1
|
Greaves J, Pula G. Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes. FRONT BIOSCI-LANDMRK 2025; 30:26190. [PMID: 39862077 DOI: 10.31083/fbl26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM. Multiple reports describe the hyperactivity of platelets in DM and their participation in inflammatory responses. The understanding of the mechanisms underlying the contribution of platelets to cardiovascular pathologies in DM will help the development of targeted therapeutic strategies able to reduce cardiovascular risk in these patients. In this literature review, we summarise our current understanding of the molecular mechanisms leading to the contribution of platelets to cardiovascular risk in DM. Both platelet haemostatic activity leading to thrombus formation and their participation to inflammatory processes are stimulated by the biochemical conditions associated with DM. We also present evidence on how DM affect the efficacy of existing therapeutic treatments for thrombosis and, by converse, how antidiabetic drugs may affect platelet function and the haemostasis/thrombosis balance. Taken together, the growing evidence of the different and unexpected roles of platelets in the progression of DM provides a strong rationale for the design of cardiovascular drugs targeting specifically platelets, their pro-inflammatory activity and their activation mechanisms in this disease. Overall, this article provides an important up-to-date overview of the pathophysiological alterations of platelets in DM, which need to be taken into account for the effective management of cardiovascular health in this disease.
Collapse
Affiliation(s)
- Jordan Greaves
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| |
Collapse
|
2
|
Shi X, Hu X, Fang X, Jia L, Wei F, Peng Y, Liu M, Gao A, Zhao K, Chen F, Hu X, Hong J, Ning G, Song Y, Wang J, Wang Y. A feeding-induced myokine modulates glucose homeostasis. Nat Metab 2025; 7:68-83. [PMID: 39747483 DOI: 10.1038/s42255-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT. Administration of feimin and insulin synergistically improves blood glucose homeostasis in both normal and diabetic mice. Notably, a specific single nucleotide polymorphism (rs7604639, G>A) within the MERTK gene, causing an amino acid substitution (R466K) within the feimin-MERTK binding region, leads to reduced association with feimin and elevated postprandial blood glucose and insulin levels in humans. Our findings underscore a role of the feimin-MERTK signalling axis in glucose homeostasis, providing valuable insights into potential therapeutic avenues for diabetes.
Collapse
Affiliation(s)
- Xiaoliu Shi
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fangchao Wei
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Menghao Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Zotova IV, Cherkasov AO. [The Influence of Antithrombotic Therapy on the Risk Factors for Cardiovascular Complications in Patients With Coronary Artery Disease And Diabetes Mellitus. Emphasis on Hypercoagulation]. KARDIOLOGIIA 2024; 64:86-95. [PMID: 39784137 DOI: 10.18087/cardio.2024.12.n2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
Comorbid diabetes mellitus (DM) in patients with ischemic heart disease (IHD) is a serious factor that significantly impairs the life prognosis and increases the risk of cardiovascular complications (CVC) as well as the likelihood of death. The residual risk of developing CVC in such patients is largely determined by the high thrombotic status, that is associated with hypercoagulation characteristic of DM. Hypercoagulation causes activation of both platelet and coagulation pathways, which leads to an increased susceptibility to thrombosis. In this context, the combined administration of the anticoagulant rivaroxaban (Xarelto®) 2.5 mg and acetylsalicylic acid (ASA) can significantly reduce this risk by affecting both mechanisms of thrombus formation and thereby improving the prognosis. Rivaroxaban 2.5 mg in combination with ASA is the only available strategy to intensify the antithrombotic therapy in patients with stable IHD and DM with no history of ischemic events. Importantly, such therapy should be initiated as early as possible to prevent clinically significant CVCs and improve patients' quality of life.
Collapse
Affiliation(s)
- I V Zotova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, Moscow
| | | |
Collapse
|
4
|
D'Alessandro VF, Takeshita A, Yasuma T, Toda M, D'Alessandro-Gabazza CN, Okano Y, Tharavecharak S, Inoue C, Nishihama K, Fujimoto H, Kobayashi T, Yano Y, Gabazza EC. Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. Int J Mol Sci 2022; 23:ijms232214265. [PMID: 36430743 PMCID: PMC9693927 DOI: 10.3390/ijms232214265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus is a global health problem. Diabetic nephropathy is a common complication of diabetes mellitus and the leading cause of end-stage renal disease. The clinical course, response to therapy, and prognosis of nephropathy are worse in diabetic than in non-diabetic patients. The role of transforming growth factorβ1 in kidney fibrosis is undebatable. This study assessed whether the overexpression of transforming growth factorβ1 is associated with insulin resistance and the rapid progression of transforming growth factorβ1-mediated nephropathy under diabetic conditions. Diabetes mellitus was induced with streptozotocin in wild-type mice and transgenic mice with the kidney-specific overexpression of human transforming growth factorβ1. Mice treated with saline were the controls. Glucose tolerance and kidney fibrosis were evaluated. The blood glucose levels, the values of the homeostasis model assessment for insulin resistance, and the area of kidney fibrosis were significantly increased, and the renal function was significantly impaired in the diabetic transforming growth factorβ1 transgenic mice compared to the non-diabetic transgenic mice, diabetic wild-type mice, and non-diabetic mice. Transforming growth factorβ1 impaired the regulatory effect of insulin on glucose in the hepatocyte and skeletal muscle cell lines. This study shows that transforming growth factorβ1 overexpression is associated with insulin resistance and rapidly progressive kidney fibrosis under diabetic conditions in mice.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yuko Okano
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| |
Collapse
|
5
|
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D’Alessandro V, Inoue C, D’Alessandro-Gabazza CN, Kobayashi T, Yano Y, Gabazza EC. Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus. Cells 2021; 10:2237. [PMID: 34571886 PMCID: PMC8470378 DOI: 10.3390/cells10092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Hypoglycemic Agents/administration & dosage
- Injections, Intraperitoneal
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins/administration & dosage
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Streptozocin
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thrombomodulin/administration & dosage
- Mice
Collapse
Affiliation(s)
- Yuko Okano
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| |
Collapse
|
6
|
Hörber S, Lehmann R, Fritsche L, Machann J, Birkenfeld AL, Häring HU, Stefan N, Heni M, Fritsche A, Peter A. Lifestyle Intervention Improves Prothrombotic Coagulation Profile in Individuals at High Risk for Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e3198-e3207. [PMID: 33659996 DOI: 10.1210/clinem/dgab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Patients with obesity and insulin resistance are at higher risk for arterial and venous thrombosis due to a prothrombotic state. OBJECTIVE The present study addressed whether this is reversible by lifestyle intervention and elucidated potential underlying associations. METHODS A total of 100 individuals with impaired glucose tolerance or impaired fasting plasma glucose participated in a 1-year lifestyle intervention, including precise metabolic phenotyping and MRS-based determination of liver fat content as well as a comprehensive analysis of coagulation parameters before and after this intervention. RESULTS During the lifestyle intervention, significant reductions in coagulation factor activities (II, VII, VIII, IX, XI, and XII) were observed. Accordingly, prothrombin time (PT%) and activated partial thromboplastin time (aPTT) were slightly decreased and prolonged, respectively. Moreover, plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), and also protein C and protein S decreased. Fibrinogen, antithrombin, D-dimer, and FXIII remained unchanged. Searching for potential regulators, especially weight loss, but also liver fat reduction, improved insulin sensitivity, and decreased low-grade inflammation were linked to favorable changes in hemostasis parameters. Independent of weight loss, liver fat reduction (FII, protein C, protein S, PAI-1, vWF), improved insulin sensitivity (protein S, PAI-1), and reduced low-grade inflammation (PT%, aPTT, FVIII/IX/XI/XII, vWF) were identified as single potential regulators. CONCLUSION Lifestyle intervention is able to improve a prothrombotic state in individuals at high risk for type 2 diabetes. Besides body weight, liver fat content, insulin sensitivity, and systemic low-grade inflammation are potential mechanisms for improvements in hemostasis and could represent future therapeutic targets.
Collapse
Affiliation(s)
- Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
7
|
Uchida A, Yasuma T, Takeshita A, Toda M, Okano Y, Nishihama K, D'Alessandro-Gabazza CN, Fridman D'Alessandro V, Inoue C, Takagi T, Mukaiyama H, Takagi N, Shimizu K, Yano Y, Gabazza EC. Oral Limonite Supplement Ameliorates Glucose Intolerance in Diabetic and Obese Mice. J Inflamm Res 2021; 14:3089-3105. [PMID: 34276223 PMCID: PMC8277451 DOI: 10.2147/jir.s320451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Diabetes mellitus is a serious threat to public health worldwide. It causes a substantial economic burden, mental and physical disabilities, poor quality of life, and high mortality. Limonite is formed when iron-rich materials from the underground emerge and oxidized on the ground surface. It is currently used to purify contaminated water, absorption of irritant gases, and improve livestock breeding. Limonite can change the composition of environmental microbial communities. In the present study, we evaluated whether limonite can ameliorate glucose metabolism abnormalities by remodeling the gut microbiome. Methods The investigation was performed using mouse models of streptozotocin-induced diabetes mellitus and high-calorie diet-induced metabolic syndrome. Results Oral limonite supplement was associated with significant body weight recovery, reduced glycemia with improved insulin secretion, increased number of regulatory T cells, and abundant beneficial gut microbial populations in mice with diabetes mellitus compared to control. Similarly, mice with obesity fed with limonite supplements had significantly reduced body weight, insulin resistance, steatohepatitis, and systemic inflammatory response with significant gut microbiome remodeling. Conclusion This study demonstrates that limonite supplement ameliorates abnormal glucose metabolism in diabetes mellitus and obesity. Gut microbiome remodeling, inhibition of inflammatory cytokines, and the host immune response regulation may explain the limonite’s beneficial activity under pathological conditions in vivo.
Collapse
Affiliation(s)
- Akihiro Uchida
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Atsuro Takeshita
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuko Okano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
8
|
Sugimoto M, Kondo M, Yasuma T, D'Alessandro-Gabazza CN, Toda M, Imai H, Nakamura M, Gabazza EC. Increased expression of Protein S in eyes with diabetic retinopathy and diabetic macular edema. Sci Rep 2021; 11:10449. [PMID: 34001977 PMCID: PMC8129118 DOI: 10.1038/s41598-021-89870-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Protein S (PS) is a multifunctional glycoprotein that ameliorates the detrimental effects of diabetes mellitus (DM). The aim of this study was to evaluate the distribution of PS in diabetic retinopathy (DR) and diabetic macular edema (DME). This was a study of 50 eyes with DM (37 with DME, 6 with proliferative DR, and 7 with no DR) and 19 eyes without DM. The level of PS was measured by enzyme immunoassay and was compared between eyes with or without DM, with or without DME, and with severe DME (≥ 350 μm) or mild DME (< 350 μm). We also performed immunohistopathologic evaluations of post-mortem eyes and the cystoid lesions excised during surgery. The aqueous free PS was significantly higher with DM (7.9 ± 1.2 ng/ml, P < 0.01) than without DM (6.1 ± 0.7). The aqueous free PS was significantly elevated with DME (8.2 ± 1.2, P < 0.05) compared to proliferative DR (7.0 ± 1.0) and no DR (7.0 ± 0.7). Eyes with severe DME had significantly higher aqueous free PS than mild DME (8.5 ± 1.3 vs. 7.7 ± 1.0, P < 0.05). Immunohistochemistry showed PS in the outer plexiform layer of the retina and cystoid lesion. The higher expression of PS with DR and DME suggests that PS is involved in their pathogenesis.
Collapse
Affiliation(s)
- Masahiko Sugimoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hisanori Imai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
9
|
Kountouri A, Korakas E, Ikonomidis I, Raptis A, Tentolouris N, Dimitriadis G, Lambadiari V. Type 1 Diabetes Mellitus in the SARS-CoV-2 Pandemic: Oxidative Stress as a Major Pathophysiological Mechanism Linked to Adverse Clinical Outcomes. Antioxidants (Basel) 2021; 10:752. [PMID: 34065123 PMCID: PMC8151267 DOI: 10.3390/antiox10050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Recent reports have demonstrated the association between type 1 diabetes mellitus (T1DM) and increased morbidity and mortality rates during coronavirus disease (COVID-19) infection, setting a priority of these patients for vaccination. Impaired innate and adaptive immunity observed in T1DM seem to play a major role. Severe, life-threatening COVID-19 disease is characterized by the excessive release of pro-inflammatory cytokines, known as a "cytokine storm". Patients with T1DM present elevated levels of cytokines including interleukin-1a (IL), IL-1β, IL-2, IL-6 and tumor necrosis factor alpha (TNF-α), suggesting the pre-existence of chronic inflammation, which, in turn, has been considered the major risk factor of adverse COVID-19 outcomes in many cohorts. Even more importantly, oxidative stress is a key player in COVID-19 pathogenesis and determines disease severity. It is well-known that extreme glucose excursions, the prominent feature of T1DM, are a potent mediator of oxidative stress through several pathways including the activation of protein kinase C (PKC) and the increased production of advanced glycation end products (AGEs). Additionally, chronic endothelial dysfunction and the hypercoagulant state observed in T1DM, in combination with the direct damage of endothelial cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may result in endothelial and microcirculation impairment, which contribute to the pathogenesis of acute respiratory syndrome and multi-organ failure. The binding of SARS-CoV-2 to angiotensin converting enzyme 2 (ACE2) receptors in pancreatic b-cells permits the direct destruction of b-cells, which contributes to the development of new-onset diabetes and the induction of diabetic ketoacidosis (DKA) in patients with T1DM. Large clinical studies are required to clarify the exact pathways through which T1DM results in worse COVID-19 outcomes.
Collapse
Affiliation(s)
- Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| | - Nikolaos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - George Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (E.K.); (A.R.)
| |
Collapse
|
10
|
Diabetes and Thrombosis: A Central Role for Vascular Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10050706. [PMID: 33946846 PMCID: PMC8146432 DOI: 10.3390/antiox10050706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus is the fifth most common cause of death worldwide. Due to its chronic nature, diabetes is a debilitating disease for the patient and a relevant cost for the national health system. Type 2 diabetes mellitus is the most common form of diabetes mellitus (90% of cases) and is characteristically multifactorial, with both genetic and environmental causes. Diabetes patients display a significant increase in the risk of developing cardiovascular disease compared to the rest of the population. This is associated with increased blood clotting, which results in circulatory complications and vascular damage. Platelets are circulating cells within the vascular system that contribute to hemostasis. Their increased tendency to activate and form thrombi has been observed in diabetes mellitus patients (i.e., platelet hyperactivity). The oxidative damage of platelets and the function of pro-oxidant enzymes such as the NADPH oxidases appear central to diabetes-dependent platelet hyperactivity. In addition to platelet hyperactivity, endothelial cell damage and alterations of the coagulation response also participate in the vascular damage associated with diabetes. Here, we present an updated interpretation of the molecular mechanisms underlying vascular damage in diabetes, including current therapeutic options for its control.
Collapse
|
11
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
12
|
Takeshita A, Yasuma T, Nishihama K, D'Alessandro-Gabazza CN, Toda M, Totoki T, Okano Y, Uchida A, Inoue R, Qin L, Wang S, D'Alessandro VF, Kobayashi T, Takei Y, Mizoguchi A, Yano Y, Gabazza EC. Thrombomodulin ameliorates transforming growth factor-β1-mediated chronic kidney disease via the G-protein coupled receptor 15/Akt signal pathway. Kidney Int 2020; 98:1179-1192. [PMID: 33069430 DOI: 10.1016/j.kint.2020.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Kidney fibrosis is the common consequence of chronic kidney diseases that inexorably progresses to end-stage kidney disease with organ failure treatable only with replacement therapy. Since transforming growth factor-β1 is the main player in the pathogenesis of kidney fibrosis, we posed the hypothesis that recombinant thrombomodulin can ameliorate transforming growth factor-β1-mediated progressive kidney fibrosis and failure. To interrogate our hypothesis, we generated a novel glomerulus-specific human transforming growth factor-β1 transgenic mouse to evaluate the therapeutic effect of recombinant thrombomodulin. This transgenic mouse developed progressive glomerular sclerosis and tubulointerstitial fibrosis with kidney failure. Therapy with recombinant thrombomodulin for four weeks significantly inhibited kidney fibrosis and improved organ function compared to untreated transgenic mice. Treatment with recombinant thrombomodulin significantly inhibited apoptosis and mesenchymal differentiation of podocytes by interacting with the G-protein coupled receptor 15 to activate the Akt signaling pathway and to upregulate the expression of anti-apoptotic proteins including survivin. Thus, our study strongly suggests the potential therapeutic efficacy of recombinant thrombomodulin for the treatment of chronic kidney disease and subsequent organ failure.
Collapse
Affiliation(s)
- Atsuro Takeshita
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan; Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akihiro Uchida
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Ryo Inoue
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanawaga, Japan
| | - Liqiang Qin
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Lihai, Zhejiang Province, People's Republic of China
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | | | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|
13
|
Bai S, Chaurasiya AH, Banarjee R, Walke PB, Rashid F, Unnikrishnan AG, Kulkarni MJ. CD44, a Predominant Protein in Methylglyoxal-Induced Secretome of Muscle Cells, is Elevated in Diabetic Plasma. ACS OMEGA 2020; 5:25016-25028. [PMID: 33043179 PMCID: PMC7542587 DOI: 10.1021/acsomega.0c01318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a glycolytic intermediate and reactive dicarbonyl, is responsible for exacerbation of insulin resistance and diabetic complication. In this study, MG-induced secretome of rat muscle cells was identified and relatively quantified by SWATH-MS. A total of 643 proteins were identified in MG-induced secretome, of which 82 proteins were upregulated and 99 proteins were downregulated by more than 1.3-fold in SWATH analysis. Further, secretory proteins from the classical secretory pathway and nonclassical secretory pathway were identified using SignalP and SecretomeP, respectively. A total of 180 proteins were identified with SignalP, and 113 proteins were identified with SecretomeP. The differentially expressed proteins were functionally annotated by KEGG pathway analysis using Cytoscape software with plugin clusterMaker. The differentially expressed proteins were found to be involved in various pathways like extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, fluid shear stress and atherosclerosis, complement and coagulation cascades, and lysosomal pathway. Since the MG levels are high in diabetic conditions, the presence of MG-induced secreted proteins was inspected by profiling human plasma of healthy and diabetic subjects (n = 10 each). CD44, a predominant MG-induced secreted protein, was found to be elevated in the diabetic plasma and to have a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Shakuntala Bai
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Arvindkumar H. Chaurasiya
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Reema Banarjee
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Prachi B. Walke
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Phase IV, Gurugram 122015, Haryana, India
| | | | - Mahesh J. Kulkarni
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
14
|
Asayama K, Kobayashi T, D'Alessandro‐Gabazza CN, Toda M, Yasuma T, Fujimoto H, Okano T, Saiki H, Takeshita A, Fujiwara K, Fridman D’Alessandro V, Nishihama K, Totoki T, Inoue R, Takei Y, Gabazza EC. Protein S protects against allergic bronchial asthma by modulating Th1/Th2 balance. Allergy 2020; 75:2267-2278. [PMID: 32145080 DOI: 10.1111/all.14261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bronchial asthma is a chronic disease characterized by inflammation, obstruction, and hyperresponsiveness of the airways. There is currently no curative therapy for asthma. Type 2 helper T cell response plays a critical role in the pathogenesis of the disease. Protein S is a glycoprotein endowed with anticoagulant, anti-inflammatory, and anti-apoptotic properties. Whether protein S can suppress bronchial asthma and be useful for its therapy is unknown. METHODS To address this question here we compared the development of allergen-associated bronchial asthma between wild type and protein S-overexpressing transgenic mice. Mice were sensitized and challenged with ovalbumin. We also evaluated the circulating levels of total and active protein S in patients with bronchial asthma and healthy controls. RESULTS The circulating level of total protein S and of its active form was significantly decreased in patients with bronchial asthma compared to controls. Allergic protein S transgenic mice showed a significant reduction of airway hyperresponsiveness, lung tissue inflammatory cell infiltration, lung levels of Th2 cytokines and IgE compared to their wild-type counterparts. Administration of exogenous human protein S also decreased airway hyperresponsiveness and Th2-mediated lung inflammation in allergic wild-type mice compared with their untreated mouse counterparts. Human protein S significantly shifted the Th1/Th2 balance to Th1 and promoted the secretion of Th1 cytokines (IL-12, tumor necrosis factor-α) from dendritic cells. CONCLUSIONS These observations suggest the strong protective activity of protein S against the development of allergic bronchial asthma implicating its potential usefulness for the disease treatment.
Collapse
Affiliation(s)
- Kentaro Asayama
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | | | - Masaaki Toda
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
| | - Taro Yasuma
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
- Department of Diabetes, Metabolism and Endocrinology Mie University Graduate School of Medicine Tsu Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | - Haruko Saiki
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | - Atsuro Takeshita
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
- Department of Diabetes, Metabolism and Endocrinology Mie University Graduate School of Medicine Tsu Japan
| | - Kentaro Fujiwara
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
| | - Valeria Fridman D’Alessandro
- Department of Pulmonary and Critical Care Medicine Mie University Graduate School of Medicine Tsu Japan
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology Mie University Graduate School of Medicine Tsu Japan
| | - Toshiaki Totoki
- Department of Gastroenterology Mie University Graduate School of Medicine Tsu Japan
| | - Ryo Inoue
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
- Central Institute for Experimental Animals Kawasaki‐ku Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology Mie University Graduate School of Medicine Tsu Japan
| | - Esteban C. Gabazza
- Department of Immunology Mie University Graduate School of Medicine Tsu Japan
| |
Collapse
|
15
|
Bafilomycin A1 Accelerates Chronic Refractory Wound Healing in db/db Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6265701. [PMID: 32714982 PMCID: PMC7354638 DOI: 10.1155/2020/6265701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Numerous studies have reported that autophagy plays an important role in chronic wound healing, and enhancement of autophagic activity impairs cutaneous wound healing. The autophagy inhibitor Bafilomycin A1 (Baf A1) inhibits autophagy by preventing the formation of autophagosomes. This study aimed at elucidating the effect of Bafilomycin A1 on chronic refractory wound healing in diabetic mice. A total of 40 diabetic (db/db) mice and 20 nondiabetic (db/m) mice were used in this study. Full-thickness skin defects were generated in the db/db mice models, which were then divided into the following two groups: the nontreated (db/db group) and Baf A1-treated groups (Baf A1 group). The same skin defects were generated in db/m mice (db/m group) to serve as a control. We demonstrated that Baf A1 treatment significantly accelerated wound healing in db/db mice and exerted good healing effects. Moreover, Baf A1 inhibited autophagy in the newly generated epidermis and had minor effects on metabolism in db/db mice. PCNA expression, as detected by immunohistochemistry, and collagen thickness, as detected by Masson's trichrome staining on the 14th day, were higher in the db/m and Baf A1 groups than in the db/db group. In addition, the expression of the proinflammatory cytokine TNF-α in the db/m and Baf A1 groups increased significantly on day 6, and the expression of the anti-inflammatory cytokine IL-10 also increased significantly on day 9. However, there were no significant changes in the expression levels of TNF-α and IL-10 in the db/db group. Therefore, Baf A1 may accelerate diabetic chronic refractory wound healing by promoting cell proliferation, collagen production, and regulating the inflammatory balance.
Collapse
|
16
|
Fibroblast growth factor 21 protects against lipotoxicity-induced pancreatic β-cell dysfunction via regulation of AMPK signaling and lipid metabolism. Clin Sci (Lond) 2020; 133:2029-2044. [PMID: 31654570 DOI: 10.1042/cs20190093] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is known as a potent metabolic regulator but its protective mechanisms against lipotoxicity-induced β-cell dysfunction and apoptosis remain elusive. Here, we aimed to examine the regulatory pathways whereby FGF21 mediates islet lipid metabolism in lipotoxicity-treated cells and animal models. Rat β-cell line (INS-1E cells) and islets isolated from C57/BL6J mice were exposed to palmitic acid (PA) with/without FGF21, mimicking lipotoxic conditions. Resultant insulin secretion and intracellular signaling were analyzed with Western blotting and RNA-seq. C57/BL6J and global FGF21 knockout (KO) mice were fed with a high-fat diet (HFD) to induce lipotoxicity and given with a long-acting mimetic of FGF21. Insulin resistance and β-cell function were then assessed using homeostasis model assessment of insulin resistance (HOMA-IR) and insulinogenic index. FGF21 ameliorated PA-induced lipid accumulation, reversed cell apoptosis, and enhanced glucose-stimulated insulin secretion (GSIS) as impaired by lipotoxicity in islet β-cells. Mechanistically, FGF21 exerted its beneficial effects through activation of AMPK-ACC (acetyl-CoA carboxylase) pathway and peroxisome proliferation-activated receptors (PPARs) δ/γ signaling, thus increasing the levels of carnitine palmitoyltransferase-1A (CPT1A) and leading to increased fatty acid (FA) oxidation and reduced lipid deposition in β-cells. Interestingly, FGF21 reduced PA-induced cell death via restoration of the expression of apoptosis inhibitor Birc3. In vivo studies further showed that FGF21 is critical for islet insulinogenic capacity and normal function in the context of HFD-treated animals. FGF21 down-regulates islet cell lipid accumulation, probably via activation of AMPK-ACC and PPARδ/γ signaling, and reduces cell death under lipotoxicity, indicating that FGF21 is protective against lipotoxicity-induced β-cell dysfunction and apoptosis.
Collapse
|
17
|
Studies on characteristics and anti-diabetic and -nephritic effects of polysaccharides isolated from Paecilomyces hepiali fermentation mycelium in db/db mice. Carbohydr Polym 2019; 232:115766. [PMID: 31952583 DOI: 10.1016/j.carbpol.2019.115766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus plagues many people in China and the world, and its nephritis complication is the leading cause of death for patients. Paecilomyces hepiali contained various functional components, especially polysaccharides, which possesses well pharmacological activities. In this study, polysaccharide purified from Paecilomyces hepiali fermented mycelium entitled PHEA was obtained, and its structure was systemically characterized using fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). In C57BL/KsJ (BKS).Cg-Dock7m +/+ Leprdb/JNju mice (db/db mice), via detecting the alternations on biochemical criterions, pathological indicators and protein expressions related to nuclear factor-E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling in serum and/or tissues including muscle, liver and kidney after 8-week PHEA administration, the hypoglycemic, hypolipidemic, and anti-diabetic nephropathic activities of PHEA were confirmed. The purified P. Hepiali polysaccharide with the anti-diabetic and -nephritic properties was first reported in this study via regulating Nrf2-meadited NF-κB signaling in db/db mice.
Collapse
|
18
|
Sobczak AIS, Stewart AJ. Coagulatory Defects in Type-1 and Type-2 Diabetes. Int J Mol Sci 2019; 20:E6345. [PMID: 31888259 PMCID: PMC6940903 DOI: 10.3390/ijms20246345] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes (both type-1 and type-2) affects millions of individuals worldwide. A major cause of death for individuals with diabetes is cardiovascular diseases, in part since both types of diabetes lead to physiological changes that affect haemostasis. Those changes include altered concentrations of coagulatory proteins, hyper-activation of platelets, changes in metal ion homeostasis, alterations in lipid metabolism (leading to lipotoxicity in the heart and atherosclerosis), the presence of pro-coagulatory microparticles and endothelial dysfunction. In this review, we explore the different mechanisms by which diabetes leads to an increased risk of developing coagulatory disorders and how this differs between type-1 and type-2 diabetes.
Collapse
Affiliation(s)
| | - Alan J. Stewart
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK;
| |
Collapse
|
19
|
Yang Y, Zhao M, Yu XJ, Liu LZ, He X, Deng J, Zang WJ. Pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. Am J Physiol Endocrinol Metab 2019; 317:E312-E326. [PMID: 31211620 DOI: 10.1152/ajpendo.00569.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic patients are more susceptible to myocardial ischemia damage than nondiabetic patients, with worse clinical outcomes and greater mortality. The mechanism may be related to glucose metabolism, mitochondrial homeostasis, and oxidative stress. Pyridostigmine may improve vagal activity to protect cardiac function in cardiovascular diseases. Researchers have not determined whether pyridostigmine regulates glucose metabolism and mitochondrial homeostasis to reduce myocardial vulnerability to injury in diabetic mice. In the present study, autonomic imbalance, myocardial damage, mitochondrial dysfunction, and oxidative stress were exacerbated in isoproterenol-stimulated diabetic mice, revealing the myocardial vulnerability of diabetic mice to injury compared with mice with diabetes or exposed to isoproterenol alone. Compared with normal mice, the expression of glucose transporters (GLUT)1/4 phosphofructokinase (PFK) FB3, and pyruvate kinase isoform (PKM) was decreased in diabetic mice, but increased in isoproterenol-stimulated normal mice. Following exposure to isoproterenol, the expression of (GLUT)1/4 phosphofructokinase (PFK) FB3, and PKM decreased in diabetic mice compared with normal mice. The downregulation of SIRT3/AMPK and IRS-1/Akt in isoproterenol-stimulated diabetic mice was exacerbated compared with that in diabetic mice or isoproterenol-stimulated normal mice. Pyridostigmine improved vagus activity, increased GLUT1/4, PFKFB3, and PKM expression, and ameliorated mitochondrial dysfunction and oxidative stress to reduce myocardial damage in isoproterenol-stimulated diabetic mice. Based on these results, it was found that pyridostigmine may reduce myocardial vulnerability to injury via the SIRT3/AMPK and IRS-1/Akt pathways in diabetic mice with isoproterenol-induced myocardial damage. This study may provide a potential therapeutic target for myocardial damage in diabetic patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Long-Zhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Juan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
20
|
Segaliny AI, Cheng JL, Farhoodi HP, Toledano M, Yu CC, Tierra B, Hildebrand L, Liu L, Liao MJ, Cho J, Liu D, Sun L, Gulsen G, Su MY, Sah RL, Zhao W. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine 2019; 45:39-57. [PMID: 31281099 PMCID: PMC6642316 DOI: 10.1016/j.ebiom.2019.06.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone metastases are common and devastating to cancer patients. Existing treatments do not specifically target the disease sites and are therefore ineffective and systemically toxic. Here we present a new strategy to treat bone metastasis by targeting both the cancer cells ("the seed"), and their surrounding niche ("the soil"), using stem cells engineered to home to the bone metastatic niche and to maximise local delivery of multiple therapeutic factors. METHODS We used mesenchymal stem cells engineered using mRNA to simultaneously express P-selectin glycoprotein ligand-1 (PSGL-1)/Sialyl-Lewis X (SLEX) (homing factors), and modified versions of cytosine deaminase (CD) and osteoprotegerin (OPG) (therapeutic factors) to target and treat breast cancer bone metastases in two mouse models, a xenograft intratibial model and a syngeneic model of spontaneous bone metastasis. FINDINGS We first confirmed that MSC engineered using mRNA produced functional proteins (PSGL-1/SLEX, CD and OPG) using various in vitro assays. We then demonstrated that mRNA-engineered MSC exhibit enhanced homing to the bone metastatic niche likely through interactions between PSGL-1/SLEX and P-selectin expressed on tumour vasculature. In both the xenograft intratibial model and syngeneic model of spontaneous bone metastasis, engineered MSC can effectively kill tumour cells and preserve bone integrity. The engineered MSC also exhibited minimal toxicity in vivo, compared to its non-targeted chemotherapy counterpart (5-fluorouracil). INTERPRETATION Our combinatorial targeting of both the cancer cells and the niche represents a simple, safe and effective way to treat metastatic bone diseases, otherwise difficult to manage with existing strategies. It can also be applied to other cell types (e.g., T cells) and cargos (e.g., genome editing components) to treat a broad range of cancer and other complex diseases. FUND: National Institutes of Health, National Cancer Institute of the National Institutes of Health, Department of Defense, California Institute of Regenerative Medicine, National Science Foundation, Baylx Inc., and Fondation ARC pour la recherche sur le cancer.
Collapse
Affiliation(s)
- Aude I Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jason L Cheng
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Henry P Farhoodi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Toledano
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chih Chun Yu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Beatrice Tierra
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Leanne Hildebrand
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Linan Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael J Liao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jaedu Cho
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Dongxu Liu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lizhi Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Protein S is Protective in Acute Lung Injury by Inhibiting Cell Apoptosis. Int J Mol Sci 2019; 20:ijms20051082. [PMID: 30832349 PMCID: PMC6429595 DOI: 10.3390/ijms20051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a fatal disease characterized by inflammatory cell infiltration, alveolar-capillary barrier disruption, protein-rich edema, and impairment of gas exchange. Protein S is a vitamin K-dependent glycoprotein that exerts anticoagulant, immunomodulatory, anti-inflammatory, anti-apoptotic, and neuroprotective effects. The aim of this study was to evaluate whether human protein S inhibits cell apoptosis in acute lung injury. Acute lung injury in human protein S transgenic and wild-type mice was induced by intratracheal instillation of lipopolysaccharide. The effect of human protein S on apoptosis of lung tissue cells was evaluated by Western blotting. Inflammatory cell infiltration, alveolar wall thickening, myeloperoxidase activity, and the expression of inflammatory cytokines were reduced in human protein S transgenic mice compared to the wild-type mice after lipopolysaccharide instillation. Apoptotic cells and caspase-3 activity were reduced while phosphorylation of extracellular signal-regulated kinase was enhanced in the lung tissue from human protein S transgenic mice compared to wild-type mice after lipopolysaccharide instillation. The results of this study suggest that human protein S is protective in lipopolysaccharide-induced acute lung injury by inhibiting apoptosis of lung cells.
Collapse
|
22
|
Scutellarin Exerts Hypoglycemic and Renal Protective Effects in db/db Mice via the Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1354345. [PMID: 30881587 PMCID: PMC6387728 DOI: 10.1155/2019/1354345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
This study investigated the hypoglycemic and renal protective effects of scutellarin (SCU) in db/db mice and elucidated the underlying mechanisms. The oral administration of metformin hydrochloride (Met) at 120 mg/kg and SCU at 25, 50, and 100 mg/kg over an eight-week period had hypoglycemic effects, demonstrated by decreases in body weight, blood glucose, food and water intake, and glycated hemoglobin activity and by augmented insulin levels and pyruvate kinase activity in the serum of db/db mice. SCU alleviated dyslipidemia by decreasing the levels of triglycerides and total cholesterol and enhancing the levels of high-density lipoprotein cholesterol in the serum of db/db mice. SCU reversed the overexpression of mRNA of renal damage markers (receptor for advanced glycation end products, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1), macrophage marker CD11b, and T cell marker CD3 in kidney of db/db mice. Pathological examination confirmed that SCU improved the organ structures of hyperglycemia-damaged livers, kidneys, and pancreas islets. Antibody array assay and enzyme-linked immunosorbent assay were combined to screen and analyze the regulatory effects of SCU on inflammatory factors and oxidative enzymes. SCU exerted anti-inflammatory effects by inhibiting the levels of proinflammatory cytokines (glycogen synthase kinase, intercellular adhesion molecule 2, and interleukin 1β and 2) and promoting anti-inflammatory cytokines (interleukin 4). SCU decreased the reactive oxygen species and malondialdehyde concentrations and increased the activity levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) in serum and kidneys. Furthermore, SCU upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which in turn improved heme oxygenase 1 (HO-1), superoxide dismutase 1 and 2, and catalase expression levels in kidneys. The study showed that SCU has at least partial hypoglycemic and renal protective effects in db/db mice, and the mechanism is the modulation of the Nrf2/HO-1 signaling pathway.
Collapse
|
23
|
Nishihama K, Yasuma T, Yano Y, D' Alessandro-Gabazza CN, Toda M, Hinneh JA, Baffour Tonto P, Takeshita A, Totoki T, Mifuji-Moroka R, Kobayashi T, Iwasa M, Takei Y, Morser J, Cann I, Gabazza EC. Anti-apoptotic activity of human matrix metalloproteinase-2 attenuates diabetes mellitus. Metabolism 2018; 82:88-99. [PMID: 29366755 DOI: 10.1016/j.metabol.2018.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic progression of diabetes is associated with decreased pancreatic islet mass due to apoptosis of β-cells. Patients with diabetes have increased circulating matrix metalloproteinase-2 (MMP2); however, the physiological significance has remained elusive. This study tested the hypothesis that MMP2 inhibits cell apoptosis, including islet β-cells. METHODS Samples from diabetic patients and newly developed transgenic mice overexpressing human MMP2 (hMMP2) were harnessed, and diabetes was induced with streptozotocin. RESULTS Circulating hMMP2 was significantly increased in diabetic patients compared to controls and significantly correlated with the serum C-peptide levels. The diabetic hMMP2 transgenic mice showed significant improvements in glycemia, glucose tolerance and insulin secretion compared to diabetic wild type mice. Importantly, the increased hMMP2 levels in mice correlated with significant reduction in islet β-cell apoptosis compared to wild-type counterparts, and an inhibitor of hMMP2 reversed this mitigating activity against diabetes. The increased activation of Akt and BAD induced by hMMP2 in β-cells compared to controls, links this signaling pathway to the anti-apoptotic activity of hMMP2, a property that was reversible by both an hMMP2 inhibitor and antibody against integrin-β3. CONCLUSION Overall, this study demonstrates that increased expression of hMMP2 may attenuate the severity of diabetes by protecting islet β-cells from apoptosis through an integrin-mediated activation of the Akt/BAD pathway.
Collapse
Affiliation(s)
- Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D' Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Microbiome Metabolic Engineering Theme, Carl R. Woese Biology Institute for Genomic Biology, Department of Animal Sciences, Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Josephine A Hinneh
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Prince Baffour Tonto
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Rumi Mifuji-Moroka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - John Morser
- Division of Hematology, Stanford School of Medicine, 269 Campus Drive, CCSR 1155, Stanford, CA 94305-5156, United States
| | - Isaac Cann
- Microbiome Metabolic Engineering Theme, Carl R. Woese Biology Institute for Genomic Biology, Department of Animal Sciences, Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
24
|
Uil M, Scantlebery AML, Butter LM, Larsen PWB, de Boer OJ, Leemans JC, Florquin S, Roelofs JJTH. Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the 'resistant' C57Bl/6J mouse strain. Sci Rep 2018; 8:5542. [PMID: 29615804 PMCID: PMC5882654 DOI: 10.1038/s41598-018-23839-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/19/2018] [Indexed: 01/22/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Animal models are essential tools for designing new strategies to prevent DN. C57Bl/6 (B6) mice are widely used for transgenic mouse models, but are relatively resistant to DN. This study aims to identify the most effective method to induce DN in a type 1 (T1D) and a type 2 diabetes (T2D) model in B6 mice. For T1D-induced DN, mice were fed a control diet, and randomised to streptozotocin (STZ) alone, STZ+unilateral nephrectomy (UNx), or vehicle/sham. For T2D-induced DN, mice were fed a western (high fat) diet, and randomised to either STZ alone, STZ+UNx, UNx alone, or vehicle/sham. Mice subjected to a control diet with STZ +UNx developed albuminuria, glomerular lesions, thickening of the glomerular basement membrane, and tubular injury. Mice on control diet and STZ developed only mild renal lesions. Furthermore, kidneys from mice on a western diet were hardly affected by diabetes, UNx or the combination. We conclude that STZ combined with UNx is the most effective model to induce T1D-induced DN in B6 mice. In our hands, combining western diet and STZ treatment with or without UNx did not result in a T2D-induced DN model in B6 mice.
Collapse
Affiliation(s)
- Melissa Uil
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Loes M Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Per W B Larsen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Totoki T, D' Alessandro-Gabazza CN, Toda M, Tonto PB, Takeshita A, Yasuma T, Nishihama K, Iwasa M, Horiki N, Takei Y, Gabazza EC. Protein S Exacerbates Chronic Liver Injury and Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1195-1203. [PMID: 29454753 DOI: 10.1016/j.ajpath.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/09/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Protein S is a vitamin K-dependent glycoprotein produced mainly in the liver with anticoagulant, anti-inflammatory, immune-modulatory, and antiapoptotic properties. Protein S exacerbates acute liver injury by prolonging the survival of liver immune cells. However, the effect of protein S on chronic liver injury and fibrosis is unknown. Here, we investigated whether human protein S can affect chronic liver injury and fibrosis. Liver injury/fibrosis was induced by carbon tetrachloride injection in mice overexpressing human protein S and in wild-type mice. Human protein S transgenic mice receiving carbon tetrachloride showed significantly higher circulating levels of liver transaminases, increased liver expression of inflammatory cytokines, significantly more extended liver fibrosis, and areas with DNA breakage after chronic injury compared with wild-type mice. Wild-type mice infused with exogenous human protein S exhibited exacerbated liver injury and increased number of hepatic stellate cells compared with untreated mice. Human protein S inhibited apoptosis and increased Akt pathway activation in hepatic stellate cells. The antiapoptotic activity of protein S may play a role in chronic liver injury and subsequent liver fibrosis.
Collapse
Affiliation(s)
- Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Prince Baffour Tonto
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noriyuki Horiki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|