XBP1 levels compared with the sham operative rats. Moreover, our results showed that the rats treated with metformin had increased neurological deficit scores (NDS), an improved seven-day survival rate, decreased cell apoptosis within the hippocampus CA1 area, and less oxidative stress compared with the CA/CPR group. Furthermore, metformin inhibited the mRNA and protein expressions of glucose-regulated protein 78 (GRP78) and X-box binding protein 1 (XBP1) in the CA/CPR rat model. We confirmed that CA/CPR can induce ERS-related apoptosis and oxidative stress in the brain; moreover, inhibiting ERS-related proteins GRP78 and XBP1 with metformin might attenuate cerebral injury post CA/CPR.
Collapse
Affiliation(s)
- Libo Chuan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China; ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xin Huang
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Chuming Fan
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Shiyuan Wen
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaohua Yang
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jingrong Wang
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jingyu Ren
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jin Ru
- ICU, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| | - Li Ding
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, 650500, China; Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
19
|
Venkat P, Ning R, Zacharek A, Culmone L, Liang L, Landschoot-Ward J, Chopp M. Treatment with an Angiopoietin-1 mimetic peptide promotes neurological recovery after stroke in diabetic rats. CNS Neurosci Ther 2020; 27:48-59. [PMID: 33346402 PMCID: PMC7804913 DOI: 10.1111/cns.13541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Aim Vasculotide (VT), an angiopoietin‐1 mimetic peptide, exerts neuroprotective effects in type one diabetic (T1DM) rats subjected to ischemic stroke. In this study, we investigated whether delayed VT treatment improves long‐term neurological outcome after stroke in T1DM rats. Methods Male Wistar rats were induced with T1DM, subjected to middle cerebral artery occlusion (MCAo) model of stroke, and treated with PBS (control), 2 µg/kg VT, 3 µg/kg VT, or 5.5 µg/kg VT. VT treatment was initiated at 24 h after stroke and administered daily (i.p) for 14 days. We evaluated neurological function, lesion volume, vascular and white matter remodeling, and inflammation in the ischemic brain. In vitro, we evaluated the effects of VT on endothelial cell capillary tube formation and inflammatory responses of primary cortical neurons (PCN) and macrophages. Results Treatment of T1DM‐stroke with 3 µg/kg VT but not 2 µg/kg or 5.5 µg/kg significantly improves neurological function and decreases infarct volume and cell death compared to control T1DM‐stroke rats. Thus, 3 µg/kg VT dose was employed in all subsequent in vivo analysis. VT treatment significantly increases axon and myelin density, decreases demyelination, decreases white matter injury, increases number of oligodendrocytes, and increases vascular density in the ischemic border zone of T1DM stroke rats. VT treatment significantly decreases MMP9 expression and decreases the number of M1 macrophages in the ischemic brain of T1DM‐stroke rats. In vitro, VT treatment significantly decreases endothelial cell death and decreases MCP‐1, endothelin‐1, and VEGF expression under high glucose (HG) and ischemic conditions and significantly increases capillary tube formation under HG conditions when compared to non‐treated control group. VT treatment significantly decreases inflammatory factor expression such as MMP9 and MCP‐1 in macrophages subjected to LPS activation and significantly decreases IL‐1β and MMP9 expression in PCN subjected to ischemia under HG conditions. Conclusion Delayed VT treatment (24 h after stroke) significantly improves neurological function, promotes vascular and white matter remodeling, and decreases inflammation in the ischemic brain after stroke in T1DM rats.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Linlin Liang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
20
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
The Modulatory Effect of Metformin on Ethanol-Induced Anxiety, Redox Imbalance, and Extracellular Matrix Levels in the Brains of Wistar Rats. J Mol Neurosci 2020; 70:1943-1961. [PMID: 32621100 DOI: 10.1007/s12031-020-01593-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023]
Abstract
The study investigated the potential neuroprotective effects of metformin (MET) on alcohol-induced neurotoxicity in adult Wistar rats. The animals were randomized in four groups (n = 10): control, alcohol (ALC), ALC + MET, and MET. ALC (2 g/kg b.w.) and MET (200 mg/kg b.w.) were orally administered for 21 days, once daily. For the ALC + MET group, MET was administered 2 h after ALC treatment. On day 22, the open field test (OFT) and elevated plus maze (EPM) were performed. MET improved global activity and increased the time spent in unprotected open arms, decreased oxidative stress, both in the frontal lobe and in the hippocampus, and increased neuroglobin expression in the frontal cortex. Histopathologically, an increased neurosecretory activity in the frontal cortex in the ALC + MET group was noticed. Thus, our findings suggest that metformin has antioxidant and anxiolytic effects and may partially reverse the neurotoxic effects induced by ethanol.
Collapse
|
22
|
Gong DJ, Wang L, Yang YY, Zhang JJ, Liu XH. Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis. Ren Fail 2020; 41:750-761. [PMID: 31441362 PMCID: PMC6720228 DOI: 10.1080/0886022x.2019.1643737] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic patients are more susceptible to renal ischemia/reperfusion (I/R) injury (RI/RI) and have a poor prognosis, but the underlying mechanism remains unclear. The present study aimed to examine whether diabetes could worsen acute kidney injury induced by I/R in rats and clarify its mechanism. Control and streptozotocin-induced diabetic rats were subjected to 45 min renal pedicle occlusion followed by 24 h reperfusion. Tert-butylhydroquinone (TBHQ, 16.7 mg/kg) was administrated intraperitoneally 3 times at intervals of 8 h before ischemia. Serum and kidneys were harvested after reperfusion to evaluate renal function and histological injury. Enzyme-linked immunosorbent assays were used to test pro-inflammatory cytokines. Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling assays were used to detect apoptotic cells, and western blotting was performed to determine the expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved caspase-3, as well as oxidative stress and inflammation-related proteins, such as nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB). Compared with control animals, diabetic rats undergoing I/R exhibited more severe tubular damage and renal dysfunction. Diabetes exacerbated oxidative stress, the inflammatory response, and apoptosis after renal I/R by enhancing TLR4/NF-κB signaling and blocking the Nrf2/HO-1 pathway. RI/RI in diabetic rats was attenuated by pretreatment with TBHQ (a Nrf2 agonist), which exerted anti-inflammatory and anti-apoptotic properties by inhibiting NF-κB signaling. These findings indicate that hyperglycemia exacerbates RI/RI by intensifying oxidative stress, inflammation, and apoptosis. Antioxidant pretreatment may alleviate RI/RI in diabetic patients.
Collapse
Affiliation(s)
- Dao-Jing Gong
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan , Hubei , P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan , Hubei , P.R. China
| | - Yuan-Yuan Yang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan , Hubei , P.R. China
| | - Jian-Jian Zhang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan , Hubei , P.R. China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan , Hubei , P.R. China
| |
Collapse
|
23
|
Park SH, Kang MA, Moon YJ, Jang KY, Kim JR. Metformin coordinates osteoblast/osteoclast differentiation associated with ischemic osteonecrosis. Aging (Albany NY) 2020; 12:4727-4741. [PMID: 32045366 PMCID: PMC7138543 DOI: 10.18632/aging.102796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/12/2020] [Indexed: 01/22/2023]
Abstract
In this study, we aimed to identify a candidate drug that can activate endogenous Angiopoietin 1 (Ang1) expression via drug repositioning as a pharmacological treatment for avascular osteonecrosis. After incubation with 821 drugs from the Food and Drug Administration (FDA)-approved drug library, Ang1 expression in U2OS cell culture media was examined by ELISA. Metformin, the first-line medication for treatment of type 2 diabetes, was selected as a candidate for in vitro and in vivo experimental evaluation. Ang1 was induced, and alkaline phosphatase activity was increased by metformin treatment in U2OS and MG63 cells. Wound healing and migration assay showed increased osteoblastic cell mobility by metformin treatment in U2OS and MG63 cells. Metformin upregulated expression of protein markers for osteoblastic differentiation in U2OS and MG63 cells but inhibited osteoclastic differentiation in Raw264.7 cells. Metformin (25 mg/kg) protected against ischemic necrosis in the epiphysis of the rat femoral head by maintaining osteoblast/osteocyte function and vascular density but inhibiting osteoclast activity in the necrotic femoral head. These findings provide novel insight into the specific biomarkers that are targeted and regulated by metformin in osteoblast differentiation and contribute to understanding the effects of these FDA-approved small-molecule drugs as novel therapeutics for ischemic osteonecrosis.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Korea
| | - Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam, Korea
| | - Young Jae Moon
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| |
Collapse
|
24
|
Zhang YP, Cui QY, Zhang TM, Yi Y, Nie JJ, Xie GH, Wu JH. Chloroquine pretreatment attenuates ischemia-reperfusion injury in the brain of ob/ob diabetic mice as well as wildtype mice. Brain Res 2020; 1726:146518. [PMID: 31647899 DOI: 10.1016/j.brainres.2019.146518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/15/2019] [Accepted: 10/19/2019] [Indexed: 11/28/2022]
Abstract
Chloroquine, a prototype anti-malaria drug, has been reported to possess anti-inflammatory effects. Moreover, chloroquine pretreatment could improve DNA damage repair. It is therefore reasonable to hypothesize that chloroquine pretreatment could attenuate ischemia/reperfusion injury in the brain. Considering the fact that chloroquine could also improve glucose metabolism, we speculated that the potential effects of chloroquine on ischemia/reperfusion injury might be particularly pronounced in diabetic mice. In this study, chloroquine pretreatment protected neurons from Oxygen Glucose Deprivation (OGD) induced cytotoxicity and apoptosis. In vivo, Ob/ob mice and wildtype (WT) mice were pretreated with chloroquine for 3 weeks. Then, ischemic stroke was induced by 60 min Middle Cerebral Artery Occlusion (MCAO). We found that chloroquine pretreatment normalized blood glucose in diabetic ob/ob mice, and reduced cerebral damage after ischemic stroke especially for diabetic mice. In addition, chloroquine pretreatment reduced High-mobility group box 1 (HMGB1) content in the cerebrospinal fluid (CSF) and serum and lowered myeloperoxidase (MPO) activity and inflammatory cytokines gene expression both in the ob/ob diabetic mice and WT mice. Moreover, harmful DNA damage-signaling responses, including PARP activation and p53 activation, were also attenuated by chloroquine pretreatment in these two kinds of mice. In conclusion, chloroquine pretreatment could reduce cerebral damage after ischemic stroke especially in diabetic mice through multiple mechanisms, which include reducing neural cell DNA injury, restoring euglycemia and anti-inflammatory effects. The findings may provide potential for the development of chloroquine in the prevention and treatment of stroke in diabetic high-risk patients.
Collapse
Affiliation(s)
- Ying-Pei Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiu-Yan Cui
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tong-Mei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Yi
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Jie Nie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guang-Hui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian-Hua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
25
|
Sun X, Tavenier A, Deng W, Leishman E, Bradshaw HB, Dey SK. Metformin attenuates susceptibility to inflammation-induced preterm birth in mice with higher endocannabinoid levels. Biol Reprod 2019; 98:208-217. [PMID: 29228105 DOI: 10.1093/biolre/iox164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Premature decidual senescence is a contributing factor to preterm birth. Fatty acid amide hydrolase mutant females (Faah-/-) with higher endocannabinoid levels are also more susceptible to preterm birth upon lipopolysaccharide (LPS) challenge due to enhanced decidual senescence; this is associated with mitogen-activated protein kinase p38 activation. Previous studies have shown that mechanistic target of rapamycin complex 1 (mTORC1) contributes to decidual senescence and promotes the incidence of preterm birth. In this study, we sought to attenuate premature decidual aging in Faah-/- females by targeting mTORC1 and p38 signaling pathways. Because metformin is known to inhibit mTOR and p38 signaling pathways, Faah-/- females were treated with metformin. These mice had a significantly lower preterm birth incidence with a higher rate of live birth after an LPS challenge on day 16 of pregnancy; metformin treatment did not affect placentation or neonatal birth weight. These results were associated with decreased levels of p38, as well as pS6, a downstream mediator of mTORC1 activity, in day 16 Faah-/-decidual tissues. Since metformin treatment attenuates premature decidual senescence with limited side effects during pregnancy, careful use of this drug may be effective in ameliorating specific adverse pregnancy events.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexandra Tavenier
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
26
|
Leech T, Chattipakorn N, Chattipakorn SC. The beneficial roles of metformin on the brain with cerebral ischaemia/reperfusion injury. Pharmacol Res 2019; 146:104261. [PMID: 31170502 DOI: 10.1016/j.phrs.2019.104261] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R) injury is the transient loss, followed by rapid return, of blood flow to the brain. This condition is often caused by strokes and heart attacks. The underlying mechanisms resulting in brain damage during cerebral I/R injury include mitochondrial dysregulation, increased oxidative stress/reactive oxygen species, blood-brain-barrier breakdown, inflammation of the brain, and increased neuronal apoptosis. Metformin is the first-line antidiabetic drug which has recently been shown to be capable of acting through the aforementioned pathways to improve recovery following cerebral I/R injury. However, some studies have suggested that metformin therapy may have no effect or even worsen recovery following cerebral I/R injury. The present review will compile and examine the available in vivo, in vitro, and clinical data concerning the neuroprotective effects of metformin following cerebral I/R injury. Any contradictory evidence will also be assessed and presented to determine the actual effectiveness of metformin treatment in stroke recovery.
Collapse
Affiliation(s)
- Tom Leech
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, United Kingdom; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
27
|
Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, Filosa J, Fagan SC, Ergul A. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res 2019; 142:237-250. [PMID: 30818045 PMCID: PMC6486792 DOI: 10.1016/j.phrs.2019.01.035] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Diabetes increases the risk and worsens the progression of cognitive impairment via the greater occurrence of small vessel disease and stroke. Yet, the underlying mechanisms are not fully understood. It is now accepted that cardiovascular health is critical for brain health and any neurorestorative approaches to prevent/delay cognitive deficits should target the conceptual neurovascular unit (NVU) rather than neurons alone. We have recently shown that there is augmented hippocampal NVU remodeling after a remote ischemic injury in diabetes. NLRP3 inflammasome signaling has been implicated in the development of diabetes and neurodegenerative diseases, but little is known about the impact of NLRP3 activation on functional and structural interaction within the NVU of hippocampus, a critical part of the brain that is involved in forming, organizing, and storing memories. Endothelial cells are at the center of the NVU and produce trophic factors such as brain derived neurotrophic factor (BDNF) contributing to neuronal survival, known as vasotrophic coupling. Therefore, the aims of this study focused on two hypotheses: 1) diabetes negatively impacts hippocampal NVU remodeling and worsens cognitive outcome after stroke, and 2) NLRP3 inhibition with MCC950 will improve NVU remodeling and cognitive outcome following stroke via vasotrophic (un)coupling between endothelial cells and hippocampal neurons. Stroke was induced through a 90-min transient middle cerebral artery occlusion (MCAO) in control and high-fat diet/streptozotocin-induced (HFD/STZ) diabetic male Wistar rats. Saline or MCC950 (3 mg/kg), an inhibitor of NLRP3, was injected at 1 and 3 h after reperfusion. Cognition was assessed over time and neuronal density, blood-brain barrier (BBB) permeability as well as NVU remodeling (aquaporin-4 [AQP4] polarity) was measured on day 14 after stroke. BDNF was measured in endothelial and hippocampal neuronal cultures under hypoxic and diabetes-mimicking condition with and without NLRP3 inhibition. Diabetes increased neuronal degeneration and BBB permeability, disrupted AQP4 polarity, impaired cognitive function and amplified NLRP3 activation after ischemia. Inhibition with MCC950 improved cognitive function and vascular integrity after stroke in diabetic animals and prevented hypoxia-mediated decrease in BDNF secretion. These results are the first to provide essential data showing MCC950 has the potential to become a therapeutic to prevent neurovascular remodeling and worsened cognitive decline in diabetic patients following stroke.
Collapse
Affiliation(s)
- Rebecca Ward
- Departments of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Weiguo Li
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Yasir Abdul
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - LaDonya Jackson
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Guangkuo Dong
- Physiology, Augusta University, Augusta, GA, United States
| | - Sarah Jamil
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jessica Filosa
- Physiology, Augusta University, Augusta, GA, United States
| | - Susan C Fagan
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Adviye Ergul
- Physiology, Augusta University, Augusta, GA, United States; Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
28
|
Abdul Y, Abdelsaid M, Li W, Webb RC, Sullivan JC, Dong G, Ergul A. Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Mol Neurobiol 2019; 56:1607-1617. [PMID: 29909454 PMCID: PMC6295357 DOI: 10.1007/s12035-018-1184-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Diabetes increases the risk of occurrence and poor functional recovery after ischemic stroke injury. Previously, we have demonstrated greater hemorrhagic transformation (HT), edema, and more severe functional deficits after stroke in diabetic animals that also presented with cerebral vasoregression and endothelial cell death in the recovery period. Given that Toll-like receptor 4 (TLR-4) activation in microvascular endothelial cells triggers a robust inflammatory response, we hypothesized that inhibition of TLR-4 signaling prevents endothelial cell death and improves outcomes after stroke. Animals were treated with vehicle or TLR-4 inhibitor TAK242 (3 mg/kg; i.p.) following middle cerebral artery occlusion (MCAO). Neurobehavioral deficits were measured at baseline and day 3 after ischemic stroke. Primary brain microvascular endothelial cells (BMVECs) from diabetic animals were subjected to oxygen glucose deprivation re-oxygenation (OGDR) and treated with 0.1 mM iron(III)sulfate hydrate (iron) (to mimic the post-stroke bleeding) and TLR-4 inhibitors. Ischemic stroke increased the expression of TLR-4 in both hemispheres and in the microvasculature of diabetic animals. Cerebral infarct, edema, HT, and functional deficits were greater in diabetic compared to control animals. Inhibition of TLR-4 significantly reduced the neurovascular injury and improved functional outcomes. OGDR and iron reduced the cell viability and increased the expression of TLR-4 associated proteins (RIP3, MyD88, phospho-NF-kB, and release of IL-6) in BMVECs from diabetic animals. In conclusion, TLR-4 is highly upregulated in the microvasculature and that beneficial effects of TLR-4 inhibition are more profound in diabetes. This suggests that inhibition of vascular TLR-4 may provide therapeutic benefits for stroke recovery in diabetes.
Collapse
Affiliation(s)
- Yasir Abdul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | | | - Weiguo Li
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - R Clinton Webb
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Jennifer C Sullivan
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Guangkuo Dong
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA.
- Department of Physiology, Augusta University, 1120 15th Street CA-2094, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
Coucha M, Barrett AC, Elgebaly M, Ergul A, Abdelsaid M. Inhibition of Ephrin-B2 in brain pericytes decreases cerebral pathological neovascularization in diabetic rats. PLoS One 2019; 14:e0210523. [PMID: 30620753 PMCID: PMC6324788 DOI: 10.1371/journal.pone.0210523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that diabetes causes dysfunctional cerebral neovascularization that increases the risk for cerebrovascular disorders such as stroke and cognitive impairment. Pericytes (PCs) play a pivotal role in the angiogenic process through their interaction with the endothelial cells (EC). Yet, the role of PCs in dysfunctional cerebral neovascularization in diabetes is unclear. In the present study, we tested the hypothesis that the increased proangiogenic Ephrin-B2 signaling in PCs contributes to the dysfunctional cerebral neovascularization in diabetes. Type-II diabetes was induced by a combination of high fat diet and low dose streptozotocin injection in male Wistar rats. Selective in vivo Ephrin-B2 silencing in brain PCs was achieved using the stereotactic injection of adeno-associated virus (AAV) with NG2-promoter that expresses Ephrin-B2 shRNA. Neovascularization was assessed using vascular fluorescent dye stain. Novel object recognition (NOR) test was used to determine cognitive functions. Human brain microvascular pericytes HBMVPCs were grown in high glucose 25 mM and palmitate 200 uM (HG/Pal) to mimic diabetic conditions. Scratch migration and tube formation assays were conducted to evaluate PC/EC interaction and angiogenic functions in PC/EC co-culture. Diabetes increased the expression of Ephrin-B2 in the cerebrovasculature and pericytes. Concomitant increases in cerebral neovascularization parameters including vascular density, tortuosity and branching density in diabetic rats were accompanied by deterioration of cognitive function. Inhibition of Ephrin-B2 expression in PCs significantly restored cerebral vascularization and improved cognitive functions. HG/Pal increased PC/EC angiogenic properties in co-culture. Silencing Ephrin-B2 in PCs significantly reduced PC migration and PC/EC co-culture angiogenic properties. This study emphasizes the significant contribution of PCs to the pathological neovascularization in diabetes. Our findings introduce Ephrin-B2 signaling as a promising therapeutic target to improve cerebrovascular integrity in diabetes.
Collapse
Affiliation(s)
- Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Amy C. Barrett
- Biomedical Sciences Department, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Mostafa Elgebaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, Florida, United States of America
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Mohammed Abdelsaid
- Biomedical Sciences Department, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| |
Collapse
|
30
|
Venkat P, Yan T, Chopp M, Zacharek A, Ning R, Van Slyke P, Dumont D, Landschoot-Ward J, Liang L, Chen J. Angiopoietin-1 Mimetic Peptide Promotes Neuroprotection after Stroke in Type 1 Diabetic Rats. Cell Transplant 2018; 27:1744-1752. [PMID: 30124060 PMCID: PMC6300775 DOI: 10.1177/0963689718791568] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
Angiopoietin-1 (Ang1) mediates vascular maturation and immune response. Diabetes decreases Ang1 expression and disrupts Ang1/Tie2 signaling activity. Vasculotide is an Ang1 mimetic peptide, and has anti-inflammatory effects. In this study, we test the hypothesis that vasculotide treatment induces neuroprotection and decreases inflammation after stroke in type 1 diabetic (T1DM) rats. T1DM rats were subjected to embolic middle cerebral artery occlusion (MCAo) and treated with: 1) phosphate buffered saline (PBS); 2) vasculotide (3µg/kg, i.p. injection) administered half an hour prior to MCAo and at 8 and 24 hours after MCAo. Rats were sacrificed at 48 h after MCAo. Neurological function, infarct volume, hemorrhage, blood brain barrier (BBB) permeability and neuroinflammation were measured. Vasculotide treatment of T1DM-MCAo rats significantly improves functional outcome, decreases infarct volume and BBB permeability, but does not decrease brain hemorrhagic transformation compared with PBS-treated T1DM-MCAo rats. In the ischemic brain, Vasculotide treatment significantly decreases apoptosis, number of cleaved-caspase-3 positive cells, the expression of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor (TNF-α). Western blot analysis shows that vasculotide significantly decreases expression of receptor for advanced glycation end products (RAGE), MCP-1 and TNF-α in the ischemic brain compared with T1DM-MCAo rats. Vasculotide treatment in cultured primary cortical neurons (PCN) significantly decreases TLR4 expression compared with control. Decreased neuroinflammation and reduced BBB leakage may contribute, at least in part, to vasculotide-induced neuroprotective effects after stroke in T1DM rats.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Ruizhuo Ning
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Daniel Dumont
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Canada
| | | | - Linlin Liang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Reproductive Medical Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
31
|
Li W, Valenzuela JP, Ward R, Abdelbary M, Dong G, Fagan SC, Ergul A. Post-stroke neovascularization and functional outcomes differ in diabetes depending on severity of injury and sex: Potential link to hemorrhagic transformation. Exp Neurol 2018; 311:106-114. [PMID: 30243988 DOI: 10.1016/j.expneurol.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Diabetes is associated with increased risk and worsened outcome of stroke. Previous studies showed that male diabetic animals had greater hemorrhagic transformation (HT), profound loss of cerebral vasculature, and poor behavioral outcomes after ischemic stroke induced by suture or embolic middle cerebral artery occlusion (MCAO). Females are protected from stroke until reaching the menopause age, but young females with diabetes have a higher risk of stroke and women account for the majority of stroke mortality. The current study postulated that diabetes is associated with greater vascular injury and exacerbated sensorimotor and cognitive outcome after stroke even in young female animals. Male and female control and diabetic animals were subjected to transient MCAO and followed for 3 or 14 days to assess the neurovascular injury and repair. The vascularization indices after stroke were lower in male diabetic animals with 90-min but not 60-min ischemia/reperfusion injury, while there was no change in female groups. Cognitive deficits were exacerbated in both male and female groups regardless of the injury period, while the sensorimotor dysfunction was worsened in male diabetic animals with longer ischemia time. These results suggest that diabetes negates the protection afforded by sex in young female animals, and post-stroke vascularization pattern is influenced by the degree of injury and correlates with functional outcome in both sexes. Vasculoprotection after acute ischemic stroke may provide a novel therapeutic strategy in diabetes.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rebecca Ward
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahmoud Abdelbary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangkuo Dong
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, Augusta, GA, United States; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Adviye Ergul
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
32
|
Navarro-Oviedo M, Roncal C, Salicio A, Belzunce M, Rabal O, Toledo E, Zandio B, Rodríguez JA, Páramo JA, Muñoz R, Orbe J. MMP10 Promotes Efficient Thrombolysis After Ischemic Stroke in Mice with Induced Diabetes. Transl Stroke Res 2018; 10:389-401. [PMID: 30051168 DOI: 10.1007/s12975-018-0652-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023]
Abstract
Diabetes is an important risk factor for ischemic stroke (IS). Tissue-type plasminogen activator (tPA) has been associated with less successful revascularization and poor functional outcome in diabetes. We assessed whether a new thrombolytic strategy based on MMP10 was more effective than tPA in a murine IS model of streptozotocin (STZ)-induced diabetes. Wild-type mice were administered a single dose of streptozotocin (STZ) (180 mg/kg) to develop STZ-induced diabetes mellitus. Two weeks later, IS was induced by thrombin injection into the middle cerebral artery and the effect of recombinant MMP10 (6.5 μg/kg), tPA (10 mg/kg) or tPA/MMP10 on brain damage and functional outcome were analysed. Motor activity was assessed using the open field test. Additionally, we studied plasminogen activator inhibitor-1 (PAI-1) and thrombin-antithrombin complex levels (TAT) by ELISA and oxidative stress and blood-brain barrier (BBB) integrity by immunohistochemistry and western blot. MMP10 treatment was more effective at reducing infarct size and neurodegeneration than tPA 24 h and 3 days after IS in diabetic mice. Locomotor activity was impaired by hyperglycemia and ischemic injury, but not by the thrombolytic treatments. Additionally, TAT, oxidative stress and BBB permeability were reduced by MMP10 treatment, whereas brain bleeding or PAI-1 expression did not differ between treatments. Thrombolytic treatment with MMP10 was more effective than tPA at reducing stroke and neurodegeneration in a diabetic murine model of IS, without increasing haemorrhage. Thus, we propose MMP10 as a potential candidate for the clinical treatment of IS in diabetic patients.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Agustina Salicio
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain
| | - Miriam Belzunce
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estefanía Toledo
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Ministry of Economy and Competitiveness, ISCIII, Pamplona, Spain
| | - Beatriz Zandio
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Jose A Rodríguez
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jose A Páramo
- CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Haematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Roberto Muñoz
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josune Orbe
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain. .,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain. .,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
33
|
Elshaer SL, Lemtalsi T, El-Remessy AB. High Glucose-Mediated Tyrosine Nitration of PI3-Kinase: A Molecular Switch of Survival and Apoptosis in Endothelial Cells. Antioxidants (Basel) 2018; 7:antiox7040047. [PMID: 29587384 PMCID: PMC5946113 DOI: 10.3390/antiox7040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Diabetes and hyperglycemia are associated with increased retinal oxidative and nitrative stress and vascular cell death. Paradoxically, high glucose stimulates expression of survival and angiogenic growth factors. Therefore, we examined the hypothesis that high glucose-mediated tyrosine nitration causes inhibition of the survival protein PI3-kinase, and in particular, its regulatory p85 subunit in retinal endothelial cell (EC) cultures. Retinal EC were cultured in high glucose (HG, 25 mM) for 3 days or peroxynitrite (PN, 100 µM) overnight in the presence or absence of a peroxynitrite decomposition catalyst (FeTPPs, 2.5 µM), or the selective nitration inhibitor epicatechin (100 µM). Apoptosis of ECs was assessed using TUNEL assay and caspase-3 activity. Immunoprecipitation and Western blot were used to assess protein expression and tyrosine nitration of p85 subunit and its interaction with the p110 subunit. HG or PN accelerated apoptosis of retinal ECs compared to normal glucose (NG, 5 mM) controls. HG- or PN-treated cells also showed significant increases in tyrosine nitration on the p85 subunit of PI3-kinase that inhibited its association with the catalytic p110 subunit and impaired PI3-kinase/Akt kinase activity. Decomposing peroxynitrite or blocking tyrosine nitration of p85 restored the activity of PI3-kinase, and prevented apoptosis and activation of p38 MAPK. Inhibiting p38 MAPK or overexpression of the constitutively activated Myr-Akt construct prevented HG- or peroxynitrite-mediated apoptosis. In conclusion, HG impairs pro-survival signals and causes accelerated EC apoptosis, at least in part via tyrosine nitration and inhibition of PI3-kinase. Inhibitors of nitration can be used in adjuvant therapy to delay diabetic retinopathy and microvascular complication.
Collapse
Affiliation(s)
- Sally L Elshaer
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| | - Azza B El-Remessy
- Retinopathy Research, Augusta Biomedical Research Corporation Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
34
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
35
|
Ryu YK, Park HY, Go J, Choi DH, Kim YH, Hwang JH, Noh JR, Lee TG, Lee CH, Kim KS. Metformin Inhibits the Development of l-DOPA-Induced Dyskinesia in a Murine Model of Parkinson’s Disease. Mol Neurobiol 2017; 55:5715-5726. [DOI: 10.1007/s12035-017-0752-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
|
36
|
Zhang D, Tang Q, Zheng G, Wang C, Zhou Y, Wu Y, Xuan J, Tian N, Wang X, Wu Y, Xu H, Zhang X. Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation. J Cell Mol Med 2017; 21:3322-3336. [PMID: 28699677 PMCID: PMC5706495 DOI: 10.1111/jcmm.13235] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Blood-spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin-induced BSCB protection might not be mediated by up-regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP-9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP-9 in SCI. Our results showed that metformin decreased MMP-9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM-1 down-regulation. Also, our in vitro study showed that metformin inhibited TNF-α-induced MMP-9 up-regulation in neutrophils, which might be mediated via an AMPK-dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP-9 production, but not by up-regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.
Collapse
Affiliation(s)
- Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jun Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Alhusban A, Kozak A, Pillai B, Ahmed H, Sayed MA, Johnson MH, Ishrat T, Ergul A, Fagan SC. Mechanisms of acute neurovascular protection with AT1 blockade after stroke: Effect of prestroke hypertension. PLoS One 2017; 12:e0178867. [PMID: 28640888 PMCID: PMC5480858 DOI: 10.1371/journal.pone.0178867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Anna Kozak
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Heba Ahmed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
| | - Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Susan C. Fagan
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
38
|
Hu L, Chang L, Zhang Y, Zhai L, Zhang S, Qi Z, Yan H, Yan Y, Luo X, Zhang S, Wang Y, Kunapuli SP, Ye H, Ding Z. Platelets Express Activated P2Y 12 Receptor in Patients With Diabetes Mellitus. Circulation 2017. [PMID: 28637879 DOI: 10.1161/circulationaha.116.026995] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. METHODS We measured P2Y12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y12 receptor expression in megakaryocytes. RESULTS Platelet P2Y12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y12 expression correlates with ADP-induced platelet aggregation (r=0.89, P<0.01). P2Y12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P<0.05). Using a FeCl3-injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P<0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y12 receptor expression in diabetes mellitus. CONCLUSIONS Platelet P2Y12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Liang Hu
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Chang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Zhai
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyong Qi
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongmei Yan
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yan
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinping Luo
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiping Wang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Satya P Kunapuli
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongying Ye
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongren Ding
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
39
|
Kaisar MA, Villalba H, Prasad S, Liles T, Sifat AE, Sajja RK, Abbruscato TJ, Cucullo L. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: Is Metformin a viable countermeasure? Redox Biol 2017. [PMID: 28646795 PMCID: PMC5480985 DOI: 10.1016/j.redox.2017.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently published in vitro and in vivo findings strongly suggest that BBB impairment and increased risk for stroke by tobacco smoke (TS) closely resemble that of type-2 diabetes (2DM) and develop largely in response to common key modulators such oxidative stress (OS), inflammation and alterations of the endogenous antioxidative response system (ARE) regulated by the nuclear factor erythroid 2-related factor (Nrf2). Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes) can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Herein we provide evidence that likewise to TS, chronic e-Cigarette (e-Cig) vaping can be prodromal to the loss of blood-brain barrier (BBB) integrity and vascular inflammation as well as act as a promoting factor for the onset of stroke and worsening of post-ischemic brain injury. In addition, recent reports have shown that Metformin (MF) treatment before and after ischemic injury reduces stress and inhibits inflammatory responses. Recent published data by our group revealead that MF promotes the activation of counteractive mechanisms mediated by the activation of Nrf2 which drastically reduce TS toxicity at the brain and cerebrovascular levels and protect BBB integrity. In this study we provide additional in vivo evidence showing that MF can effectively reduce the oxidative and inflammatory risk for stroke and attenuate post-ischemic brain injury promoted by TS and e-Cig vaping. Our data also suggest that MF administration could be extended as prophylactic care during the time window required for the renormalization of the risk levels of stroke following smoking cessation thus further studies in that direction are warrated. Chronic cigarette and e-cigarette exposure downregulate throbomodulin and Nrf2. Chronic CS and e-Cig exposure worsen stroke outcome in mice undergoing tMCAO. Metformin ameliorate stroke outcomes in CS and e-Cig exposed mice undergoing tMCAO. MF protective effect correlates with renormalization of Nrf2 levels.
Collapse
Affiliation(s)
- Mohammad A Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Shikha Prasad
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Taylor Liles
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
40
|
Venkat P, Chopp M, Chen J. Blood-Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke. J Am Heart Assoc 2017; 6:e005819. [PMID: 28572280 PMCID: PMC5669184 DOI: 10.1161/jaha.117.005819] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Poornima Venkat
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Jieli Chen
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Neurological & Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
41
|
Arbeláez-Quintero I, Palacios M. To Use or Not to Use Metformin in Cerebral Ischemia: A Review of the Application of Metformin in Stroke Rodents. Stroke Res Treat 2017; 2017:9756429. [PMID: 28634570 PMCID: PMC5467394 DOI: 10.1155/2017/9756429] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemic strokes are major causes of death and disability. Searching for potential therapeutic strategies to prevent and treat stroke is necessary, given the increase in overall life expectancy. Epidemiological reports indicate that metformin is an oral antidiabetic medication that can reduce the incidence of ischemic events in patients with diabetes mellitus. Its mechanism of action has not been elucidated, but metformin pleiotropic effects involve actions in addition to glycemic control. AMPK activation has been described as one of the pharmacological mechanisms that explain the action of metformin and that lead to neuroprotective effects. Most experiments done in the cerebral ischemia model, via middle cerebral artery occlusion in rodents (MCAO), had positive results favoring metformin's neuroprotective role and involve several cellular pathways like oxidative stress, endothelial nitric oxide synthase activation, activation of angiogenesis and neurogenesis, autophagia, and apoptosis. We will review the pharmacological properties of metformin and its possible mechanisms that lead to neuroprotection in cerebral ischemia.
Collapse
Affiliation(s)
| | - Mauricio Palacios
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia
| |
Collapse
|
42
|
Bonnet F, Scheen AJ. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. DIABETES & METABOLISM 2017; 43:299-313. [PMID: 28522196 DOI: 10.1016/j.diabet.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Patients with type 2 diabetes (T2D) have an increased risk of stroke compared with people without diabetes. However, the effects of glucose-lowering drugs on risk of ischaemic stroke in T2D have been less extensively investigated than in coronary heart disease. Some evidence, including the UKPDS, has suggested a reduced risk of stroke with metformin, although the number of studies is limited. Inhibition of the KATP channels increases ischaemic brain lesions in animals. This is in agreement with a recent meta-analysis showing an increased risk of stroke with sulphonylureas vs. various comparators as both mono- and combination therapy. Pioglitazone can prevent recurrence of stroke in patients with previous stroke, as already shown in PROactive, although results are less clear for first strokes. As for DPP-4 inhibitors, there was a non-significant trend towards benefit for stroke, whereas a possible increased risk of stroke with SGLT2 inhibitors-and in particular, empagliflozin in the EMPA-REG OUTCOME trial-has been suggested and requires clarification. Experimental results support a potential protective effect of GLP-1 receptor agonists against stroke that has, at least in part, been translated to clinical benefits in T2D patients in the LEADER and SUSTAIN-6 trials. Further interventional studies are now warranted to confirm the effects of glucose-lowering agents on risk of stroke in patients with T2D. In summary, the effects of antidiabetic drugs on risk of stroke appear to be heterogeneous, with some therapies (pioglitazone, GLP-1 receptor agonists) conferring possible protection against ischaemic stroke, other classes showing a neutral impact (DPP-4 inhibitors, insulin) and some glucose-lowering agents being associated with an increased risk of stroke (sulphonylureas, possibly SGLT2 inhibitors, high-dose insulin in the presence of insulin resistance).
Collapse
Affiliation(s)
- F Bonnet
- Centre Hospitalier Universitaire de Rennes, Université Rennes 1, Rennes, France; INSERM U1018, Villejuif, France.
| | - A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU, Liège, Belgium
| |
Collapse
|
43
|
Abdelsaid M, Coucha M, Hafez S, Yasir A, Johnson MH, Ergul A. Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia 2017; 60:740-750. [PMID: 28116460 PMCID: PMC5342922 DOI: 10.1007/s00125-017-4214-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/31/2016] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Diabetes promotes cerebral neovascularisation via increased vascular endothelial growth factor (VEGF) angiogenic signalling. Roundabout-4 (ROBO4) protein is an endogenous inhibitor of VEGF signalling that stabilises the vasculature. Yet, how diabetes affects ROBO4 function remains unknown. We hypothesised that increased VEGF signalling in diabetes decreases ROBO4 expression and function via binding of ROBO4 with VEGF-activated β3 integrin and that restoration of ROBO4 expression prevents/repairs cerebral neovascularisation in diabetes. METHODS ROBO4 protein expression in a rat model of type 2 diabetes (Goto-Kakizaki [GK] rats) was examined by western blotting and immunohistochemistry. ROBO4 was locally overexpressed in the brain and in primary brain microvascular endothelial cells (BMVECs). GK rats were treated with SKLB1002, a selective VEGF receptor-2 (VEGFR-2) antagonist. Cerebrovascular neovascularisation indices were determined using a FITC vascular space-filling model. Immunoprecipitation was used to determine ROBO4-β3 integrin interaction. RESULTS ROBO4 expression was significantly decreased in the cerebral vasculature as well as in BMVECs in diabetes (p < 0.05). Silencing Robo4 increased the angiogenic properties of control BMVECs (p < 0.05). In vivo and in vitro overexpression of ROBO4 inhibited VEGF-induced angiogenic signalling and increased vessel maturation. Inhibition of VEGF signalling using SKLB1002 increased ROBO4 expression (p < 0.05) and reduced neovascularisation indices (p < 0.05). Furthermore, SKLB1002 significantly decreased ROBO4-β3 integrin interaction in diabetes (p < 0.05). CONCLUSIONS/INTERPRETATION Our study identifies the restoration of ROBO4 and inhibition of VEGF signalling as treatment strategies for diabetes-induced cerebral neovascularisation.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA.
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA.
| | - Maha Coucha
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Abdul Yasir
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | | | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| |
Collapse
|
44
|
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, Badavi M, Khalaj L. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol 2017; 95:388-395. [DOI: 10.1139/cjpp-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia–reperfusion (I–R) (P < 0.01). Pretreatment of the I–R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I–R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I–R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I–R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I–R group compared to the I–R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I–R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yaghoob Farbood
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
45
|
Song L, Li D, Wang J, Meng C, Cui X. Effects of p38 mitogen-activated protein kinase on lung ischemia-reperfusion injury in diabetic rats. J Surg Res 2017; 216:9-17. [PMID: 28807219 DOI: 10.1016/j.jss.2017.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a pathologic process that is observed in several clinical conditions, and p38 mitogen-activated protein kinase (MAPK) is involved. Diabetes mellitus (DM) results in an increased incidence of ischemia-induced organ damage. The aims of this study were to examine the effects of DM on LIRI in a rat model of DM and to explore the possible mechanisms in relation to the p38 MAPK pathway. METHODS Forty rats were randomly divided into the following five groups (n = 8 each): a control + sham group, a control + IR group (CIR), a DM + sham group, a DM + IR group (DIR), and a DM + IR + SB203580 group. The control and streptozotocin-induced diabetic rats underwent a sham operation or left hilum occlusion for 90 min followed by reperfusion for 4 h. SB203580 was used to inhibit the p38 MAPK pathway. The pulmonary oxygenation index, inflammatory cytokines in the serum, lung edema, histopathology, oxidant stress, apoptosis, and phosphorylated/total-p38 MAPK protein levels were measured. RESULTS The DIR group displayed greater concentrations of tumor necrosis factor-α, interleukin-6, and intercellular adhesion molecule-1 and increases in the wet weight-to-dry weight ratio, lung injury scores, malondialdehyde levels, and cellular apoptosis, and these effects were accompanied by lower pulmonary oxygenation compared with the CIR group (P < 0.05). In the DIR group, the expression levels of p38 MAPK protein were significantly upregulated compared with those of the CIR group. Additionally, all of these alterations were attenuated in the DM + IR + SB203580 group compared with the DIR group. CONCLUSIONS Diabetes exacerbates LIRI by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- Linlin Song
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Juan Wang
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chao Meng
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoguang Cui
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
46
|
Guo JM, Zhang L, Niu XC, Shu H, Wang L, Su DF, Zhang Y, Liu AJ, Zhu DQ, Xu JJ. Involvement of arterial baroreflex and nicotinic acetylcholine receptor α7 subunit pathway in the protection of metformin against stroke in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 2017; 798:1-8. [PMID: 28132912 DOI: 10.1016/j.ejphar.2017.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Stroke is a leading cause of mortality and disability worldwide. There is growing evidence that metformin (Met) has potent neuroprotective effects; however, its mechanisms remain unclear. We examined the role of the arterial baroreflex and cholinergic-α7 nicotinic acetylcholine receptor (α7nAChR) anti-inflammory pathway in the beneficial effects of Met against stroke. Stroke-prone spontaneously hypertensive rats (SHRSP) were used to observe stroke development indicated by lifespan of SHRSP and the ischemic injury induced by permanent middle cerebral artery occlusion (MCAO). Sinoaortic denervation was used to inactivate the arterial baroreflex. MCAO were also performed in α7nAChR knockout (KO) mice. Briefly, Met increased the life span of SHRSP and reduced the infarct area induced by MCAO. Met also improved the function of arterial baroreflex. The beneficial effects of Met on stroke were markedly attenuated by blunting the arterial baroreflex. Met up-regulated the expression of vesicular acetylcholine transporter (VAChT) and α7nAChR, down-regulated the level of pro-inflammtory cytokines in serum and peri-infarct of ischemic brain. Arterial baroreflex dysfunction decreased the expression of VAchT and α7nAChR, showed upward tendency in the level of pro-inflammtory cytokines. Most importantly, arterial baroreflex dysfunction nearly abolished such effect of Met on cholinergic signaling. In addition, the α7nAChR KO mice also had significantly worse ischemic damage induced by MCAO, and neuroprotection of Met disappeared in α7nAChR KO mice. In conclusion, Met improved the arterial baroreflex function, and then enhancing cholinergic anti-inflammatory pathway in an α7nAChR-dependent manner, thereby effectively prevent ischemic induced brain injury and delayed stroke onset in SHRSP.
Collapse
Affiliation(s)
- Jin-Min Guo
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Li Zhang
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Xue-Cai Niu
- Department of Radiotheropy, The Forth Hospital of Jinan City, Jinan, Shandong, China
| | - He Shu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Lei Wang
- Department of Orthopaedics, Jinan Military General Hospital, Jinan, Shandong, China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ai-Jun Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - De-Qiu Zhu
- Division of Pharmacy, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China.
| | - Jian-Jiang Xu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China.
| |
Collapse
|
47
|
Alhusban A, Alkhazaleh E, El-Elimat T. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3 β Inhibition-Induced Reduction of VEGF Release. J Diabetes Res 2017; 2017:2537216. [PMID: 29209632 PMCID: PMC5676450 DOI: 10.1155/2017/2537216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/24/2017] [Indexed: 02/03/2023] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin) has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i) were treated with 50 μg/mL advanced glycation end (AGE) products in the presence or absence of silymarin (50, 100 μM). The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p = 0.0001). Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p = 0.001). This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Enaam Alkhazaleh
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamam El-Elimat
- Medicinal Chemistry & Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
48
|
Ge XH, Zhu GJ, Geng DQ, Zhang HZ, He JM, Guo AZ, Ma LL, Yu DH. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats. Physiol Behav 2016; 170:115-123. [PMID: 28017679 DOI: 10.1016/j.physbeh.2016.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Although Metformin, a first-line antidiabetic drug, can ameliorate ischemia/reperfusion (I/R) induced brain damage, but how metformin benefits injured hippocampus and the mechanisms are still largely unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of metformin against ischemic brain damage induced by cerebral I/R and to explore whether the Akt-mediated down-regulation of the phosphorylation of JNK3 signaling pathway contributed to the protection provided by metformin. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The open field tasks and Morris water maze were used to assess the effect of metformin on anxiety-like behavioral and cognitive impairment after I/R. Cresyl Violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of Akt1, JNK3, c-Jun and the expression of cleaved caspase-3. Through ischemia/reperfusion (I/R) rat model, we found that metformin could attenuate the deficits of hippocampal related behaviors and inhibit cell apoptosis. The western blot data showed that metformin could promote the activation of Akt1 and reduce the phosphorylation of JNK3 and c-Jun as well as elevation of cleaved caspase-3 in I/R brains. PI3K inhibitor reversed all the protective effects, further indicating that metformin protect hippocampus from ischemic damage through PI3K/Akt1/JNK3/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Xu-Hua Ge
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Guo-Ji Zhu
- Department of pediatrics, Soochow University Affiliated Children's Hospital, Soochow University, Suzhou 215003, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Han-Zhi Zhang
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Juan-Mei He
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Ai-Zhen Guo
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - Lin-Lin Ma
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China
| | - De-Hua Yu
- Department of General Medicine, Yangpu Hospital of Tongji University, Department of General Practice of Tongji University, Shanghai 200090, China.
| |
Collapse
|
49
|
Napoli E, Borlongan CV. Recent Advances in Stem Cell-Based Therapeutics for Stroke. Transl Stroke Res 2016; 7:452-457. [PMID: 27515852 PMCID: PMC5065756 DOI: 10.1007/s12975-016-0490-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 01/27/2023]
Abstract
Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying stem cell therapy. Recognizing the multi-pronged cell death processes associated with stroke that will likely require combination therapies, we next discuss potent drugs and novel technologies directed at improving the functional outcomes of stem cell-based therapeutics. We also examine discrepant transplant regimens between preclinical studies and clinical trials, as well as missing appropriate control arm (i.e., stroke subjects undergoing rehabilitation) on which to directly compare the therapeutic benefits of cell therapy. Finally, the bioethics of cell therapy is presented in order to assess its prevailing social status. With preliminary results now being reported from on-going clinical trials of stem cell therapy for stroke, a careful assessment of the true functional benefits of this novel treatment will further direct the future of regenerative medicine for neurological disorders.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
50
|
Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3919627. [PMID: 27656261 PMCID: PMC5021880 DOI: 10.1155/2016/3919627] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/28/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.
Collapse
|