1
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Kalantar GH, Saraswat S, SantaCruz-Calvo S, Gholamrezaeinejad F, Javidan A, Agrawal M, Liu R, Kern PA, Zhang XD, Nikolajczyk BS. Fasting and Glucose Metabolism Differentially Impact Peripheral Inflammation in Human Type 2 Diabetes. Nutrients 2024; 16:1404. [PMID: 38794641 PMCID: PMC11124302 DOI: 10.3390/nu16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.
Collapse
Affiliation(s)
- Gabriella H. Kalantar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| | - Shubh Saraswat
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Fatemeh Gholamrezaeinejad
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Aida Javidan
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaohua Douglas Zhang
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Barbara S. Nikolajczyk
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Joshi G, Das A, Verma G, Guchhait P. Viral infection and host immune response in diabetes. IUBMB Life 2024; 76:242-266. [PMID: 38063433 DOI: 10.1002/iub.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/05/2023] [Indexed: 04/24/2024]
Abstract
Diabetes, a chronic metabolic disorder disrupting blood sugar regulation, has emerged as a prominent silent pandemic. Uncontrolled diabetes predisposes an individual to develop fatal complications like cardiovascular disorders, kidney damage, and neuropathies and aggravates the severity of treatable infections. Escalating cases of Type 1 and Type 2 diabetes correlate with a global upswing in diabetes-linked mortality. As a growing global concern with limited preventive interventions, diabetes necessitates extensive research to mitigate its healthcare burden and assist ailing patients. An altered immune system exacerbated by chronic hyperinflammation heightens the susceptibility of diabetic individuals to microbial infections, including notable viruses like SARS-CoV-2, dengue, and influenza. Given such a scenario, we scrutinized the literature and compiled molecular pathways and signaling cascades related to immune compartments in diabetics that escalate the severity associated with the above-mentioned viral infections in them as compared to healthy individuals. The pathogenesis of these viral infections that trigger diabetes compromises both innate and adaptive immune functions and pre-existing diabetes also leads to heightened disease severity. Lastly, this review succinctly outlines available treatments for diabetics, which may hold promise as preventive or supportive measures to effectively combat these viral infections in the former.
Collapse
Affiliation(s)
- Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anushka Das
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
4
|
Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells 2024; 13:663. [PMID: 38667278 PMCID: PMC11049175 DOI: 10.3390/cells13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (I.D.); (C.A.); (M.L.B.)
| |
Collapse
|
5
|
Racca NM, Dontu A, Riley K, Yolcu ES, Shirwan H, Coronel MM. Bending the Rules: Amplifying PD-L1 Immunoregulatory Function Through Flexible Polyethylene Glycol Synthetic Linkers. Tissue Eng Part A 2024; 30:299-313. [PMID: 38318841 DOI: 10.1089/ten.tea.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.
Collapse
Affiliation(s)
- Nicole M Racca
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Dontu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayle Riley
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Associate Director, Immunomodulation and Regenerative Medicine Program, Ellis Fischel Cancer Center, Columbia, Missouri, USA
| | - María M Coronel
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Rivera-Carranza T, Nájera-Medina O, Bojalil-Parra R, Rodríguez-López CP, Zúñiga-León E, León-Téllez Girón A, Azaola-Espinosa A. The link between lymphocyte subpopulations in peripheral blood and metabolic variables in patients with severe obesity. PeerJ 2023; 11:e15465. [PMID: 37334132 PMCID: PMC10274585 DOI: 10.7717/peerj.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Obesity, a public health problem, is a state of metainflammation that influences the development of chronic degenerative diseases, particularly in patients with severe obesity. Objective The objective of this study was to evidence immunometabolic differences in patients with different degrees of obesity, including severe obesity, by determining correlations between lymphocyte subpopulations and metabolic, body composition, and clinical variables. Methods Peripheral blood immune cells (CD4+, CD8+ memory and effector T lymphocytes) were analyzed, and measures of body composition, blood pressure, and biochemical composition (glucose, glycated hemoglobin (HbA1c), insulin, C-reactive protein (CRP), and the lipid profile) were carried out in patients with different degrees of obesity. Results The patients were classified according to total body fat (TBF) percentage as normal body fat, class 1 and 2 obesity, class 3 obesity, and class 4 obesity. The greater the TBF percentage, the more pronounced the differences in body composition (such as a decrease in the fat-free mass (FFM) that is defined as sarcopenic obesity) and the immunometabolic profile. There was an increase of CD3+ T lymphocytes (mainly CD4+, CD4+CD62-, and CD8+CD45RO+ T lymphocytes) and an increase in the TBF percentage (severity of obesity). Conclusions The correlations between lymphocyte subpopulations and metabolic, body composition, and clinical variables demonstrated the existence of a chronic, low-intensity inflammatory process in obesity. Therefore, measuring the immunometabolic profile by means of lymphocyte subpopulations in patients with severe obesity could be useful to determine the severity of the disease and the increased risk of presenting obesity-associated chronic degenerative diseases.
Collapse
Affiliation(s)
| | - Oralia Nájera-Medina
- Department of Health Care, Metropolitan Autonomous University, Coyoacán, México DF, México
| | - Rafael Bojalil-Parra
- Department of Health Care, Metropolitan Autonomous University, Coyoacán, México DF, México
| | | | - Eduardo Zúñiga-León
- Department of Biological Systems, Metropolitan Autonomous University, Coyoacán, México DF, México
| | | | | |
Collapse
|
7
|
Medina JD, Barber GF, Coronel MM, Hunckler MD, Linderman SW, Quizon MJ, Ulker V, Yolcu ES, Shirwan H, García AJ. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J Biomed Mater Res A 2022; 110:1728-1737. [PMID: 35841329 DOI: 10.1002/jbm.a.37429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing β-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham F Barber
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maria M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen W Linderman
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Michelle J Quizon
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahap Ulker
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
CD36 and Its Role in Regulating the Tumor Microenvironment. Curr Oncol 2022; 29:8133-8145. [PMID: 36354702 PMCID: PMC9688853 DOI: 10.3390/curroncol29110642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 01/14/2023] Open
Abstract
CD36 is a transmembrane glycoprotein that binds to a wide range of ligands, including fatty acids (FAs), cholesterol, thrombospondin-1 (TSP-1) and thrombospondin-2 (TSP-2), and plays an important role in lipid metabolism, immune response, and angiogenesis. Recent studies have highlighted the role of CD36 in mediating lipid uptake by tumor-associated immune cells and in promoting tumor cell progression. In cancer-associated fibroblasts (CAFs), CD36 regulates lipid uptake and matrix protein production to promote tumor proliferation. In addition, CD36 can promote tumor cell adhesion to the extracellular matrix (ECM) and induce epithelial mesenchymal transition (EMT). In terms of tumor angiogenesis, CD36 binding to TSP-1 and TSP-2 can both inhibit tumor angiogenesis and promote tumor migration and invasion. CD36 can promote tumor angiogenesis through vascular mimicry (VM). Overall, we found that CD36 exhibits diverse functions in tumors. Here, we summarize the recent research findings highlighting the novel roles of CD36 in the context of tumors.
Collapse
|
9
|
Pugh GH, Fouladvand S, SantaCruz-Calvo S, Agrawal M, Zhang XD, Chen J, Kern PA, Nikolajczyk BS. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity (Silver Spring) 2022; 30:1983-1994. [PMID: 36069294 PMCID: PMC9509440 DOI: 10.1002/oby.23528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Myeloid cells dominate metabolic disease-associated inflammation (metaflammation) in mouse obesity, but the contributions of myeloid cells to the peripheral inflammation that fuels sequelae of human obesity are untested. This study used unbiased approaches to rank contributions of myeloid and T cells to peripheral inflammation in people with obesity across the spectrum of metabolic health. METHODS Peripheral blood mononuclear cells (PBMCs) from people with obesity with or without prediabetes or type 2 diabetes were stimulated with T cell-targeting CD3/CD28 or myeloid-targeting lipopolysaccharide for 20 to 72 hours to assess cytokine production using Bio-Plex. Bioinformatic modeling ranked cytokines with respect to their predictive power for metabolic health. Intracellular tumor necrosis factor α was quantitated as a classical indicator of metaflammation. RESULTS Cytokines increased over 72 hours following T cell-, but not myeloid-, targeted stimulation to indicate that acute myeloid inflammation may shift to T cell inflammation over time. T cells contributed more tumor necrosis factor α to peripheral inflammation regardless of metabolic status. Bioinformatic combination of cytokines from all cohorts, stimuli, and time points indicated that T cell-targeted stimulation was most important for differentiating inflammation in diabetes, consistent with previous identification of a mixed T helper type 1/T helper type 17 cytokine profile in diabetes. CONCLUSIONS T cells dominate peripheral inflammation in obesity; therefore, targeting T cells may be an effective approach for prevention/management of metaflammation.
Collapse
Affiliation(s)
- Gabriella H. Pugh
- Department of Microbiology, Immunology, & Molecular
Genetics, University of Kentucky Lexington, Kentucky, USA
| | - Sajjad Fouladvand
- Department of Computer Science, University of Kentucky
Lexington, Kentucky, USA
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences,
University of Kentucky Lexington, Kentucky, USA
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences,
University of Kentucky Lexington, Kentucky, USA
| | | | - Jin Chen
- Department of Computer Science, University of Kentucky
Lexington, Kentucky, USA
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky
Lexington, Kentucky, USA
- Barnstable Brown Diabetes Center, University of Kentucky
Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Microbiology, Immunology, & Molecular
Genetics, University of Kentucky Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences,
University of Kentucky Lexington, Kentucky, USA
- Barnstable Brown Diabetes Center, University of Kentucky
Lexington, Kentucky, USA
| |
Collapse
|
10
|
Bharath LP, Hart SN, Nikolajczyk BS. T-cell Metabolism as Interpreted in Obesity-associated Inflammation. Endocrinology 2022; 163:6657752. [PMID: 35932471 PMCID: PMC9756079 DOI: 10.1210/endocr/bqac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/19/2022]
Abstract
The appreciation of metabolic regulation of T-cell function has exploded over the past decade, as has our understanding of how inflammation fuels comorbidities of obesity, including type 2 diabetes. The likelihood that obesity fundamentally alters T-cell metabolism and thus chronic obesity-associated inflammation is high, but studies testing causal relationships remain underrepresented. We searched PubMed for key words including mitochondria, obesity, T cell, type 2 diabetes, cristae, fission, fusion, redox, and reactive oxygen species to identify foundational and more recent studies that address these topics or cite foundational work. We investigated primary papers cited by reviews found in these searches and highlighted recent work with >100 citations to illustrate the state of the art in understanding mechanisms that control metabolism and thus function of various T-cell subsets in obesity. However, "popularity" of a paper over the first 5 years after publication cannot assess long-term impact; thus, some likely important work with fewer citations is also highlighted. We feature studies of human cells, supplementing with studies from animal models that suggest future directions for human cell research. This approach identified gaps in the literature that will need to be filled before we can estimate efficacy of mitochondria-targeted drugs in clinical trials to alleviate pathogenesis of obesity-associated inflammation.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA
| | - Samantha N Hart
- Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Correspondence: Barbara S. Nikolajczyk, PhD, Healthy Kentucky Research Bldg. Rm. 217, 760 Press Ave, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Scherer PE, Kirwan JP, Rosen CJ. Post-acute sequelae of COVID-19: A metabolic perspective. eLife 2022; 11:78200. [PMID: 35318939 PMCID: PMC8942467 DOI: 10.7554/elife.78200] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 pandemic continues to rage around the world. At the same time, despite strong public health measures and high vaccination rates in some countries, a post-COVID-19 syndrome has emerged which lacks a clear definition, prevalence, or etiology. However, fatigue, dyspnea, brain fog, and lack of smell and/or taste are often characteristic of patients with this syndrome. These are evident more than a month after infection, and are labeled as Post-Acute Sequelae of CoV-2 (PASC) or commonly referred to as long-COVID. Metabolic dysfunction (i.e., obesity, insulin resistance, and diabetes mellitus) is a predisposing risk factor for severe acute COVID-19, and there is emerging evidence that this factor plus a chronic inflammatory state may predispose to PASC. In this article, we explore the potential pathogenic metabolic mechanisms that could underly both severe acute COVID-19 and PASC, and then consider how these might be targeted for future therapeutic approaches.
Collapse
Affiliation(s)
- Philipp E Scherer
- Touchstone Diabetes Center University of Texas Southwestern, Dallas, United States
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, United States
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, United States
| |
Collapse
|