1
|
Liu W, Pan Y. Unraveling the mechanisms underlying diabetic cataracts: insights from Mendelian randomization analysis. Redox Rep 2024; 29:2420563. [PMID: 39639475 PMCID: PMC11626871 DOI: 10.1080/13510002.2024.2420563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Diabetic cataract (DC) is a major cause of blindness, with its pathogenesis involving oxidative stress and ferroptosis, according to recent studies. METHODS We performed a Mendelian Randomization (MR) study using GWAS data to select SNPs and assess the causal link between diabetes and cataracts. DC datasets were analyzed for differential gene expression, WGCNA, and protein-protein interactions to identify key oxidative stress and ferroptosis genes. An SVM-RFE algorithm developed a diagnostic model, and ImmuCellAI analyzed immune infiltration patterns. RESULTS MR analysis confirmed diabetes as a cataract risk factor and identified core genes related to oxidative stress and ferroptosis in DC. Four key genes (Hspa5/Nfe2l2/Atf3/Stat3) linked to both processes were discovered. Immune infiltration analysis revealed an imbalance associated with these genes. CONCLUSIONS A functional interaction between oxidative stress and ferroptosis genes in DC is suggested, with a 4-gene model, indicating their potential as a 'bridge' in DC pathogenesis.
Collapse
Affiliation(s)
- Wenlan Liu
- College of Medical Technology, Xi'an Medical University, Xi'an, People’s Republic of China
| | - Yiming Pan
- College of Medical Technology, Xi'an Medical University, Xi'an, People’s Republic of China
| |
Collapse
|
2
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Pappachan JM, Fernandez CJ, Ashraf AP. Rising tide: The global surge of type 2 diabetes in children and adolescents demands action now. World J Diabetes 2024; 15:797-809. [PMID: 38766426 PMCID: PMC11099374 DOI: 10.4239/wjd.v15.i5.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 05/10/2024] Open
Abstract
Childhood-onset obesity has emerged as a major public healthcare challenge across the globe, fueled by an obesogenic environment and influenced by both genetic and epigenetic predispositions. This has led to an exponential rise in the incidence of type 2 diabetes mellitus in children and adolescents. The looming wave of diabetes-related complications in early adulthood is anticipated to strain the healthcare budgets in most countries. Unless there is a collective global effort to curb the devastation caused by the situation, the impact is poised to be pro-found. A multifaceted research effort, governmental legislation, and effective social action are crucial in attaining this goal. This article delves into the current epidemiological landscape, explores evidence concerning potential risks and consequences, delves into the pathobiology of childhood obesity, and discusses the latest evidence-based management strategies for diabesity.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| |
Collapse
|
4
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
6
|
Han B, Lv Y, Moser D, Zhou X, Woehrle T, Han L, Osterman A, Rudelius M, Choukér A, Lei P. ACE2-independent SARS-CoV-2 virus entry through cell surface GRP78 on monocytes - evidence from a translational clinical and experimental approach. EBioMedicine 2023; 98:104869. [PMID: 37967509 PMCID: PMC10679867 DOI: 10.1016/j.ebiom.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infects host cells via an ACE2/TMPRSS2 entry mechanism. Monocytes and macrophages, which play a key role during severe COVID-19 express only low or no ACE2, suggesting alternative entry mechanisms in these cells. In silico analyses predicted GRP78, which is constitutively expressed on monocytes and macrophages, to be a potential candidate receptor for SARS-CoV-2 virus entry. METHODS Hospitalized COVID-19 patients were characterized regarding their pro-inflammatory state and cell surface GRP78 (csGRP78) expression in comparison to healthy controls. RNA from CD14+ monocytes of patients and controls were subjected to transcriptome analysis that was specifically complemented by bioinformatic re-analyses of bronchoalveolar lavage fluid (BALF) datasets of COVID-19 patients with a focus on monocyte/macrophage subsets, SARS-CoV-2 infection state as well as GRP78 gene expression. Monocyte and macrophage immunohistocytochemistry on GRP78 was conducted in post-mortem lung tissues. SARS-CoV-2 spike and GRP78 protein interaction was analyzed by surface plasmon resonance, GST Pull-down and Co-Immunoprecipitation. SARS-CoV-2 pseudovirus or single spike protein uptake was quantified in csGRP78high THP-1 cells. FINDINGS Cytokine patterns, monocyte activation markers and transcriptomic changes indicated typical COVID-19 associated inflammation accompanied by upregulated csGRP78 expression on peripheral blood and lung monocytes/macrophages. Subsequent cell culture experiments confirmed an association between elevated pro-inflammatory cytokine levels and upregulation of csGRP78. Interaction of csGRP78 and SARS-CoV-2 spike protein with a dissociation constant of KD = 55.2 nM was validated in vitro. Infection rate analyses in ACE2low and GRP78high THP-1 cells showed increased uptake of pseudovirus expressing SARS-CoV-2 spike protein. INTERPRETATION Our results demonstrate that csGRP78 acts as a receptor for SARS-CoV-2 spike protein to mediate ACE2-independent virus entry into monocytes. FUNDING Funded by the Sino-German-Center for Science Promotion (C-0040) and the Germany Ministry BMWi/K [DLR-grant 50WB1931 and RP1920 to AC, DM, TW].
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Yibing Lv
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Xiaoqi Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tobias Woehrle
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Lianyong Han
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Neuherberg, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Martina Rudelius
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany.
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Chen CX, Cabugao P, Nguyen M, Villegas D, Batra K, Singh A, Kioka M. Comparing demographics, clinical characteristics, and hospital outcomes by vaccine uptake status: A single-institution cross-sectional study. Medicine (Baltimore) 2023; 102:e35421. [PMID: 37800810 PMCID: PMC10553062 DOI: 10.1097/md.0000000000035421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Vaccination against Coronavirus disease 2019 (COVID-19) has been the cornerstone of reducing morbidity and mortality of this disease, as it has been shown to decrease the risk of viral transmission, severity of disease, hospitalization, and intubation. However, true understanding of its impact is skewed by heterogeneous vaccine administration due to lack of equitable access, vaccine hesitancy, and varying social determinants of health. Therefore, this study aims to identify groups that are less likely to be vaccinated and understand whether the resultant differences in vaccination rates affect morbidity and mortality in socially marginalized COVID-19 patients. A retrospective cohort analysis was performed on a randomized and stratified population of 939 COVID-19 patients from January 2021 to December 2021. Bivariate analysis and logistic regression were used to assess demographic and clinical characteristic trends in unvaccinated, partially vaccinated, and fully vaccinated groups. No one age (P = .21), gender (P = .9), race (P = .12), ethnicity (P = .09), or health insurance status (P = .13) group was more vaccinated than the other. Similarly, no subgroup was at increased odds of intubation (P = .08) or death. However, patients with all categories of comorbidities including cardiopulmonary disease (P = <.001, effect size .17), renal disease (P = <.001, effect size 0.138), metabolic disease (P = .04), and immunocompromised (P = .01) states were found to have significantly higher vaccination rates. Our study also shows that full vaccination protects against mortality and decreases the odds of intubation by 55% (adjusted odds ratio = 0.453, P value = .015) compared to no vaccination or partial vaccination. Findings from this study show an encouraging trend that sicker patients had higher rates of vaccination against COVID-19. This trend highlights the need for further identification of motivators that may be applied to vaccine-hesitant populations, which can help guide population-level policy, increase vaccination campaign yield, and reach for health equity.
Collapse
Affiliation(s)
- Claire Xinning Chen
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Paul Cabugao
- Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Max Nguyen
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Daniel Villegas
- Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Kavita Batra
- Office of Research, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
- Department of Medical Education and Office of Academic Affairs, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Aditi Singh
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| | - Mutsumi Kioka
- Department of Pulmonary and Critical Care Medicine, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
8
|
Zhang P, Zheng CB, Liu XY, Zhang X, Huang L, Zeng X. Lymphocytes regulate expression of the SARS-CoV-2 cell entry factor ACE2 in the pancreas of T2DM patients. Diabet Med 2023; 40:e15106. [PMID: 37014274 DOI: 10.1111/dme.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
AIMS COVID-19 patients with type 2 diabetes mellitus (T2DM) show both poorer clinical outcomes and have an increased risk of death. SARS-CoV-2 virus infection requires simultaneous expression of the SARS-CoV-2 cell entry factors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2) in the same cell. The aim of the study was to explore the underlying mechanisms of a COVID-19 infection in patients with T2DM. METHODS The distribution and expression of AEC2 and TMPRSS2 in different pancreatic cell types in clinical samples of T2DM patients and diabetic mouse models were analysed by single-cell sequencing, bioinformatics analysis and basic experiments. RESULTS The results showed that ACE2 and TMPRSS2 are expressed in the ducts of the human pancreas. These findings suggest that SARS-CoV-2 can infect ductal cells in vivo through ACE2 and TMPRSS2. T2DM can promote the co-expression of ACE2 and TMPRSS2 in exocrine ducts, including in the human pancreas. We hypothesize that ACE2 expression levels are associated with increased numbers of lymphocytes in vivo. CONCLUSIONS Increased blood glucose levels are associated with increased ACE2 expression and an increased number of lymphocytes. At the same time, lymphocytes can promote ACE2 expression.
Collapse
Affiliation(s)
- Peng Zhang
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunan, China
| | - Xiao-Yu Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lingyan Huang
- Pathological Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xianhai Zeng
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Shin J, Shimomura I. COVID-19, Obesity, and GRP78: Unraveling the Pathological Link. J Obes Metab Syndr 2023; 32:183-196. [PMID: 37752707 PMCID: PMC10583770 DOI: 10.7570/jomes23053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an unprecedented global surge in infections and fatalities. Notably, obesity has emerged as an important susceptibility factor for COVID-19; however, the pathological mechanisms for this remain poorly understood. Recent studies proposed a role for glucose-regulated protein 78 (GRP78), a protein implicated in both obesity and metabolic syndrome, which may function as a binding partner and/or co-receptor for SARS-CoV-2. Given its crucial involvement in diverse biological processes, GRP78 likely plays a major role in multiple facets of the viral life cycle and the pathology of COVID-19. This perspective review discusses the potential contributions of GRP78 to the dynamics of SARS-CoV-2 infection and pathology, particularly in the context of obesity. The primary objective is to facilitate a deeper understanding of the pathogenesis of COVID-19. Through this exploration, we aim to illuminate the complex interactions underpinning the nexus of COVID-19, obesity, and GRP78, ultimately paving the way for informed therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
11
|
Rivera M, Burgos‐Bravo F, Engelberger F, Asor R, Lagos‐Espinoza MIA, Figueroa M, Kukura P, Ramírez‐Sarmiento CA, Baez M, Smith SB, Wilson CAM. Effect of temperature and nucleotide on the binding of BiP chaperone to a protein substrate. Protein Sci 2023; 32:e4706. [PMID: 37323096 PMCID: PMC10303699 DOI: 10.1002/pro.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.
Collapse
Affiliation(s)
- Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Felipe Engelberger
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Roi Asor
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryOxfordUK
| | - Miguel I. A. Lagos‐Espinoza
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryOxfordUK
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | | | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
12
|
Veronese-Araújo A, de Lucena DD, Aguiar-Brito I, Modelli de Andrade LG, Cristelli MP, Tedesco-Silva H, Medina-Pestana JO, Rangel ÉB. Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics (Basel) 2023; 13:2168. [PMID: 37443562 DOI: 10.3390/diagnostics13132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Obesity is one of the components of the cardiometabolic syndrome that contributes to COVID-19 progression and mortality. Immunosuppressed individuals are at greater risk of the COVID-19 burden. Therefore, we sought to investigate the impact of the combination of overweight/obesity and kidney transplant on oxygen (O2) requirements in the COVID-19 setting. METHODS Retrospective analysis of 284 kidney transplant recipients (KTRs) from March/2020 to August/2020 in a single center. We investigated the risk factors associated with O2 requirements in overweight/obese KTRs. RESULTS Overall, 65.1% had a BMI (body mass index) ≥ 25 kg/m2, 52.4% were male, the mean age was 53.3 ± 11 years old, 78.4% had hypertension, and 41.1% had diabetes mellitus. BMI was an independent risk factor for O2 requirements (OR = 1.07, p = 0.02) alongside age, lymphopenia, and hyponatremia. When overweight/obese KTRs were older, smokers, they presented higher levels of lactate dehydrogenase (LDH), and lower levels of estimated glomerular filtration rate (eGFR), lymphocytes, and sodium at admission, and they needed O2 more often. CONCLUSION Being overweight/obese is associated with greater O2 requirements in KTRs, in particular in older people and smokers, with worse kidney allograft functions, more inflammation, and lower sodium levels. Therefore, the early identification of factors that predict a worse outcome in overweight/obese KTRs affected by COVID-19 contributes to risk stratification and therapeutic decisions.
Collapse
Affiliation(s)
- Alexandre Veronese-Araújo
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
| | - Débora D de Lucena
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
- Hospital do Rim, São Paulo 04038-002, SP, Brazil
| | - Isabella Aguiar-Brito
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
| | | | | | - Hélio Tedesco-Silva
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
- Hospital do Rim, São Paulo 04038-002, SP, Brazil
| | - José O Medina-Pestana
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
- Hospital do Rim, São Paulo 04038-002, SP, Brazil
| | - Érika B Rangel
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo 04038-031, SP, Brazil
- Hospital do Rim, São Paulo 04038-002, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
13
|
Li T, Fu J, Cheng J, Elfiky AA, Wei C, Fu J. New progresses on cell surface protein HSPA5/BiP/GRP78 in cancers and COVID-19. Front Immunol 2023; 14:1166680. [PMID: 37275848 PMCID: PMC10232979 DOI: 10.3389/fimmu.2023.1166680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Ha DP, Shin WJ, Hernandez JC, Neamati N, Dubeau L, Machida K, Lee AS. GRP78 Inhibitor YUM70 Suppresses SARS-CoV-2 Viral Entry, Spike Protein Production and Ameliorates Lung Damage. Viruses 2023; 15:v15051118. [PMID: 37243204 DOI: 10.3390/v15051118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has given rise to many new variants with increased transmissibility and the ability to evade vaccine protection. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum (ER) chaperone that has been recently implicated as an essential host factor for SARS-CoV-2 entry and infection. In this study, we investigated the efficacy of YUM70, a small molecule inhibitor of GRP78, to block SARS-CoV-2 viral entry and infection in vitro and in vivo. Using human lung epithelial cells and pseudoviral particles carrying spike proteins from different SARS-CoV-2 variants, we found that YUM70 was equally effective at blocking viral entry mediated by original and variant spike proteins. Furthermore, YUM70 reduced SARS-CoV-2 infection without impacting cell viability in vitro and suppressed viral protein production following SARS-CoV-2 infection. Additionally, YUM70 rescued the cell viability of multi-cellular human lung and liver 3D organoids transfected with a SARS-CoV-2 replicon. Importantly, YUM70 treatment ameliorated lung damage in transgenic mice infected with SARS-CoV-2, which correlated with reduced weight loss and longer survival. Thus, GRP78 inhibition may be a promising approach to augment existing therapies to block SARS-CoV-2, its variants, and other viruses that utilize GRP78 for entry and infection.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis Dubeau
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Ferguson M, Vel J, Phan V, Ali R, Mabe L, Cherner A, Doan T, Manakatt B, Jose M, Powell AR, McKinney K, Serag H, Sallam HS. Coronavirus Disease 2019, Diabetes, and Inflammation: A Systemic Review. Metab Syndr Relat Disord 2023; 21:177-187. [PMID: 37130311 DOI: 10.1089/met.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
People with cardiometabolic diseases [namely type 2 diabetes (T2D), obesity, or metabolic syndrome] are more susceptible to coronavirus disease 2019 (COVID-19) infection and endure more severe illness and poorer outcomes. Hyperinflammation has been suggested as a common pathway for both diseases. To examine the role of inflammatory biomarkers shared between COVID-19 and cardiometabolic diseases, we reviewed and evaluated published data using PubMed, SCOPUS, and World Health Organization COVID-19 databases for English articles from December 2019 to February 2022. Of 248 identified articles, 50 were selected and included. We found that people with diabetes or obesity have (i) increased risk of COVID-19 infection; (ii) increased risk of hospitalization (those with diabetes have a higher risk of intensive care unit admissions) and death; and (iii) heightened inflammatory and stress responses (hyperinflammation) to COVID-19, which worsen their prognosis. In addition, COVID-19-infected patients have a higher risk of developing T2D, especially if they have other comorbidities. Treatments controlling blood glucose levels and or ameliorating the inflammatory response may be valuable for improving clinical outcomes in these patient populations. In conclusion, it is critical for health care providers to clinically evaluate hyperinflammatory states to drive clinical decisions for COVID-19 patients.
Collapse
Affiliation(s)
- Monique Ferguson
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jaysonn Vel
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vincent Phan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Roshaneh Ali
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lainie Mabe
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Annie Cherner
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thao Doan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bushra Manakatt
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mini Jose
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Audrey Ross Powell
- University of Texas Medical Branch Alumni, Galveston, Texas, USA
- Madrigal Pharmaceuticals, Conshohocken, Pennsylvania, USA
| | - Kevin McKinney
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hani Serag
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hanaa S Sallam
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine 2023; 80:477-490. [PMID: 37103684 PMCID: PMC10133915 DOI: 10.1007/s12020-023-03337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
Evidence has shown that cardiometabolic disorders (CMDs) are amongst the top contributors to COVID-19 infection morbidity and mortality. The reciprocal impact of COVID-19 infection and the most common CMDs, the risk factors for poor composite outcome among patients with one or several underlying diseases, the effect of common medical management on CMDs and their safety in the context of acute COVID-19 infection are reviewed. Later on, the changes brought by the COVID-19 pandemic quarantine on the general population's lifestyle (diet, exercise patterns) and metabolic health, acute cardiac complications of different COVID-19 vaccines and the effect of CMDs on the vaccine efficacy are discussed. Our review identified that the incidence of COVID-19 infection is higher among patients with underlying CMDs such as hypertension, diabetes, obesity and cardiovascular disease. Also, CMDs increase the risk of COVID-19 infection progression to severe disease phenotypes (e.g. hospital and/or ICU admission, use of mechanical ventilation). Lifestyle modification during COVID-19 era had a great impact on inducing and worsening of CMDs. Finally, the lower efficacy of COVID-19 vaccines was found in patients with metabolic disease.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Medicine, Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arezoo Behbood
- MPH department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Maryam Ranjbar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Rahimian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Anand Prasad
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
17
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
18
|
Basolo A, Poma AM, Macerola E, Bonuccelli D, Proietti A, Salvetti A, Vignali P, Torregrossa L, Evangelisti L, Sparavelli R, Giannini R, Ugolini C, Basolo F, Santini F, Toniolo A. Autopsy Study of Testicles in COVID-19: Upregulation of Immune-Related Genes and Downregulation of Testis-Specific Genes. J Clin Endocrinol Metab 2023; 108:950-961. [PMID: 36260523 PMCID: PMC9620766 DOI: 10.1210/clinem/dgac608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility. OBJECTIVE Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes. METHODS Three groups were compared: (a) uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); (b) subjects dying of COVID-19 (virus-negative in testes; n = 15); (c) subjects dying of COVID-19 (virus-positive in testes; n = 9). SARS-CoV-2 genome and nucleocapsid antigen were probed using RT-PCR, in situ hybridization, and immunohistochemistry (IHC). Infiltrating leukocytes were typed by IHC. mRNA transcripts of immune-related and testis-specific genes were quantified using the nCounter method. RESULTS SARS-CoV-2 was detected in testis tissue of 9/24 (37%) COVID-19 cases accompanied by scattered T-cell and macrophage infiltrates. Size of testicles and counts of spermatogenic cells were not significantly different among groups. Analysis of mRNA transcripts showed that in virus-positive testes immune processes were activated (interferon-alpha and -gamma pathways). By contrast, transcription of 12 testis-specific genes was downregulated, independently of virus positivity in tissue. By IHC, expression of the luteinizing hormone/choriogonadotropin receptor was enhanced in virus-positive compared to virus-negative testicles, while expression of receptors for androgens and the follicle-stimulating hormone were not significantly different among groups. CONCLUSION In lethal COVID-19 cases, infection of testicular cells is not uncommon. Viral infection associates with activation of interferon pathways and downregulation of testis-specific genes involved in spermatogenesis. Due to the exceedingly high numbers of infected people in the pandemic, the impact of virus on fertility should be further investigated.
Collapse
Affiliation(s)
- Alessio Basolo
- Corresponding author: Alessio Basolo, MD, Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124, Pisa, Italy, Telephone number: +39-050-997334,
| | - Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Agnese Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Laura Evangelisti
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Rebecca Sparavelli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124, Pisa, Italy
| | - Antonio Toniolo
- Global Virus Network, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
19
|
Pilarski Ł, Pelczyńska M, Koperska A, Seraszek-Jaros A, Szulińska M, Bogdański P. Association of Serum Vaspin Concentration with Metabolic Disorders in Obese Individuals. Biomolecules 2023; 13:biom13030508. [PMID: 36979443 PMCID: PMC10046748 DOI: 10.3390/biom13030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Vaspin, a molecule produced in visceral adipose tissue, seems to participate in the pathogenesis of metabolic disorders. The study aimed to determine the association of vaspin concentration with metabolic disorders in obese individuals. Forty obese patients and twenty normal-weight subjects underwent biochemical (fasting glucose, insulin, lipid profile, interleukin-6, hs-CRP, vaspin concentration), blood pressure, and anthropometric measurements. The HOMA-IR index was calculated. Serum vaspin concentrations in the obese group were significantly higher than in the control group (0.82 ± 0.62 vs. 0.43 ± 0.59; p < 0.001). Among the entire population, vaspin concentration was positively correlated with body weight, BMI, WHR, and the percentage and mass of adipose tissue. Positive correlations between vaspin concentration and triglyceride level, insulin concentration, and HOMA-IR value were found. Vaspin concentration was positively correlated with hs-CRP and IL-6 levels. In obese patients, positive correlations between vaspin concentration and the percentage of adipose tissue and hs-CRP level were demonstrated. Logistic regression analysis showed that increased BMI was the biggest factor stimulating vaspin concentrations (OR = 8.5; 95% CI: 1.18–61.35; p = 0.0338). An elevated vaspin level may imply its compensatory role against metabolic disorders in obese patients. Thus, vaspin appears to be a useful diagnostic parameter for new therapeutic approaches in obesity-related complications. Nevertheless, due to the small sample size, further studies are needed to confirm our results.
Collapse
Affiliation(s)
- Łukasz Pilarski
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
- Correspondence: ; Tel.: +48-693-049-981
| | - Anna Koperska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Bukowska 70 Street, 60-812 Poznań, Poland
| | - Monika Szulińska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| |
Collapse
|
20
|
Popovic DS, Papanas N, Koufakis T, Kotsa K, Mahmeed WA, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Firenze A, Galia M, Goh SY, Janez A, Kalra S, Kempler P, Kapoor N, Lessan N, Lotufo P, Rizvi AA, Sahebkar A, Santos RD, Stoian AP, Toth PP, Viswanathan V, Rizzo M. Glucometabolic Perturbations in Type 2 Diabetes Mellitus and Coronavirus Disease 2019: Causes, Consequences, and How to Counter Them Using Novel Antidiabetic Drugs - The CAPISCO International Expert Panel. Exp Clin Endocrinol Diabetes 2023; 131:260-267. [PMID: 36693416 DOI: 10.1055/a-2019-1111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The growing amount of evidence suggests the existence of a bidirectional relation between coronavirus disease 2019 (COVID-19) and type 2 diabetes mellitus (T2DM), as these two conditions exacerbate each other, causing a significant healthcare and socioeconomic burden. The alterations in innate and adaptive cellular immunity, adipose tissue, alveolar and endothelial dysfunction, hypercoagulation, the propensity to an increased viral load, and chronic diabetic complications are all associated with glucometabolic perturbations of T2DM patients that predispose them to severe forms of COVID-19 and mortality. Severe acute respiratory syndrome coronavirus 2 infection negatively impacts glucose homeostasis due to its effects on insulin sensitivity and β-cell function, further aggravating the preexisting glucometabolic perturbations in individuals with T2DM. Thus, the most effective ways are urgently needed for countering these glucometabolic disturbances occurring during acute COVID-19 illness in T2DM patients. The novel classes of antidiabetic medications (dipeptidyl peptidase 4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and sodium-glucose co-transporter-2 inhibitors (SGLT-2is) are considered candidate drugs for this purpose. This review article summarizes current knowledge regarding glucometabolic disturbances during acute COVID-19 illness in T2DM patients and the potential ways to tackle them using novel antidiabetic medications. Recent observational data suggest that preadmission use of GLP-1 RAs and SGLT-2is are associated with decreased patient mortality, while DPP-4is is associated with increased in-hospital mortality of T2DM patients with COVID-19. Although these results provide further evidence for the widespread use of these two classes of medications in this COVID-19 era, dedicated randomized controlled trials analyzing the effects of in-hospital use of novel antidiabetic agents in T2DM patients with COVID-19 are needed.
Collapse
Affiliation(s)
- Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Novi Sad, Serbia.,Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | | | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat, Oman
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, Ankara, Turkey
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, Sweden
| | - Alberto Firenze
- Unit of Research and International Cooperation, University Hospital of Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, Italy
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Slovenia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, Brazil
| | - Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Anca Pantea Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Manfredi Rizzo
- Department of Biochemistry, Mohammed Bin Rashid University, Dubai, United Arab Emirates.,Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Italy
| |
Collapse
|
21
|
Zhang Z, Hao M, Zhang X, He Y, Chen X, Taylor EW, Zhang J. Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends Food Sci Technol 2023; 132:40-53. [PMID: 36594074 PMCID: PMC9796359 DOI: 10.1016/j.tifs.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Background COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low μM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of μM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of μM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- COVID-19
- EGCG
- EGCG, epigallocatechin-3-gallate
- GRP78, glucose-regulated protein 78
- HO-1, hemeoxygenase 1
- IFN-β, interferon-β
- Mpro, main protease
- MxA, MxGTPases
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- Nsp15, nonstructural protein 15
- Omicron variant
- SARS-CoV-2
- TMPRSS2, transmembrane serine protease 2
- The upper respiratory tract
- Tropism
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiongsheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
22
|
Stefan N. SARS-CoV-2 fires up inflammation in adipose tissue. Nat Rev Endocrinol 2023; 19:8-9. [PMID: 36323884 PMCID: PMC9629757 DOI: 10.1038/s41574-022-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obesity is an important risk factor for severe COVID-19 and, possibly, for breakthrough SARS-CoV-2 infections in fully vaccinated people. Novel findings highlight how SARS-CoV-2 infects adipose tissue and promotes subclinical inflammation. Thus, also based on knowledge about endocrine dysfunction facilitating SARS-CoV-2 infection, a vicious cycle involving obesity, impaired metabolic health and COVID-19 might exist.
Collapse
Affiliation(s)
- Norbert Stefan
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
23
|
Garcia JN, Wanjalla CN, Mashayekhi M, Hasty AH. Immune Cell Activation in Obesity and Cardiovascular Disease. Curr Hypertens Rep 2022; 24:627-637. [PMID: 36136214 PMCID: PMC9510332 DOI: 10.1007/s11906-022-01222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.
Collapse
Affiliation(s)
- Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
24
|
Shin WJ, Ha DP, Machida K, Lee AS. The stress-inducible ER chaperone GRP78/BiP is upregulated during SARS-CoV-2 infection and acts as a pro-viral protein. Nat Commun 2022; 13:6551. [PMID: 36376289 PMCID: PMC9663498 DOI: 10.1038/s41467-022-34065-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Woo-Jin Shin
- grid.418628.10000 0004 0481 997XFlorida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987 USA
| | - Dat P. Ha
- grid.42505.360000 0001 2156 6853Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Keigo Machida
- grid.42505.360000 0001 2156 6853Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Amy S. Lee
- grid.42505.360000 0001 2156 6853Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
25
|
Shin J, Toyoda S, Fukuhara A, Shimomura I. GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines 2022; 10:biomedicines10081995. [PMID: 36009544 PMCID: PMC9406123 DOI: 10.3390/biomedicines10081995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
The outbreak of coronavirus disease 19 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in an unprecedented amount of infection cases and deaths, leading to the global health crisis. Despite many research efforts, our understanding of COVID-19 remains elusive. Recent studies have suggested that cell surface glucose-regulated protein 78 (GRP78) acts as a host co-receptor for SARS-CoV-2 infection and is related to COVID-19 risks, such as older age, obesity, and diabetes. Given its significance in a wide range of biological processes, such as protein homeostasis and cellular signaling, GRP78 might also play an important role in various stages of the viral life cycle and pathology of SARS-CoV-2. In this perspective, we explore the emerging and potential roles of GRP78 in SARS-CoV-2 infection. Additionally, we discuss the association with COVID-19 risks and symptoms. We hope this review article will be helpful to understand COVID-19 pathology and promote attention and study of GRP78 from many clinical and basic research fields.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, Fukuhara A, Shimomura I. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism 2022; 133:155236. [PMID: 35688210 PMCID: PMC9173833 DOI: 10.1016/j.metabol.2022.155236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
28
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
29
|
Alcendor DJ, Matthews-Juarez P, Smoot D, Hildreth JEK, Lamar K, Tabatabai M, Wilus D, Juarez PD. Breakthrough COVID-19 Infections in the US: Implications for Prolonging the Pandemic. Vaccines (Basel) 2022; 10:755. [PMID: 35632512 PMCID: PMC9146933 DOI: 10.3390/vaccines10050755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of COVID-19 breakthrough infections-an infection that occurs after you have been vaccinated-has increased in frequency since the Delta and now Omicron variants of the SARS-CoV-2 coronavirus have become the dominant strains transmitted in the United States (US). Evidence suggests that individuals with breakthrough infections, though rare and expected, may readily transmit COVID-19 to unvaccinated populations, posing a continuing threat to the unvaccinated. Here, we examine factors contributing to breakthrough infections including a poor immune response to the vaccines due to the fact of advanced age and underlying comorbidities, the natural waning of immune protection from the vaccines over time, and viral variants that escape existing immune protection from the vaccines. The rise in breakthrough infections in the US and how they contribute to new infections, specifically among the unvaccinated and individuals with compromised immune systems, will create the need for additional booster vaccinations or development of modified vaccines that directly target current variants circulating among the general population. The need to expedite vaccination among the more than 49.8 million unvaccinated eligible people in the US is critical.
Collapse
Affiliation(s)
- Donald J. Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
| | - Patricia Matthews-Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| | - Duane Smoot
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - James E. K. Hildreth
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - Kimberly Lamar
- Office of Health Disparities Elimination, Tennessee Department of Health, Nashville, TN 37243, USA;
| | - Mohammad Tabatabai
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Derek Wilus
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Paul D. Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| |
Collapse
|
30
|
Beltrán-Camacho L, Eslava-Alcón S, Rojas-Torres M, Sánchez-Morillo D, Martinez-Nicolás MP, Martín-Bermejo V, de la Torre IG, Berrocoso E, Moreno JA, Moreno-Luna R, Durán-Ruiz MC. The serum of COVID-19 asymptomatic patients up-regulates proteins related to endothelial dysfunction and viral response in circulating angiogenic cells ex-vivo. Mol Med 2022; 28:40. [PMID: 35397534 PMCID: PMC8994070 DOI: 10.1186/s10020-022-00465-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already caused 6 million deaths worldwide. While asymptomatic individuals are responsible of many potential transmissions, the difficulty to identify and isolate them at the high peak of infection constitutes still a real challenge. Moreover, SARS-CoV-2 provokes severe vascular damage and thromboembolic events in critical COVID-19 patients, deriving in many related deaths and long-hauler symptoms. Understanding how these processes are triggered as well as the potential long-term sequelae, even in asymptomatic individuals, becomes essential.
Methods We have evaluated, by application of a proteomics-based quantitative approach, the effect of serum from COVID-19 asymptomatic individuals over circulating angiogenic cells (CACs). Healthy CACs were incubated ex-vivo with the serum of either COVID-19 negative (PCR −/IgG −, n:8) or COVID-19 positive asymptomatic donors, at different infective stages: PCR +/IgG − (n:8) and PCR −/IgG + (n:8). Also, a label free quantitative approach was applied to identify and quantify protein differences between these serums. Finally, machine learning algorithms were applied to validate the differential protein patterns in CACs.
Results Our results confirmed that SARS-CoV-2 promotes changes at the protein level in the serum of infected asymptomatic individuals, mainly correlated with altered coagulation and inflammatory processes (Fibrinogen, Von Willebrand Factor, Thrombospondin-1). At the cellular level, proteins like ICAM-1, TLR2 or Ezrin/Radixin were only up-regulated in CACs treated with the serum of asymptomatic patients at the highest peak of infection (PCR + /IgG −), but not with the serum of PCR −/IgG + individuals. Several proteins stood out as significantly discriminating markers in CACs in response to PCR or IgG + serums. Many of these proteins particiArticle title: Kindly check and confirm the edit made in the article
title.pate in the initial endothelial response against the virus. Conclusions The ex vivo incubation of CACs with the serum of asymptomatic COVID-19 donors at different stages of infection promoted protein changes representative of the endothelial dysfunction and inflammatory response after viral infection, together with activation of the coagulation process. The current approach constitutes an optimal model to study the response of vascular cells to SARS-CoV-2 infection, and an alternative platform to test potential inhibitors targeting either the virus entry pathway or the immune responses following SARS-CoV-2 infection. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00465-w.
Collapse
|
31
|
Muscogiuri G, Barrea L, Verde L, Vetrani C, Savastano S, Colao A. The "identikit" of subject with obesity and COVID-19 vaccine breakthrough. EXCLI JOURNAL 2022; 21:687-694. [PMID: 35721580 PMCID: PMC9203987 DOI: 10.17179/excli2022-4864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
The mRNA coronavirus disease 2019 (COVID-19) vaccines were highly effective in the prevention of symptomatic COVID-19, hospitalization, severe disease, and death. However, a minority of vaccinated individuals might become infected and experience significant morbidity. Risk factors of COVID-19 vaccine breakthrough in obesity have not been elucidated. Thus, we aimed to portray the subjects with obesity developing COVID-19 vaccine breakthrough despite vaccination. Coronavirus 2019 (COVID-19) mRNA vaccines have been highly effective in preventing symptomatic COVID-19, hospitalization, severe illness and death. However, a minority of vaccinated individuals may become infected and experience considerable morbidity. The risk factors for COVID-19 vaccine breakthrough in obesity have not been elucidated. Therefore, we aimed to depict individuals with obesity who develop COVID-19 vaccine breakthrough despite vaccination. An online questionnaire was distributed to respondents via a snowball sampling method among subjects with obesity belonging to Italian Associations for people living with obesity aged 18 years and above. Two hundred and thirty-five respondents (44.5±14 years; BMI: 33.3±7.2 kg/m2) were included in the study. COVID-19 vaccine breakthrough was noted in 34 % of respondents. A higher prevalence of grade III obesity was detected in subjects with COVID-19 vaccine breakthrough compared to subjects that did not (27.5 % vs 13.5 %; p=0.014). In addition, a significant lower prevalence of respondents that completed third dose were found in respondents with COVID-19 vaccine breakthrough compared with respondents that did not develop it (33.8 % vs 72.9 %; p<0.001). After stratifying respondents with COVID-19 vaccine breakthrough according to the completed doses of vaccine, we found that, although no differences were detected in terms of clinical manifestations of COVID-19, there was a significant higher prevalence of type 2 diabetes and hypertension in respondents that completed third doses compared to respondents that completed first and second doses. In conclusion, COVID-19 vaccine breakthrough was more common in subjects with grade III obesity. The presence of type 2 diabetes and hypertension could counteract the immune potentiating effects of vaccine booster against COVID-19.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Endocrinology Unit, University Medical School of Naples, Naples, Italy,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy,Cattedra Unesco “Educazione alla salute e allo sviluppo sostenibile”, University Medical School of Naples, Naples, Italy,*To whom correspondence should be addressed: Giovanna Muscogiuri, Dipartimento di Medicina Clinica e Chirurgia, Endocrinology Unit, University Medical School of Naples, Naples, Italy; Tel: +390817463779, FAX: +300817463688, E-mail:
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Napoli, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Claudia Vetrani
- Dipartimento di Medicina Clinica e Chirurgia, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Endocrinology Unit, University Medical School of Naples, Naples, Italy,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Endocrinology Unit, University Medical School of Naples, Naples, Italy,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy,Cattedra Unesco “Educazione alla salute e allo sviluppo sostenibile”, University Medical School of Naples, Naples, Italy
| |
Collapse
|
32
|
Liu E, Lee H, Lui B, White RS, Samuels JD. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments. J Comp Eff Res 2022; 11:371-381. [PMID: 35023362 PMCID: PMC8757534 DOI: 10.2217/cer-2021-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
This narrative review summarizes recent reports to provide an updated understanding of the multiorgan effects of SARS-CoV-2 infection in obese individuals. A PubMed search of 528 primary articles was performed, with inclusion based on novelty, relevance and redundancy. Obesity confers an increased risk for hospitalization, intensive care unit admission, severe pneumonia, intubation and acute kidney injury in COVID-19 patients. Obesity is also associated with higher levels of inflammatory and thrombotic markers. However, the associations between obesity and mortality or cardiac injury in COVID-19 patients remain unclear. Obesity is a risk factor for several respiratory and nonrespiratory COVID-19 complications. Future work is needed to further explore these relationships and optimize the management of obese COVID-19 patients.
Collapse
Affiliation(s)
- Esther Liu
- Weill Cornell Medical College, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Hudson Lee
- Weill Cornell Medical College, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Briana Lui
- Weill Cornell Medical College, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Robert S White
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| | - Jon D Samuels
- Department of Anesthesiology, Weill Cornell Medicine, 525 East 68th Street, Box 124, New York, NY 10065, USA
| |
Collapse
|
33
|
Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol 2022; 10:284-296. [PMID: 35183303 DOI: 10.1016/s2213-8587(22)00003-1] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an epidemic, much like other non-communicable diseases (NCDs), such as cancer, obesity, diabetes, and cardiovascular disease. The pathophysiology of NAFLD, particularly involving insulin resistance and subclinical inflammation, is not only closely linked to that of those NCDs but also to a severe course of the communicable disease COVID-19. Genetics alone cannot explain the large increase in the prevalence of NAFLD during the past 2 decades and the increase that is projected for the next decades. Impairment of glucose and lipid metabolic pathways, which has been propelled by the worldwide increase in the prevalence of obesity and type 2 diabetes, is most likely behind the increase in people with NAFLD. As the prevalence of NAFLD varies among subgroups of patients with diabetes and prediabetes identified by cluster analyses, stratification of people with diabetes and prediabetes by major pathological mechanistic pathways might improve the diagnosis of NAFLD and prediction of its progression. In this Review, we aim to understand how diabetes can affect the development of hepatic steatosis and its progression to advanced liver damage. First, we emphasise the extent to which NAFLD and diabetes jointly occur worldwide. Second, we address the major mechanisms that are involved in the pathogenesis of NAFLD and type 2 diabetes, and we discuss whether these mechanisms place NAFLD in an important position to better understand the pathogenesis of NCDs and communicable diseases, such as COVID-19. Third, we address whether this knowledge can be used for personalised treatment of NAFLD in the future. Finally, we discuss the current treatment strategies for people with type 2 diabetes and their effectiveness in treating the spectrum of hepatic diseases from simple steatosis to non-alcoholic steatohepatitis and hepatic fibrosis.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV and Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Hospital Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Hyperglycemia and Loss of Redox Homeostasis in COVID-19 Patients. Cells 2022; 11:cells11060932. [PMID: 35326383 PMCID: PMC8946177 DOI: 10.3390/cells11060932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The infection with SARS-CoV-2 impairs the glucose−insulin axis and this contributes to oxidative (OS) and nitrosative (NSS) stress. Here, we evaluated changes in glucose metabolism that could promote the loss of redox homeostasis in COVID-19 patients. This was comparative cohort and analytical study that compared COVID-19 patients and healthy subjects. The study population consisted of 61 COVID-19 patients with and without comorbidities and 25 healthy subjects (HS). In all subjects the plasma glucose, insulin, 8-isoprostane, Vitamin D, H2S and 3-nitrotyrosine were determined by ELISA. The nitrites (NO2−), lipid-peroxidation (LPO), total-antioxidant-capacity (TAC), thiols, glutathione (GSH) and selenium (Se) were determined by spectrophotometry. The glucose, insulin and HOMA-IR (p < 0.001), 8-isoprostanes, 3-nitrotyrosine (p < 0.001) and LPO were increased (p = 0.02) while Vitamin D (p = 0.01), H2S, thiols, TAC, GSH and Se (p < 0.001) decreased in COVID-19 patients in comparison to HS. The SARS-CoV-2 infection resulted in alterations in the glucose−insulin axis that led to hyperglycemia, hyperinsulinemia and IR in patients with and without comorbidities. These alterations increase OS and NSS reflected in increases or decreases in some oxidative markers in plasma with major impact or fatal consequences in patients that course with metabolic syndrome. Moreover, subjects without comorbidities could have long-term alterations in the redox homeostasis after infection.
Collapse
|
35
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
36
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
37
|
Abstract
Obesity and impaired metabolic health are important risk factors for severe COVID-19. Novel data indicate that these risk factors might also promote vaccine-breakthrough SARS-CoV-2 infections in fully vaccinated people. Here, these relationships are discussed and post-acute sequelae of COVID-19 that are related to obesity and impaired metabolic health are addressed.
Collapse
Affiliation(s)
- Norbert Stefan
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany.
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
38
|
Colleluori G, Graciotti L, Pesaresi M, Di Vincenzo A, Perugini J, Di Mercurio E, Caucci S, Bagnarelli P, Zingaretti CM, Nisoli E, Menzo S, Tagliabracci A, Ladoux A, Dani C, Giordano A, Cinti S. Visceral fat inflammation and fat embolism are associated with lung’s lipidic hyaline membranes in subjects with COVID-19. Int J Obes (Lond) 2022; 46:1009-1017. [PMID: 35082385 PMCID: PMC8790008 DOI: 10.1038/s41366-022-01071-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
|
39
|
Stoian AP, Kempler P, Stulnig T, Rizvi AA, Rizzo M. Diabetes and COVID-19: What 2 Years of the Pandemic Has Taught Us. Metab Syndr Relat Disord 2021; 20:137-140. [PMID: 34967689 DOI: 10.1089/met.2021.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the world enters its third year of the COVID-19 pandemic, individuals with diabetes have faced particular challenges from the virus. A deleterious bidirectional relationship exists between the two disorders, with heightened inflammatory, immunologic, and cellular mechanisms leading to a more severe illness and increased morbidity and mortality. Tight glucose control, though necessary, is hampered by physical restrictions and difficulty accessing health care. Novel glucose-lowering medications may provide unique benefits in this regard. It is imperative that multi-pronged efforts be prioritized in order to reduce adverse outcomes in patients with diabetes at risk for COVID-19.
Collapse
Affiliation(s)
- Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Diabetes, Nutrition and Metabolic Diseases "Prof N.C. Paulescu," Bucharest, Romania
| | - Peter Kempler
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Thomas Stulnig
- Department of Medicine III and Karl Landsteiner institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna Healthcare Group, Vienna, Austria
| | - Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA.,Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|