1
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Kerk SA, Garcia-Bermudez J, Birsoy K, Sherman MH, Shah YM, Lyssiotis CA. Spotlight on GOT2 in Cancer Metabolism. Onco Targets Ther 2023; 16:695-702. [PMID: 37635751 PMCID: PMC10460182 DOI: 10.2147/ott.s382161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
GOT2 is at the nexus of several critical metabolic pathways in homeostatic cellular and dysregulated cancer metabolism. Despite this, recent work has emphasized the remarkable plasticity of cancer cells to employ compensatory pathways when GOT2 is inhibited. Here, we review the metabolic roles of GOT2, highlighting findings in both normal and cancer cells. We emphasize how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT2 is inhibited. We close by using this framework to discuss key considerations for future investigations into cancer metabolism.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier Garcia-Bermudez
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mara H Sherman
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Do WL, Sun D, Meeks K, Dugué PA, Demerath E, Guan W, Li S, Chen W, Milne R, Adeyemo A, Agyemang C, Nassir R, Manson JE, Shadyab AH, Hou L, Horvath S, Assimes TL, Bhatti P, Jordahl KM, Baccarelli AA, Smith AK, Staimez LR, Stein AD, Whitsel EA, Narayan KV, Conneely KN. Epigenome-wide meta-analysis of BMI in nine cohorts: Examining the utility of epigenetically predicted BMI. Am J Hum Genet 2023; 110:273-283. [PMID: 36649705 PMCID: PMC9943731 DOI: 10.1016/j.ajhg.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.
Collapse
Affiliation(s)
- Whitney L. Do
- Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Karlijn Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA,Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences At Monash Health, Monash University, Clayton, VIC, Australia,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Ellen Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Childrens Minnesota, Minneapolis, MN, USA
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Roger Milne
- Precision Medicine, School of Clinical Sciences At Monash Health, Monash University, Clayton, VIC, Australia,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3051, Australia
| | - Abedowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | | | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa R. Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aryeh D. Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Eric A. Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - K.M. Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA,Corresponding author
| |
Collapse
|
5
|
Salamun V, Rizzo M, Lovrecic L, Hocevar K, Papler Burnik T, Janez A, Jensterle M, Vrtacnik Bokal E, Peterlin B, Maver A. The Endometrial Transcriptome of Metabolic and Inflammatory Pathways During the Window of Implantation Is Deranged in Infertile Obese Polycystic Ovarian Syndrome Women. Metab Syndr Relat Disord 2022; 20:384-394. [PMID: 35834645 DOI: 10.1089/met.2021.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction and Aim: Obese women with polycystic ovarian syndrome (PCOS) have a reduced rate of spontaneous conception even when their cycles are ovulatory. Endometrial receptivity is an important factor for poor implantation and increased miscarriage rates. Mechanisms in which both pathologies modify the endometrium are not fully clarified. The aim of our study was to compare the endometrial transcriptomic profiles between infertile obese PCOS (O-PCOS) women and infertile normal weight subjects during the window of implantation in ovulatory menstrual cycles. Methods: We conducted a prospective transcriptomic analysis of the endometrium using RNA sequencing. In this way, potential endometrial mechanisms leading to the poor reproductive outcome in O-PCOS patients could be characterized. Endometrial samples during days 21-23 of the menstrual cycle were collected from infertile O-PCOS women (n = 11) and normal weight controls (n = 10). Subgroups were defined according to the ovulatory/anovulatory status in the natural cycles, and O-PCOS women were grouped into the O-PCOS ovulatory (O-PCOS-ovul) subgroup. RNA isolation, sequencing with library reparation, and subsequent RNAseq data analysis were performed. Results: Infertile O-PCOS patients had 610 differentially expressed genes (DEGs), after adjustment for multiple comparisons with normal weight infertile controls, related to obesity (MXRA5 and ECM1), PCOS (ADAMTS19 and SLC18A2), and metabolism (VNN1 and PC). In the ovulatory subgroup, no DEGs were found, but significant differences in canonical pathways and the upstream regulator were revealed. According to functional and upstream analyses of ovulatory subgroup comparisons, the most important biological processes were related to inflammation (TNFR1 signaling), insulin signaling (insulin receptor signaling and PI3/AKT), fatty acid metabolism (stearate biosynthesis I and palmitate biosynthesis I), and lipotoxicity (unfolded protein response pathway). Conclusions: We demonstrated that endometrial transcription in ovulatory O-PCOS patients is deranged in comparison with the control ovulatory endometrium. The most important pathways of differentiation include metabolism and inflammation. These processes could also represent potential mechanisms for poor embryo implantation, which prevent the development of a successful pregnancy. ClinicalTrials.gov ID: NCT03353948.
Collapse
Affiliation(s)
- Vesna Salamun
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes, and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Laboratory Medicine, DIBIMIS, University of Palermo, Italy
| | - Luca Lovrecic
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Keli Hocevar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Papler Burnik
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Jensterle
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtacnik Bokal
- Division of Obstetrics and Gynecology, Department of Human Reproduction, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Kwon YJ, Park DH, Choi JE, Lee D, Hong KW, Lee JW. Identification of the interactions between specific genetic polymorphisms and nutrient intake associated with general and abdominal obesity in middle-aged adults. Clin Nutr 2022; 41:543-551. [PMID: 35030529 DOI: 10.1016/j.clnu.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Comprehensive understanding of gene-diet interactions is necessary to establish proper dietary guidelines to prevent and manage general and abdominal obesity. We investigated the role of genetic variants and their interactions with general and abdominal obesity-associated nutrients using a largescale genome-wide association study of Korean adults. METHODS A total of 50,808 participants from a Korean genome and epidemiology study were included. Dietary intake was assessed using a food frequency questionnaire. Obesity was defined as a body mass index ≥25 kg/m2. Abdominal obesity (AO) was defined as waist circumference ≥90 cm and 80 cm in males and females, respectively. Dietary nutrient intake was classified based on Korean Dietary Reference Intakes (DRIs). Odds ratios and 95% confidence intervals were calculated after adjusting for age, sex, exercise, smoking, alcohol drinking, total energy consumption, PC1, and PC2. RESULTS Among the individuals consuming fat (%) above DRI, carriers of Ca binding protein 39 (CAB39)- rs6722579 minor allele (A) have a higher risk of AO than those not carrying the SNP (odds ration [OR] = 3.73, p-value = 2.05e-07; interaction p-value = 1.80e-07). Among the individuals consuming vitamin C above DRI, carriers of carboxypeptidase Q (CPQ)- rs59465035 minor allele (T) have a lower risk of AO than those without that SNP (OR = 0.89, p-value = 1.44e-08; interaction p-value = 9.50e-06). The genetic association with obesity was stronger among individuals with a genetic variant rs4130113 near GHR gene region in those consume folate above DRI and with a genetic variant rs5760920 near CRYBB2 gene region in those consume vitamin B2 above DRI. CONCLUSION Our study results suggested that interactions of specific polymorphisms at loci and certain nutrients may influence obesity and abdominal obesity.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Gyeonggi-do, Republic of Korea
| | - Da Hyun Park
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Dasom Lee
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea.
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea.
| |
Collapse
|
8
|
Uda Y, Saini V, Petty CA, Alshehri M, Shi C, Spatz JM, Santos R, Newell CM, Huang TY, Kochen A, Kim JW, Constantinou CK, Saito H, Held KD, Hesse E, Pajevic PD. Parathyroid hormone signaling in mature osteoblasts/osteocytes protects mice from age-related bone loss. Aging (Albany NY) 2021; 13:25607-25642. [PMID: 34968192 PMCID: PMC8751595 DOI: 10.18632/aging.203808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher A. Petty
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Majed Alshehri
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Chao Shi
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, P.R. China
| | - Jordan M. Spatz
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roberto Santos
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Carly M. Newell
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Tim Y. Huang
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Ji W. Kim
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Christodoulos K. Constantinou
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Hiroaki Saito
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kathryn D. Held
- Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
10
|
Physical Activity Attenuates the Obesity-Induced Dysregulated Expression of Brown Adipokines in Murine Interscapular Brown Adipose Tissue. Int J Mol Sci 2021; 22:ijms221910391. [PMID: 34638731 PMCID: PMC8508858 DOI: 10.3390/ijms221910391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, brown adipose tissue (BAT), which has a high heat-producing capacity, has been confirmed to exist even in adults, and it has become a focal point for the prevention and the improvement of obesity and lifestyle-related diseases. However, the influences of obesity and physical activity (PA) on the fluid factors secreted from BAT (brown adipokines) are not well understood. In this study, therefore, we focused on brown adipokines and investigated the effects of obesity and PA. The abnormal expressions of gene fluid factors such as galectin-3 (Lgals3) and Lgals3 binding protein (Lgals3bp), whose proteins are secreted from HB2 brown adipocytes, were observed in the interscapular BAT of obese mice fed a high-fat diet for 4 months. PA attenuated the abnormalities in the expressions of these genes. Furthermore, although the gene expressions of factors related to brown adipocyte differentiation such as peroxisome proliferator-activated receptor gamma coactivator 1-α were also down-regulated in the BAT of the obese mice, PA suppressed the down-regulation of these factors. On the other hand, lipogenesis was increased more in HB2 cells overexpressing Lgals3 compared with that in control cells, and the overexpression of Lgals3bp decreased the mitochondrial mass. These results indicate that PA attenuates the obesity-induced dysregulated expression of brown adipokines and suggests that Lgals3 and Lgals3bp are involved in brown adipocyte differentiation.
Collapse
|
11
|
FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci U S A 2021; 118:2021013118. [PMID: 34493647 PMCID: PMC8449320 DOI: 10.1073/pnas.2021013118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.
Collapse
|
12
|
Cao VT, Lea RA, Sutherland HG, Benton MC, Pishva RS, Haupt LM, Griffiths LR. A genome-wide methylation study of body fat traits in the Norfolk Island isolate. Nutr Metab Cardiovasc Dis 2021; 31:1556-1563. [PMID: 33810959 DOI: 10.1016/j.numecd.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Natural variation in body fat is explained by both genetic and environmental effects. Epigenetic mechanisms such as DNA methylation can mediate these effects causing changes in gene expression leading to onset of obesity. Studies of genetic isolates have the potential to provide new epigenetic insights with advantages such as reduced genetic diversity and environmental exposures. METHODS AND RESULTS This was an exploratory study of genome-wide DNA methylation in relation to body fat traits in 47 healthy adults from the genetic isolate of Norfolk Island. Quantitative body fat traits (body fat percentage, body mass index, hip circumference, waist circumference, waist-hip-ratio and weight) were carefully measured. DNA methylation data was obtained from peripheral blood using Illumina 450K arrays. Multi-trait analysis was performed using Principal Component Analysis (PCA). CpG by trait association testing was performed using stepwise linear regressions. Two components were identified that explained approximately 89% of the phenotypic variance. In total, 5 differential methylated positions (DMPs) were identified at genome-wide significance (P≤ 2.4 × 10-7), which mapped to GOT2-CDH8, LYSMD3, HIBADH, ADGRD1 and EBF4 genes. Gene set enrichment analysis of 848 genes containing suggestive DMPs (P≤ 1.0 × 10-4) implicated the Cadherin (28 genes, Padj = 6.76 × 10-7) and Wnt signaling pathways (38 genes, Padj = 7.78 × 10-6). CONCLUSION This study provides new insights into the epigenetically influenced genes and pathways underlying body fat variation in a healthy cohort and provides targets for consideration in future studies of obesity risk.
Collapse
Affiliation(s)
- Van T Cao
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Rodney A Lea
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Miles C Benton
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Human Genomics, Institute of Environmental Science and Research, Kenepuru, Wellington, New Zealand.
| | - Reza S Pishva
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
13
|
Zhen S, Ma Y, Han Y, Zhao Z, Yang X, Wen D. Serum galectin-3BP as a novel marker of obesity and metabolic syndrome in Chinese adolescents. BMJ Open Diabetes Res Care 2021; 9:9/1/e001894. [PMID: 33910911 PMCID: PMC8094345 DOI: 10.1136/bmjdrc-2020-001894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Childhood obesity (OB) and metabolic syndrome (MetS) have become a worldwide health problem. Comparative proteomic approaches are widely used in human OB to analyze protein changes in blood plasma. The present study determined the galectin-3 binding protein (galectin-3BP) expression level in different weight categories and assessed the associations between galectin-3BP and OB and MetS. RESEARCH DESIGN AND METHODS The current study included 932 Chinese adolescents 13-18 years of age. The biochemical and anthropometric variables of all the subjects were evaluated using standardized procedures. The differentially expressed proteins (DEPs) were investigated among 60 adolescents (20 normal weight, 20 overweight and 20 obese) using tandem mass tag (TMT) quantitative proteomics. The serum galectin-3BP level was measured using ELISA. The associations between galectin-3BP and OB and MetS were analyzed in 932 adolescents using multiple logistic regression analyses. RESULTS A significant DEP, galectin-3BP, can effectively separate the obese from the normal weight group using TMT. Adolescents in tertile 3 of galectin-3BP, when compared with adolescents in the tertile 1, were positively associated with OB (OR=3.32, 95% CI 1.79 to 6.16) and MetS (OR=3.28, 95% CI 1.30 to 8.26). The receiver operating characteristic curve for galectin-3BP in subjects with MetS indicated that the area under the curve was 0.85 (95% CI 0.79 to 0.91). CONCLUSIONS This study confirmed an association between galectin-3BP and OB in Chinese adolescents, and galectin-3BP was also positively associated with MetS, and thus might be useful for identifying adolescents with MetS.
Collapse
Affiliation(s)
- Shihan Zhen
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, China
| | - Yanshuo Han
- School of Public Health, China Medical University, Shenyang, China
| | - Zhongyi Zhao
- School of Public Health, China Medical University, Shenyang, China
| | - Xuelian Yang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Galanin I, Nicu C, Tower JI. Facial Fat Fitness: A New Paradigm to Understand Facial Aging and Aesthetics. Aesthetic Plast Surg 2021; 45:151-163. [PMID: 32914326 DOI: 10.1007/s00266-020-01933-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022]
Abstract
Traditionally, facial adipose tissue has been perceived and treated as a homogenous volume-occupying subcutaneous depot. However, recent research from across disciplines is converging to reveal a far more anatomically organized and functionally dynamic role of facial adipose tissue. In this narrative review, we will discuss new insights into adipocyte function and facial adipose anatomy that have far-reaching implications for the practice of aesthetic facial plastic surgery. These concepts are synthesized into a "facial fat fitness" model which can be used to explain clinical observations in facial aging and aesthetic surgery. Fat fitness relates to the quality of facial adipose tissue, as opposed to quantity, and describes whether adipose tissue is in a predominantly healthy hyperplastic or unhealthy hypertrophic state. Fat fitness is modulated by lifestyle factors, and may be impacted positively or negatively by facial aesthetic treatments. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Carina Nicu
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob I Tower
- Department of Otolaryngology-Head and Neck Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, 130 East 77th Street, 10th Floor, New York, NY, USA.
| |
Collapse
|
15
|
Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci Rep 2020; 10:13962. [PMID: 32811870 PMCID: PMC7435270 DOI: 10.1038/s41598-020-70894-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Meat quality has an important genetic component and can be modified by the fatty acid (FA) composition and the amount of fat contained in adipose tissue and muscle. The present study aimed to find genomic regions associated with the FA composition in backfat and muscle (longissimus dorsi) in 439 pigs with three different genetic backgrounds but having the Iberian breed in common. Genome-wide association studies (GWAS) were performed between 38,424 single-nucleotide polymorphisms (SNPs) covering the pig genome and 60 phenotypic traits related to backfat and muscle FA composition. Nine significant associated regions were found in backfat on the Sus scrofa chromosomes (SSC): SSC1, SSC2, SSC4, SSC6, SSC8, SSC10, SSC12, and SSC16. For the intramuscular fat, six significant associated regions were identified on SSC4, SSC13, SSC14, and SSC17. A total of 52 candidate genes were proposed to explain the variation in backfat and muscle FA composition traits. GWAS were also reanalysed including SNPs on five candidate genes (ELOVL6, ELOVL7, FADS2, FASN, and SCD). Regions and molecular markers described in our study may be useful for meat quality selection of commercial pig breeds, although several polymorphisms were breed-specific, and further analysis would be needed to evaluate possible causal mutations.
Collapse
|
16
|
Wang T, Hill RC, Dzieciatkowska M, Zhu L, Infante AM, Hu G, Hansen KC, Pei M. Site-Dependent Lineage Preference of Adipose Stem Cells. Front Cell Dev Biol 2020; 8:237. [PMID: 32351957 PMCID: PMC7174673 DOI: 10.3389/fcell.2020.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Adult stem cells have unique properties in both proliferation and differentiation preference. In this study, we hypothesized that adipose stem cells have a depot-dependent lineage preference. Four rabbits were used to provide donor-matched adipose stem cells from either subcutaneous adipose tissue (ScAT) or infrapatellar fat pad (IPFP). Proliferation and multi-lineage differentiation were evaluated in adipose stem cells from donor-matched ScAT and IPFP. RNA sequencing (RNA-seq) and proteomics were conducted to uncover potential molecular discrepancy in adipose stem cells and their corresponding matrix microenvironments. We found that stem cells from ScAT exhibited significantly higher proliferation and adipogenic capacity compared to those from donor-matched IPFP while stem cells from IPFP displayed significantly higher chondrogenic potential compared to those from donor-matched ScAT. Our findings are strongly endorsed by supportive data from transcriptome and proteomics analyses, indicating a site-dependent lineage preference of adipose stem cells.
Collapse
Affiliation(s)
- Tingliang Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aniello M. Infante
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
| | - Gangqing Hu
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
17
|
Sulforaphene Suppresses Adipocyte Differentiation via Induction of Post-Translational Degradation of CCAAT/Enhancer Binding Protein Beta (C/EBPβ). Nutrients 2020; 12:nu12030758. [PMID: 32183002 PMCID: PMC7146557 DOI: 10.3390/nu12030758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
Adipocyte differentiation (adipogenesis) is a crucial process that determines the total number and size of mature adipocytes that will develop. In this study, the anti-adipogenic effect of sulforaphene (SFEN), a dietary isothiocyanate (ITC) derived from radish, is investigated both in 3T3-L1 pre-adipocytes and in human adipose tissue-derived stem cells. The results revealed that SFEN significantly inhibit adipogenic cocktail-induced adipocyte differentiation and lipid accumulation at the early stage of adipogenesis. Additionally, the effects are more potent compared to those of other ITCs derived from various cruciferous vegetables. As a related molecular mechanism of action, SFEN promotes the post-translational degradation of CCAAT/enhancer-binding protein (C/EBP) β by decreasing the stability of C/EBPβ, which is responsible for decreasing the expression of master regulatory proteins such as peroxisome proliferator-activated receptor γ and C/EBPα. Collectively, these results suggest that the intake of SFEN-enriched natural materials could be helpful as a strategy for preventing obesity.
Collapse
|
18
|
Haylett WL, Ferris WF. Adipocyte-progenitor cell communication that influences adipogenesis. Cell Mol Life Sci 2020; 77:115-128. [PMID: 31352534 PMCID: PMC11104918 DOI: 10.1007/s00018-019-03256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Adipose tissue is located in discrete depots that are differentially associated with elevated risk of metabolic complications, with fat accretion in visceral depots being most detrimental to metabolic health. Currently, the regulation of specific adipose depot expansion, by adipocyte hypertrophy and hyperplasia and consequently fat distribution, is not well understood. However, a growing body of evidence from in vitro investigations indicates that mature adipocytes secrete factors that modulate the proliferation and differentiation of progenitor, adipose-derived stem cells (ADSCs). It is therefore plausible that endocrine communication between adipocytes and ADSCs located in different depots influences fat distribution, and may therefore contribute to the adverse health outcomes associated with visceral adiposity. This review will explore the available evidence of paracrine and endocrine crosstalk between mature adipocytes and ADSCs that affects adipogenesis, as a better understanding of the regulatory roles of the extracellular signalling mechanisms within- and between adipose depots may profoundly change the way we view adipose tissue growth in obesity and related comorbidities.
Collapse
Affiliation(s)
- William Lloyd Haylett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
19
|
Mukherjee S, Choi M, Yun JW. Novel regulatory roles of carboxylesterase 3 in lipid metabolism and browning in 3T3-L1 white adipocytes. Appl Physiol Nutr Metab 2019; 44:1089-1098. [DOI: 10.1139/apnm-2018-0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of carboxylesterase 3 (Ces3) in the lipolysis of adipocytes has been overlooked, as 2 major lipolytic enzymes, hormone-sensitive lipase and adipose triglyceride lipase, play more powerful roles in lipolysis. In this study, we explored the effects of Ces3 in lipid metabolism by activating and inhibiting, as well as silencing, Ces3-encoding gene in 3T3-L1 cell model. Our results demonstrated that activation of Ces3 increased adipogenesis, and attenuated lipogenesis, whereas it promoted lipolysis and fatty acid oxidation. In addition, activated Ces3 led to enhanced expression of core fat browning marker genes and proteins, suggesting that Ces3 may play a pivotal role in fat browning and thermogenesis. In contrast, deficiency of Ces3 nullified the browning effect in white adipocytes, along with decreased adipogenesis in 3T3-L1 adipocytes. Interestingly, the expression pattern of adipose triglyceride lipase was in line with Ces3, whereas hormone-sensitive lipase was independently regulated irrespective of Ces3 expression levels, suggesting that Ces3 may play an important and compensatory role in the breakdown of triglycerides in white adipocytes. In conclusion, we provide the first evidence that activation of Ces3 contributes in the browning of white adipocytes, and maintains a balance in lipid metabolism, which could be a potential strategy in fighting against obesity.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
20
|
Challa TD, Wueest S, Lucchini FC, Dedual M, Modica S, Borsigova M, Wolfrum C, Blüher M, Konrad D. Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis. EMBO Mol Med 2019; 11:e10124. [PMID: 31595673 PMCID: PMC6783644 DOI: 10.15252/emmm.201810124] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and may progress to non-alcoholic steatohepatitis (NASH) and liver fibrosis. The deficit of pharmacological therapies for the latter mainly results from an incomplete understanding of involved pathological mechanisms. Herein, we identify apoptosis signal-regulating kinase 1 (ASK1) as a suppressor of NASH and fibrosis formation. High-fat diet-fed and aged chow-fed liver-specific ASK1-knockout mice develop a higher degree of hepatic steatosis, inflammation, and fibrosis compared to controls. In addition, pharmacological inhibition of ASK1 increased hepatic lipid accumulation in wild-type mice. In line, liver-specific ASK1 overexpression protected mice from the development of high-fat diet-induced hepatic steatosis and carbon tetrachloride-induced fibrosis. Mechanistically, ASK1 depletion blunts autophagy, thereby enhancing lipid droplet accumulation and liver fibrosis. In human livers of lean and obese subjects, ASK1 expression correlated negatively with liver fat content and NASH scores, but positively with markers for autophagy. Taken together, ASK1 may be a novel therapeutic target to tackle NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Tenagne D Challa
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Mara Dedual
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Sun J, Bian C, Ji S, Luo X, Ji H. Greater potency of adipocytes compared with preadipocytes under lipopolysaccharide exposure in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 91:343-349. [PMID: 31042574 DOI: 10.1016/j.fsi.2019.04.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Excessive body fat is a chronic inflammatory disorder. In this process, white adipose tissue (WAT) performs immune activities because of the dysregulated expression of adipokines. Excessive fat is accumulated in farmed fish, thereby threatening fish health. Studies have shown that adipose tissue is also an active immune organ in fish, capable of participating in and influencing immune responses. Adipocytes are the main cellular component of adipose tissue; however, little is known about the relationship between adipocyte and inflammation in fish. In this study, we analyzed transcriptome changes during adipogenesis in the primary culture of grass carp adipocytes using bioinformatics. The results showed that inflammatory signaling pathway may be activated during grass carp adipocyte differentiation, such as NFκB signaling pathway, Toll-like receptor signaling pathway and Adipocytokine signaling pathway, indicating that grass carp adipocytes have immune activities. Exposure to LPS induced expression of adipokines genes in adipocytes and preadipocytes, including NF-kB, IL-6, MCP-1 and TNFα, suggesting that preadipocytes and adipocytes both have immune response and the immune activity is conserved in vertebrates white adipocytes. Further study found that these immune marker genes were higher expressed in adipocytes compared with preadipocytes in LPS-induced inflammation. In summary, adipocyte should be considered as an active immune site in fish. Adipocytes have greater potency compared with preadipocytes in LPS-induced inflammation. This study indicated that adipocytes and preadipocytes may have different contribution in inflammation.
Collapse
Affiliation(s)
- Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - ChenChen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - ShangHong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - XiaoLong Luo
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
22
|
Sun W, von Meyenn F, Peleg‐Raibstein D, Wolfrum C. Environmental and Nutritional Effects Regulating Adipose Tissue Function and Metabolism Across Generations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900275. [PMID: 31179229 PMCID: PMC6548959 DOI: 10.1002/advs.201900275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Indexed: 05/12/2023]
Abstract
The unabated rise in obesity prevalence during the last 40 years has spurred substantial interest in understanding the reasons for this epidemic. Studies in mice and humans have demonstrated that obesity is a highly heritable disease; however genetic variations within specific populations have so far not been able to explain this phenomenon to its full extent. Recent work has demonstrated that environmental cues can be sensed by an organism to elicit lasting changes, which in turn can affect systemic energy metabolism by different epigenetic mechanisms such as changes in small noncoding RNA expression, DNA methylation patterns, as well as histone modifications. These changes can directly modulate cellular function in response to environmental cues, however research during the last decade has demonstrated that some of these modifications might be transmitted to subsequent generations, thus modulating energy metabolism of the progeny in an inter- as well as transgenerational manner. In this context, adipose tissue has become a focus of research due to its plasticity, which allows the formation of energy storing (white) as well as energy wasting (brown/brite/beige) cells within the same depot. In this Review, the effects of environmental induced obesity with a particular focus on adipose tissue are discussed.
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Ferdinand von Meyenn
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Daria Peleg‐Raibstein
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| | - Christian Wolfrum
- Department of Health Science and TechnologiesETH ZürichSchorenstrasse 16SchwerzenbachCH‐8603Switzerland
| |
Collapse
|
23
|
Zhang Y, Yu M, Zhao X, Dai M, Chen C, Tian W. Optimizing adipose tissue extract isolation with stirred suspension culture. Connect Tissue Res 2019; 60:178-188. [PMID: 29852798 DOI: 10.1080/03008207.2018.1483357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield, and improve consistent potency metrics of ATE. MATERIALS AND METHODS ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE, while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by western blot and qPCR. In addition, haematoxylin and eosin staining and lactate dehydrogenase (LDH) activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. RESULTS The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF, and IL-6) showed no significant difference, while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. CONCLUSION Compared with adherent culture, stirred suspension culture is a reliable, time- and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.
Collapse
Affiliation(s)
- Yan Zhang
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Mei Yu
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Xueyong Zhao
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Minjia Dai
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Chang Chen
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Weidong Tian
- a State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
24
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
25
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
26
|
Nielsen KN, Peics J, Ma T, Karavaeva I, Dall M, Chubanava S, Basse AL, Dmytriyeva O, Treebak JT, Gerhart-Hines Z. NAMPT-mediated NAD + biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol Metab 2018; 11:178-188. [PMID: 29551635 PMCID: PMC6001355 DOI: 10.1016/j.molmet.2018.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. Methods We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis. Fat-specific Nampt knockout (FANKO) does not alter body composition on chow diet. NAMPT is essential for adipose expansion and weight gain from high dietary fat. Loss of adipose NAD+ decreases food intake and improves glucose tolerance. High fat diet-induced metabolic dysfunction in FANKO mice is reversible.
Collapse
Affiliation(s)
- Karen Nørgaard Nielsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julia Peics
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tao Ma
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iuliia Karavaeva
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Dall
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid L Basse
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, 2400 Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
27
|
Sridharan GV, D'Alessandro M, Bale SS, Bhagat V, Gagnon H, Asara JM, Uygun K, Yarmush ML, Saeidi N. Multi-omic network-based interrogation of rat liver metabolism following gastric bypass surgery featuring SWATH proteomics. TECHNOLOGY 2017; 5:139-184. [PMID: 29780857 PMCID: PMC5956888 DOI: 10.1142/s233954781750008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Morbidly obese patients often elect for Roux-en-Y gastric bypass (RYGB), a form of bariatric surgery that triggers a remarkable 30% reduction in excess body weight and reversal of insulin resistance for those who are type II diabetic. A more complete understanding of the underlying molecular mechanisms that drive the complex metabolic reprogramming post-RYGB could lead to innovative non-invasive therapeutics that mimic the beneficial effects of the surgery, namely weight loss, achievement of glycemic control, or reversal of non-alcoholic steatohepatitis (NASH). To facilitate these discoveries, we hereby demonstrate the first multi-omic interrogation of a rodent RYGB model to reveal tissue-specific pathway modules implicated in the control of body weight regulation and energy homeostasis. In this study, we focus on and evaluate liver metabolism three months following RYGB in rats using both SWATH proteomics, a burgeoning label free approach using high resolution mass spectrometry to quantify protein levels in biological samples, as well as MRM metabolomics. The SWATH analysis enabled the quantification of 1378 proteins in liver tissue extracts, of which we report the significant down-regulation of Thrsp and Acot13 in RYGB as putative targets of lipid metabolism for weight loss. Furthermore, we develop a computational graph-based metabolic network module detection algorithm for the discovery of non-canonical pathways, or sub-networks, enriched with significantly elevated or depleted metabolites and proteins in RYGB-treated rat livers. The analysis revealed a network connection between the depleted protein Baat and the depleted metabolite taurine, corroborating the clinical observation that taurine-conjugated bile acid levels are perturbed post-RYGB.
Collapse
Affiliation(s)
- Gautham Vivek Sridharan
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Matthew D'Alessandro
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Vicky Bhagat
- Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02903, USA
| | - Hugo Gagnon
- Phenoswitch Bioscience, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - John M Asara
- Beth Israel Deaconness Medical Center, 3 Blackfan Circle Rm 425, Boston, MA 02115, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| | - Nima Saeidi
- Center for Engineering in Medicine, Harvard Medical School - Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
28
|
Armenise C, Lefebvre G, Carayol J, Bonnel S, Bolton J, Di Cara A, Gheldof N, Descombes P, Langin D, Saris WH, Astrup A, Hager J, Viguerie N, Valsesia A. Transcriptome profiling from adipose tissue during a low-calorie diet reveals predictors of weight and glycemic outcomes in obese, nondiabetic subjects. Am J Clin Nutr 2017; 106:736-746. [PMID: 28793995 DOI: 10.3945/ajcn.117.156216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background: A low-calorie diet (LCD) reduces fat mass excess, improves insulin sensitivity, and alters adipose tissue (AT) gene expression, yet the relation with clinical outcomes remains unclear.Objective: We evaluated AT transcriptome alterations during an LCD and the association with weight and glycemic outcomes both at LCD termination and 6 mo after the LCD.Design: Using RNA sequencing (RNAseq), we analyzed transcriptome changes in AT from 191 obese, nondiabetic patients within a multicenter, controlled dietary intervention. Expression changes were associated with outcomes after an 8-wk LCD (800-1000 kcal/d) and 6 mo after the LCD. Results were validated by using quantitative reverse transcriptase-polymerase chain reaction in 350 subjects from the same cohort. Statistical models were constructed to classify weight maintainers or glycemic improvers.Results: With RNAseq analyses, we identified 1173 genes that were differentially expressed after the LCD, of which 350 and 33 were associated with changes in body mass index (BMI; in kg/m2) and Matsuda index values, respectively, whereas 29 genes were associated with both endpoints. Pathway analyses highlighted enrichment in lipid and glucose metabolism. Classification models were constructed to identify weight maintainers. A model based on clinical baseline variables could not achieve any classification (validation AUC: 0.50; 95% CI: 0.36, 0.64). However, clinical changes during the LCD yielded better performance of the model (AUC: 0.73; 95% CI: 0.60, 0.87]). Adding baseline expression to this model improved the performance significantly (AUC: 0.87; 95% CI: 0.77, 0.96; Delong's P = 0.012). Similar analyses were performed to classify subjects with good glycemic improvements. Baseline- and LCD-based clinical models yielded similar performance (best AUC: 0.73; 95% CI: 0.60, 0.86). The addition of expression changes during the LCD improved the performance substantially (AUC: 0.80; 95% CI: 0.69, 0.92; P = 0.058).Conclusions: This study investigated AT transcriptome alterations after an LCD in a large cohort of obese, nondiabetic patients. Gene expression combined with clinical variables enabled us to distinguish weight and glycemic responders from nonresponders. These potential biomarkers may help clinicians understand intersubject variability and better predict the success of dietary interventions. This trial was registered at clinicaltrials.gov as NCT00390637.
Collapse
Affiliation(s)
| | | | - Jérôme Carayol
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Sophie Bonnel
- Institute of Metabolic and Cardiovascular Diseases, French National Institute of Health and Medical Research, Paul Sabatier University, UMR1048, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | - Jennifer Bolton
- Institute of Metabolic and Cardiovascular Diseases, French National Institute of Health and Medical Research, Paul Sabatier University, UMR1048, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | | | - Nele Gheldof
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, French National Institute of Health and Medical Research, Paul Sabatier University, UMR1048, Obesity Research Laboratory, University of Toulouse, Toulouse, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Wim Hm Saris
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands; and
| | - Arne Astrup
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Faculty of Science, Copenhagen, Denmark
| | - Jörg Hager
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, French National Institute of Health and Medical Research, Paul Sabatier University, UMR1048, Obesity Research Laboratory, University of Toulouse, Toulouse, France
| | | |
Collapse
|
29
|
Pascual-Serrano A, Arola-Arnal A, Suárez-García S, Bravo FI, Suárez M, Arola L, Bladé C. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int J Obes (Lond) 2017; 41:1246-1255. [PMID: 28373675 PMCID: PMC5550562 DOI: 10.1038/ijo.2017.90] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
Objectives: White adipose tissue (WAT) expands through hypertrophy (increased adipocyte size) and/or hyperplasia (increased adipocyte number). Hypertrophy has been associated with insulin resistance and dyslipidemia independently of body composition and fat distribution. In contrast, hyperplasia protects against metabolic alterations. Proanthocyanidins, which are the most abundant flavonoids in the human diet, improve metabolic disturbances associated with diet-induced obesity without reducing body weight or adiposity. The aim of this study was to determine whether grape seed proanthocyanidin extract (GSPE) can modulate WAT expandability. Because GSPE also contains gallic acid, we also studied the capacity of gallic acid to remodel WAT. Design: Male Wistar rats were fed a standard chow diet (n=6) or a cafeteria diet (CAF) for 11 weeks. After 8 weeks, the CAF-fed animals were supplemented with 25 mg GSPE/kg body weight (n=6), 7 mg gallic acid/kg body weight (n=6) or the vehicle (n=6) for 3 weeks. Histological analyses were performed in the retroperitoneal (rWAT) and inguinal (iWAT) WAT to determine adipocyte size and number. Specific markers for adipogenesis and WAT functionality were analysed in rWAT using quantitative RT-PCR. Results: GSPE or gallic acid supplementation did not reduce weight gain or reverse and adiposity. However, GSPE reduced adipocyte size significantly in rWAT and moderately in iWAT and tripled the adipocyte number in rWAT. Gallic acid slightly reduced adipocyte size in rWAT and iWAT and doubled the adipocyte number in both WATs. In accordance with this adipogenic activity, Pref-1 and PPARγ tended to be overexpressed in rWAT of rats supplemented with GSPE. Moreover, GSPE supplementation increased Plin1 and Fabp4 expression and restored adiponectin expression completely, indicating a better functionality of visceral WAT. Conclusions: GSPE supplementation has anti-hypertrophic and hyperplasic activities in rats with established obesity, mainly in visceral WAT inducing a healthier expansion of WAT to match the surplus energy provided by the cafeteria diet.
Collapse
Affiliation(s)
- A Pascual-Serrano
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - A Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - S Suárez-García
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - F I Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - M Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - L Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - C Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
30
|
Zhong T, Zhang H, Duan X, Hu J, Wang L, Li L, Zhang H, Niu L. Anti-obesity effect of radix Angelica sinensis and candidate causative genes in transcriptome analyses of adipose tissues in high-fat diet-induced mice. Gene 2016; 599:92-98. [PMID: 27838456 DOI: 10.1016/j.gene.2016.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 01/14/2023]
Abstract
We have previously reported that radix Angelica sinensis (RAS) suppressed body weight and altered the expression of the fat mass and obesity associated (FTO) gene in mice with high fat diet (HFD)-induced obesity. In the present study we performed RNA sequencing-mediated transcriptome analysis to elucidate the molecular mechanisms underlying the anti-obesogenic effects of RAS in mice. The results revealed that 36 differentially-expressed genes (DEGs) were identified in adipose tissues from the RAS supplementation group (DH) and control group (HC). These 36 DEGs were clustered into 297 functional gene ontology (GO) categories, among which several GO annotations and signaling pathways were associated with lipid homeostasis. Six out of the 36 DEGs were identified to be involved in lipid metabolism, with the APOA2 gene a potential anti-obesogenic influence. The expression pattern revealed by RNA-Seq was identical to the results of quantitative real-time PCR (qPCR). Therefore, RAS supplementation in HFD-induced obese mice was associated with an anti-obesogenic global transcriptomic response. This study provides insight into potential applications of RAS in obesity therapy.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyue Duan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangtao Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
31
|
Bauters D, Scroyen I, Deprez-Poulain R, Lijnen HR. ADAMTS5 promotes murine adipogenesis and visceral adipose tissue expansion. Thromb Haemost 2016; 116:694-704. [PMID: 27383908 DOI: 10.1160/th16-01-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022]
Abstract
Enhanced expression of the aggrecanase ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) has been observed in adipose tissue (AT) of obese rodents. Here, we have investigated the role of ADAMTS5 in adipogenesis, AT expansion and associated angiogenesis. In vitro differentiation of precursor cells into mature adipocytes was studied using murine embryonic fibroblasts (MEF) derived from wild-type (Adamts5(+/+)) and ADAMTS5 deficient (Adamts5(-/-)) mice, or 3T3-F442A preadipocytes with stable gene silencing of Adamts5. De novo adipogenesis was monitored by injection of 3T3-F442A cells with or without Adamts5 knockdown in Nude mice. Furthermore, Adamts5(+/+)and Adamts5(-/-) mice were kept on a high-fat diet (HFD) to monitor AT development. Adamts5(-/-) MEF, as well as 3T3-F442A preadipocytes with Adamts5 knockdown, showed significantly reduced differentiation as compared to control cells. In mice, de novo formed fat pads arising from 3T3-F442A cells with Adamts5 knockdown were significantly smaller as compared to controls. After 15 or 25 weeks on HFD, total body weight and subcutaneous AT weight were similar for Adamts5(+/+) and Adamts5(-/-) mice, but visceral/gonadal fat mass was significantly lower for Adamts5(-/-) mice. These data were confirmed by magnetic resonance imaging. In addition, the blood vessel density in adipose tissue was higher for Adamts5(-/-) mice kept on HFD. In conclusion, our data support the concept that ADAMTS5 promotes adipogenesis in vitro and in vivo, as well as development of visceral AT and associated angiogenesis in mice kept on HFD.
Collapse
Affiliation(s)
| | | | | | - H Roger Lijnen
- H. R. Lijnen, Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, CDG, Herestraat 49, Box 911, 3000 Leuven, Belgium, Tel.: +32 16 372053, Fax: +32 16 345990, E-mail:
| |
Collapse
|
32
|
Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int J Mol Sci 2016; 17:ijms17071040. [PMID: 27376273 PMCID: PMC4964416 DOI: 10.3390/ijms17071040] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 02/08/2023] Open
Abstract
Over the last several years, the increasing prevalence of obesity has favored an intense study of adipose tissue biology and the precise mechanisms involved in adipocyte differentiation and adipogenesis. Adipocyte commitment and differentiation are complex processes, which can be investigated thanks to the development of diverse in vitro cell models and molecular biology techniques that allow for a better understanding of adipogenesis and adipocyte dysfunction associated with obesity. The aim of the present work was to update the different animal and human cell culture models available for studying the in vitro adipogenic differentiation process related to obesity and its co-morbidities. The main characteristics, new protocols, and applications of the cell models used to study the adipogenesis in the last five years have been extensively revised. Moreover, we depict co-cultures and three-dimensional cultures, given their utility to understand the connections between adipocytes and their surrounding cells in adipose tissue.
Collapse
|
33
|
Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1121-1131. [PMID: 27317982 DOI: 10.1016/j.bbalip.2016.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023]
Abstract
Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis.
Collapse
|